JP2007035687A - 光半導体装置および光半導体装置の製造方法 - Google Patents

光半導体装置および光半導体装置の製造方法 Download PDF

Info

Publication number
JP2007035687A
JP2007035687A JP2005212452A JP2005212452A JP2007035687A JP 2007035687 A JP2007035687 A JP 2007035687A JP 2005212452 A JP2005212452 A JP 2005212452A JP 2005212452 A JP2005212452 A JP 2005212452A JP 2007035687 A JP2007035687 A JP 2007035687A
Authority
JP
Japan
Prior art keywords
metal layer
heat sink
semiconductor device
optical semiconductor
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005212452A
Other languages
English (en)
Inventor
Akio Yoshimura
明夫 吉村
Nobuyuki Iwamoto
伸行 岩元
Naoki Obara
直樹 小原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2005212452A priority Critical patent/JP2007035687A/ja
Publication of JP2007035687A publication Critical patent/JP2007035687A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Semiconductor Lasers (AREA)

Abstract

【課題】ヒートシンク用金属層の金属(Au)とマウント用金属層の金属(Sn)との合金層の発生をなくし、信頼性の高い受発光一体型の光半導体装置を提供する。
【解決手段】ヒートシンク用金属層5の表面に生じる凹凸11の深さよりも、バリアメタル層6の厚さの方が厚く形成されるように層形成条件を設定し、凹凸11部分においてヒートシンク用金属層5の表面をバリアメタル層6から露出させないようにする。これにより、半導体レーザと受光素子をマウントするために、接着用として用いるマウント用金属層8であるSnメッキを熱により溶融し広がった状態でも、ヒートシンク用金属層5のAuとマウント用金属層8のSnとがバリアメタル層6のTi層により分離され、Au−Sn合金層の異常な成長をなくすことができる。
【選択図】図1

Description

本発明は、光ピックアップに用いる半導体レーザと受光素子を一体にした、いわゆる受発光一体型の光半導体装置、および光半導体装置の製造方法に関するものである。
近年、DVDなどの光ディスクに用いる光ピックアップ装置は、再生用のものから記録も可能なものへと開発が進み、さらにポータブル化も進んでいる。それに伴い、半導体レーザの高出力化や、光ピックアップ装置の小型化が要求されてきている。
光ピックアップ装置の小型化の方法として、半導体レーザと受光素子を別々に組み立てる方法に対し、半導体レーザを受光素子上に直接マウントする、光学系の簡素化が可能な受発光一体型の光半導体装置を採用することの要望が高まっている。
前記半導体レーザをマウントする材料には、接着強度が高い鉛を含んだ、いわゆる半田メッキが用いられてきているが、環境面においては、鉛フリー化が重要な課題となっており、その対応が望まれる。
また、DVDなどの光ディスクに高速記録するため、半導体レーザの高出力化が必要であり、高出力に伴う発熱が半導体レーザにおける長寿命化の妨げとなるという問題が発生している。今後、より高速の記録が進むにつれ、さらに高出力のレーザが必要となり、受発光一体型光半導体装置において、放熱性を高めたヒートシンクも必要となっている。
図8は従来の半導体レーザと受光素子を一体型にした光半導体装置の構成を示す断面図である。
図8において、受光素子や処理回路を備えた半導体基板1に、半導体レーザ9と電気的に分離するために絶縁膜2を形成している。また、前記絶縁膜2上にヒートシンクとして用いる熱伝導率の高いヒートシンク用金属層5を電界メッキ法により選択的にメッキを成長させるために、電極板としての金属膜3,4を形成している。
さらに、半導体レーザ9をヒートシンク用金属層5にマウントするため、接着材料としてSnを含むマウント用金属層8を電解メッキ法により選択的に形成している。ただし、マウント用金属層8に含まれるSnが下部のヒートシンク用金属層5に拡散することを抑制するため、バリアメタル層6を形成し、バリアメタル層6の上に接着用メッキ層8と該バリアメタル層6を接続するために、さらに金属層7を形成している。
この光半導体装置は、半導体レーザ9からの出射光10を垂直に立ち上げる機能を持ち、このような構成の光半導体装置が現在一般的に使用されている。
しかしながら、前記従来の光半導体装置において、半導体レーザ9をヒートシンク用金属層5に高い融点の材料を用いてマウントすることにより、半導体レーザ9に熱的ストレスが加わることによって生じる歪による特性劣化の課題から、マウント用金属層8としては、極力、低い融点の材料が望ましく、そのためSnを含んだ材料のものが採用されることが多い。
一方、ヒートシンク用金属層5の材料には、熱伝導率が高い材料としてAuなどの材料が用いられる。これらの材料を用い、半導体レーザ9をマウントする場合に、前記SnのAuへの拡散を避けるため、特許文献1〜5などに記載されているバリアメタルなどの技術が用いられている。
特開平4−196129号公報 特開平6−326210号公報 特開平8−45939号公報 特開平8−124930号公報 特開2003−31576号公報
ところが前記従来の技術では、ヒートシンク用金属層5の表面に生じる凹凸によって、バリアメタル層6のカバレッジが不足し、前記SnとAuとが合金層を形成して成長することにより、半導体レーザ9のPN接合まで到達し、これが原因して半導体レーザ9のショートなどの問題を発生させていた。
ただし、一般的に、半田メッキ層であるマウント用金属層8が2〜8μm、ヒートシンク用金属層5が5〜30μm、半田メッキ形成時に電極用としているAuが600nmであるため、このAuと半田メッキ層では、Auの総量がSnに対して少ないため合金層を作るが成長はしない。しかし、ヒートシンク層に用いるAuは約20μm程度形成するため、このAuと半田メッキ間におけるバリアが重要な課題となる。
図9は図8の従来例における半田メッキ近傍のA部拡大断面図であり、ヒートシンク用金属層5としてAuをメッキ法を用いて形成しているが、このメッキ過程において、図示したように表面に凹凸11が発生する。この凹凸11を含みヒートシンク用金属層5のAuとマウント用金属層8のSnとが合金層を形成しないようにバリアメタル層6を形成するが、バリアメタル層6となる金属層が、凹凸11の段差より薄い膜厚で形成されることにより、ヒートシンク用金属層5の表面を完全に被覆することができない部位12が形成される。
図10は図8の従来例と同様な構成のものにおいて、半田メッキ層であるマウント用金属層8を熱により溶融させ半導体レーザ9を搭載した状態を示す断面図であり、ヒートシンク用金属層5のAuとマウント用金属層8のSnとが、バリアメタル層6の被覆が不十分であったことが原因して、合金層13a,13bを形成し、それが成長することにより、半導体レーザ9においてPN接合短絡や光出射の光軸のズレなどの不具合を発生させていた。
本発明は、前記従来の課題に鑑み、ヒートシンク用金属層の金属とマウント用金属層の金属との合金層の発生をなくし、信頼性の高い受発光一体型の光半導体装置を提供することを目的とする。
前記目的を達成するため、本発明の光半導体装置は、ヒートシンク用金属層の表面をバリアメタル層より露出させないように、ヒートシンク用金属層の表面に生じる凹凸の深さよりも、バリアメタル層の厚さを厚く形成したことを特徴とし、この構成によって、ヒートシンク用金属層の表面の前記凹凸をバリアメタル層にて完全に被覆するようにする。
本発明の光半導体装置の製造方法は、ヒートシンク用金属層とSnを含む金属層とをメッキ法により形成し、バリアメタル層をスパッタリングにて形成する。また、凹凸を平均化し段差を抑えるために、バリアメタル層を形成する前に、不活性ガスによるスパッタリングを施し、凹凸の凹部が開口方向に向って拡がる形状にしたり、あるいはヒートシンク用金属層におけるメッキ成長後、逆電界を印加する表面処理を施すことを特徴とする。
本発明によれば、半導体レーザと受光素子とを一体化する最も重要な接着部分を安定して形成することができ、しかも、様々な半導体レーザを搭載してもヒートシンク効果により、寿命を延ばすことができるなど、高信頼性で自由度の高い受発光一体型の光半導体装置を提供することができる。その結果、光ピックアップ装置の小型化および高性能化が実現する。
以下、本発明の実施形態について図面を参照しながら説明する。
図1は本発明に係る実施形態を説明するための受発光一体型光半導体装置の要部を示す断面図である。
図1において、受光部や信号回路部などを有する受光素子となる半導体基板1に、受光素子と半導体レーザを電気的に絶縁するための絶縁膜である窒化膜2を形成し、窒化膜2の表面に、電界メッキ法によるメッキ層を形成するための電極用金属層となるTi3を50nm〜500nm成膜した後、同じく電極用金属層となるAu4を成膜する。
前記電極用金属層となるAu4の上にレジストでマスクをし、選択的に電界メッキにより放熱性の高い金属としてAuのヒートシンク用金属層5を10μm形成する。本例では、この過程で発生したヒートシンク用金属層5表面の凹凸による段差が最高で150nm観察されたため、バリアメタル層6であるTi層の膜厚を、マージンまで見込んで200nmと設定した。
さらに、半導体レーザを受光素子上にマウントするマウント用金属層8であるメッキ層を形成するために、バリアメタル層6上にAuの金属層7を600nm形成し、この金属層7上に、マウント用金属層8として選択的にSnのメッキ層を4μm形成した。
図2は本実施形態の光半導体装置における半導体レーザマウント後を示す断面図である。本実施形態は半導体レーザ9からの出射光10を垂直に立ち上げる機能を持っている。
本実施形態では、ヒートシンク用金属層5の表面に生じる凹凸の深さよりも、バリアメタル層6の厚さが厚く形成されるように層形成条件を設定したことにより、凹凸11部分においてヒートシンク用金属層5の表面がバリアメタル層6より露出しない。
このため、半導体レーザ9と受光素子をマウントするために、接着用として用いたマウント用金属層8であるSnメッキを熱により溶融させ、それが広がった状態でも、Au層のヒートシンク用金属層5とマウント用金属層8とがバリアメタル層6のTi層により分離され、実測においてもAu−Sn合金層の異常な成長が全く見られず、半導体レーザのPN短絡や光出射に対しても全く影響がないことが確認できた。
その結果、半導体基板1の受光素子に半導体レーザを搭載することが可能となり、ヒートシンク用金属層8の大きさを変えることにより、様々な放熱効果が得られ、受発光素子一体型の光半導体の受光素子と半導体レーザとの組み合わせの自由度が上がる。また、高信頼性であること、小型化に大きく貢献することはいうまでもない。同時に、ヒートシンク金属層8に適した金属がAuであり、Snを含む半田メッキによるマウントを可能にしたことにより、鉛を使用しない半田メッキの使用を可能にしたことは、環境面においても多大に貢献することができるといえる。
本実施形態において、ヒートシンク用金属層5表面の凹凸11の形状が、その側壁が順テーパ(凹部の開口方向に向って拡がる)に近い形状であることが望ましいが、若干の逆テーパ(凹部の底面方向に向って拡がる)であっても十分改善される。しかし、非常に確率は低いが、図3に示すように、極度の逆テーパ14が形成される場合もある。
このようにヒートシンク用金属層5に逆テーパ14の凹凸11が形成されると、バリアメタル層6の厚さを凹凸11の段差と同等以上の厚みに設定しても、ヒートシンク用金属層5の逆テーパ部上端にバリアメタル層6の庇形状が形成されることになるため、この庇部分が、ヒートシンク用金属層5の表面段差部において、凹凸11部分におけるバリアメタル層6の形成に対して影になるように作用し、バリアメタル層6の成長の妨げになってしまう。
このことは、バリアメタル層6の上部に半田メッキ用の金属膜7が形成されることにより、さらに増長される。結局、この形状ではヒートシンク用金属層5の表面をバリアメタル層6により完全に被覆することができない。このため、ヒートシンク用金属層5のAuとマウント用金属層8のSnが合金化するという既述した問題が生じることになる。
そこで、本発明に係る光半導体装置の製造方法の実施形態1においては、図4に示すように、ヒートシンク用金属層5の表面の凹凸11部分に逆テーパ14が発生した場合、不活性ガスであるArガス15によりスパッタリングを行うようにした。その結果、図5に示すようにヒートシンク用金属層5の凹凸16における段差形状に逆テーパがなくなり、図1,図2にて説明したように、ヒートシンク用金属層5がバリアメタル層6で被覆することができた。このことにより、バリアメタル層6の薄膜化も可能となった。
図6,図7は本発明に係る光半導体装置の製造方法の実施形態2の説明図であり、本実施形態においては、メッキ槽17における電解メッキ処理にてヒートシンク用金属層5を形成する際、半導体基板1,絶縁膜(窒化膜)2,電極用金属層であるTi3,Au4の積層体を絶縁膜18にて覆い、これを陰極19にバイアスする。このとき、成長の均一性を得るために、Auを含むメッキ液21を介し、対向板を陽極20に設定する。そして両極19,20に電位差を生じさせ、メッキ液21中にAuを受光素子側(半導体基板1側)に成長させる。既述したヒートシンク用金属層5におけるAu表面の凹凸は、この過程で形成される。
実施形態2では、前記凹凸の段差を緩和させる方法として、ヒートシンク用金属層5のAuメッキを所定の膜厚まで成長させた後、仕上げとして、図7に示すように、陰極19/陽極20を入れ替えるようにする。このことにより、成長したAuが、若干、メッキ液21に溶融し、結果としてヒートシンク用金属層5表面の凹凸を緩和し、平坦化を図ることができる。
本発明は、半半導体レーザと受光素子を一体にした構成の光半導体装置に適用され、特に、その製造過程において、ヒートシンク用金属層上に半導体レーザ接着用メッキとしてのマウント用金属層が溶融して広がる領域における合金層の形成をバリアメタル層により抑制し、Auを用いたヒートシンク用金属層上にSnを含むメッキ層のみにした場合でも、前記合金層が形成されない光半導体装置の提供を可能にする技術として有効である。
本発明に係る実施形態を説明するための受発光一体型光半導体装置の要部を示す断面図 本実施形態の光半導体装置における半導体レーザマウント後を示す断面図 凹凸部の逆テーパ形成を説明するための光半導体装置の断面図 本発明に係る光半導体装置の製造方法の実施形態1におけるスパッタリングの説明図 光半導体装置の製造方法の実施形態1における逆テーパ解消状態の断面図 本発明に係る光半導体装置の製造方法の実施形態2におけるメッキ処理の説明図 光半導体装置の製造方法の実施形態2におけるメッキ処理の説明図 従来の半導体レーザと受光素子を一体型にした光半導体装置の構成を示す断面図 図8の従来例における半田メッキ近傍のA部拡大断面図 従来例における合金層発生の問題を説明するための光半導体装置の説明図
符号の説明
1 半導体基板
2 窒化膜(絶縁膜)
3 電極用金属層(Ti)
4 電極用金属層(Au)
5 ヒートシンク用金属層(Au)
6 バリアメタル層(Ti)
7 金属層(Au)
8 マウント用金属層(Snを含む半田メッキ層)
9 半導体レーザ
11,16 凹凸
14 凹凸部分の逆テーパ
15 Arガス
17 メッキ槽
18 絶縁膜
19 陰極
20 陽極
21 メッキ液

Claims (5)

  1. 受光素子部を具備する半導体基板にヒートシンク用金属層を形成し、前記ヒートシンク用金属層上に半導体レーザを搭載するためSnを含んだ金属層を形成し、前記ヒートシンク用金属層と前記Snを含んだ金属層とが接触しないようにSnに対するバリアメタル層を形成してなる光半導体装置であって、
    前記ヒートシンク用金属層の表面を前記バリアメタル層より露出させないように、前記ヒートシンク用金属層の表面に生じる凹凸の深さよりも、前記バリアメタル層の厚さを厚く形成したことを特徴とする光半導体装置。
  2. 前記ヒートシンク用金属層をAuとし、前記バリアメタル層をTiとしたことを特徴とする請求項1記載の光半導体装置。
  3. 請求項1または2記載の光半導体装置を製造する製造方法であって、前記ヒートシンク用金属層と前記Snを含む金属層とをメッキ法により形成し、前記バリアメタル層をスパッタリングにて形成することを特徴とする光半導体装置の製造方法。
  4. 請求項1または2記載の光半導体装置において、前記ヒートシンク用金属層の表面に生じる凹凸を緩和するための製造方法であって、前記バリアメタル層を形成する前に、不活性ガスによるスパッタリングを施し、前記凹凸の凹部が開口方向に向って拡がる形状にすることを特徴とする光半導体装置の製造方法。
  5. 請求項1または2記載の光半導体装置において、前記ヒートシンク用金属層の表面に生じる凹凸を緩和するための製造方法であって、前記ヒートシンク用金属層の表面を平坦化するために、前記ヒートシンク用金属層におけるメッキ成長後、逆電界を印加する表面処理を施すことを特徴とする光半導体装置の製造方法。
JP2005212452A 2005-07-22 2005-07-22 光半導体装置および光半導体装置の製造方法 Pending JP2007035687A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005212452A JP2007035687A (ja) 2005-07-22 2005-07-22 光半導体装置および光半導体装置の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005212452A JP2007035687A (ja) 2005-07-22 2005-07-22 光半導体装置および光半導体装置の製造方法

Publications (1)

Publication Number Publication Date
JP2007035687A true JP2007035687A (ja) 2007-02-08

Family

ID=37794621

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005212452A Pending JP2007035687A (ja) 2005-07-22 2005-07-22 光半導体装置および光半導体装置の製造方法

Country Status (1)

Country Link
JP (1) JP2007035687A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7977162B2 (en) 2007-07-31 2011-07-12 Seiko Epson Corporation Semiconductor device, method for the same, and heat radiator

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7977162B2 (en) 2007-07-31 2011-07-12 Seiko Epson Corporation Semiconductor device, method for the same, and heat radiator

Similar Documents

Publication Publication Date Title
JP6578900B2 (ja) 半導体装置及びその製造方法
JP4929612B2 (ja) 半導体レーザ装置及びヒートシンク
GB2304995A (en) Mounting semiconductor lasers on heat sinks
JP6056146B2 (ja) 半導体レーザ装置
JP5962522B2 (ja) 半導体レーザ装置
WO2016092791A1 (ja) 半導体装置およびその製造方法
JP3767585B2 (ja) 半導体装置
JP2003347650A (ja) 半導体発光装置
WO2019043840A1 (ja) 発光装置
JP2006237103A (ja) 熱伝導部材および電子装置
JP2019080045A (ja) サブマウントおよびその製造方法
JP2007096090A (ja) 半導体発光素子及び半導体発光素子の製造方法
JP2006032779A (ja) 窒化物半導体発光素子
JP2007035687A (ja) 光半導体装置および光半導体装置の製造方法
JP7091640B2 (ja) 発光装置および発光装置の製造方法
JPWO2020031944A1 (ja) 半導体発光装置
JP2005116699A (ja) 半導体レーザ
WO2019232970A1 (zh) 激光二极体表面安装结构
JP6988268B2 (ja) 半導体レーザ装置
JP5338029B2 (ja) 半導体レーザ素子、半導体レーザ装置及びその製造方法
US20070104237A1 (en) Semiconductor laser apparatus and semiconductor laser device
WO2002078088A1 (fr) Assemblage de composants d'epaisseurs diverses
JP2008098194A (ja) サブマウント、半導体レーザ装置およびその製造方法、ホログラムレーザ装置、並びに光ピックアップ装置
JP2007251142A (ja) 半田層及びそれを用いた電子デバイス接合用基板並びにその製造方法
JP2007048937A (ja) 半導体レーザおよびその製法