JP2007035650A - Welding method of battery container - Google Patents

Welding method of battery container Download PDF

Info

Publication number
JP2007035650A
JP2007035650A JP2006270745A JP2006270745A JP2007035650A JP 2007035650 A JP2007035650 A JP 2007035650A JP 2006270745 A JP2006270745 A JP 2006270745A JP 2006270745 A JP2006270745 A JP 2006270745A JP 2007035650 A JP2007035650 A JP 2007035650A
Authority
JP
Japan
Prior art keywords
welding
battery container
lead material
alloy
plating layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006270745A
Other languages
Japanese (ja)
Inventor
Masazumi Tsukada
正純 塚田
Tsutomu Matsui
勉 松井
Hideaki Kitatsume
秀明 北爪
Noriyuki Shimizu
則行 清水
Reiji Nishikawa
羚二 西川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FDK Twicell Co Ltd
Original Assignee
Toshiba Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Battery Co Ltd filed Critical Toshiba Battery Co Ltd
Priority to JP2006270745A priority Critical patent/JP2007035650A/en
Publication of JP2007035650A publication Critical patent/JP2007035650A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

<P>PROBLEM TO BE SOLVED: To provide a welding method of a battery container having larger welding intensity to a lead material even with low welding current and having less variations when a lead material is welded by a parallel type resistance welding method. <P>SOLUTION: In the welding method of a battery container, a lead material arranged on a surface of a plating layer of a battery container with a coating layer made of an Ni base alloy formed on a part or a whole of an outside surface, the lead material is pressed with a welding pressure of 22N by two welding electrodes, a parallel type resistance welding is proceeded by a welding current of 1.2kA to 1.6kA, and the lead material is welded to the battery container with a welding intensity of 53.5 to 75.3N. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は電池容器の溶接方法に関し、更に詳しくは、リード材を抵抗溶接したときに、当該リード材との間で高い溶接強度を発揮する電池容器の溶接方法に関する。   The present invention relates to a battery container welding method, and more particularly to a battery container welding method that exhibits high welding strength with a lead material when the lead material is resistance-welded.

各種の電気・電子機器の普及に伴い、その駆動源である電池の複数個をパッケージした状態で、直接、当該機器の中に組み込むケースが増えている。その場合、電池の充電または放電のために、各電池の間やパッケージ端子と電池の間はリード材で電気的に接続することが必要である。すなわち、電池の外側表面、例えば蓋の部分や底部など電池容器の一部表面にリード材を固定することが必要になる。   Along with the widespread use of various electric and electronic devices, there are increasing cases in which a plurality of batteries as drive sources are packaged and directly incorporated into the device. In that case, in order to charge or discharge the battery, it is necessary to electrically connect each battery or between the package terminal and the battery with a lead material. That is, it is necessary to fix the lead material to the outer surface of the battery, for example, a partial surface of the battery container such as a lid part or a bottom part.

また、1個の電池を充放電制御回路などと一緒にパッケージ化した電池パックについても同様の状況が必要とされる。
電池容器とリード材の接続に関しては、従来から、図3で示したようなパラレル式抵抗溶接方法が広く実施されている。以下に、この方法について説明する。
図3において、電池容器1の正極端子の表面1aには、リード材2が配設され、このリード材2の表面2aには、電源3と接続された2本の溶接電極4a,4bが所定の間隔を置いた平行状態で配置されている。そして、これら溶接電極4a,4bに所定の加圧力を印加してその先端をリード材2の表面2aに押しつけることにより、リード材2の裏面2bは正極端子の表面1aに圧接されている。
The same situation is required for a battery pack in which one battery is packaged together with a charge / discharge control circuit.
Conventionally, a parallel resistance welding method as shown in FIG. 3 has been widely used to connect the battery container and the lead material. This method will be described below.
In FIG. 3, a lead material 2 is disposed on the surface 1 a of the positive electrode terminal of the battery container 1, and two welding electrodes 4 a and 4 b connected to the power source 3 are predetermined on the surface 2 a of the lead material 2. Are arranged in a parallel state with an interval of. Then, a predetermined pressure is applied to the welding electrodes 4a and 4b and the tip thereof is pressed against the surface 2a of the lead material 2, whereby the back surface 2b of the lead material 2 is pressed against the surface 1a of the positive electrode terminal.

この状態で、電源3から所定値の電流を通電する。電流は、例えば一方の溶接電流4aからリード材2に入力し、その一部はリード材を通って他方の溶接電極4bから電源に帰還し、残りは溶接電極4aの直下に位置するリード材2の部分近傍を通って正極端子の表面1a側に流れ、ついで、他方の溶接電極4bの直下に位置するリード材2の部分近傍からリード材を通り溶接電極4bから電源に帰還していく。   In this state, a predetermined value of current is supplied from the power source 3. For example, the current is input to the lead material 2 from one welding current 4a, a part of which is returned to the power source from the other welding electrode 4b through the lead material, and the rest is the lead material 2 positioned immediately below the welding electrode 4a. It flows to the surface 1a side of the positive electrode terminal through the vicinity of the positive electrode terminal, and then returns to the power source from the welding electrode 4b through the lead material from the vicinity of the lead material 2 located immediately below the other welding electrode 4b.

この過程で、各溶接電極の直下付近に位置するリード材の裏面2bと正極端子の表面1aとの接触界面ではジュール熱が発生し、その接触界面近傍における両部材が溶融してナゲットを形成し、両部材が点溶接される。
ところで、リード材の表面と正極端子の表面は、いずれも、巨視的にみれば平滑面であるが、微視的にみると複雑な凹凸面になっている。したがって、リード材を正極端子の表面に配置しても両者は均質な接触状態にあるわけではなく、リード材の裏面2bにおける微小凸起、正極端子の表面1aにおける微小凸起がそれぞれ相手材の表面と接触する状態になっている。そして、その微小接触部に電流が通電してその部分でジュール熱を発生し、ナゲット形成が進む。
In this process, Joule heat is generated at the contact interface between the back surface 2b of the lead material located near the welding electrode and the surface 1a of the positive terminal, and both members near the contact interface melt to form a nugget. Both members are spot welded.
By the way, the surface of the lead material and the surface of the positive electrode terminal are both smooth surfaces when viewed macroscopically, but are complex uneven surfaces when viewed microscopically. Therefore, even if the lead material is arranged on the surface of the positive electrode terminal, the two are not in a uniform contact state. It is in contact with the surface. Then, a current is passed through the minute contact portion, Joule heat is generated at the portion, and nugget formation proceeds.

このとき、リード材2への溶接電極4a,4bの押し付け加圧によるリード材2などの微小変形に基づく接触状態への影響などが加わり、溶接挙動をより複雑なものにしている。
このような抵抗溶接方法において、電池容器とリード材との溶接強度を高め、しかもその強度ばらつきを小さくして点溶接部を安定した状態にするためには、基本的には、2本の溶接電極の直下で発生させるジュール熱を大きくして確実に安定したナゲットを形成すればよい。
At this time, the influence on the contact state based on the minute deformation of the lead material 2 and the like due to the pressing and pressing of the welding electrodes 4a and 4b to the lead material 2 is added, and the welding behavior is further complicated.
In such a resistance welding method, in order to increase the welding strength between the battery container and the lead material and reduce the strength variation to make the spot welded portion stable, basically two welding A stable nugget may be formed by increasing the Joule heat generated immediately below the electrode.

その場合、発生するジュール熱は、電源からの電流値の大小、電池容器とリード材の各比抵抗、通電時間、更には溶接電極によるリード材への加圧力、すなわちリード材の裏面と電池容器との密着状態などによって規定される。
ところで、電池容器としては、一般に、軟鋼板を塑性加工して所定の缶形状にし、更に防錆を目的として、その表面を例えば所望厚みのNiめっき層で被覆したものが用いられている。また、蓋部材も同様である。更には、抵抗溶接されるリード材も電池容器の場合と同じように軟鋼板にNiめっきを施したものが多用されている。
In that case, the generated Joule heat is the magnitude of the current value from the power source, the specific resistance of the battery container and the lead material, the energization time, and the pressure applied to the lead material by the welding electrode, that is, the back surface of the lead material and the battery container Stipulated by the state of close contact with each other.
By the way, as a battery container, generally, a mild steel plate is plastically processed into a predetermined can shape, and for the purpose of rust prevention, the surface thereof is covered with, for example, a Ni plating layer having a desired thickness. The same applies to the lid member. Furthermore, as the lead material to be resistance-welded, a material obtained by applying Ni plating to a mild steel plate as in the case of a battery container is often used.

しかしながら、上記したような材料の場合、両者を抵抗溶接すると、両者間の溶接強度は必ずしも高くなるとはいえず、しかも強度のばらつきが大きくなるという問題がある。とくに、溶接幅が広くなる底部の場合にこの傾向は大きくなる。
そこで、例えば通電する電流値を高く設定したり、また通電時間を長くしたりして発生ジュール熱を大きくすることが行われているが、そのような処置を施すと、溶接電極がリード材の表面と融着することがあり、円滑な溶接工程を組むことができなくなる。更には、過剰な発熱のため、正極端子の表面やリード材を構成する金属材料の溶融物ダストが生成して逆に溶接強度が低下することもある。
However, in the case of the materials described above, there is a problem that when both are resistance-welded, the welding strength between the two is not necessarily increased, and the variation in strength increases. In particular, this tendency becomes large in the case of the bottom portion where the welding width becomes wide.
Therefore, for example, the current value to be energized is set high, or the energized Joule heat is increased by increasing the energization time. It may be fused with the surface, making it impossible to set up a smooth welding process. Furthermore, due to excessive heat generation, the surface of the positive electrode terminal and the melt dust of the metal material constituting the lead material may be generated, and the welding strength may be reduced.

本発明は、電池容器とリード材とをパラレル式抵抗溶接方法で溶接したときにおける上記した問題を解決し、融着が起こりにくく、また溶融物ダストの生成を生じないような、小電流値であっても溶接強度が高くなり、しかもそのばらつきが小さくなる電池容器の溶接方法の提供を目的とする。   The present invention solves the above-mentioned problems when the battery container and the lead material are welded by the parallel resistance welding method, and is a low current value that does not easily cause fusion and does not generate melt dust. Even if it exists, it aims at provision of the welding method of a battery container which weld strength becomes high and also the dispersion | variation becomes small.

上記した目的を達成するために、本発明においては、外側表面の一部または全部には、Ni基合金から成るめっき層が形成されている電池容器の前記めっき層の表面にリード材を配置し、前記リード材を2本の溶接電極により加圧力22Nで押し付けて、溶接電流1.2kA〜1.6kAでパラレル式抵抗溶接を行って、前記リード材を溶接強度53.5〜75.3Nで前記電池容器に溶接することを特徴とする電池容器の溶接方法が提供される。とくに、前記めっき層のNi基合金が、Fe含有率50原子%以下のNi−Fe合金であり、まためっき層の厚みは、厚くても5μmになっている電池容器の溶接方法が提供される。   In order to achieve the above object, in the present invention, a lead material is arranged on the surface of the plating layer of the battery container in which a plating layer made of a Ni-based alloy is formed on a part or all of the outer surface. The lead material is pressed with two welding electrodes at a pressure of 22 N, and parallel resistance welding is performed at a welding current of 1.2 kA to 1.6 kA. The lead material is welded at a welding strength of 53.5 to 75.3 N. A battery container welding method is provided, wherein the battery container is welded to the battery container. In particular, there is provided a battery container welding method in which the Ni-based alloy of the plating layer is a Ni—Fe alloy having an Fe content of 50 atomic% or less, and the plating layer has a thickness of 5 μm at most. .

以上の説明で明らかなように、本発明の電池容器はその表面が比抵抗の大きいNi基合金、好ましくはNi−Fe合金で被覆されているので、ここにリード材をパラレル式抵抗溶接方法で溶接したときに、従来よりも低い溶接電流によっても、電池容器とリード材の間の溶接強度は大きくなり、しかもそのばらつきは小さくなり、その工業的価値は大である。   As is clear from the above description, the surface of the battery container of the present invention is coated with a Ni-based alloy having a large specific resistance, preferably a Ni-Fe alloy. When welding, even with a lower welding current than before, the welding strength between the battery container and the lead material is increased, and the variation is reduced, and the industrial value is great.

図1に本発明の電池容器の1例を示す。図1は、電池容器を構成する正極端子を兼ねる蓋1の一部切欠断面図である。この蓋1は、例えば軟鋼板から成る基材1bを図1のような形状に塑性加工し、その表面を、後述するNi基合金から成るめっき層1cで被覆して形成されている。   FIG. 1 shows an example of the battery container of the present invention. FIG. 1 is a partially cutaway cross-sectional view of a lid 1 that also serves as a positive electrode terminal constituting a battery container. The lid 1 is formed by, for example, plastically processing a base material 1b made of a mild steel plate into a shape as shown in FIG. 1 and covering the surface with a plating layer 1c made of a Ni-based alloy described later.

このめっき層1cは基材1bの全面を被覆して形成されていてもよいが、少なくとも相手材であるリード材を溶接する箇所を部分的に被覆して形成されていてもよい。
なお、図1では電池容器として蓋を例示したが、本発明における電池容器は蓋に限定されるものではなく、当該蓋の相手材であり、内部に発電要素と電解液を収容する電池缶であってもよい。
The plating layer 1c may be formed so as to cover the entire surface of the base material 1b, but may be formed so as to partially cover at least a portion where a lead material which is a counterpart material is welded.
In addition, although the lid | cover was illustrated as a battery container in FIG. 1, the battery container in this invention is not limited to a lid | cover, It is the other party material of the said lid | cover, and is a battery can which accommodates an electric power generation element and electrolyte solution inside. There may be.

めっき層1cは、例えば、Ni−Fe合金であるが、Ni−Co合金,Ni−Zn合金,Ni−Fe−Co合金などのNi基合金のいずれか1種で構成されていてもよく、前記した蓋1の表面に電気めっきを施すことにより形成される。
電気めっきによって形成された上記したNi基合金は、いずれも、Niの結晶格子内にFe,Co,Znなどの他の元素が固溶した単相、または複数の相の組合せによりなるものであって、一般に、Ni単体や他の元素単体の場合よりも比抵抗が大きくなっている。これらのNi基合金めっき層を有する電池容量に前記したパラレル式抵抗溶接方法を適用した場合、従来よりも小さい電流を流した場合でも安定したナゲットの形成が可能となり、溶接強度の向上を実現することができるが、その1つの理由としては、前記したNi基合金めっき層の電気抵抗の高さが考えられる。
The plating layer 1c is, for example, a Ni—Fe alloy, but may be composed of any one of Ni-based alloys such as a Ni—Co alloy, a Ni—Zn alloy, and a Ni—Fe—Co alloy. The surface of the lid 1 is formed by electroplating.
Each of the above-described Ni-based alloys formed by electroplating is composed of a single phase in which other elements such as Fe, Co, Zn, etc. are dissolved in a Ni crystal lattice, or a combination of a plurality of phases. In general, the specific resistance is larger than that of Ni alone or other elements alone. When the parallel resistance welding method described above is applied to the battery capacity having these Ni-based alloy plating layers, it is possible to form a stable nugget even when a current smaller than that of a conventional one is passed, and to improve the welding strength. One possible reason for this is the high electrical resistance of the Ni-based alloy plating layer.

とくに、Ni−Fe合金は小電流でも溶接強度を高めることができるという点で有効である。
その場合、Fe含有率が多すぎると、電池容器を高温・多湿の環境下に曝しておくと当該電池容器の表面が発錆しやすくなるので、その含有率は50原子%以下、好ましくは45原子%以下となるように規制することが好ましい。
In particular, the Ni—Fe alloy is effective in that the welding strength can be increased even with a small current.
In that case, if the Fe content is too high, the surface of the battery container tends to rust when exposed to a high temperature and high humidity environment, so the content is 50 atomic% or less, preferably 45. It is preferable to regulate so as to be at most atomic%.

このようなFe含有率の規制は、例えば電気めっきで用いるめっき浴におけるFe源の濃度を調整することにより容易に達成することができる。
また、Ni−Co合金の場合は、Co含有率を5〜50原子%に規制することが好ましく、Ni−Zn合金の場合は、Zn含有率を5〜30原子%に規制することが好ましく、更に、Ni−Fe−Co合金の場合は、Fe:0より多く50原子%以下,Co:5〜50原子%に規制することが好ましい。ただし、FeとCoの原子%の和は50原子%以下とする。
Such regulation of the Fe content can be easily achieved, for example, by adjusting the concentration of the Fe source in the plating bath used in electroplating.
In the case of a Ni—Co alloy, the Co content is preferably regulated to 5 to 50 atomic%, and in the case of a Ni—Zn alloy, the Zn content is preferably regulated to 5 to 30 atomic%. Furthermore, in the case of a Ni-Fe-Co alloy, it is preferable to regulate to more than Fe: 0 to 50 atomic% and Co: 5 to 50 atomic%. However, the sum of atomic percent of Fe and Co is 50 atomic percent or less.

このめっき層1cの厚みは5μm以下にすることが好ましい。厚みが5μmよりも厚くなると、リード材との溶接強度のばらつきが増大傾向を示す。
なお、めっき層1cがNi−Fe合金から成る場合は、その厚みを4.5μm以下に規制することがより好ましい。その理由は明らかではないが、めっき厚が4.5μmより厚くなるとリード材との溶接強度に大きなばらつきが認められるからである。
The thickness of the plating layer 1c is preferably 5 μm or less. When the thickness is thicker than 5 μm, the variation in welding strength with the lead material tends to increase.
In addition, when the plating layer 1c consists of a Ni-Fe alloy, it is more preferable to regulate the thickness to 4.5 micrometers or less. The reason is not clear, but if the plating thickness is thicker than 4.5 μm, a large variation is observed in the welding strength with the lead material.

このようなめっき層1cの厚みは、例えば電気めっきを行う時間や電流密度を調整することなどの方法により容易に調節することができる。   The thickness of the plating layer 1c can be easily adjusted by a method such as adjusting the time for performing electroplating or the current density.

実施例1〜6
AAサイズ電池用の電池缶と蓋を用意した。これらの材質はいずれも軟鋼板である。
塩化第一鉄,塩化ニッケル,塩化カルシウムから成るNi−Fe合金用のめっき浴を建浴した。このとき、塩化第一鉄濃度:210〜380g/L,塩化ニッケル濃度:30〜80g/L,塩化カルシウム濃度:150〜180g/Lからなる、Fe濃度が異なる各種のめっき浴を作成した。必要に応じ、1g/L以下の濃度でチオ尿素を添加した。
Examples 1-6
A battery can and lid for AA size batteries were prepared. These materials are all mild steel plates.
A plating bath for a Ni-Fe alloy composed of ferrous chloride, nickel chloride, and calcium chloride was constructed. At this time, various plating baths having different Fe concentrations, such as ferrous chloride concentration: 210-380 g / L, nickel chloride concentration: 30-80 g / L, calcium chloride concentration: 150-180 g / L were prepared. If necessary, thiourea was added at a concentration of 1 g / L or less.

これらめっき浴を用いて、前記した電池缶と蓋に電気めっきをしてFe含有率が異なるNi−Fe合金めっき層を電池缶や蓋の表面に形成した。めっき条件としては、pH0.9〜1.5,浴温60〜90℃,電流密度3〜5/dmの範囲内で適切な条件を選択し、まためっき時間は、めっき層の厚みが3μmとなるように設定した。
なお、めっき浴,めっき条件は上記したものに限定されるものではなく、例えば硫酸塩浴,硫酸塩−塩化物浴,クエン酸浴,ピロリン酸浴などを選択することも可能である。
Using these plating baths, the above-described battery can and the lid were electroplated to form Ni-Fe alloy plating layers having different Fe contents on the surfaces of the battery can and the lid. As plating conditions, suitable conditions are selected within the range of pH 0.9 to 1.5, bath temperature 60 to 90 ° C., current density 3 to 5 / dm 2 , and the plating time is 3 μm in thickness of the plating layer. It set so that it might become.
The plating bath and plating conditions are not limited to those described above. For example, a sulfate bath, a sulfate-chloride bath, a citric acid bath, a pyrophosphate bath, and the like can be selected.

得られた電池缶と蓋を用いてAAサイズのニッケル水素二次電池を組み立てて、その電池の底部表面に、厚み0.15mm,幅5mmのNiめっき軟鋼板から成るリード材を表1で示した条件でパラレル式抵抗溶接方法を適用して溶接した。なお、溶接電極によるリード材への加圧力はいずれの場合も22Nとした。
ただし、この加圧力の値は2つの溶接電極に加わる力の総計であり、またそれぞれの溶接電極に加わる力は略均等となるように設定されている。
An AA size nickel metal hydride secondary battery was assembled using the obtained battery can and lid, and the lead material made of Ni-plated mild steel sheet with a thickness of 0.15 mm and a width of 5 mm is shown in Table 1 on the bottom surface of the battery. Welded by applying parallel resistance welding method under different conditions. Note that the pressure applied to the lead material by the welding electrode was 22 N in all cases.
However, the value of the applied pressure is the sum of the forces applied to the two welding electrodes, and the forces applied to the respective welding electrodes are set to be substantially equal.

ついで、図2で示したようにして溶接強度の測定試験を行った。すなわち、電池5の底部表面に溶接されているリード材2の一端2cをチャック6で把持し、このチャック6を引張試験器7で引き上げて前記リード材2を引き剥がす試験である。このとき、リード材2を引き上げる方向は略電池缶の中心軸方向とし、かつ、試験器7がチャック6を引っ張る強さは略一定の速さで増加するようにして引き剥がし試験を行い、リード材2が電池5の底部表面から完全に引き剥がされたときの引張強さをもって溶接強度とした。その結果を電池容器30個の平均値として一括して表1に示した。   Subsequently, a welding strength measurement test was performed as shown in FIG. That is, this is a test in which one end 2 c of the lead material 2 welded to the bottom surface of the battery 5 is held by the chuck 6, and the chuck 6 is pulled up by the tensile tester 7 to peel off the lead material 2. At this time, the lead material 2 is pulled up approximately in the direction of the central axis of the battery can, and the tester 7 pulls the chuck 6 so that the strength of the chuck 6 increases at a substantially constant speed. The tensile strength when the material 2 was completely peeled off from the bottom surface of the battery 5 was taken as the welding strength. The results are collectively shown in Table 1 as an average value of 30 battery containers.

Figure 2007035650
Figure 2007035650

表1から次のことが明らかである。
(1)各実施例、比較例のいずれにおいても、溶接電流が大きくなると溶接強度は大きくなっている。
(2)抵抗溶接時の溶接条件が同一である場合には、本発明のめっき層で表面が被覆されている電池容器とリード材との溶接強度は、従来のNiめっき軟鋼板のみから成る電池容器とリード材との溶接強度に比べて大きくなっている。
このことは、同等の溶接強度を得る際に、本発明の電池容器を用いれば、従来に比べて溶接電流を小さくしても可能であることを意味する。
From Table 1, the following is clear.
(1) In each of the examples and comparative examples, the welding strength increases as the welding current increases.
(2) When the welding conditions at the time of resistance welding are the same, the welding strength between the battery container whose surface is coated with the plating layer of the present invention and the lead material is a battery made of only a conventional Ni-plated mild steel sheet. It is larger than the welding strength between the container and the lead material.
This means that when the battery container of the present invention is used when obtaining an equivalent welding strength, the welding current can be reduced as compared with the conventional case.

(3)また、めっき層を構成するNi−Fe合金において、Fe含有率が高くなっていくと溶接強度も大きくなっていくが、しかしこのFe含有率が高くなりすぎると、逆に溶接強度の低下が起こっている。このようなことから、めっき層がNi−Fe合金から成る場合は、発錆問題も含めて、Fe含有率は50原子%以下、より好ましくは10〜45原子%程度であることが好ましい。   (3) In addition, in the Ni-Fe alloy constituting the plating layer, the welding strength increases as the Fe content increases, but conversely, if the Fe content increases excessively, the welding strength increases. A decline is happening. For this reason, when the plating layer is made of a Ni—Fe alloy, the Fe content is preferably 50 atomic% or less, more preferably about 10 to 45 atomic%, including rusting problems.

実施例7〜11
めっき層におけるFe含有率が20原子%となるように浴組成を調整しためっき浴を用い、めっき時間を変化させて表2で示したようなめっき厚のめっき層を電池容器に形成した。ついで、各電池容器を用いて電池を30個組み立てて、その底部表面に前記したリード材を配置し、溶接電極で22Nの加圧力を印加しながら1.5kAの溶接電流を通電して両者を抵抗溶接した。
Examples 7-11
Using a plating bath whose bath composition was adjusted so that the Fe content in the plating layer was 20 atomic%, a plating layer having a plating thickness as shown in Table 2 was formed on the battery container by changing the plating time. Next, 30 batteries were assembled using each battery container, the lead material described above was placed on the bottom surface, and a welding current of 1.5 kA was applied while applying a pressure of 22 N with the welding electrode, and both were connected. Resistance welded.

ここで、この加圧力の値は2つの溶接電極に加わる力の総計であり、そのときそれぞれの溶接電極に加わる力は略均等となるように設定されている。
そして、実施例1〜6の場合と同じ仕様で溶接強度を測定した。溶接強度の最大値、最小値、および30個の平均値を表2に示した。
Here, the value of the applied pressure is the sum of the forces applied to the two welding electrodes, and the forces applied to the respective welding electrodes at that time are set to be substantially equal.
And welding strength was measured by the same specification as the case of Examples 1-6. Table 2 shows the maximum value, the minimum value, and the average value of 30 weld strengths.

Figure 2007035650
Figure 2007035650

表2から明らかなように、めっき層の厚みが5μmより厚くなると溶接強度の低下傾向が発現してくるだけではなく、溶接強度のばらつきも大きくなってくる。このようなことから、めっき層の厚みは5μm以下にすることが好ましい。とくに、3μm程度のときは、溶接強度も大きく、しかもそのばらつきは非常に小さくなり、安定した品質管理の実現という点で好適である。   As apparent from Table 2, when the thickness of the plating layer is thicker than 5 μm, not only does the tendency of the welding strength decrease, but also the variation in the welding strength increases. For this reason, the thickness of the plating layer is preferably 5 μm or less. In particular, when the thickness is about 3 μm, the welding strength is large and the variation is very small, which is preferable in terms of realizing stable quality control.

実施例12
軟鋼板の表面をNi−25%Fe合金から成る厚み2.0μmのNiめっき層で被覆して厚み0.3mmのめっき鋼板とし、それを塑性加工して電池用の蓋とした。
この蓋100個の表面に、厚み2.0μmのNi−めっき層が形成されている厚み0.3mmの軟鋼製リード材を配置して22Nの加圧力で圧接し、表3で示した溶接電流で約5ms間の抵抗溶接を行った。
Example 12
The surface of the mild steel plate was covered with a 2.0 μm thick Ni plating layer made of a Ni-25% Fe alloy to form a 0.3 mm thick plated steel plate, which was plastic processed to obtain a battery lid.
A soft steel lead material having a thickness of 0.3 mm on which a Ni-plating layer having a thickness of 2.0 μm is formed is placed on the surface of 100 lids and pressed with a pressure of 22 N. The welding current shown in Table 3 Resistance welding was performed for about 5 ms.

ここで、加圧力の値は、実施例1〜6,実施例7〜11の場合と同様の意味を有する。
ついで、実施例1〜11と同じようにして溶接強度を測定した。その結果を表3に示した。なお、リード材を引き剥がしたときに、2つのナゲットが蓋の方に残留する場合の個数を測定しそれも表3に示した。この個数が多いほど、抵抗溶接時に安定したナゲットが形成されていることを意味している。
Here, the value of the applied pressure has the same meaning as in Examples 1 to 6 and Examples 7 to 11.
Subsequently, the welding strength was measured in the same manner as in Examples 1-11. The results are shown in Table 3. In addition, when the lead material was peeled off, the number of cases where two nuggets remained on the lid was measured and is also shown in Table 3. The larger the number, the more stable the nugget is formed during resistance welding.

比較のために、Ni−25%Fe合金めっき層の代わりに、同じ厚みのNiめっき層を有する蓋を用いた場合についても同様の抵抗溶接を行い、その結果も表3に併記した。   For comparison, the same resistance welding was performed when a lid having a Ni plating layer having the same thickness was used instead of the Ni-25% Fe alloy plating layer, and the results are also shown in Table 3.

Figure 2007035650
Figure 2007035650

表3から明らかなように、Ni−25%Fe合金をめっきしていない蓋(比較例)への抵抗溶接の場合は、1.6kAの溶接電流にしたときにはじめて2個のナゲットの残留が認められる。それに反し、本発明の蓋の場合には、溶接電流が1.2kAであっても2個のナゲットが確実に生成し、かつその溶接強度も比較例を1.6kAの溶接電流で溶接した場合と同等になっている。
すなわち、本発明の蓋は小さい溶接電流でも高い溶接強度を可能にしている。
As is apparent from Table 3, in the case of resistance welding to a lid (comparative example) that is not plated with a Ni-25% Fe alloy, only two nuggets remain when the welding current is 1.6 kA. Is recognized. On the other hand, in the case of the lid of the present invention, even when the welding current is 1.2 kA, two nuggets are reliably generated, and the welding strength is also compared with a comparative example with a welding current of 1.6 kA. It is equivalent to.
That is, the lid of the present invention enables high welding strength even with a small welding current.

本発明の電池容器例を示す一部切欠断面図である。It is a partially cutaway sectional view showing an example of a battery container of the present invention. 溶接強度の測定法を説明するための概略図である。It is the schematic for demonstrating the measuring method of welding strength. パラレル式抵抗溶接方法を説明するための概略図である。It is the schematic for demonstrating a parallel type resistance welding method.

符号の説明Explanation of symbols

1 電池容器(正極端子も兼ねる蓋)
1a 電池容器1の表面
1b 基材
1c めっき層
2 リード材
2a リード材2の表面
2b リード材2の裏面
3 電源
4a,4b 溶接電極
5 電池
6 チャック
7 引張試験器
1 Battery container (lid that also serves as a positive terminal)
DESCRIPTION OF SYMBOLS 1a The surface of the battery container 1 1b Base material 1c Plating layer 2 Lead material 2a The surface of the lead material 2b The back surface of the lead material 2 3 Power supply 4a, 4b Welding electrode 5 Battery 6 Chuck 7 Tensile tester

Claims (5)

外側表面の一部または全部には、Ni基合金から成るめっき層が形成されている電池容器の前記めっき層の表面にリード材を配置し、前記リード材を2本の溶接電極により加圧力22Nで押し付けて、溶接電流1.2kA〜1.6kAでパラレル式抵抗溶接を行って、前記リード材を溶接強度53.5〜75.3Nで前記電池容器に溶接することを特徴とする電池容器の溶接方法。   A lead material is arranged on the surface of the plating layer of the battery container in which a plating layer made of a Ni-based alloy is formed on a part or all of the outer surface, and the lead material is applied with a pressure of 22 N by two welding electrodes. The battery container is characterized in that the lead material is welded to the battery container at a welding strength of 53.5 to 75.3 N by performing parallel resistance welding at a welding current of 1.2 kA to 1.6 kA. Welding method. 前記Ni基合金が、Ni−Fe合金,Ni−Co合金,Ni−Zn合金,Ni−Fe−Co合金のいずれか一種である請求項1の電池容器の溶接方法。   The battery container welding method according to claim 1, wherein the Ni-based alloy is any one of a Ni—Fe alloy, a Ni—Co alloy, a Ni—Zn alloy, and a Ni—Fe—Co alloy. 前記Ni基合金が、Fe含有率50原子%以下のNi−Fe合金である請求項2の電池容器の溶接方法。   The battery container welding method according to claim 2, wherein the Ni-based alloy is a Ni—Fe alloy having an Fe content of 50 atomic% or less. 前記めっき層の厚みは、厚くても5μmである請求項1の電池容器の溶接方法。   The battery container welding method according to claim 1, wherein the plating layer has a thickness of 5 μm at most. 前記めっき層の厚みは、厚くても4.5μmである請求項3の電池容器の溶接方法。   The battery container welding method according to claim 3, wherein the plating layer has a thickness of 4.5 μm at most.
JP2006270745A 2006-10-02 2006-10-02 Welding method of battery container Pending JP2007035650A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006270745A JP2007035650A (en) 2006-10-02 2006-10-02 Welding method of battery container

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006270745A JP2007035650A (en) 2006-10-02 2006-10-02 Welding method of battery container

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP10068908A Division JPH11265692A (en) 1998-03-18 1998-03-18 Battery case

Publications (1)

Publication Number Publication Date
JP2007035650A true JP2007035650A (en) 2007-02-08

Family

ID=37794597

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006270745A Pending JP2007035650A (en) 2006-10-02 2006-10-02 Welding method of battery container

Country Status (1)

Country Link
JP (1) JP2007035650A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112007002342T5 (en) 2006-10-11 2009-11-05 Mitsubishi Materials Corp. Electrode forming composition and method of forming the electrode using the composition
WO2011099160A1 (en) 2010-02-15 2011-08-18 株式会社Neomaxマテリアル Cladding material for leads and method of welding cladding material for leads
JP2016186950A (en) * 2011-04-28 2016-10-27 東洋鋼鈑株式会社 Surface-treated steel sheet for battery container, battery container, and battery

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04532Y2 (en) * 1984-07-05 1992-01-09
JPH043628B2 (en) * 1984-07-05 1992-01-23
JPH09129213A (en) * 1995-11-06 1997-05-16 Toshiba Battery Co Ltd Manufacture of battery
JPH09306438A (en) * 1996-05-17 1997-11-28 Katayama Tokushu Kogyo Kk Battery can forming material, manufacture of this material and battery can formed by using this battery can forming material
JPH11238491A (en) * 1998-02-20 1999-08-31 Toshiba Battery Co Ltd Battery container

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04532Y2 (en) * 1984-07-05 1992-01-09
JPH043628B2 (en) * 1984-07-05 1992-01-23
JPH09129213A (en) * 1995-11-06 1997-05-16 Toshiba Battery Co Ltd Manufacture of battery
JPH09306438A (en) * 1996-05-17 1997-11-28 Katayama Tokushu Kogyo Kk Battery can forming material, manufacture of this material and battery can formed by using this battery can forming material
JPH11238491A (en) * 1998-02-20 1999-08-31 Toshiba Battery Co Ltd Battery container

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112007002342T5 (en) 2006-10-11 2009-11-05 Mitsubishi Materials Corp. Electrode forming composition and method of forming the electrode using the composition
WO2011099160A1 (en) 2010-02-15 2011-08-18 株式会社Neomaxマテリアル Cladding material for leads and method of welding cladding material for leads
JP4944279B2 (en) * 2010-02-15 2012-05-30 株式会社Neomaxマテリアル Clad material for lead and welding method for clad material for lead
KR101228722B1 (en) 2010-02-15 2013-02-01 가부시키가이샤 네오맥스 마테리아르 Cladding material for leads and method of welding cladding material for leads
JP2016186950A (en) * 2011-04-28 2016-10-27 東洋鋼鈑株式会社 Surface-treated steel sheet for battery container, battery container, and battery

Similar Documents

Publication Publication Date Title
TW502467B (en) Battery, lead member for battery connection, and battery pack using the same
KR20210032397A (en) Artificial nickel plated plate
TWI465592B (en) A Ni-plated metal plate, a welded structure, and a method for manufacturing a battery material
US20200144738A1 (en) Joint between copper terminal and aluminum wire, and magnetic induction welding method therefor
CN110364673A (en) Cell substrate and its manufacturing method with local welding tie point
JP2007035650A (en) Welding method of battery container
TWI460905B (en) Copper alloy strips for charging the battery marking material
KR101228722B1 (en) Cladding material for leads and method of welding cladding material for leads
JP4058725B2 (en) Battery container
JPH047802A (en) Ptc device
JP2013069684A (en) Copper foil of negative electrode collector for lithium ion secondary battery, negative electrode for lithium ion secondary battery, lithium ion secondary battery, and method for manufacturing copper foil of negative electrode collector for lithium ion secondary battery
JP5125094B2 (en) Sealed battery manufacturing method and manufacturing apparatus thereof
JP4169848B2 (en) Electrolytic electrode and method for producing electrolytic electrode
TW201348468A (en) Copper-zinc-tin-based copper alloy bar
JP4437302B2 (en) Battery container
JPH0240427B2 (en)
JP7207068B2 (en) Resistance welding method for work to be welded having insulating coating
JPS6330998B2 (en)
Evans Resistance welding of dissimilar metals
US2824027A (en) Method of making low resistance contact with a lead dioxide electrode
Sabdin et al. Heat Sensitivity on ASTM A36 mild steel plate joint using low energy arc joining welding
JPH0726236B2 (en) Method for producing electrolytic chromate treated steel plate for welding can
JPH11265701A (en) Battery lead material and battery pack with it
JPS6318676B2 (en)
JP2000164194A (en) Lead material for battery and battery package using it

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20080228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100623

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20101020