JP5125094B2 - Sealed battery manufacturing method and manufacturing apparatus thereof - Google Patents

Sealed battery manufacturing method and manufacturing apparatus thereof Download PDF

Info

Publication number
JP5125094B2
JP5125094B2 JP2006345503A JP2006345503A JP5125094B2 JP 5125094 B2 JP5125094 B2 JP 5125094B2 JP 2006345503 A JP2006345503 A JP 2006345503A JP 2006345503 A JP2006345503 A JP 2006345503A JP 5125094 B2 JP5125094 B2 JP 5125094B2
Authority
JP
Japan
Prior art keywords
resistance welding
electrode rod
electrode
resistance
current collector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006345503A
Other languages
Japanese (ja)
Other versions
JP2008159356A (en
Inventor
正彦 加藤
智広 山岡
誠一 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2006345503A priority Critical patent/JP5125094B2/en
Publication of JP2008159356A publication Critical patent/JP2008159356A/en
Application granted granted Critical
Publication of JP5125094B2 publication Critical patent/JP5125094B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Connection Of Batteries Or Terminals (AREA)

Description

本発明はニッケル水素電池などのアルカリ蓄電池における密閉型電池内での封口板とリード、リードと正極集電体、電極群と正極集電体または負極集電体、負極集電体と電池ケースの接続に適用する抵抗溶接用電極棒を用いた密閉型電池の製造方法およびその製造装置の改善に関するものである。   The present invention relates to a sealing plate and lead in a sealed battery in an alkaline storage battery such as a nickel metal hydride battery, a lead and a positive electrode current collector, an electrode group and a positive electrode current collector or a negative electrode current collector, a negative electrode current collector and a battery case. The present invention relates to a method for manufacturing a sealed battery using a resistance welding electrode rod applied to connection and an improvement of the manufacturing apparatus.

ニッケル・カドミウム蓄電池やニッケル水素蓄電池に代表されるアルカリ蓄電池は、信頼性が高くそのメンテナンスも容易であることから、携帯電話やノートパソコン等の各種用途に幅広く用いられている。さらに近年においては電動工具をはじめ、動力補助付き自転車や電気自動車などの電源として大電流放電に適したアルカリ蓄電池の開発が要望されている。   Alkaline storage batteries represented by nickel-cadmium storage batteries and nickel-metal hydride storage batteries are widely used in various applications such as mobile phones and laptop computers because they are reliable and easy to maintain. In recent years, there has been a demand for the development of an alkaline storage battery suitable for large current discharge as a power source for power tools, power-assisted bicycles and electric vehicles.

アルカリ蓄電池は、図7に示すように帯状の正極板31と負極板32との間にセパレータ36を介して渦巻状に巻回して電極群35を形成し、電解液(図示せず)と共に金属製の電池ケース39に収納し、電池ケース39の開口部を封口体41で封口する構成となっている。   As shown in FIG. 7, the alkaline storage battery is spirally wound through a separator 36 between a strip-like positive electrode plate 31 and a negative electrode plate 32 to form an electrode group 35, and a metal together with an electrolyte (not shown). The battery case 39 is housed and the opening of the battery case 39 is sealed with a sealing body 41.

このような大電流用のアルカリ蓄電池は、帯状の正極板31および負極板32を一枚づつ隔離用のセパレータ36を間に介在させて渦巻状に巻回した電極群35が金属製の電池ケース39に収納されている。なお、大電流に適した電極群35からの出入力集電構造としては、電極群35の上下端面からそれぞれ外方へ突出した電極板の先端部分に各一枚づつの矩形状の正極集電体37および負極集電体38を複数個所で溶接し、電池ケース39と負極集電体38は電池ケース39の中央底部に溶接が施されている。そして正極集電体37と封口体41とを正極リード40で接続し、封口体41で電池ケース39を密閉する。   Such a large-current alkaline storage battery has a battery case in which a group of electrodes 35 in which a strip-shaped positive electrode plate 31 and a negative electrode plate 32 are wound in a spiral shape with an isolation separator 36 interposed therebetween. 39. In addition, as an input / output current collecting structure from the electrode group 35 suitable for a large current, a rectangular positive electrode current collecting one by one at the tip portion of the electrode plate protruding outward from the upper and lower end surfaces of the electrode group 35, respectively. The body 37 and the negative electrode current collector 38 are welded at a plurality of locations, and the battery case 39 and the negative electrode current collector 38 are welded to the center bottom portion of the battery case 39. Then, the positive electrode current collector 37 and the sealing body 41 are connected by the positive electrode lead 40, and the battery case 39 is sealed with the sealing body 41.

正極リード40と正極集電体37、電極群35と正極集電体37および負極集電体38、負極集電体38と電池ケース39、正極リード40と封口体41を接続する製造方法としては、抵抗溶接により行われ2本の抵抗溶接用電極棒の間に被溶接材を重ね合わせ抵抗溶接用電極棒間に電流を流しダイレクト抵抗溶接する製造方法や1対の抵抗溶接用電極棒を平行に配置し重ね合わせた被溶接材の表面から抵抗溶接用電極棒間に電流を流し抵抗溶接するシリーズ抵抗溶接する製造方法が一般的である。抵抗溶接用電極棒は電極棒ホルダに締結され、加圧ヘッドにより加圧できる構造となっており、電極棒ホルダは抵抗溶接用電極棒と同様に高導電性材料にて構成されている。   As a manufacturing method for connecting the positive electrode lead 40 and the positive electrode current collector 37, the electrode group 35 and the positive electrode current collector 37 and the negative electrode current collector 38, the negative electrode current collector 38 and the battery case 39, and the positive electrode lead 40 and the sealing body 41, A manufacturing method in which direct welding is performed by applying a current between two resistance welding electrode rods by superimposing a material to be welded between the two resistance welding electrode rods and a pair of resistance welding electrode rods in parallel. In general, a series resistance welding manufacturing method in which a current is passed between resistance welding electrode rods from the surface of a workpiece to be welded arranged on top of each other and resistance welding is performed. The electrode rod for resistance welding is fastened to an electrode rod holder and can be pressurized by a pressure head. The electrode rod holder is made of a highly conductive material like the electrode rod for resistance welding.

通常の材料を抵抗溶接する場合、抵抗溶接用電極棒の材料として、特に導電性が高く汎用的な銅や銅合金を採用するが、銅を使用した抵抗溶接用電極棒の場合、抵抗溶接用電極棒の表面が酸化しやすく電極棒ホルダとの接触抵抗が上昇するため、溶接電流のバラツキにより溶接強度が低下するという課題も発生している。また電池用構成部品の溶接の場合、スパッタが混入しても電解液に溶出することのない電気化学的に安定な材料を採用する必要がある。具体的には図8に示すように電槽49を挟んだ集電体47と集電体48との接合部50を溶接する際に使用する抵抗溶接用電極棒45および抵抗溶接用電極棒46にモリブデンなどの材料を採用し、これを用いてスポット溶接を行なう方法が提案されている(例えば、特許文献1参照)。
特開2003−031203号公報
When resistance welding is performed on ordinary materials, copper or copper alloys with high conductivity are used as the material for resistance welding electrode rods. However, resistance welding electrode rods using copper are used for resistance welding. Since the surface of the electrode rod is easily oxidized and the contact resistance with the electrode rod holder is increased, there is a problem that the welding strength is reduced due to variations in welding current. In the case of welding battery components, it is necessary to use an electrochemically stable material that does not elute into the electrolyte even when spatter is mixed. Specifically, as shown in FIG. 8, the resistance welding electrode rod 45 and the resistance welding electrode rod 46 used when welding the joint portion 50 between the current collector 47 and the current collector 48 sandwiching the battery case 49. There has been proposed a method of adopting a material such as molybdenum for spot welding using the material (for example, see Patent Document 1).
JP 2003-031203 A

しかしながら上述した特許文献1の従来技術では、図8に示すように抵抗溶接用電極棒45,46の材料を銅または銅合金からモリブデンなどに代えることにより、抵抗溶接時のスパッタの混入による電池の短絡の懸念は解消されるが、溶接時の発熱は高くなる傾向がある。特許文献1のように1点ずつスポット溶接する場合においては、熱の伝播による影響は支障ないが、連続生産を行った場合発熱が著しくなり、一定以上の発熱量に達した場合上述した抵抗溶接用電極棒45,46が被溶接材である集電体47,48と付着するため溶接ができなくなり、生産性が低下するとともに付着により溶接された被溶接材を引き剥がすことになり溶接品質が低下する課題があった。   However, in the prior art disclosed in Patent Document 1 described above, the material of the resistance welding electrode rods 45 and 46 is changed from copper or a copper alloy to molybdenum or the like as shown in FIG. Although the fear of short circuit is eliminated, the heat generated during welding tends to be high. When spot welding is performed point by point as in Patent Document 1, the effect of heat propagation is not an issue. However, when continuous production is performed, heat generation becomes significant, and when the amount of heat generation exceeds a certain level, the above-described resistance welding is performed. Since the electrode rods 45 and 46 adhere to the current collectors 47 and 48, which are the materials to be welded, welding cannot be performed, productivity is lowered, and the welded materials welded by the adhesion are peeled off, so that the welding quality is improved. There was a problem to be reduced.

また、モリブデンを材料とした抵抗溶接用電極棒45,46においても銅製の抵抗溶接用電極棒45,46と同様に抵抗溶接用電極棒45,46の表面の酸化が発生するため、電流値の低下、溶接状態のバラツキを削減するのは困難である。さらに、モリブデンは高価な材料で有り一般的に使用されるクロム銅、または銅合金製の電極棒と比較しコストが増加するという課題も発生する。   Also, in the resistance welding electrode rods 45 and 46 made of molybdenum, the surface of the resistance welding electrode rods 45 and 46 is oxidized in the same manner as the copper resistance welding electrode rods 45 and 46, so that the current value is reduced. It is difficult to reduce the decrease and the variation in the welding state. Furthermore, molybdenum is an expensive material, and there is a problem that the cost increases compared to a commonly used electrode rod made of chromium copper or copper alloy.

本発明は上述した課題を鑑みてなされたものであり、抵抗溶接用電極棒の先端端面部を除く表面に耐アルカリ性のメッキを施した抵抗溶接用電極棒を押し当てて抵抗溶接して電池の構成部品同士を接続することにより、密閉型電池の内部で短絡などの懸念をなくし、かつ溶接時における不具合や品質の低下が回避できる安定したニッケル水素蓄電池などのアルカリ蓄電池の製造方法であり、さらに新規設備を導入することなく抵抗溶接用電極棒の表面にメッキ処理をすることで安価である密閉型電池の製造方法およびその製造装置を提供することを目的とするものである。   The present invention has been made in view of the above-described problems. The resistance welding electrode rod having an alkali-resistant plating applied to the surface excluding the tip end face portion of the resistance welding electrode rod is subjected to resistance welding to perform resistance welding. It is a method for producing a stable alkaline storage battery such as a nickel metal hydride storage battery that eliminates concerns such as a short circuit inside the sealed battery by connecting the components, and avoids problems during welding and deterioration of quality. It is an object of the present invention to provide a manufacturing method and a manufacturing apparatus for a sealed battery that are inexpensive by plating the surface of a resistance welding electrode rod without introducing new equipment.

上記のような課題を解決するために本発明は、密閉型電池内の封口板、リード、集電体、電極群、電池ケースの構成部品を抵抗溶接用電極棒を用いて、封口板とリード、リードと正極集電体、電極群と正極集電体または負極集電体、負極集電体と電池ケースを抵抗溶接する密閉型電池の製造方法であって、構成部品に抵抗溶接用電極棒の先端端面部を除く表面に耐アルカリ性のメッキを施した抵抗溶接用電極棒を押し当てて抵抗溶接して接続することを特徴としている。   In order to solve the above problems, the present invention provides a sealing plate, a lead, a current collector, an electrode group, and battery case components in a sealed battery using resistance welding electrode bars, and the sealing plate and the lead. , A lead and positive electrode current collector, an electrode group and a positive electrode current collector or a negative electrode current collector, and a sealed battery manufacturing method for resistance welding the negative electrode current collector and a battery case. It is characterized in that a resistance welding electrode bar, which has been subjected to alkali resistance plating, is pressed against the surface excluding the tip end face portion of the metal plate and resistance welding is performed for connection.

本発明によれば、構成部品に抵抗溶接用電極棒の先端端面部を除く表面に耐アルカリ性のメッキを施した抵抗溶接用電極棒を押し当てて抵抗溶接して接続することにより、スパッタを抑制した抵抗溶接ができるので、密閉型電池の内部での内部短絡を抑え品質の向上した密閉型電池を安定して供給することができる密閉型電池の製造方法である。また、耐アルカリ性のメッキを施すことで抵抗溶接用電極棒の表面に酸化皮膜が形成するのを防ぐことができるため、溶接時の通電させる電流値が安定し溶接強度を確保することが可能となる。   According to the present invention, spattering is suppressed by pressing a resistance welding electrode rod, which has been plated with alkali resistance, on the surface of the component excluding the tip end face portion of the resistance welding electrode rod, and resistance welding to connect the components. Therefore, the sealed battery can be stably supplied with improved quality by suppressing internal short circuit inside the sealed battery. In addition, by applying alkali-resistant plating, it is possible to prevent the formation of an oxide film on the surface of the electrode rod for resistance welding, so that the current value to be energized during welding can be stabilized and welding strength can be secured. Become.

本発明の第1の発明においては、密閉型電池内の封口板、リード、集電体、電極群、電池ケースの構成部品を抵抗溶接用電極棒を用いて、封口板とリード、リードと正極集電体、電極群と正極集電体または負極集電体、負極集電体と電池ケースを抵抗溶接する密閉型電池の製造方法であって、構成部品に抵抗溶接用電極棒の先端端面部を除く表面に耐アルカリ性のメッキを施した抵抗溶接用電極棒を押し当てて抵抗溶接して接続することにより、溶接時に抵抗溶接用電極棒の表面からの抵抗溶接用電極棒の微粉の混入が防止でき、表面に施したメッキが混入してもアルカリ電解液によりに溶解しにくく、正極板と負極板の
短絡を抑制することが可能である。
In the first aspect of the present invention, the sealing plate, the lead, the current collector, the electrode group, and the constituent parts of the battery case in the sealed battery are sealed with the electrode rod for resistance welding, the sealing plate and the lead, the lead and the positive electrode. A method of manufacturing a sealed battery in which a current collector, an electrode group and a positive electrode current collector or a negative electrode current collector, and a negative electrode current collector and a battery case are resistance-welded. The resistance welding electrode rod is pressed from the surface of the resistance welding electrode rod during welding, and the resistance welding electrode rod, which has been plated with alkali resistance on the surface excluding, is connected by resistance welding. Even if the plating applied to the surface is mixed, it is difficult to be dissolved by the alkaline electrolyte, and a short circuit between the positive electrode plate and the negative electrode plate can be suppressed.

本発明の第2の発明においては、抵抗溶接用電極棒に施した耐アルカリ性のメッキとして、無電解ニッケルまたは電解ニッケルからなるメッキを施したことにより、電池ケース内にスパッタとしてニッケルが混入した場合においても、アルカリ性の電解液中ではアルカリ濃度と電位によりに溶解しても析出することがなく、正極板と負極板の短絡を抑制することが可能である。   In the second invention of the present invention, when nickel is mixed as a spatter in the battery case by applying plating made of electroless nickel or electrolytic nickel as the alkali-resistant plating applied to the resistance welding electrode rod However, in alkaline electrolyte, even if it dissolves depending on the alkali concentration and potential, it does not precipitate, and it is possible to suppress a short circuit between the positive electrode plate and the negative electrode plate.

本発明の第3の発明においては、密閉型電池内の電気的接続する構成部品を抵抗溶接する密閉型電池の製造装置であって、構成部品を載せる台座と、通電して構成部品を抵抗溶接する抵抗溶接用電極棒の先端端面部を除く表面に無電解ニッケルメッキまたは電解ニッケルメッキをした抵抗溶接用電極棒と、抵抗溶接用電極棒を保持する電極棒ホルダと、抵抗溶接用電極棒に加圧力を負荷させる加圧駆動部と、加圧駆動部の加圧力を電極棒ホルダに伝達する加圧追従部と、抵抗溶接用電極棒を通電させる溶接電源部から構成したことにより、溶接時に抵抗溶接用電極棒の微粉の混入を抵抗溶接用電極棒の表面をメッキ処理して防止し、電池ケース内にスパッタとして抵抗溶接用電極棒の表面に施したニッケルメッキのニッケルが混入した場合においても、アルカリ性の電解液中ではアルカリ濃度と電位によりに溶解しても析出することがなく、正極板と負極板の短絡を抑制することが可能である。   According to a third aspect of the present invention, there is provided a sealed battery manufacturing apparatus for resistance-welding components to be electrically connected in a sealed battery, wherein the components are placed on the base, and the components are resistance-welded by energization. Resistance welding electrode rods with electroless nickel plating or electrolytic nickel plating on the surface excluding the tip end face of the resistance welding electrode rod, an electrode rod holder for holding the resistance welding electrode rod, and an electrode rod for resistance welding. It consists of a pressure drive unit that loads the pressure force, a pressure follow-up unit that transmits the pressure force of the pressure drive unit to the electrode rod holder, and a welding power source unit that energizes the electrode rod for resistance welding. When the surface of the resistance welding electrode rod is prevented from being mixed with the electrode of the resistance welding electrode by plating the surface of the resistance welding electrode rod, the nickel plating applied to the surface of the resistance welding electrode rod as a spatter is mixed in the battery case Can have, in an alkaline electrolyte solution without precipitates be dissolved in a alkali concentration and potential, it is possible to suppress a short circuit of the positive electrode plate and the negative electrode plate.

本発明の第4の発明において、抵抗溶接用電極棒としてクロム銅または銅合金からなる材質で構成したことにより、ニッケルメッキの付着性もよく安価に製作ができる上、抵抗溶接用電極棒の先端端面部の研磨を行なうことで再利用をすることが可能となる。   In the fourth invention of the present invention, the resistance welding electrode rod is made of a material made of chrome copper or a copper alloy, so that the nickel plating has good adhesion and can be manufactured at low cost, and the tip of the resistance welding electrode rod. It becomes possible to reuse by polishing the end face.

本発明の第5の発明において、抵抗溶接用電極棒の横断面形状を丸形状または角形状としたことにより、複雑な形状を用いないため、電極棒ホルダでの保持性に優れ、抵抗溶接用電極棒の先端端面部の研磨も容易に行なうことで再利用し易くなる。   In the fifth aspect of the present invention, since the cross-sectional shape of the electrode rod for resistance welding is round or square, no complicated shape is used. The tip end surface of the electrode rod can be easily polished to facilitate reuse.

本発明の第6の発明において、抵抗溶接用電極棒を保持する電極棒ホルダを銅または銅合金からなる材質で構成したことにより、電極棒ホルダから抵抗溶接用電極棒に電流を給電する際に電極棒ホルダ自身が発熱することなく安定して電流を供給できる。   In the sixth aspect of the present invention, when the electrode rod holder for holding the resistance welding electrode rod is made of a material made of copper or a copper alloy, when supplying current from the electrode rod holder to the resistance welding electrode rod, The electrode rod holder itself can stably supply current without generating heat.

本発明の第7の発明において、抵抗溶接用電極棒を保持する電極棒ホルダの全表面または前記抵抗溶接用電極棒が接する個所に無電解ニッケルメッキまたは電解ニッケルメッキを施したことにより、電極棒ホルダと抵抗溶接用電極棒との接触面において酸化が生じないため抵抗溶接用電極棒と電極棒ホルダの接触状態を電気的に安定させることができ、安定した溶接電流で溶接を行なうことが可能となり、溶接強度低下を防ぐことができるとともに、抵抗溶接用電極棒が締結された際に、電極棒ホルダから銅微粉が脱落することが防止できる。   In the seventh invention of the present invention, the entire surface of the electrode rod holder holding the resistance welding electrode rod or the portion where the resistance welding electrode rod contacts is subjected to electroless nickel plating or electrolytic nickel plating. Since no oxidation occurs on the contact surface between the holder and the electrode rod for resistance welding, the contact state between the electrode rod for resistance welding and the electrode rod holder can be electrically stabilized, and welding can be performed with a stable welding current. Thus, it is possible to prevent a decrease in welding strength and to prevent the copper fine powder from falling off from the electrode rod holder when the resistance welding electrode rod is fastened.

以下、図1から図6を参照しながら、本発明の一実施の形態について図面を参照しながら詳細に説明する。図2の模式断面図に示す本発明の密閉型電池である円筒形電池では、フェルト状またはスポンジ状の金属多孔体を基材とし、この基材の空隙に活物質を直接に塗布してなる帯状の正極板1および負極板2をこれらの間にセパレータ6を介在させて積層した状態で渦巻状に巻回してなる電極群5が、有底円筒状の金属製の電池ケース9内に収納されている。大電流放電に適した正極板1および負極板2からの出入力集電構造として、正極板1の端部3が電極群5の上方へ突出し、かつ負極板2の端部4が電極群5の下方に突出するように電極群5を構成している。   Hereinafter, an embodiment of the present invention will be described in detail with reference to the drawings with reference to FIGS. In the cylindrical battery, which is the sealed battery of the present invention shown in the schematic cross-sectional view of FIG. 2, a felt-like or sponge-like metal porous body is used as a base material, and an active material is directly applied to the voids of this base material. An electrode group 5 formed by spirally winding a belt-like positive electrode plate 1 and a negative electrode plate 2 with a separator 6 interposed therebetween is housed in a bottomed cylindrical metal battery case 9. Has been. As an input / output current collecting structure from the positive electrode plate 1 and the negative electrode plate 2 suitable for large current discharge, the end 3 of the positive electrode 1 protrudes above the electrode group 5 and the end 4 of the negative electrode 2 is the electrode group 5. The electrode group 5 is configured to protrude downward.

この構造において、正極板1または負極板2に各集電体を接続するリード片がないタブ
レス方式(リードレス方式)となり、正極板1の端部3に正極集電体7を複数箇所で溶接し、その正極集電体7に正極リード10の一端部を抵抗溶接し、かつ正極リード10の他端部を安全弁12が内蔵された正極端子を兼ねたキャップ13を持つ封口体11に抵抗溶接している。また、負極板2の端部4に負極集電体8を抵抗溶接し、その負極集電体8の舌片状の負極集電片(図示せず)を電池ケース9の底面に抵抗溶接している。その後、封口体11により電池ケース9の開口部が封口されている。
In this structure, the positive electrode plate 1 or the negative electrode plate 2 has a tabless method (leadless method) without lead pieces connecting the current collectors, and the positive electrode current collector 7 is welded to the end portion 3 of the positive electrode plate 1 at a plurality of locations. Then, one end of the positive electrode lead 10 is resistance welded to the positive electrode current collector 7, and the other end of the positive electrode lead 10 is resistance welded to the sealing body 11 having a cap 13 that also serves as a positive electrode terminal with a built-in safety valve 12. doing. Further, the negative electrode current collector 8 is resistance-welded to the end 4 of the negative electrode plate 2, and a tongue-shaped negative electrode current collector piece (not shown) of the negative electrode current collector 8 is resistance-welded to the bottom surface of the battery case 9. ing. Thereafter, the opening of the battery case 9 is sealed by the sealing body 11.

上記の密閉型電池を作製するにおいて、正極集電体7と正極板1の端部3との接続を一例として詳細に説明をする。図1は本発明である密閉型電池の製造装置の抵抗溶接用電極棒14を用いた抵抗溶接部の一例であり、抵抗溶接用電極棒14の締結された一対の電極棒ホルダ16を加圧追従部18に平行に固定している。   In producing the above sealed battery, the connection between the positive electrode current collector 7 and the end 3 of the positive electrode plate 1 will be described in detail as an example. FIG. 1 shows an example of a resistance welding portion using a resistance welding electrode rod 14 of a sealed battery manufacturing apparatus according to the present invention, and presses a pair of electrode rod holders 16 to which the resistance welding electrode rod 14 is fastened. The follower 18 is fixed in parallel.

加圧追従部18は加圧駆動部19により下方向に移動し台座22上に設置された電極群5に加圧力を加えることが可能で、電極棒ホルダ16を介し一対の抵抗溶接用電極棒14に溶接電源部21より電流を流し、正極リード10が接続された正極集電体7を電極群5に溶接を行っている。   The pressure follower 18 is moved downward by the pressure driver 19 and can apply pressure to the electrode group 5 installed on the pedestal 22, and a pair of resistance welding electrode rods via the electrode rod holder 16. 14, a current is supplied from the welding power source 21, and the positive electrode current collector 7 connected to the positive electrode lead 10 is welded to the electrode group 5.

図3は、図1に示した溶接部における一対のプラス極性側の抵抗溶接用電極棒14aおよびマイナス極性側の抵抗溶接用電極棒14bと事前に正極リード10が溶接された正極集電体7に電極群5の正極板1の端部3が溶接された状態を表した拡大模式図である。なお、電極群5は正極板1と負極板2とセパレータ6とをその間に介在して渦巻状に巻回し、下部端面には負極集電体8が溶接されている。   3 shows a positive electrode current collector 7 in which the positive electrode lead 10 is previously welded to the pair of positive polarity resistance welding electrode rod 14a and negative polarity resistance welding electrode rod 14b in the welded portion shown in FIG. It is the expansion schematic diagram showing the state by which the edge part 3 of the positive electrode plate 1 of the electrode group 5 was welded to. The electrode group 5 is wound in a spiral shape with the positive electrode plate 1, the negative electrode plate 2, and the separator 6 interposed therebetween, and a negative electrode current collector 8 is welded to the lower end face.

また、マイナス極性側の抵抗溶接用電極棒14bはマイナス極性側の抵抗溶接用電極棒14bの表面にニッケルのメッキ層15を施し、プラス極性側の抵抗溶接用電極棒14aも同様にプラス極性側の抵抗溶接用電極棒14aの表面にニッケルメッキ処理を施している。なお、ニッケルのメッキ層15の厚みを3μm〜5μmで施しており、メッキは無電解ニッケルでも電解ニッケルからなるメッキが好ましい。   Further, the negative polarity resistance welding electrode rod 14b is provided with a nickel plating layer 15 on the surface of the negative polarity resistance welding electrode rod 14b, and the positive polarity resistance welding electrode rod 14a is similarly applied to the positive polarity side. The resistance welding electrode rod 14a is nickel-plated. The nickel plating layer 15 has a thickness of 3 μm to 5 μm, and the plating is preferably electroless nickel or electrolytic nickel.

図4(a)は抵抗溶接用電極棒14を給電経路を兼ねた電極棒ホルダ16に締結用ボルト17により締結した模式図であり、図4(b)は角形状の抵抗溶接用電極棒14を締結した模式図、図4(c)は丸形状の抵抗溶接用電極棒14を締結した模式図である。抵抗溶接用電極棒14の形状は単純な形状を用いており、電極棒ホルダ16での保持性に優れ、抵抗溶接用電極棒14の先端端面部の研磨も容易に行なうことで再利用し易く、本願の実施例では図4(b)に示される角形状の抵抗溶接用電極棒14を用いて述べている。   FIG. 4A is a schematic diagram in which the resistance welding electrode rod 14 is fastened to the electrode rod holder 16 also serving as a power feeding path by a fastening bolt 17, and FIG. 4B is a rectangular resistance welding electrode rod 14. FIG. 4C is a schematic view in which a round resistance welding electrode rod 14 is fastened. The shape of the electrode rod 14 for resistance welding is a simple shape, has excellent retainability with the electrode rod holder 16, and can easily be reused by easily polishing the end face portion of the electrode rod 14 for resistance welding. In the embodiment of the present application, the rectangular resistance welding electrode rod 14 shown in FIG. 4B is used.

また、図5(a)は本発明の製造装置における抵抗溶接部の部分斜視図で、ニッケルのメッキ層15の施された一対の抵抗溶接用電極棒14を使用し溶接を行っており、プラス極性側の抵抗溶接用電極棒14aはプラス極性で通電を行い、マイナス極性側の抵抗溶接用電極棒14bにはマイナス極性として通電を行なっている。さらに一例として正極リード10が事前に溶接された正極集電体7を電極群5に接続している。また、図5(b)は抵抗溶接時における抵抗溶接用電極棒14の圧接する場所を示す模式図であり、集電体溶接部20a,20b,20c,20dにプラス極性側の抵抗溶接用電極棒14aとマイナス極性側の抵抗溶接用電極棒14bを圧接し溶接をしている。   FIG. 5A is a partial perspective view of a resistance welding portion in the manufacturing apparatus of the present invention, and welding is performed using a pair of resistance welding electrode rods 14 having a nickel plating layer 15 applied thereto. The resistance welding electrode rod 14a on the polarity side is energized with a positive polarity, and the resistance welding electrode rod 14b on the minus polarity side is energized with a minus polarity. Further, as an example, the positive electrode current collector 7 to which the positive electrode lead 10 is welded in advance is connected to the electrode group 5. FIG. 5 (b) is a schematic diagram showing a place where the resistance welding electrode rod 14 is in pressure contact during resistance welding, and the resistance welding electrode 20a, 20b, 20c, 20d is connected to the resistance welding electrode on the positive polarity side. The rod 14a and the electrode rod 14b for resistance welding on the negative polarity side are pressed and welded.

集電体溶接部20a,20b,20c,20dに、2本の平行に圧接されたプラス極性側の抵抗溶接用電極棒14aとマイナス極性側の抵抗溶接用電極棒14bにより正極集電体7に電流を流すことにより、抵抗溶接が行われる。このプラス極性側の抵抗溶接用電極棒14aとマイナス極性側の抵抗溶接用電極棒14bは図1に示した給電経路を兼ねた電極棒ホルダ16に締結され、加圧追従部18により加圧できる構造となっている。   The positive electrode current collector 7 is connected to the current collector welds 20a, 20b, 20c, and 20d by two resistance welding electrode rods 14a on the positive polarity side and the resistance welding electrode rod 14b on the negative polarity side that are pressed in parallel. Resistance welding is performed by passing an electric current. The positive polarity resistance welding electrode rod 14a and the negative polarity resistance welding electrode rod 14b are fastened to the electrode rod holder 16 also serving as a power feeding path shown in FIG. It has a structure.

また、プラス極性側の抵抗溶接用電極棒14a、マイナス極性側の抵抗溶接用電極棒14bの締結された一対の電極棒ホルダ16を加圧追従部18に平行に固定し加圧追従部18は加圧駆動部19により下方向に移動し電極群5に加圧力を加えたのち、電極棒ホルダ16を介し一対の抵抗溶接用電極棒14に抵抗溶接電源部21より電流を流し正極リード10が事前に溶接された正極集電体7を電極群5に溶接をしている。   Further, a pair of electrode rod holders 16 to which a resistance welding electrode rod 14a on the positive polarity side and a resistance welding electrode rod 14b on the negative polarity side are fastened are fixed in parallel to the pressure following portion 18 and the pressure following portion 18 is After moving downward by the pressure drive unit 19 and applying pressure to the electrode group 5, a current is passed from the resistance welding power source unit 21 to the pair of resistance welding electrode rods 14 via the electrode rod holder 16, so that the positive electrode lead 10 is moved. The positive electrode current collector 7 welded in advance is welded to the electrode group 5.

以下に、本発明の実施例における密閉型電池の図面を参照しながら、説明する。ただし、本発明は本実施例のみに限定されないのはいうまでもなく、例えばリチウム二次電池の溶接にも展開が可能であり、ダイレクト抵抗溶接にもメッキを施した抵抗溶接用電極棒を展開することが可能である。   Below, it demonstrates, referring drawings of the sealed battery in the Example of this invention. However, it is needless to say that the present invention is not limited to only the present embodiment. For example, the present invention can be applied to welding of lithium secondary batteries, and a resistance welding electrode rod plated with direct resistance welding is also developed. Is possible.

図2に示すように内部に正極活物質を含有した厚さ1.0mmの焼結式ニッケルからなる帯状の正極板1の端部3を負極板2より上方へ1.50mm突出し、内部に負極活物質を含有した厚さ0.7mmのニッケルメッキを施した鉄製のパンチングメタルからなる帯状の負極板2の端部4を正極板1より下方へ1.50mm突出してセパレータ6を介して、渦巻状に巻回した電極群5を形成した。   As shown in FIG. 2, an end portion 3 of a strip-like positive electrode plate 1 made of sintered nickel having a thickness of 1.0 mm containing a positive electrode active material inside protrudes 1.50 mm upward from the negative electrode plate 2, and the negative electrode therein The end 4 of the strip-shaped negative electrode plate 2 made of iron punched metal plated with nickel having a thickness of 0.7 mm containing the active material protrudes downward from the positive electrode plate 1.50 mm and passes through the separator 6 to form a spiral. The electrode group 5 wound in a shape was formed.

この電極群5の上部方向にある正極板1の端部3に正極リード10が事前に溶接された板厚0.40mmの低炭素鋼からなる正極集電体7を無電解ニッケルメッキを全表面に施したクロム銅から成る電極棒ホルダで保持した図3に示す無電解ニッケルメッキのメッキ層15の厚みを5μmで施したクロム銅から成る抵抗溶接用電極棒14でシリーズ抵抗溶接にて接続し、正極集電体7を溶接した電極群5を実施例1とした。   A positive electrode current collector 7 made of low carbon steel having a thickness of 0.40 mm, in which a positive electrode lead 10 is pre-welded to the end portion 3 of the positive electrode plate 1 in the upper direction of the electrode group 5, is electrolessly nickel-plated on the entire surface. 3 is connected by series resistance welding with a resistance welding electrode rod 14 made of chrome copper having a thickness of 5 .mu.m of the electroless nickel plating plating layer 15 shown in FIG. 3 held by an electrode rod holder made of chromium copper. The electrode group 5 to which the positive electrode current collector 7 was welded was designated as Example 1.

(比較例1)
実施例1と比較するために、表面にニッケルメッキを施さないクロム銅の抵抗溶接用電極棒を使用し、実施例1と同様に正極リードが事前に溶接された正極集電体を溶接した電極群を比較例1とした。
(Comparative Example 1)
In order to compare with Example 1, the electrode which welded the positive electrode collector which used the electrode rod for resistance welding of the chromium copper which does not give nickel plating on the surface similarly to Example 1, and the positive electrode lead was welded beforehand. The group was designated as Comparative Example 1.

(比較例2)
材質をモリブデンにし、ニッケルメッキを施さない抵抗溶接用電極棒を使用し、実施例1と同様に正極リードが事前に溶接された正極集電体を溶接した電極群を比較例2とした。
(Comparative Example 2)
Comparative Example 2 was an electrode group using a resistance welding electrode bar made of molybdenum and not plated with nickel and welding a positive electrode current collector in which a positive electrode lead was previously welded in the same manner as in Example 1.

上記の実施例1、比較例1および比較例2で使用する抵抗溶接用電極棒を大気中に3日間放置した後に、その抵抗溶接用電極棒にて電極群と正極リードが事前に溶接された正極集電体を500ショットの連続溶接をした際の抵抗溶接用電極棒が正極集電体に付着した回数を検証した電極付着回数や溶接時に発生したスパッタの有無、溶接部における溶接強度、抵抗溶接用電極棒の表面温度、抵抗溶接用電極棒の電流値等にて比較を行なった。なお、溶接強度の測定においては、引張り試験機にて正極集電体を引っ張り、電極群より剥がれた時の荷重を測定した。   After the resistance welding electrode rods used in Example 1, Comparative Example 1 and Comparative Example 2 were left in the atmosphere for 3 days, the electrode group and the positive electrode lead were previously welded with the resistance welding electrode rods. The number of electrode attachments that verified the number of times the electrode rod for resistance welding adhered to the positive electrode current collector when the positive electrode current collector was continuously welded for 500 shots, the presence or absence of spatter generated during welding, the welding strength and resistance at the weld Comparison was made based on the surface temperature of the electrode rod for welding, the current value of the electrode rod for resistance welding, and the like. In the measurement of welding strength, the positive electrode current collector was pulled with a tensile tester, and the load when peeled off from the electrode group was measured.

Figure 0005125094
(表1)に示されるように電極付着回数の違いが明らかになった。実施例1および比較例1においては、図5(b)に示す集電体溶接箇所20aから20dの4箇所のシリーズ溶接において、500ショットの連続溶接の中で抵抗溶接用電極棒が正極集電体7に付着するという不具合は発生しなかった。また、連続溶接後に実施例1のニッケルメッキを施した抵抗溶接用電極棒の表面を観察したところ、表面のニッケルメッキ層の剥がれもなく、抵抗溶接用電極棒の表面から銅微粉の脱落がなかった。
Figure 0005125094
As shown in (Table 1), the difference in the number of electrode attachments became clear. In Example 1 and Comparative Example 1, in four series welding of current collector welded portions 20a to 20d shown in FIG. 5 (b), the electrode rod for resistance welding is a positive electrode current collector in 500 shots of continuous welding. The problem of adhering to the body 7 did not occur. Moreover, when the surface of the electrode rod for resistance welding which carried out the nickel plating of Example 1 after continuous welding was observed, there was no peeling of the surface nickel plating layer and there was no drop-off of copper fine powder from the surface of the electrode rod for resistance welding. It was.

ニッケルメッキ処理を施さないモリブデンから成る抵抗溶接用電極棒を使用した比較例2では500ショットの連続溶接の中で52回の付着が発生した。このことは連続溶接時に電流値の測定結果をみると本発明のクロム銅を材質として使用した抵抗溶接用電極棒より低い値になっており、材質のモリブデン自身の固有抵抗が高く電流を流した際に抵抗発熱し、測定した抵抗溶接用電極棒の表面温度の結果からも分かるように、溶接時の抵抗溶接用電極棒の表面温度が上昇したことが原因で抵抗溶接用電極棒と正極集電体の接触面の温度が上昇し溶着したと判断できる。   In Comparative Example 2 in which a resistance welding electrode rod made of molybdenum not subjected to nickel plating was used, adhesion occurred 52 times in 500 shots of continuous welding. This is a lower value than the resistance welding electrode rod using the chrome copper of the present invention as a material when measuring the current value during continuous welding, and the specific resistance of the material molybdenum itself was high and current was passed. As can be seen from the results of the measured surface temperature of the resistance welding electrode rod, the resistance welding electrode rod and the positive electrode collector were collected due to the rise in the surface temperature of the resistance welding electrode rod during welding. It can be judged that the temperature of the contact surface of the electric body rose and was welded.

さらに溶接強度においては、実施例1と同じ材質の抵抗溶接用電極棒を使用したにも関わらず比較例1のニッケルメッキを施さないクロム銅製の抵抗溶接用電極棒が最も低い。連続溶接時の電流値をみると、抵抗溶接時に流れる電流値は比較例1が最も低く、実施例1の電流値よりも74%まで低下しているのが分かる。これは実施例1と同じ材質の抵抗溶接用電極棒を使用しており、材質自体の固有抵抗は同じにも関わらず電流値が低い要因として、長時間大気中に放置したために比較例1の抵抗溶接用電極棒の表面に酸化被膜が形成されており、電極棒ホルダに締結した際に電極棒ホルダとの電気抵抗が上昇し、電流値が低下したものである。電流値が低いため、抵抗溶接する能力が低下し溶接強度が不足した。なお、比較例1のニッケルメッキを施さない抵抗溶接用電極棒の酸化皮膜を取り除いた場合に放置前と同等の電流が流れることは確認できている。   Furthermore, in terms of welding strength, the resistance welding electrode rod made of chromium copper not subjected to nickel plating in Comparative Example 1 despite the use of the resistance welding electrode rod made of the same material as in Example 1 is the lowest. Looking at the current value during continuous welding, it can be seen that the current value flowing during resistance welding is the lowest in Comparative Example 1 and is reduced to 74% from the current value in Example 1. This is because the electrode rod for resistance welding made of the same material as in Example 1 was used, and although the specific resistance of the material itself was the same, the current value was low, and it was left in the atmosphere for a long time. An oxide film is formed on the surface of the electrode rod for resistance welding, and when it is fastened to the electrode rod holder, the electrical resistance with the electrode rod holder increases and the current value decreases. Since the current value was low, the resistance welding ability was reduced and the welding strength was insufficient. In addition, when the oxide film of the electrode rod for resistance welding which does not perform nickel plating of the comparative example 1 is removed, it has confirmed that the electric current equivalent to before leaving flows.

また、実施例1の人為的に施したニッケルメッキと違い、比較例1の場合においては酸化被膜が形成したり形成されなかったり、酸化被膜の状態で電流値のバラツキが発生したため、正極集電体と電極群との溶接強度のバラツキも確認できている。実施例1の抵抗溶接用電極棒では、長時間大気中に放置しても溶接時に流れる電流値に差が見られないため、抵抗溶接用電極棒の表面には酸化皮膜が形成しなかったことが分かる。   Further, unlike the nickel plating artificially applied in Example 1, in the case of Comparative Example 1, the oxide film was formed or not formed, or the current value varied in the state of the oxide film. The variation in the welding strength between the body and the electrode group has also been confirmed. In the resistance welding electrode rod of Example 1, there was no difference in the current value flowing during welding even when left in the atmosphere for a long time, so that no oxide film was formed on the surface of the resistance welding electrode rod. I understand.

さらに、実施例1の抵抗溶接用電極棒では、抵抗溶接用電極棒の表面に施されたニッケルメッキの固有抵抗が高いため、電流を流した際に電流の立ち上りが鈍くなることで電流値のオーバーシュートが抑えられ溶接される金属の急激な溶融が起こらず抵抗溶接時に発生するスパッタの発生が低減できることも確認できている。また、ニッケルメッキが混入した場合においても、アルカリ性の電解液中ではアルカリ濃度と電位によりに溶解しても析出することがなく、正極板と負極板の短絡を抑制することが可能である。   Furthermore, in the resistance welding electrode rod of Example 1, since the specific resistance of the nickel plating applied to the surface of the resistance welding electrode rod is high, the rise of the current becomes dull when the current is passed. It has also been confirmed that the occurrence of spatter generated during resistance welding can be reduced without overshoot being suppressed and rapid melting of the metal being welded. Further, even when nickel plating is mixed, even if it is dissolved in an alkaline electrolyte depending on the alkali concentration and potential, it does not precipitate, and it is possible to suppress a short circuit between the positive electrode plate and the negative electrode plate.

なお、他の構成部品の抵抗溶接についても上記実施例1と同様の結果が得られ、他の構成部品の抵抗溶接について図を参照しながら説明する。図6(a)に示すように、抵抗溶接用電極棒14の先端端面部を除く表面に無電解ニッケルメッキを施したプラス極性側の抵抗溶接用電極棒14aとマイナス極性側の抵抗溶接用電極棒14bからなる抵抗溶接用電極棒14を負極集電体8に押し当て、電極群5と負極集電体8を抵抗溶接し接続している。また、図6(b)に示すように負極集電体8が接続された電極群5を電池ケース9内に収納し、電極群5の中央部にある孔にマイナス極性側の抵抗溶接用電極棒14bを挿入し電池ケース9の外底面よりプラス極性側の抵抗溶接用電極棒14aを押し当て、負極集電体8と電池ケース9の内底面とを溶接し接続している。   In addition, the result similar to the said Example 1 is obtained also about resistance welding of another component, and resistance welding of another component is demonstrated, referring a figure. As shown in FIG. 6 (a), a resistance welding electrode rod 14a on the positive polarity side and an electrode for resistance welding on the negative polarity side in which electroless nickel plating is applied to the surface of the resistance welding electrode rod 14 excluding the tip end face portion. The electrode rod 14 for resistance welding composed of the rod 14b is pressed against the negative electrode current collector 8, and the electrode group 5 and the negative electrode current collector 8 are resistance-welded and connected. Further, as shown in FIG. 6B, the electrode group 5 to which the negative electrode current collector 8 is connected is housed in the battery case 9, and the resistance welding electrode on the negative polarity side is placed in the hole in the center of the electrode group 5. The rod 14b is inserted, the resistance welding electrode rod 14a on the positive polarity side is pressed from the outer bottom surface of the battery case 9, and the negative electrode current collector 8 and the inner bottom surface of the battery case 9 are welded and connected.

さらに図6(c)に示すように正極集電体7に正極リード10を載置して、正極集電体10の溶接部10aに抵抗溶接用電極棒(図示せず)を押し当て正極集電体7と正極リード10を溶接し接続している。また、図6(d)に示すように電池ケース(図示せず)に収納された正極リード10が溶接され正極集電体7を溶接した電極群5の正極リード10に封口体11を設置し、正極リード10の溶接部10aに抵抗溶接用電極棒(図示せず)を押し当て封口体11と正極リード10を溶接し接続している。これらにおいても実施例1と同様の結果内容が得られた。   Further, as shown in FIG. 6C, the positive electrode lead 10 is placed on the positive electrode current collector 7, and a resistance welding electrode rod (not shown) is pressed against the welding portion 10 a of the positive electrode current collector 10 to collect the positive electrode current. The electric body 7 and the positive electrode lead 10 are welded and connected. Further, as shown in FIG. 6D, a sealing body 11 is installed on the positive electrode lead 10 of the electrode group 5 in which the positive electrode lead 10 housed in a battery case (not shown) is welded and the positive electrode current collector 7 is welded. The electrode 11 for resistance welding (not shown) is pressed against the welded portion 10a of the positive electrode lead 10, and the sealing body 11 and the positive electrode lead 10 are welded and connected. In these cases, the same results as in Example 1 were obtained.

本発明により、クロム銅または銅合金からなる材質で構成した抵抗溶接用電極棒の表面にニッケルメッキを施すことで、銅の微粉が電池ケース内に混入することがなく電池の内部短絡などの懸念がない環境で、密閉形電池内の抵抗溶接が安定した電流値で行なえ、安定した溶接強度で種々の電池の電極製造技術として利用可能性が高く、かつ有用性も高い。   According to the present invention, nickel plating is applied to the surface of the electrode rod for resistance welding made of a material made of chromium copper or a copper alloy, so that copper fine powder does not enter the battery case and there is a concern such as an internal short circuit of the battery. Therefore, resistance welding in a sealed battery can be performed with a stable current value, and it can be used as an electrode manufacturing technique for various batteries with a stable welding strength and is also highly useful.

本発明の一実施の形態に係る製造装置における抵抗溶接部の模式図The schematic diagram of the resistance welding part in the manufacturing apparatus which concerns on one embodiment of this invention 本発明の一実施の形態に係る密閉型電池の縦断面概略図1 is a schematic vertical sectional view of a sealed battery according to an embodiment of the present invention. 本発明の一実施の形態に係る抵抗溶接部の拡大模式図The enlarged schematic diagram of the resistance welding part which concerns on one embodiment of this invention (a)本発明の一実施の形態に係る抵抗溶接用電極棒を電極棒ホルダに締結した模式図、(b)同角形状の抵抗溶接用電極を電極棒ホルダに締結した模式図、(c)同丸形状の抵抗溶接用電極を電極棒ホルダに締結した模式図(A) The schematic diagram which fastened the electrode for resistance welding which concerns on one embodiment of this invention to the electrode rod holder, (b) The schematic diagram which fastened the electrode for resistance welding of the same shape to the electrode rod holder, (c ) Schematic of the same round resistance welding electrode fastened to the electrode rod holder (a)本発明一実施の形態に係る製造装置における抵抗溶接部の部分状態図、(b)同抵抗溶接部の抵抗溶接用電極棒を圧接する場所を示す状態図(A) Partial state diagram of a resistance welding part in the manufacturing apparatus according to one embodiment of the present invention, (b) State diagram showing a place where the resistance welding electrode rod of the resistance welding part is pressed. (a)本発明の一実施の形態に係る集電体を抵抗溶接する際の状態図、(b)同集電体の抵抗溶接時の状態図、(c)同正極リードの抵抗溶接後の状態図、(d)同封口体の抵抗溶接後の状態図(A) State diagram at the time of resistance welding of the current collector according to one embodiment of the present invention, (b) State diagram at the time of resistance welding of the current collector, (c) After resistance welding of the positive electrode lead State diagram, (d) State diagram after resistance welding of the sealing body 従来例における円筒形電池の縦断面概略図Schematic diagram of longitudinal section of cylindrical battery in conventional example 従来例における抵抗溶接時の状態図State diagram at the time of resistance welding in the conventional example

符号の説明Explanation of symbols

1 正極板
2 負極板
3 端部
4 端部
5 電極群
6 セパレータ
7 正極集電体
8 負極集電体
9 電池ケース
10 正極リード
10a,10b 溶接部
11 封口体
12 安全弁
13 キャップ
14 抵抗溶接用電極棒
14a プラス極性側の抵抗溶接用電極棒
14b マイナス極性側の抵抗溶接用電極棒
15 メッキ層
16 電極棒ホルダ
17 締結用ボルト
18 加圧追従部
19 加圧駆動部
20a,20b,20c,20d 集電体溶接部
21 溶接電源部
22 台座
DESCRIPTION OF SYMBOLS 1 Positive electrode plate 2 Negative electrode plate 3 End part 4 End part 5 Electrode group 6 Separator 7 Positive electrode collector 8 Negative electrode collector 9 Battery case 10 Positive electrode lead 10a, 10b Welding part 11 Sealing body 12 Safety valve 13 Cap 14 Resistance welding electrode Rod 14a Electrode rod for resistance welding on the positive polarity side 14b Electrode rod for resistance welding on the negative polarity side 15 Plating layer 16 Electrode rod holder 17 Fastening bolt 18 Pressure follow-up portion 19 Pressure drive portion 20a, 20b, 20c, 20d Electric welding part 21 Welding power supply part 22 Pedestal

Claims (5)

密閉型電池内の封口板、リード、集電体、電極群、電池ケースの構成部品を抵抗溶接用電極棒を用いて、封口板とリード、リードと正極集電体、電極群と正極集電体または負極集電体、負極集電体と電池ケースを抵抗溶接する密閉型電池の製造方法であって、前記抵抗溶接用電極棒をクロム銅からなる材質で構成し、前記抵抗溶接用電極棒の先端端面部を除く表面に無電解ニッケルまたは電解ニッケルからなるメッキを施した前記抵抗溶接用電極棒を前記構成部品に押し当てて抵抗溶接して接続することを特徴とする密閉型電池の製造方法。 Sealing plate, lead, current collector, electrode group, and battery case components in sealed battery using resistance welding electrode rod, sealing plate and lead, lead and positive electrode current collector, electrode group and positive electrode current collector Body or negative electrode current collector, a sealed battery manufacturing method for resistance welding a negative electrode current collector and a battery case, wherein the resistance welding electrode rod is made of a material made of chromium copper, and the resistance welding electrode rod Manufacturing of a sealed battery characterized in that the electrode rod for resistance welding, which is plated with electroless nickel or electrolytic nickel on the surface excluding the end face of the electrode , is pressed against the component and connected by resistance welding. Method. 密閉型電池内の電気的接続する構成部品を抵抗溶接する密閉型電池の製造装置であって、前記構成部品を載せる台座と、通電して前記構成部品を抵抗溶接するクロム銅または銅合金からなる材質で構成した抵抗溶接用電極棒の先端端面部を除く表面に無電解ニッケルメッキまたは電解ニッケルメッキをした抵抗溶接用電極棒と、前記抵抗溶接用電極棒を保持する電極棒ホルダと、前記抵抗溶接用電極棒に加圧力を負荷させる加圧駆動部と、前記加圧駆動部の加圧力を前記電極棒ホルダに伝達する加圧追従部と、前記抵抗溶接用電極棒を通電させる溶接電源部から構成したことを特徴とする密閉型電池の製造装置。 An apparatus for manufacturing a sealed battery for resistance-welding components to be electrically connected in a sealed battery, comprising: a pedestal on which the component is placed; and chromium copper or a copper alloy for energizing and resistance-welding the component. A resistance welding electrode rod in which electroless nickel plating or electrolytic nickel plating is applied to the surface of the resistance welding electrode rod, excluding the tip end face portion , made of a material, an electrode rod holder for holding the resistance welding electrode rod, and the resistance A pressure drive unit for applying a pressure to the welding electrode rod, a pressure follow-up unit for transmitting the pressure of the pressure drive unit to the electrode rod holder, and a welding power source unit for energizing the resistance welding electrode rod An apparatus for manufacturing a sealed battery, comprising: 抵抗溶接用電極棒の横断面形状を丸形状または角形状としたことを特徴とする請求項に記載の密閉型電池の製造装置。 The apparatus for manufacturing a sealed battery according to claim 2 , wherein the cross-sectional shape of the electrode rod for resistance welding is round or square. 抵抗溶接用電極棒を保持する電極棒ホルダを銅または銅合金からなる材質で構成したことを特徴とする請求項に記載の密閉型電池の製造装置。 3. The sealed battery manufacturing apparatus according to claim 2 , wherein the electrode rod holder for holding the resistance welding electrode rod is made of a material made of copper or a copper alloy. 抵抗溶接用電極棒を保持する電極棒ホルダの全表面または前記抵抗溶接用電極棒が接する個所に無電解ニッケルメッキまたは電解ニッケルメッキを施したことを特徴とする請求項に記載の密閉型電池の製造装置。 3. The sealed battery according to claim 2 , wherein electroless nickel plating or electrolytic nickel plating is applied to the entire surface of an electrode rod holder for holding a resistance welding electrode rod or a portion where the resistance welding electrode rod contacts. Manufacturing equipment.
JP2006345503A 2006-12-22 2006-12-22 Sealed battery manufacturing method and manufacturing apparatus thereof Active JP5125094B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006345503A JP5125094B2 (en) 2006-12-22 2006-12-22 Sealed battery manufacturing method and manufacturing apparatus thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006345503A JP5125094B2 (en) 2006-12-22 2006-12-22 Sealed battery manufacturing method and manufacturing apparatus thereof

Publications (2)

Publication Number Publication Date
JP2008159356A JP2008159356A (en) 2008-07-10
JP5125094B2 true JP5125094B2 (en) 2013-01-23

Family

ID=39660039

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006345503A Active JP5125094B2 (en) 2006-12-22 2006-12-22 Sealed battery manufacturing method and manufacturing apparatus thereof

Country Status (1)

Country Link
JP (1) JP5125094B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230053831A (en) * 2021-10-15 2023-04-24 주식회사 엘지에너지솔루션 Method for fastening a welding rod and welding apparatus to which the welding rod was vertically fastened by this

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS606073B2 (en) * 1979-11-07 1985-02-15 松下電器産業株式会社 Method for manufacturing a battery with a spiral electrode body
JPS62101388A (en) * 1985-10-29 1987-05-11 Nippon Mekki Kogyo Kk Electrode for spot welding
JPH0839267A (en) * 1994-07-27 1996-02-13 S M K:Kk Ni plated electrode for spot welding
JPH11226748A (en) * 1998-02-20 1999-08-24 Toshiba Battery Co Ltd Welding equipment for collector plate
JP5091377B2 (en) * 2001-07-13 2012-12-05 パナソニック株式会社 Resistance welding electrode for alkaline battery and method for producing aggregate battery
AU2003289091A1 (en) * 2003-02-20 2004-09-09 Smk Co., Ltd. Multi-electrode holder for resistance welding

Also Published As

Publication number Publication date
JP2008159356A (en) 2008-07-10

Similar Documents

Publication Publication Date Title
JP5587061B2 (en) Energizing block for resistance welding, sealed battery manufacturing method using the energizing block, and sealed battery
US20110117420A1 (en) Bus bar and battery module including the same
JP4586008B2 (en) Battery pack and manufacturing method thereof
JP5198134B2 (en) Method for manufacturing cylindrical battery
JP2001087866A (en) Method for joining aluminum and copper
JP5125094B2 (en) Sealed battery manufacturing method and manufacturing apparatus thereof
JPH10146679A (en) Electric resistance welding method for different kinds of materials
JP2018092743A (en) Friction stir welding method
JP2008066048A (en) Lithium-ion secondary battery
TW503595B (en) Method and apparatus for manufacturing battery module and unit battery cell for use in battery module
KR101124964B1 (en) Method for connecting between cathod lead or anode lead of secondary battery and external element
KR20130012812A (en) Method for connecting between terminal lead of secondary battery and busbar
JP4691919B2 (en) Welding method for metal parts
JP5286628B2 (en) battery
JP7032587B1 (en) Manufacturing method of terminals for storage batteries and storage batteries
JP2007035650A (en) Welding method of battery container
JPWO2011099160A1 (en) Clad material for lead and welding method for clad material for lead
JP2008142722A (en) Resistance welding method of metal thin sheet and metal foil, and method for producing nonaqueous secondary battery using the same
KR100435038B1 (en) Method for forming cathode terminal of Lithium ion secondary battery
JP2002035945A (en) Welding apparatus and method for conductive joint member of cell
JP4637122B2 (en) Battery pack and welding method thereof
US20240106087A1 (en) Joining methods and devices made using said methods
US9252550B2 (en) Electrode terminal connector producing method
JP2014041781A (en) Electric wire welding method and electric wire welding device
KR20160084582A (en) Welding Method Enabling to Improve Bonding Power

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091116

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091214

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120424

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120622

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121002

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121015

R151 Written notification of patent or utility model registration

Ref document number: 5125094

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151109

Year of fee payment: 3