JP2007032793A - Toroidal continuously variable transmission - Google Patents

Toroidal continuously variable transmission Download PDF

Info

Publication number
JP2007032793A
JP2007032793A JP2005220582A JP2005220582A JP2007032793A JP 2007032793 A JP2007032793 A JP 2007032793A JP 2005220582 A JP2005220582 A JP 2005220582A JP 2005220582 A JP2005220582 A JP 2005220582A JP 2007032793 A JP2007032793 A JP 2007032793A
Authority
JP
Japan
Prior art keywords
hydraulic
pressure
hydraulic pressure
differential pressure
valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005220582A
Other languages
Japanese (ja)
Inventor
Toshiro Toyoda
俊郎 豊田
Eiji Inoue
英司 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to JP2005220582A priority Critical patent/JP2007032793A/en
Publication of JP2007032793A publication Critical patent/JP2007032793A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Control Of Transmission Device (AREA)
  • Friction Gearing (AREA)
  • Transmission Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To realize construction which can swiftly and accurately pick up difference of hydraulic pressure (differential pressure) existing between a respective pair of hydraulic pressure chambers 36a, 36b which is provided with an actuator 13 and moreover can construct to miniaturization at low cost. <P>SOLUTION: A toroidal continuously transmission picks up hydraulic pressure rising at first and second hydraulic introduction passages 54, 56 of a differential pressure pick-up valve 37 through one of pick-up oil passage 39. Therefore, it connects the first and second hydraulic introduction passages 54, 56 with each other via a ball type directional control valve 40. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

この発明は、自動車用自動変速装置の変速ユニットとして、或はポンプ等の各種産業機械の運転速度を調節する為の変速装置として利用するトロイダル型無段変速機の改良に関する。   The present invention relates to an improvement in a toroidal continuously variable transmission that is used as a transmission unit of an automatic transmission for automobiles or as a transmission for adjusting the operating speed of various industrial machines such as pumps.

自動車用変速装置としてトロイダル型無段変速機を使用する事が、例えば特許文献1、2、非特許文献1、2等の多くの刊行物に記載され、且つ、一部で実施されて周知である。又、変速比の変動幅を大きくすべく、トロイダル型無段変速機と差動ユニットである遊星歯車式変速機とを組み合わせた無段変速装置も、例えば特許文献3〜7に記載される等により、従来から広く知られている。図4〜5は、このうちの特許文献6〜7に記載された、入力軸を一方向に回転させたまま出力軸を停止させられる、所謂ギヤードニュートラル状態を実現できるモードを備えた無段変速装置を示している。このうちの図4は無段変速装置のブロック図を、図5は、この無段変速装置を制御する油圧回路を、それぞれ示している。   The use of a toroidal type continuously variable transmission as an automobile transmission is described in many publications such as Patent Documents 1 and 2 and Non-Patent Documents 1 and 2, and has been well-known in some implementations. is there. Also, continuously variable transmissions that combine a toroidal type continuously variable transmission and a planetary gear type transmission that is a differential unit in order to increase the fluctuation range of the gear ratio are described in, for example, Patent Documents 3 to 7, etc. Therefore, it has been widely known. FIGS. 4 to 5 are continuously variable transmissions having a mode that can realize a so-called geared neutral state described in Patent Documents 6 to 7, in which the output shaft can be stopped while the input shaft is rotated in one direction. The device is shown. 4 shows a block diagram of the continuously variable transmission, and FIG. 5 shows a hydraulic circuit for controlling the continuously variable transmission.

エンジン1の出力は、ダンパ2を介して、入力軸3に入力される。この入力軸3に伝達された動力は、直接又はトロイダル型無段変速機4を介して、差動ユニットである遊星歯車式変速機5に伝達される。そして、この遊星歯車式変速機5の構成部材の差動成分が、クラッチ装置6、即ち、図5の低速用、高速用各クラッチ7、8を介して、出力軸9に取り出される。又、上記トロイダル型無段変速機4は、それぞれが第一、第二のディスクである入力側、出力側各ディスク10、11と、複数個のパワーローラ12と、それぞれが支持部材である複数個のトラニオン(図示省略)と、アクチュエータ13(図5)と、押圧装置14と、変速比制御ユニット15とを備える。このうちの入力側、出力側各ディスク10、11は、互いに同心に、且つ相対回転自在に配置されている。又、上記各パワーローラ12は、互いに対向する上記入力側、出力側各ディスク10、11の内側面同士の間に挟持されて、これら入力側、出力側各ディスク10、11同士の間で動力を伝達する。又、上記各トラニオンは、上記各パワーローラ12を回転自在に支持している。   The output of the engine 1 is input to the input shaft 3 via the damper 2. The power transmitted to the input shaft 3 is transmitted to the planetary gear type transmission 5 which is a differential unit, either directly or via the toroidal continuously variable transmission 4. The differential components of the constituent members of the planetary gear type transmission 5 are taken out to the output shaft 9 via the clutch device 6, that is, the low speed and high speed clutches 7 and 8 shown in FIG. The toroidal-type continuously variable transmission 4 includes a plurality of input and output disks 10 and 11, each of which is a first and second disk, a plurality of power rollers 12, and a plurality of support members. Each trunnion (not shown), an actuator 13 (FIG. 5), a pressing device 14, and a transmission ratio control unit 15 are provided. Of these, the input-side and output-side disks 10 and 11 are arranged concentrically and relatively freely rotatable. Each of the power rollers 12 is sandwiched between the inner surfaces of the input and output disks 10 and 11 facing each other, and the power roller 12 is driven between the input and output disks 10 and 11. To communicate. Each trunnion supports each power roller 12 rotatably.

又、上記アクチュエータ13は、油圧式のもので、上記各パワーローラ12を支持した上記各トラニオンを、それぞれの両端部に設けた枢軸の軸方向に変位させて、上記入力側ディスク10と出力側ディスク11との間の変速比を変える。又、上記押圧装置14は、油圧式のもので、上記入力側ディスク10と上記出力側ディスク11とを互いに近付く方向に押圧する。又、上記変速比制御ユニット15は、上記入力側ディスク10と出力側ディスク11との間の変速比を所望値にする為に、上記アクチュエータ13の変位方向及び変位量を制御する。   The actuator 13 is of a hydraulic type, and the trunnions supporting the power rollers 12 are displaced in the axial directions of the pivots provided at both ends so that the input side disk 10 and the output side The gear ratio with the disk 11 is changed. The pressing device 14 is of a hydraulic type and presses the input side disk 10 and the output side disk 11 in a direction approaching each other. The gear ratio control unit 15 controls the displacement direction and the displacement amount of the actuator 13 so that the gear ratio between the input side disk 10 and the output side disk 11 becomes a desired value.

図示の例の場合、上記変速比制御ユニット15は、制御器16と、この制御器16からの制御信号に基づいて切り換えられる、ステッピングモータ17と、ライン圧制御用電磁開閉弁18と、電磁弁19と、シフト用電磁弁20と、これら各部材17〜20により作動状態を切り換えられる制御弁装置21とにより構成している。尚、この制御弁装置21は、変速比制御弁22と、差圧シリンダ23と、補正用制御弁24a、24bと、高速クラッチ用、低速クラッチ用各切換弁25、26(図5)とを合わせたものである。このうちの変速比制御弁22は、上記アクチュエータ13への油圧の給排を制御するものである。又、上記差圧シリンダ23は、前記トロイダル型無段変速機4を通過するトルク(通過トルク)に応じて、このトロイダル型無段変速機4の変速比を補正すべく、上記変速比制御弁22の切換状態を調節する為のものである。又、上記補正用制御弁24a、24bは、上記差圧シリンダ23への圧油の給排を制御するものである。更に、上記高速クラッチ用、低速クラッチ用各切換弁25、26は、前記低速用、高速用各クラッチ7、8への圧油の導入状態を切り換えるものである。   In the case of the illustrated example, the transmission ratio control unit 15 includes a controller 16, a stepping motor 17 that is switched based on a control signal from the controller 16, a line pressure control electromagnetic on-off valve 18, and an electromagnetic valve. 19, a shift electromagnetic valve 20, and a control valve device 21 whose operation state can be switched by these members 17 to 20. The control valve device 21 includes a transmission ratio control valve 22, a differential pressure cylinder 23, correction control valves 24a and 24b, and high-speed clutch and low-speed clutch switching valves 25 and 26 (FIG. 5). It is a combination. Of these, the gear ratio control valve 22 controls the supply and discharge of hydraulic pressure to the actuator 13. Further, the differential pressure cylinder 23 is configured to control the transmission ratio control valve so as to correct the transmission ratio of the toroidal type continuously variable transmission 4 according to the torque (passing torque) passing through the toroidal type continuously variable transmission 4. This is for adjusting the switching state of 22. The correction control valves 24 a and 24 b control the supply and discharge of pressure oil to and from the differential pressure cylinder 23. Further, the switching valves 25 and 26 for the high speed clutch and the low speed clutch switch the introduction state of the pressure oil to the low speed and high speed clutches 7 and 8, respectively.

又、前記ダンパ2部分から取り出した動力により駆動されるオイルポンプ27(図5の27a、27b)から吐出した圧油は、上記制御弁装置21や上記押圧装置14等に送り込まれる。即ち、油溜28(図5)から吸引されて上記オイルポンプ27a、27bにより吐出された圧油は、押圧力調整弁29、及び、低圧側調整弁30(図5)により所定圧に調整自在としている。これら両調整弁29、30のうち、上記押圧装置14並びに手動油圧切換弁31側に送る油圧を調整する為の上記押圧力調整弁29は、例えば特許文献8等にも詳しく記載されている様に、リリーフ弁としての機能を備えたもので、第一〜第三のパイロット部32〜34を備える。このうちの第一、第二のパイロット部32、33は、前記入力側ディスク10と前記出力側ディスク11との間で伝達される力の大きさに応じて上記押圧力調整弁29の開弁圧を調節する為のものである。この為に、前記パワーローラ12を支持する支持部材(トラニオン)を枢軸の軸方向に変位させる為のアクチュエータ13にピストン35を挟んで設けた、1対の油圧室36a、36b同士の間に存在する油圧の差(差圧)を、差圧取り出し弁37を介して、上記第一、第二のパイロット部32、33に導入する様にしている。   Further, the pressure oil discharged from the oil pump 27 (27a, 27b in FIG. 5) driven by the power extracted from the damper 2 is sent to the control valve device 21, the pressing device 14, and the like. That is, the pressure oil sucked from the oil reservoir 28 (FIG. 5) and discharged by the oil pumps 27a and 27b can be adjusted to a predetermined pressure by the pressing force adjusting valve 29 and the low pressure side adjusting valve 30 (FIG. 5). It is said. Of these adjusting valves 29 and 30, the pressing force adjusting valve 29 for adjusting the hydraulic pressure sent to the pressing device 14 and the manual hydraulic pressure switching valve 31 is described in detail in, for example, Patent Document 8 and the like. In addition, it has a function as a relief valve, and includes first to third pilot portions 32 to 34. Among these, the first and second pilot parts 32 and 33 open the pressing force adjusting valve 29 according to the magnitude of the force transmitted between the input side disk 10 and the output side disk 11. It is for adjusting the pressure. For this purpose, there exists between a pair of hydraulic chambers 36a and 36b provided with a piston 35 sandwiched between an actuator 13 for displacing a support member (trunnion) for supporting the power roller 12 in the axial direction of the pivot axis. The hydraulic pressure difference (differential pressure) is introduced into the first and second pilot parts 32 and 33 via the differential pressure take-out valve 37.

これに対して、第三のパイロット部34は、上記トロイダル型無段変速機4の変速比、このトロイダル型無段変速機4の内部に存在する潤滑油(トラクションオイル)の温度、駆動源であるエンジン1の回転速度等、上記伝達される力以外の運転条件に応じて上記押圧力調整弁29の開弁圧を調節する為のものである。この為に、前記制御器16からの指令により制御されるライン圧制御用電磁開閉弁18の開閉(デューティー比制御)に基づき、上記第三のパイロット部34に所定圧の圧油を導入自在としている。そして、上記第一〜第三のパイロット部32〜34に導入する油圧を適切に調節する事により、上記押圧装置14が発生する押圧力を、上記トロイダル型無段変速機4の運転状況に応じ、適正に規制する様に構成している。   On the other hand, the third pilot portion 34 is a transmission ratio of the toroidal type continuously variable transmission 4, the temperature of the lubricating oil (traction oil) existing in the toroidal type continuously variable transmission 4, and a drive source. This is for adjusting the valve opening pressure of the pressing force adjusting valve 29 in accordance with operating conditions other than the transmitted force such as the rotational speed of an engine 1. Therefore, based on the opening / closing (duty ratio control) of the line pressure control electromagnetic on / off valve 18 controlled by a command from the controller 16, pressure oil of a predetermined pressure can be introduced into the third pilot section 34 freely. Yes. Then, by appropriately adjusting the hydraulic pressure introduced into the first to third pilot portions 32 to 34, the pressing force generated by the pressing device 14 is set in accordance with the operating state of the toroidal continuously variable transmission 4. It is configured to properly regulate.

又、上記押圧力調整弁29により調整された圧油は、前記手動油圧切換弁31と、前記高速クラッチ用切換弁25又は低速クラッチ用切換弁26とを介して、前記低速用クラッチ7又は高速用クラッチ8の油圧室内に送り込み自在としている。又、これら低速用、高速用各クラッチ7、8のうちの低速用クラッチ7は、減速比を大きくする{変速比無限大(ギヤードニュートラル状態)を含む}低速モードを実現する際に接続されると共に、減速比を小さくする高速モードを実現する際に接続を断たれる。これに対して、上記高速用クラッチ8は、上記低速モードを実現する際に接続を断たれると共に高速モードを実現する際に接続される。又、これら低速用、高速用各クラッチ7、8への圧油の給排状態は、前記シフト用電磁弁20の切り換えに応じて切り換えられる。   Further, the pressure oil adjusted by the pressing force adjusting valve 29 passes through the manual hydraulic pressure switching valve 31, the high speed clutch switching valve 25 or the low speed clutch switching valve 26, and the low speed clutch 7 or the high speed clutch. The clutch 8 can be fed into the hydraulic chamber. The low speed clutch 7 out of the low speed and high speed clutches 7 and 8 is connected when realizing a low speed mode in which the reduction ratio is increased (including an infinite gear ratio (including a geared neutral state)). At the same time, the connection is broken when the high speed mode for reducing the reduction ratio is realized. In contrast, the high speed clutch 8 is disconnected when realizing the low speed mode and is connected when realizing the high speed mode. Further, the supply / discharge state of the pressure oil to the low speed and high speed clutches 7 and 8 is switched according to the switching of the shift solenoid valve 20.

ところで、上述の図4〜5に示した様な従来構造の場合、アクチュエータ13を構成する1対の油圧室36a、36b同士の差圧(に比例する油圧)を押圧力調整弁29に導入する為に、この押圧力調整弁29と差圧取り出し弁37とを2本の通油路38a、38bで接続している。この様に2本の通油路38a、38bを用いる構造の場合、この通油路を1本とする構造に比べて、これら各通油路38a、38bを設けるバルブボディーが大型化する可能性がある。又、これと共に、これら2本の通油路38a、38bの配置の設計や製造作業が面倒になり、コストが嵩む可能性がある。又、これら2本の通油路38a、38bを通じて上記押圧力調整弁29の第一、第二の各パイロット部32、33にそれぞれ油圧を導入する為、通油路を1本とする構造に比べてパイロット部並びにスプール(弁体)の数が多くなり、上記押圧力調整弁29の構造が複雑になる他、この押圧力調整弁29も大型化する可能性がある。   By the way, in the case of the conventional structure as shown in FIGS. 4 to 5 described above, the pressure difference between the pair of hydraulic chambers 36 a and 36 b constituting the actuator 13 is introduced into the pressing force adjusting valve 29. For this purpose, the pressure adjusting valve 29 and the differential pressure extracting valve 37 are connected by two oil passages 38a and 38b. In the case of the structure using two oil passages 38a and 38b as described above, there is a possibility that the valve body provided with each of the oil passages 38a and 38b may be larger than the structure in which this oil passage is made one. There is. In addition, the design and manufacturing work of the arrangement of these two oil passages 38a and 38b becomes troublesome and the cost may increase. In addition, in order to introduce hydraulic pressure to the first and second pilot portions 32 and 33 of the pressing force adjusting valve 29 through these two oil passages 38a and 38b, respectively, the structure has one oil passage. In comparison with this, the number of pilot parts and spools (valves) is increased, the structure of the pressing force adjusting valve 29 is complicated, and the pressing force adjusting valve 29 may be enlarged.

一方、特許文献9には、アクチュエータを構成する1対の油圧室にそれぞれ油圧センサを設けると共に、これら各油圧センサから検出される各油圧室の油圧(Phigh 、Plow)に基づいて、これら各油圧室同士の間に存在する油圧の差(差圧:△P =Phigh −Plow)を制御器により算出する技術が記載されている。又、これと共に、上記特許文献9には、この様に制御器で算出された差圧に基づいて、無段変速装置の出力軸から出力される駆動力(クリープ力)を調節する技術が記載されている。この様な特許文献9に記載された技術を採用すれば、上述した様な差圧取り出し弁37を使用する事なく、上記アクチュエータを構成する1対の油圧室同士の差圧を求められる。又、この様な制御器により算出される差圧に基づいて、例えば押圧装置に導入する油圧を調節する事ができれば、上述した差圧取り出し弁37を使用する構造に比べて通油路を少なくできると考えられる。 On the other hand, in Patent Document 9, hydraulic sensors are provided in a pair of hydraulic chambers constituting an actuator, and based on the hydraulic pressures (P high , P low ) of the hydraulic chambers detected from these hydraulic sensors, A technique is described in which a controller calculates a hydraulic pressure difference (differential pressure: ΔP = P high −P low ) existing between the hydraulic chambers. In addition, Patent Document 9 describes a technique for adjusting the driving force (creep force) output from the output shaft of the continuously variable transmission based on the differential pressure calculated by the controller in this way. Has been. If such a technique described in Patent Document 9 is adopted, the differential pressure between a pair of hydraulic chambers constituting the actuator can be obtained without using the differential pressure take-out valve 37 as described above. Also, if the hydraulic pressure introduced into the pressing device can be adjusted based on the differential pressure calculated by such a controller, the number of oil passages can be reduced compared to the structure using the differential pressure take-out valve 37 described above. It is considered possible.

但し、上記特許文献9に記載された従来技術の場合、運転状況によっては、上記制御器により算出される上記差圧に、誤差が含まれる(実際の値からずれる、不正確になる)可能性がある。以下、この点に就いて説明する。即ち、上記アクチュエータを構成する各油圧室の油圧は、例えばトロイダル型無段変速機を通過するトルクが急変動する際等に、その値が細かく上下する(振動する)。この様な場合に、例えば上記1対の油圧室のうちで油圧が高い側の油圧室の油圧が、細かく上下する状態での最も大きな値で検出されると共に、同じく油圧が低い側の油圧室の油圧が、同じく細かく上下する状態での最も小さな値で検出された場合には、上記制御器が算出する差圧が、実際の値よりも相当に大きくなる可能性がある。又、これとは逆に、上記油圧が高い側の油圧室の油圧が、細かく上下する状態での最も小さな値で検出されると共に、同じく低い側の油圧室の油圧が、細かく上下する状態での最も大きな値で検出されると、上記制御器が算出する差圧が、実際の値よりも相当に小さくなる可能性がある。   However, in the case of the conventional technique described in Patent Document 9, there is a possibility that an error is included in the differential pressure calculated by the controller (deviates from the actual value, becomes inaccurate) depending on the operating condition. There is. Hereinafter, this point will be described. That is, the value of the hydraulic pressure in each hydraulic chamber constituting the actuator fluctuates finely (vibrates) when, for example, the torque passing through the toroidal continuously variable transmission fluctuates suddenly. In such a case, for example, the hydraulic pressure of the hydraulic chamber having the higher hydraulic pressure among the pair of hydraulic chambers is detected as the largest value in the state where the hydraulic pressure is finely raised and lowered, and the hydraulic chamber having the lower hydraulic pressure is also detected. If the hydraulic pressure is detected at the smallest value in the same finely rising and falling state, the differential pressure calculated by the controller may be considerably larger than the actual value. On the contrary, the hydraulic pressure in the hydraulic chamber on the higher hydraulic pressure side is detected with the smallest value in the state where the hydraulic chamber is finely raised and lowered, and the hydraulic pressure in the lower hydraulic chamber is also finely raised and lowered. If the maximum value is detected, the differential pressure calculated by the controller may be considerably smaller than the actual value.

この様な場合に、例えば無段変速装置の出力軸から出力される駆動力(クリープ力)の調節に、上記制御器が算出した差圧をそのまま使用すると、この出力軸から必要とする駆動力を出力できなくなる可能性がある。又、上記制御器が算出した差圧に基づいて押圧装置の押圧力を調節すると、この押圧力が過度に小さくなった際に転がり接触部で滑り(グロススリップ)を生じたり、或いは逆に押圧力が過度に大きくなった際に伝達効率や耐久性の低下を招く可能性がある。この様な不都合を防止する為に、上記各油圧センサの検出信号を(例えばローパスフィルタにより)フィルタリングする事により、これら各油圧センサの検出信号から振動を除去する事が考えられる。   In such a case, for example, if the differential pressure calculated by the controller is used as it is for adjusting the driving force (creep force) output from the output shaft of the continuously variable transmission, the driving force required from the output shaft is used. May not be output. Further, when the pressing force of the pressing device is adjusted based on the differential pressure calculated by the controller, when the pressing force becomes excessively small, a slip (gross slip) occurs at the rolling contact portion, or the pressing force is reversed. When the pressure becomes excessively large, transmission efficiency and durability may be reduced. In order to prevent such inconvenience, it is conceivable to remove vibration from the detection signals of the respective hydraulic sensors by filtering the detection signals of the respective hydraulic sensors (for example, by a low-pass filter).

ところが、この様な場合には、検出信号をフィルタリングする分、この検出信号が実際の検出時点よりも遅れて出力される可能性がある。この様な検出信号の遅れは、上記油圧が安定していれば{細かく上下(振動)していなければ}問題を生じにくい。但し、例えばアクセルペダルの急激な踏み込み等に基づき上記トロイダル型無段変速機を通過するトルクが変動し、このトルクの変動に基づき上記アクチュエータの各油圧室の油圧が急変動した場合には、上記制御器が算出する上記差圧が、実際の値とずれる(実際の値に追い付かなくなる)可能性がある。そして、この様に実際の値とずれた状態にも拘らず、上記制御器により算出される差圧に基づいて、例えば押圧装置の押圧力を調節すると、この押圧装置から必要とされる押圧力を迅速に発生させられなくなる可能性がある。例えば上述の様にアクセルペダルを急激に踏み込んだ場合には、必要とする押圧力が発生するまでに時間を要し、その間、転がり接触部で滑りを生じ、伝達効率や耐久性が低下する可能性がある。又、同様に無段変速装置の出力軸から出力される駆動力を調節する場合にも、必要とする駆動力を出力するまでに時間を要する事になり、やはり好ましくない。   However, in such a case, there is a possibility that this detection signal is output later than the actual detection time by the amount of filtering of the detection signal. Such a delay in the detection signal hardly causes a problem if the hydraulic pressure is stable {if it is not finely oscillated (vibrated)}. However, for example, when the torque passing through the toroidal type continuously variable transmission fluctuates due to a sudden depression of an accelerator pedal or the like, and when the hydraulic pressure of each hydraulic chamber of the actuator suddenly fluctuates based on the fluctuation of the torque, The differential pressure calculated by the controller may deviate from the actual value (cannot catch up with the actual value). In spite of the deviation from the actual value in this way, if the pressing force of the pressing device is adjusted, for example, based on the differential pressure calculated by the controller, the pressing force required from the pressing device May not be generated quickly. For example, when the accelerator pedal is depressed suddenly as described above, it takes time until the required pressing force is generated, during which time slippage occurs at the rolling contact portion, and transmission efficiency and durability may be reduced. There is sex. Similarly, when adjusting the driving force output from the output shaft of the continuously variable transmission, it takes time to output the required driving force, which is also not preferable.

特許第2734583号公報Japanese Patent No. 2734583 特開平5−39850号公報JP-A-5-39850 特開平10−196759号公報Japanese Patent Laid-Open No. 10-196759 特開2003−307266号公報JP 2003-307266 A 特開2000−220719号公報JP 2000-220719 A 特開2004−225888号公報JP 2004-225888 A 特開2004−211836号公報JP 2004-211836 A 特開2004−76940号公報JP 2004-76940 A 特開2002−213591号公報JP 2002-213591 A 青山元男著、「別冊ベストカー 赤バッジシリーズ245/クルマの最新メカがわかる本」、株式会社三雄社/株式会社講談社、平成13年12月20日、p.92−93Motoo Aoyama, "Bessed Best Car Red Badge Series 245 / A book that understands the latest mechanics of cars", Sanyusha Co., Ltd./Kodansha Co., Ltd., December 20, 2001, p. 92-93 田中裕久著、「トロイダルCVT」、株式会社コロナ社、2000年7月13日Hirohisa Tanaka, “Toroidal CVT”, Corona Inc., July 13, 2000

本発明は、上述の様な事情に鑑み、小型で安価に構成でき、しかも、油圧式アクチュエータにピストンを挟んで設けた1対の油圧室同士の間の差圧を迅速且つ正確に取り出せる構造を実現すべく発明したものである。   In view of the circumstances as described above, the present invention has a structure that can be made small and inexpensive, and that can quickly and accurately take out the differential pressure between a pair of hydraulic chambers provided with a piston sandwiched between hydraulic actuators. It was invented to realize.

本発明のトロイダル型無段変速機は、従来から知られているトロイダル型無段変速機と同様に、第一、第二のディスクと、複数の支持部材と、複数のパワーローラと、アクチュエータと、差圧取り出し弁とを備える。
このうちの第一、第二のディスクは、互いに同心に、且つ相対回転自在に配置されている。
又、上記各支持部材は、上記両ディスクの中心軸に対し捩れの位置にある枢軸を中心とする揺動変位自在に支持されたものである。
又、上記各パワーローラは、上記各支持部材に回転自在に支持された状態で、互いに対向する上記第一、第二のディスクの内側面同士の間に挟持されている。
又、上記アクチュエータは、油圧式のもので、ピストンを挟んで設けた第一、第二両油圧室への圧油の給排に基づいてこのピストンを軸方向に変位させ、上記各支持部材を上記枢軸の軸方向に変位させるものである。
又、上記差圧取り出し弁は、何れかのアクチュエータを構成する第一、第二両油圧室同士の間に存在する油圧の差に比例した油圧を取り出す。
特に、本発明のトロイダル型無段変速機に於いては、上記差圧取り出し弁から1本の取り出し油路を通じて、上記第一、第二両油圧室同士の間に存在する油圧の差の絶対値に比例した油圧を取り出す。
The toroidal type continuously variable transmission of the present invention is similar to the conventionally known toroidal type continuously variable transmissions, and includes first and second disks, a plurality of support members, a plurality of power rollers, and an actuator. And a differential pressure take-off valve.
Of these, the first and second disks are arranged concentrically and relatively rotatably.
Each of the supporting members is supported so as to be swingable and displaceable about a pivot that is twisted with respect to the central axis of the two disks.
The power rollers are sandwiched between the inner surfaces of the first and second disks facing each other in a state of being rotatably supported by the support members.
The actuator is a hydraulic actuator, and the piston is displaced in the axial direction based on the supply and discharge of the pressure oil to and from the first and second hydraulic chambers provided across the piston, and the support members are It is displaced in the axial direction of the pivot.
The differential pressure take-off valve takes out a hydraulic pressure proportional to the difference between the hydraulic pressures existing between the first and second hydraulic chambers constituting one of the actuators.
In particular, in the toroidal type continuously variable transmission according to the present invention, the absolute difference in hydraulic pressure existing between the first and second hydraulic chambers through the one take-out oil passage from the differential pressure take-out valve is absolute. Take out the hydraulic pressure proportional to the value.

上述の様に構成する本発明のトロイダル型無段変速機によれば、アクチュエータを構成する第一、第二両油圧室同士の間に存在する油圧の差(差圧)の絶対値に比例する油圧を、差圧取り出し弁から1本の取り出し油路を通じて取り出す為、この差圧の取り出しに関する油圧応答性(応答性、追従性が良い程度)を確保しつつ、通油路の配置の設計や製造作業の容易化、更には、この油路を設けるバルブボディーの小型化、低廉化を図れる。又、この様な1本の取り出し油路を通じて上記差圧を、例えば押圧装置に導入する押圧力を調節する為の押圧力調整弁に導入すれば、この押圧力調整弁のパイロット部並びにスプールを少なくできる。この為、この押圧力調整弁を簡素・小型に構成でき、この面からもこの押圧力調整弁を組み込む上記バルブボディーの小型化、低廉化を図れる。又、油圧センサにより上記差圧を検出する場合にも、上記取り出し油路に1個の油圧センサを設ける事で、この1個の油圧センサによりそのまま差圧を検出できる。この為、前述した様な、第一、第二各油圧室の油圧を1対の油圧センサで検出し、これら各油圧室の油圧から差圧を算出する場合の様に、算出値に誤差が含まれる事も防止できる。更には、上記油圧センサの検出信号をフィルタリングする必要もなく、上記差圧を精度良く迅速に得られる。   According to the toroidal continuously variable transmission of the present invention configured as described above, it is proportional to the absolute value of the difference in hydraulic pressure (differential pressure) existing between the first and second hydraulic chambers constituting the actuator. Since oil pressure is taken out from the differential pressure take-out valve through one take-out oil passage, the oil passage arrangement design and the oil pressure responsiveness (the degree of responsiveness and follow-up is good) for taking out the differential pressure are ensured. The manufacturing operation can be facilitated, and further, the valve body provided with this oil passage can be reduced in size and cost. Further, if the differential pressure is introduced into, for example, a pressure adjusting valve for adjusting the pressure to be introduced into the pressing device through such a single take-out oil passage, the pilot portion and the spool of the pressure adjusting valve are connected. Less. For this reason, the pressing force adjusting valve can be configured in a simple and compact manner, and also from this aspect, the valve body incorporating the pressing force adjusting valve can be reduced in size and cost. Even when the differential pressure is detected by a hydraulic sensor, the differential pressure can be detected as it is by providing a single hydraulic sensor in the take-out oil passage. For this reason, as described above, there is an error in the calculated value as in the case where the hydraulic pressure in each of the first and second hydraulic chambers is detected by a pair of hydraulic pressure sensors and the differential pressure is calculated from the hydraulic pressure in each hydraulic chamber. It can also be prevented from being included. Furthermore, it is not necessary to filter the detection signal of the hydraulic sensor, and the differential pressure can be obtained quickly and accurately.

本発明を実施する場合に好ましくは、請求項2に記載した様に、差圧取り出し弁を、(1又は複数本の)スプールと、源油圧導入ポートと、第一、第二各差圧送り出しポートとを備えたものとする。
このうちのスプールは、アクチュエータを構成する第一、第二両油圧室同士の間に存在する油圧の差(差圧)に応じて変位するものである。又、上記源油圧導入ポートは、油圧源で発生した油圧を導入する為のものである。又、上記第一差圧送り出しポートは、上記第一油圧室の油圧が上記第二油圧室の油圧よりも高い場合に、上記源油圧導入ポートと連通するものである。又、上記第二差圧送り出しポートは、同じく上記第二油圧室の油圧が上記第一油圧室の油圧よりも高い場合に、上記源油圧導入ポートと連通するものである。 そして、上記第一、第二各差圧送り出しポートのうちで、その時点の油圧の差に応じて上記源油圧導入ポートと連通するポートを、取り出し油路に連通自在に接続する。この為に、例えば請求項3に記載した様に、上記第一、第二各差圧送り出しポートと上記取り出し油路とを、ボール式の方向切換弁(例えばシャトル弁)を介して接続する。
この様に構成すれば、上記油圧の差(差圧)に応じて上記源油圧導入ポートと連通する、上記第一、第二各差圧送り出しポートのうちの何れかの送り出しポートと上記取り出し油路とを、上記方向切換弁により、適切に連通させる事ができる。この為、上記第一、第二両油圧室同士の間に存在する油圧の差の絶対値に比例する油圧を、上記差圧取り出し弁を介して応答性良く取り出す事ができ、上記差圧を迅速且つ精度良く得られる。
In carrying out the present invention, preferably, as described in claim 2, the differential pressure take-out valve includes a spool (one or more), a source hydraulic pressure introduction port, and first and second differential pressure feeds. Port.
Of these, the spool is displaced in accordance with a difference in hydraulic pressure (differential pressure) existing between the first and second hydraulic chambers constituting the actuator. The source oil pressure introduction port is for introducing the oil pressure generated by the oil pressure source. The first differential pressure feed port communicates with the source hydraulic pressure introduction port when the hydraulic pressure in the first hydraulic chamber is higher than the hydraulic pressure in the second hydraulic chamber. The second differential pressure delivery port communicates with the source hydraulic pressure introduction port when the hydraulic pressure in the second hydraulic chamber is higher than the hydraulic pressure in the first hydraulic chamber. Of the first and second differential pressure delivery ports, a port communicating with the source hydraulic pressure introduction port is connected to the take-out oil passage so as to be freely communicated according to the difference in hydraulic pressure at that time. For this purpose, for example, as described in claim 3, the first and second differential pressure delivery ports and the take-out oil passage are connected via a ball-type direction switching valve (for example, a shuttle valve).
With this configuration, any one of the first and second differential pressure delivery ports that communicates with the source hydraulic pressure introduction port according to the hydraulic pressure difference (differential pressure) and the take-out oil The road can be properly communicated with the direction switching valve. Therefore, the hydraulic pressure proportional to the absolute value of the hydraulic pressure difference existing between the first and second hydraulic chambers can be taken out with good responsiveness through the differential pressure take-off valve, and the differential pressure can be It can be obtained quickly and accurately.

更に好ましくは、請求項4に記載した様に、油圧センサにより検出される取り出し油路の油圧に応じて、第一、第二の各ディスク同士の変速比と、これら第一、第二の各ディスク同士を互いに近付く方向に押圧する押圧装置の押圧力とのうちの、少なくとも何れかを調節自在とする。
この様に構成すれば、取り出し油路に設けた1個の油圧センサにより差圧を、迅速且つ精度良く検出できる。この為、この差圧に応じて上記変速比や押圧力を調節すれば、常に必要な変速比や押圧力を確実に得る事ができる。
More preferably, as described in claim 4, according to the oil pressure of the take-out oil passage detected by the oil pressure sensor, the transmission ratio between the first and second disks, and the first and second At least one of the pressing force of the pressing device that presses the disks toward each other is adjustable.
If comprised in this way, a differential pressure | voltage can be detected rapidly and accurately with one hydraulic pressure sensor provided in the extraction oil path. For this reason, if the gear ratio and the pressing force are adjusted according to the differential pressure, the necessary gear ratio and the pressing force can always be obtained reliably.

図1〜2は、請求項1〜3に対応する、本発明の実施例1を示している。尚、本実施例の特徴は、アクチュエータ13にピストン35を挟んで設けた1対の(第一、第二両)油圧室36a、36b同士の間に存在する油圧の差(差圧)の絶対値に比例する油圧を、1本の取り出し油路39を通じて取り出す点にある。その他の部分の構造及び作用は、前述の図4〜5に示した従来構造と同様であるから、重複する図示並びに説明を省略若しくは簡略にし、以下、本実施例の特徴部分を中心に説明する。   FIGS. 1-2 has shown Example 1 of this invention corresponding to Claims 1-3. The feature of this embodiment is that an absolute difference in pressure (differential pressure) between a pair of (first and second) hydraulic chambers 36a and 36b provided on the actuator 13 with a piston 35 interposed therebetween is absolute. The oil pressure proportional to the value is taken out through one take-out oil passage 39. Since the structure and operation of the other parts are the same as those of the conventional structure shown in FIGS. 4 to 5 described above, overlapping illustrations and descriptions are omitted or simplified, and the following description will focus on the characteristic parts of this embodiment. .

本実施例の差圧取り出し弁37は、図2に詳示する様に、シリンダ孔41内にスプール42を、軸方向(図1〜2の左右方向)の変位自在に組み込んで成る。又、上記シリンダ孔41の中央部に、源油圧導入ポート43(図2)を設けている。この源油圧導入ポート43は、途中に押圧力調整弁29aを設けた圧力導入路44を介して、油圧源であるオイルポンプ27aの吐出口に通じさせている。従って上記シリンダ孔41の中央部には、上記源油圧導入ポート43を通じて、上記オイルポンプ27aから吐出され、上記押圧力調整弁29aで調整された油圧が導入される。   As shown in detail in FIG. 2, the differential pressure take-out valve 37 of the present embodiment incorporates a spool 42 in a cylinder hole 41 so as to be freely displaceable in the axial direction (left and right direction in FIGS. 1 and 2). Further, a source oil pressure introduction port 43 (FIG. 2) is provided at the center of the cylinder hole 41. The source oil pressure introduction port 43 is connected to a discharge port of an oil pump 27a, which is a hydraulic power source, via a pressure introduction path 44 provided with a pressing force adjusting valve 29a on the way. Accordingly, the oil pressure discharged from the oil pump 27a and adjusted by the pressing force adjusting valve 29a is introduced into the central portion of the cylinder hole 41 through the source oil pressure introduction port 43.

又、上記シリンダ孔41の中央部から少し両端に寄った、上記源油圧導入ポート43を軸方向両側から挟む部分に、第一差圧送り出しポート45と第二差圧送り出しポート46(図2)とを設けている。このうちの第一差圧送り出しポート45は、上記スプール42が図1〜2に示した中立位置から軸方向片側(図1〜2の左側)に変位した状態で、上記源油圧導入ポート43と連通する。これに対して、上記第二差圧送り出しポート46は、上記スプール42が中立位置から軸方向他側(図1〜2の右側)に変位した状態で、上記源油圧導入ポート43と連通する。   Further, a first differential pressure delivery port 45 and a second differential pressure delivery port 46 (FIG. 2) are provided at portions sandwiching the source hydraulic pressure introduction port 43 from both sides in the axial direction and slightly closer to both ends from the center of the cylinder hole 41. And are provided. Of these, the first differential pressure delivery port 45 is connected to the source oil pressure introduction port 43 in a state where the spool 42 is displaced from the neutral position shown in FIGS. 1-2 to one side in the axial direction (left side in FIGS. 1-2). Communicate. On the other hand, the second differential pressure delivery port 46 communicates with the source hydraulic pressure introduction port 43 in a state where the spool 42 is displaced from the neutral position to the other axial side (the right side in FIGS. 1 and 2).

又、上記シリンダ孔41の中間部で、上記第一、第二両差圧送り出しポート45、46を軸方向両側から挟む部分に、ドレンポート47a、47b(図2)を設けている。これら両ドレンポート47a、47bは、それぞれオイルパン等の油溜28に通じている。従って、上記ドレンポート47a、47b部分には油圧は存在しない(ゲージ圧=0)。又、上記シリンダ孔41の中間部で更に両端に寄った、上記両ドレンポート47a、47bを軸方向両側から挟む部分に、第一油圧導入ポート48と第二油圧導入ポート49とを設けている。このうちの第一油圧導入ポート48には、第二圧力導入路50aを通じ、支持部材であるトラニオンを変位させる為の前記アクチュエータ13の一方の油圧室36a内の油圧を導入している。これに対して上記第二油圧導入ポート49には、第二の圧力導入路50bを通じ、上記アクチュエータ13の他方の油圧室36b内の油圧を導入している。   Further, drain ports 47a and 47b (FIG. 2) are provided in the intermediate portion of the cylinder hole 41 at the portion sandwiching the first and second differential pressure delivery ports 45 and 46 from both sides in the axial direction. Both the drain ports 47a and 47b communicate with an oil reservoir 28 such as an oil pan. Accordingly, there is no hydraulic pressure in the drain ports 47a and 47b (gauge pressure = 0). Further, a first hydraulic pressure introduction port 48 and a second hydraulic pressure introduction port 49 are provided in a portion sandwiching both the drain ports 47a and 47b from both sides in the axial direction, which are closer to both ends in the middle portion of the cylinder hole 41. . The hydraulic pressure in one hydraulic chamber 36a of the actuator 13 for displacing the trunnion as a support member is introduced into the first hydraulic pressure introduction port 48 through the second pressure introduction passage 50a. In contrast, the hydraulic pressure in the other hydraulic chamber 36b of the actuator 13 is introduced into the second hydraulic pressure introduction port 49 through the second pressure introduction path 50b.

更に、上記シリンダ孔41の軸方向両端部近傍に、第一反力ポート51と第二反力ポート52(図2)とを設けている。このうちの第一反力ポート51は、上記シリンダ孔41の一端部(図1〜2の左端部)に設けた第一反力室53に通じている。この第一反力室53に油圧が導入されると、上記スプール42は、この油圧とこの第一反力室53の断面積との積に見合う、図1〜2の右向きの力を受ける。又、上記第一反力ポート51と前記第一差圧送り出しポート45とを第一油圧導入路54により連通させて、この第一差圧送り出しポート45部分の油圧を、上記第一反力室53に導入する様にしている。   Further, a first reaction force port 51 and a second reaction force port 52 (FIG. 2) are provided in the vicinity of both end portions in the axial direction of the cylinder hole 41. Of these, the first reaction force port 51 communicates with a first reaction force chamber 53 provided at one end (the left end in FIGS. 1 and 2) of the cylinder hole 41. When the hydraulic pressure is introduced into the first reaction force chamber 53, the spool 42 receives a rightward force in FIGS. 1 and 2 corresponding to the product of the hydraulic pressure and the cross-sectional area of the first reaction force chamber 53. Further, the first reaction force port 51 and the first differential pressure delivery port 45 are communicated with each other by a first hydraulic pressure introduction passage 54, and the hydraulic pressure at the first differential pressure delivery port 45 is supplied to the first reaction force chamber. 53.

又、第二反力ポート52は、上記シリンダ孔41の他端部(図1〜2の右端部)に設けた第二反力室55に通じている。この第二反力室55に油圧が導入されると、上記スプール42は、この油圧とこの第二反力室55の断面積との積に見合う、図1〜2の左向きの力を受ける。又、上記第二反力ポート52と前記第二差圧送り出しポート46とを第二油圧導入路56により連通させて、この第二差圧送り出しポート46部分の油圧を、上記第二反力室55に導入する様にしている。又、上記スプール42は、上記第一、第二両反力室53、55内に設置された1対のリターンスプリング57、57により、中立位置に向け弾性的に押圧されている。従って、上記スプール42の軸方向位置は、前記第一、第二両油圧導入ポート48、49部分の油圧が互いに等しい限り、図1、2に示した中立位置となる。   The second reaction force port 52 communicates with a second reaction force chamber 55 provided at the other end of the cylinder hole 41 (the right end in FIGS. 1 and 2). When the hydraulic pressure is introduced into the second reaction force chamber 55, the spool 42 receives a leftward force in FIGS. 1 and 2 corresponding to the product of the hydraulic pressure and the cross-sectional area of the second reaction force chamber 55. Further, the second reaction force port 52 and the second differential pressure delivery port 46 are communicated with each other by a second hydraulic pressure introduction passage 56, and the hydraulic pressure at the second differential pressure delivery port 46 is supplied to the second reaction force chamber. 55 is introduced. The spool 42 is elastically pressed toward the neutral position by a pair of return springs 57, 57 installed in the first and second reaction force chambers 53, 55. Accordingly, the axial position of the spool 42 is the neutral position shown in FIGS. 1 and 2 as long as the hydraulic pressures of the first and second hydraulic pressure introduction ports 48 and 49 are equal to each other.

上述の様に構成する差圧取り出し弁37は、トロイダル型無段変速機4を構成する入力側、出力側両ディスク10、11(図4参照)同士の間でトルク伝達が行なわれず、前記両油圧室36a、36b内の油圧が互いに等しいと、上記スプール42が上記リターンスプリング57、57同士の釣り合いにより、図1〜2に示す様な中立位置に存在する。この状態では、上記第一、第二両差圧送り出しポート45、46と上記源油圧導入ポート43とが遮断される。この為、この源油圧導入ポート43部分の油圧が上記両差圧送り出しポート45、46に送り込まれる事はない。   The differential pressure take-out valve 37 configured as described above does not transmit torque between the input side and output side disks 10 and 11 (see FIG. 4) constituting the toroidal-type continuously variable transmission 4, and the both When the hydraulic pressures in the hydraulic chambers 36a and 36b are equal to each other, the spool 42 is in a neutral position as shown in FIGS. 1 and 2 due to the balance between the return springs 57 and 57. In this state, the first and second differential pressure feed ports 45 and 46 and the source hydraulic pressure introduction port 43 are shut off. For this reason, the oil pressure at the source oil pressure introduction port 43 is not sent to the differential pressure feed ports 45 and 46.

これに対して、上記両ディスク10、11同士の間でトルク伝達が行なわれ、上記両油圧室36a、36b内の油圧に差が生じた場合には、上記第一、第二両油圧導入ポート48、49部分に異なる油圧が導入される。そして、これら両油圧導入ポート48、49部分に導入される油圧の差に基づき上記スプール42が、上記リターンスプリング57、57の弾力に抗して軸方向に移動する。例えば、上記各油圧室36a、36bのうちの一方の油圧室(第一油圧室)36aの油圧が同じく他方の油圧室(第二油圧室)36bの油圧よりも高くなった場合には、上記スプール42が図の左方に変位し、上記源油圧導入ポート43と第一差圧送り出しポート45とが連通する。そして、この第一差圧送り出しポート45部分で油圧が立ち上がる。この際、上記スプール42は、各部の油圧と受圧面積との積同士の釣り合いにより定まる軸方向位置に移動するので、上記第一差圧送り出しポート45部分の油圧が、上記両油圧室36a、36b内の油圧の差に比例した値となる。   On the other hand, when torque is transmitted between the disks 10 and 11, and there is a difference in the hydraulic pressure in the hydraulic chambers 36a and 36b, the first and second hydraulic pressure introduction ports are used. Different hydraulic pressures are introduced into the 48 and 49 portions. Then, the spool 42 moves in the axial direction against the elasticity of the return springs 57 and 57 based on the difference between the hydraulic pressures introduced into the hydraulic pressure introduction ports 48 and 49. For example, when the hydraulic pressure in one hydraulic chamber (first hydraulic chamber) 36a among the hydraulic chambers 36a and 36b is higher than the hydraulic pressure in the other hydraulic chamber (second hydraulic chamber) 36b, The spool 42 is displaced to the left in the figure, and the source hydraulic pressure introduction port 43 and the first differential pressure feed port 45 communicate with each other. The hydraulic pressure rises at the first differential pressure delivery port 45 portion. At this time, the spool 42 moves to the axial position determined by the balance of the product of the oil pressure and the pressure receiving area of each part, so that the oil pressure in the first differential pressure delivery port 45 portion is the both hydraulic chambers 36a, 36b. The value is proportional to the hydraulic pressure difference.

一方、上記各油圧室36a、36bのうちの他方の油圧室(第二油圧室)36bの油圧が同じく一方の油圧室(第一油圧室)36aの油圧よりも高くなった場合には、上記スプール42が図の右方に変位し、上記源油圧導入ポート43と第二差圧送り出しポート46とが連通する。そして、この第二差圧送り出しポート46部分で油圧が立ち上がる。この場合も、上記スプール42は、各部の油圧と受圧面積との積同士の釣り合いにより定まる軸方向位置に移動するので、上記第二差圧送り出しポート46部分の油圧が、上記両油圧室36a、36b内の油圧の差に比例した値となる。   On the other hand, when the hydraulic pressure in the other hydraulic chamber (second hydraulic chamber) 36b among the hydraulic chambers 36a and 36b is higher than the hydraulic pressure in the same hydraulic chamber (first hydraulic chamber) 36a, The spool 42 is displaced to the right in the figure, and the source hydraulic pressure introduction port 43 and the second differential pressure feed port 46 communicate with each other. The hydraulic pressure rises at the second differential pressure feed port 46 portion. Also in this case, the spool 42 moves to the axial position determined by the balance between the product of the oil pressure and the pressure receiving area of each part, so that the oil pressure in the second differential pressure delivery port 46 portion is the both hydraulic chambers 36a, The value is proportional to the hydraulic pressure difference in 36b.

更に本実施例の場合は、上述の様に差圧取り出し弁37の第一、第二各差圧送り出しポート45、46で立ち上がった油圧{アクチュエータ13を構成する1対の油圧室36a、36b同士の間に存在する油圧の差(差圧)の絶対値に比例した油圧}を、1本の取り出し油路39を通じて取り出し自在としている。この為に、上記第一、第二各差圧送り出しポート45、46のうちで、その時点の差圧に応じて上記源油圧導入ポート43と連通する差圧送り出しポート45(46)が上記取り出し油路39と連通する様に、これら第一、第二各差圧送り出しポート45、46と取り出し油路39とを、ボール式の方向切換弁40を介して接続している。即ち、上記第一差圧送り出しポート45に接続する第一油圧導入路54と上記第二差圧送り出しポート46に接続する第二油圧導入路56とを、上記方向切換弁40に設けた1対の入力ポートに接続している。そして、この方向切換弁40の切り換えに応じて、上記第一、第二両油圧導入路54、56のうちで上記源油圧導入ポート43(に接続する圧力導入路44)と連通する油圧導入路54(56)を、上記方向切換弁40に1個のみ設けた出力ポートに接続した、上記取り出し油路39に連通さる。この様な方向切換弁40は、シリンダ孔59内にチェックボール58を嵌装して成る。   Further, in the case of this embodiment, as described above, the hydraulic pressure rising at the first and second differential pressure delivery ports 45 and 46 of the differential pressure relief valve 37 {a pair of hydraulic chambers 36a and 36b constituting the actuator 13 The hydraulic pressure proportional to the absolute value of the hydraulic pressure difference (differential pressure) existing between the two oil pressures is freely taken out through one take-out oil passage 39. For this purpose, of the first and second differential pressure delivery ports 45, 46, the differential pressure delivery port 45 (46) communicating with the source hydraulic pressure introduction port 43 in accordance with the differential pressure at that time is removed. The first and second differential pressure feed ports 45 and 46 and the take-out oil passage 39 are connected via a ball-type direction switching valve 40 so as to communicate with the oil passage 39. That is, a pair of the first hydraulic pressure introduction path 54 connected to the first differential pressure delivery port 45 and the second hydraulic pressure introduction path 56 connected to the second differential pressure delivery port 46 are provided in the direction switching valve 40. Connected to the input port. And, according to the switching of the direction switching valve 40, the hydraulic pressure introduction path communicating with the source hydraulic pressure introduction port 43 (the pressure introduction path 44 connected to) of the first and second hydraulic pressure introduction paths 54, 56. 54 (56) is communicated with the take-out oil passage 39 connected to an output port provided only for the direction switching valve 40. Such a direction switching valve 40 is formed by fitting a check ball 58 in a cylinder hole 59.

例えば、(スプール42が図2の左方に変位し)上記第一油圧導入路54に上記源油圧導入ポート43の油圧が導入されると、この油圧に基づき上記方向切換弁40のチェックボール58が、上記シリンダ孔59内で図2の右方に変位する。この結果、このチェックボール58により上記第二油圧導入路56が塞がれると共に、上記第一油圧導入路54が上記取り出し油路39と連通し、この取り出し油路39に上記差圧(の絶対値)に比例した油圧が導入される。これとは逆に、(スプール42が図2の右方に変位し)上記第二油圧導入路56に上記源油圧導入ポート43の油圧が導入されると、この油圧に基づき上記方向切換弁40のチェックボール58が、上記シリンダ孔59内で図2の左方に変位する。この結果、このチェックボール58により上記第一油圧導入路54が塞がれると共に、上記第二油圧導入路56が上記取り出し油路39と連通し、この取り出し油路39に差圧(の絶対値)に比例した油圧が導入される。   For example, when the oil pressure of the source oil pressure introduction port 43 is introduced into the first oil pressure introduction path 54 (the spool 42 is displaced to the left in FIG. 2), the check ball 58 of the direction switching valve 40 is based on the oil pressure. However, it is displaced to the right in FIG. As a result, the second hydraulic pressure introduction path 56 is blocked by the check ball 58, the first hydraulic pressure introduction path 54 communicates with the take-out oil path 39, and the differential pressure (absolute Value) is introduced. On the contrary, when the oil pressure of the source oil pressure introduction port 43 is introduced into the second oil pressure introduction path 56 (the spool 42 is displaced to the right in FIG. 2), the direction switching valve 40 is based on this oil pressure. The check ball 58 is displaced to the left in FIG. As a result, the first hydraulic pressure introduction path 54 is blocked by the check ball 58, and the second hydraulic pressure introduction path 56 communicates with the take-out oil path 39. ) Is introduced in proportion to the hydraulic pressure.

一方、(スプール42が中立位置となり)上記第一、第二両油圧導入路54、56に油圧が導入されない(差圧が0の)場合は、上記チェックボール58が中立位置となり、上記第一、第二各圧力導入路54、56と上記取り出し油路39とが遮断される。従って、本実施例の場合には、前記油圧室36a、36b同士の間に存在する差圧に基づき、上記第一、第二両油圧導入路54、56のうちの何れかの油圧導入路54(56)に、この差圧に比例する油圧が導入されれば、何れの油圧導入路54(56)に油圧が導入されているかに拘らず、この油圧が上記取り出し油路39に導入される。   On the other hand, when the hydraulic pressure is not introduced into the first and second hydraulic pressure introduction paths 54 and 56 (the differential pressure is 0) (the spool 42 is in the neutral position), the check ball 58 is in the neutral position and the first The second pressure introducing passages 54 and 56 and the take-out oil passage 39 are blocked. Therefore, in the case of the present embodiment, one of the first and second hydraulic pressure introduction paths 54, 56 is based on the differential pressure existing between the hydraulic chambers 36a, 36b. If an oil pressure proportional to the differential pressure is introduced to (56), this oil pressure is introduced into the take-out oil passage 39 regardless of which oil pressure introduction path 54 (56) is introduced. .

更に、本実施例の場合は、この様な(1本の)取り出し油路39を通じて、押圧装置14に送り込む油圧を調節する為の押圧力調整弁29aに、上記差圧(の絶対値)に比例する油圧を導入している。前述の図5に示した従来構造の押圧力調整弁29が、3個の(第一〜第三の)パイロット部32〜34を備えていたのに対して、本実施例の押圧力調整弁29aの場合は、2個の(第一、第二の)パイロット部32a、33aを備える。そして、このうちの第一のパイロット部32aに、上記取り出し油路39を通じて、上記差圧(の絶対値)に比例する油圧を導入する事により、前記入力側ディスク10と前記出力側ディスク11との間で伝達される力の大きさに応じて、上記押圧力調整弁29aの開弁圧を調節する。具体的には、上記取り出し油路39に導入される油圧が大きくなる程、上記押圧力調整弁29aの開弁圧が高くなり、上記押圧装置14に導入される油圧も高くなる。一方、上記第二のパイロット部33aには、トロイダル型無段変速機4の変速比、このトロイダル型無段変速機4の内部に存在する潤滑油(トラクションオイル)の温度、駆動源であるエンジン1の回転速度等、上記伝達される力以外の運転条件に応じて上記押圧力調整弁29aの開弁圧を調節(減圧)すべく、制御器16(図4参照)からの指令により制御されるライン圧制御用電磁開閉弁18の開閉(デューティー比制御)に基づく圧油を導入している。そして、この様に第一、第二のパイロット部32a、33aに導入する油圧を適切に調節する事により、上記押圧装置14が発生する押圧力を、上記トロイダル型無段変速機4の運転状況に応じ、適正に規制している。   Further, in the case of the present embodiment, the pressure difference adjusting valve 29a for adjusting the hydraulic pressure sent to the pressing device 14 through the (one) take-out oil passage 39 is set to the above-described differential pressure (absolute value). Proportional hydraulic pressure is introduced. The pressing force adjusting valve 29 having the conventional structure shown in FIG. 5 described above has three (first to third) pilot portions 32 to 34, whereas the pressing force adjusting valve of this embodiment is used. In the case of 29a, two (first and second) pilot sections 32a and 33a are provided. Then, by introducing a hydraulic pressure proportional to the differential pressure (absolute value) through the take-out oil passage 39 into the first pilot portion 32a, the input side disk 10 and the output side disk 11 The valve opening pressure of the pressing force adjusting valve 29a is adjusted according to the magnitude of the force transmitted between them. Specifically, the higher the hydraulic pressure introduced into the take-out oil passage 39, the higher the valve opening pressure of the pressing force adjusting valve 29a, and the higher the hydraulic pressure introduced into the pressing device 14. On the other hand, the second pilot portion 33a includes a gear ratio of the toroidal-type continuously variable transmission 4, the temperature of lubricating oil (traction oil) existing in the toroidal-type continuously variable transmission 4, and an engine serving as a drive source. 1 is controlled by a command from the controller 16 (see FIG. 4) in order to adjust (depressurize) the valve opening pressure of the pressing force adjusting valve 29a in accordance with operating conditions other than the transmitted force such as the rotational speed of 1. The pressure oil based on the opening / closing (duty ratio control) of the line pressure control electromagnetic switching valve 18 is introduced. Then, by appropriately adjusting the hydraulic pressure introduced into the first and second pilot portions 32a and 33a in this way, the pressing force generated by the pressing device 14 is changed to the operating state of the toroidal continuously variable transmission 4. Appropriate regulation.

上述した様に、本実施例の場合は、アクチュエータ13を構成する1対の油圧室36a、36b同士の間に存在する油圧の差(差圧)の絶対値に比例する油圧を、差圧取り出し弁37から1本の取り出し油路39を通じて取り出している。この為、差圧の取り出しに関する油圧応答性を確保しつつ、上記取り出し油路39の配置の設計や製造作業の容易化、更には、この取り出し油路39を設けるバルブボディーの小型化、低廉化を図れる。又、この様な1本の取り出し油路39を通じて上記差圧を押圧力調整弁29aに導入している為、この押圧力調整弁29aのパイロット部32a、33aを少なくできる。この為、この押圧力調整弁29aを簡素・小型に構成でき、この面からもこの押圧力調整弁29aを組み込む上記バルブボディーの小型化、低廉化を図れる。尚、上記差圧取り出し弁37は、本実施例で示した構造に限定するものではない。油圧式で1乃至複数のスプールを有し、上記アクチュエータ13を構成する1対の油圧室36a、36b同士の間に存在する油圧の差(差圧)の絶対値に比例する油圧を、1の取り出し油路(取り出し口)を通じて取り出せるものであれば、何れも採用可能である。   As described above, in this embodiment, the hydraulic pressure proportional to the absolute value of the hydraulic pressure difference (differential pressure) existing between the pair of hydraulic chambers 36a and 36b constituting the actuator 13 is extracted. It is taken out from the valve 37 through one take-out oil passage 39. For this reason, while ensuring the hydraulic responsiveness regarding the extraction of the differential pressure, the arrangement design and manufacturing work of the extraction oil passage 39 are facilitated, and further, the valve body provided with the extraction oil passage 39 is reduced in size and cost. Can be planned. Further, since the differential pressure is introduced into the pressing force adjusting valve 29a through such one take-out oil passage 39, the pilot portions 32a and 33a of the pressing force adjusting valve 29a can be reduced. For this reason, the pressing force adjusting valve 29a can be configured in a simple and compact manner, and also from this aspect, the valve body incorporating the pressing force adjusting valve 29a can be reduced in size and cost. The differential pressure take-out valve 37 is not limited to the structure shown in this embodiment. The hydraulic pressure is one or more spools, and the hydraulic pressure proportional to the absolute value of the hydraulic pressure difference (differential pressure) existing between the pair of hydraulic chambers 36a, 36b constituting the actuator 13 is 1 Any one can be adopted as long as it can be taken out through a take-out oil passage (take-out port).

又、本実施例の場合は、車両の発進時の特性(ギヤードニュートラル状態の特性)を向上させるべく、トロイダル型無段変速機4の変速比を調節する為の変速比制御ユニット15の構造も工夫している。即ち、前述の図4〜5に示した従来構造の場合は、車両の発進時にトロイダル型無段変速機4の変速比を、ステッピングモータ17の他に差圧シリンダ23により調節(補正)する事で、このトロイダル型無段変速機4を通過するトルク、延いては出力軸9から出力される駆動力(クリープ力)を制御(トルク制御)していた。即ち、変速比制御弁22のスリーブ60を、ステッピングモータ13により軸方向に変位させる他、上記差圧シリンダ23によっても微調節する様にしていた。これに対して本実施例の場合には、運転席のシフトレバーの操作に基づく手動油圧切換弁31の切り換えに応じて油圧式の第二のアクチュエータ61を駆動し、上記変速比制御弁22のスリーブ60を変位させる事により、車両の発進時に出力軸9(図4参照)から所定の駆動力を出力できる様にしている。   In the case of the present embodiment, the structure of the transmission ratio control unit 15 for adjusting the transmission ratio of the toroidal type continuously variable transmission 4 is also improved in order to improve the characteristics at the start of the vehicle (characteristic in the geared neutral state). Devised. That is, in the case of the conventional structure shown in FIGS. 4 to 5 described above, the gear ratio of the toroidal continuously variable transmission 4 is adjusted (corrected) by the differential pressure cylinder 23 in addition to the stepping motor 17 when the vehicle starts. Thus, the torque passing through the toroidal-type continuously variable transmission 4 and thus the driving force (creep force) output from the output shaft 9 is controlled (torque control). That is, the sleeve 60 of the transmission ratio control valve 22 is finely adjusted by the differential pressure cylinder 23 in addition to being displaced in the axial direction by the stepping motor 13. On the other hand, in the case of the present embodiment, the hydraulic second actuator 61 is driven in accordance with the switching of the manual hydraulic pressure switching valve 31 based on the operation of the shift lever at the driver's seat, and the speed ratio control valve 22 is controlled. By displacing the sleeve 60, a predetermined driving force can be output from the output shaft 9 (see FIG. 4) when the vehicle starts.

即ち、上記シフトレバーがパーキング位置(Pレンジ)、ニュートラル位置(Nレンジ)、前進位置(D、Lレンジ)に操作された場合に、上記手動油圧切換弁31の切り換えに基づき、上記第二のアクチュエータ61を構成する油圧室62が油溜28に通じ、この油圧室62内の圧油が排出される。この結果、上記第二のアクチュエータ61を構成するスプール63が、ばね64の弾力に基づき、軸方向他方(図1の左方)に変位する。そして、このスプール63の変位に基づき、変速比制御弁22のスリーブ60が軸方向他方に変位し、トロイダル型無段変速機4(図4参照)の変速比が所定量補正される。一方、上記シフトレバーが後退位置(Rレンジ)に操作された場合には、上記手動油圧切換弁31の切り換えに基づき、上記油圧室61に圧油が供給される。この結果、上記第二のアクチュエータ61のスプール63は、上記油圧室62内への圧油の供給に基づき、軸方向一方(図1の右方)に、(ばね64の弾力に抗して)変位する。そして、このスプール63の変位に基づき、上記変速比制御弁22のスリーブ60を軸方向一方に変位させ、上記トロイダル型無段変速機4の変速比を所定量補正する。   That is, when the shift lever is operated to a parking position (P range), a neutral position (N range), or a forward position (D, L range), the second hydraulic pressure switching valve 31 is changed based on the switching of the manual hydraulic pressure switching valve 31. The hydraulic chamber 62 constituting the actuator 61 communicates with the oil reservoir 28, and the pressure oil in the hydraulic chamber 62 is discharged. As a result, the spool 63 constituting the second actuator 61 is displaced in the other axial direction (leftward in FIG. 1) based on the elasticity of the spring 64. Based on the displacement of the spool 63, the sleeve 60 of the gear ratio control valve 22 is displaced in the other axial direction, and the gear ratio of the toroidal continuously variable transmission 4 (see FIG. 4) is corrected by a predetermined amount. On the other hand, when the shift lever is operated to the reverse position (R range), pressure oil is supplied to the hydraulic chamber 61 based on switching of the manual hydraulic pressure switching valve 31. As a result, the spool 63 of the second actuator 61 is moved in the axial direction (to the right in FIG. 1) based on the supply of pressure oil into the hydraulic chamber 62 (against the elasticity of the spring 64). Displace. Based on the displacement of the spool 63, the sleeve 60 of the transmission ratio control valve 22 is displaced in one axial direction, and the transmission ratio of the toroidal continuously variable transmission 4 is corrected by a predetermined amount.

この様に第二のアクチュエータ61のスプール63の変位に基づきトロイダル型無段変速機4の変速比が補正される所定量は、例えばGN値(無段変速装置の出力軸9にブレーキ等に基づき大きな負荷を加えない状態でも、入力軸3を回転させたまま出力軸9を停止させる状態を実現できる値)から、車両を進行方向に発進並びに低速で走行させられる程度の駆動力(クリープ力)を出力軸9から出力させられる値に変化させる量に相当する量としている。具体的には、上記シフトレバーがP、N、D、Lレンジに操作され、上記スプール63が軸方向他方に変位した場合に、上記出力軸9から前進方向に発進並びに低速で走行させられる程度の駆動力を出力できる様に上記変速比を補正する。又、同じくRレンジに操作され、スプール63が軸方向一方に変位した場合に、上記出力軸9から後退方向に発進並びに低速で走行させられる程度の駆動力を出力できる様に上記変速比を補正する。そして、この様な変速比の補正を、応答性の優れた油圧式の第二のアクチュエータ61で行なう事で、上記出力軸9から必要な駆動力を迅速且つ確実に出力させられる様にしている。又、この様な第二のアクチュエータ61により車両の発進時の変速比制御を行なう為、前述した図5の従来構造で組み込んでいた、電磁弁19、補正用制御弁24a、24b、前後進切換弁65(図5参照)等を省略でき、この様な部材を組み込むバルブボディーの更なる小型化や装置の簡素化、低廉化を図れる。尚、この様な車両の発進時に変速比を補正する為の構造、機構等に就いては、特願2005−143583号に詳しく説明されており、本発明の要旨とは関係しない為、詳しい説明は省略する。   Thus, the predetermined amount by which the gear ratio of the toroidal type continuously variable transmission 4 is corrected based on the displacement of the spool 63 of the second actuator 61 is, for example, a GN value (based on a brake or the like on the output shaft 9 of the continuously variable transmission). Even when a large load is not applied, the driving force (creep force) is such that the vehicle can be started in the traveling direction and run at a low speed from a value that can realize a state in which the output shaft 9 is stopped while the input shaft 3 is rotated. Is an amount corresponding to an amount to be changed to a value output from the output shaft 9. Specifically, when the shift lever is operated in the P, N, D, and L ranges and the spool 63 is displaced in the other axial direction, the output shaft 9 is started in the forward direction and traveled at a low speed. The gear ratio is corrected so that the driving force can be output. Similarly, when the R range is operated and the spool 63 is displaced in one axial direction, the gear ratio is corrected so that a driving force can be output from the output shaft 9 so as to start in the backward direction and travel at a low speed. To do. Then, by performing such a gear ratio correction by the hydraulic second actuator 61 having excellent responsiveness, the required driving force can be output quickly and reliably from the output shaft 9. . In addition, in order to control the speed ratio at the start of the vehicle by the second actuator 61, the electromagnetic valve 19, the correction control valves 24a and 24b, the forward / reverse switching, which are incorporated in the conventional structure shown in FIG. The valve 65 (see FIG. 5) and the like can be omitted, and the valve body incorporating such a member can be further downsized, the apparatus can be simplified, and the cost can be reduced. The structure and mechanism for correcting the gear ratio at the start of such a vehicle are described in detail in Japanese Patent Application No. 2005-143583, and are not related to the gist of the present invention. Is omitted.

図3は、請求項1〜4に対応する、本発明の実施例2を示している。上述した実施例1の場合が、アクチュエータ13を構成する1対の油圧室36a、36b同士の間に存在する油圧の差(差圧)の絶対値に比例した油圧を、取り出し油路39を通じて直接押圧力調整弁29aの第一のパイロット室32aに導入していたのに対し、本実施例の場合は、取り出し油路39aに油圧センサ66を設けている。そして、この油圧センサ66により検出される差圧(の絶対値に比例する油圧)に基づいて、押圧力調整弁29bの開弁圧を調節自在としている。即ち、上記油圧センサ66の検出信号を制御器16に入力すると共に、この制御器16により、上記差圧(の絶対値に比例する油圧)、トロイダル型無段変速機4の変速比、このトロイダル型無段変速機4の内部に存在する潤滑油(トラクションオイル)の温度、駆動源であるエンジン1(図4参照)の回転速度等に基づいて、押圧装置14が発生すべき最適な押圧力を算出する。   FIG. 3 shows a second embodiment of the present invention corresponding to claims 1 to 4. In the case of the first embodiment described above, the hydraulic pressure proportional to the absolute value of the hydraulic pressure difference (differential pressure) existing between the pair of hydraulic chambers 36 a, 36 b constituting the actuator 13 is directly taken out through the oil passage 39. In contrast to the introduction into the first pilot chamber 32a of the pressing force adjustment valve 29a, in the present embodiment, a hydraulic sensor 66 is provided in the take-out oil passage 39a. Based on the differential pressure detected by the hydraulic sensor 66 (hydraulic pressure proportional to the absolute value thereof), the valve opening pressure of the pressing force adjusting valve 29b is adjustable. That is, the detection signal of the hydraulic sensor 66 is input to the controller 16, and the controller 16 controls the differential pressure (hydraulic pressure proportional to the absolute value thereof), the gear ratio of the toroidal continuously variable transmission 4, the toroidal The optimum pressing force to be generated by the pressing device 14 based on the temperature of the lubricating oil (traction oil) existing inside the continuously variable transmission 4 and the rotational speed of the engine 1 (see FIG. 4) as a driving source. Is calculated.

そして、この様に算出された最適な押圧力を上記押圧装置14で発生させるべく、上記押圧力調整弁29bの開弁圧を調節する為のライン圧制御用電磁開閉弁18の開閉状態を、上記制御器16により制御(デューティー比制御)する。そして、この様なライン圧制御用電磁開閉弁18の開閉に基づき上記押圧力調整弁29bの第一パイロット部32bに導入する油圧を適切に調節する事で、上記押圧装置14が発生する押圧力を、上記トロイダル型無段変速機4の運転状況に応じて適正に規制している。尚、本実施例の場合は、上記ライン圧制御用電磁開閉弁18をノーマルクローズ型のものとしているが、ノーマルオープン型のものとする事もできる。但し、ノーマルクローズ型のライン圧制御用電磁開閉弁18を使用する場合には、何らかの原因で電気が送られなくなった(故障した)場合でも、上記押圧力調整弁29bの第一のパイロット部32bを油溜28に連通させる事ができる。この結果、上記押圧力調整弁29bの開弁圧を(最大ではあるが)確保でき、最低限の走行を継続できる。   Then, in order to generate the optimal pressing force calculated in this way by the pressing device 14, the open / close state of the line pressure control electromagnetic switching valve 18 for adjusting the valve opening pressure of the pressing force adjusting valve 29b, Control (duty ratio control) is performed by the controller 16. The pressing force generated by the pressing device 14 is adjusted by appropriately adjusting the hydraulic pressure introduced into the first pilot portion 32b of the pressing force adjusting valve 29b based on the opening / closing of the electromagnetic pressure control valve 18 for controlling the line pressure. Are appropriately regulated according to the operation status of the toroidal-type continuously variable transmission 4. In the present embodiment, the line pressure control electromagnetic on-off valve 18 is a normally closed type, but may be a normally open type. However, when the normally closed line pressure control electromagnetic on-off valve 18 is used, even if electricity is not sent for some reason (failed), the first pilot portion 32b of the pressing force adjusting valve 29b is used. Can be communicated with the oil reservoir 28. As a result, the valve opening pressure of the pressing force adjusting valve 29b can be secured (although it is maximum), and the minimum travel can be continued.

この様に構成する本実施例の場合は、取り出し油路39aに1個の油圧センサ66を設け、この1個の油圧センサ66により直接差圧を検出している。この為、上記各油圧室36a、36bの油圧を1対の油圧センサで検出し、これら各油圧室36a、36bの油圧から差圧を算出する場合の様な、算出値に誤差が含まれる事を防止できる。更には、上記油圧センサ66の検出信号をフィルタリングする必要もなく、上記差圧を精度良く迅速に得られる。又、上記押圧力調整弁29bに上記取り出し油路39aを通じて差圧を直接導入していない為、前述した実施例1に比べ、更なる油路の省略を図れると共に、上記押圧力調整弁29bのパイロット部並びにスプールの低減も図れ、この押圧力調整弁29bの小型・簡素化、延いては、バルブボディーの小型化、低廉化を図れる。
その他の構成及び作用は、前述した実施例1と同様であるから、重複する説明は省略する。
In the case of the present embodiment configured as described above, one hydraulic pressure sensor 66 is provided in the take-out oil passage 39a, and the differential pressure is directly detected by the single hydraulic pressure sensor 66. For this reason, there is an error in the calculated value as in the case where the hydraulic pressure in each of the hydraulic chambers 36a and 36b is detected by a pair of hydraulic pressure sensors and the differential pressure is calculated from the hydraulic pressure in each of the hydraulic chambers 36a and 36b. Can be prevented. Further, it is not necessary to filter the detection signal of the hydraulic sensor 66, and the differential pressure can be obtained quickly and accurately. Further, since the differential pressure is not directly introduced into the pressing force adjusting valve 29b through the take-out oil passage 39a, the oil passage can be further omitted as compared with the first embodiment, and the pressing force adjusting valve 29b can be omitted. The pilot portion and the spool can be reduced, and the pressing force adjusting valve 29b can be reduced in size and simplified. As a result, the valve body can be reduced in size and cost.
Other configurations and operations are the same as those of the first embodiment described above, and thus redundant description is omitted.

尚、本実施例は、油圧センサ66が検出する差圧(に比例する油圧)に基づいて押圧装置14の押圧力(押圧力調整弁29bの開弁圧)を調節する場合を説明したが、上記油圧センサ66が検出する差圧(に比例する油圧)に基づいて、トロイダル型無段変速機4の変速比の調節をする事もできる。この様な場合にも、迅速且つ正確に検出される上記差圧(に比例する油圧)に基づいて変速比を調節できる為、例えば車両の発進時等に行う変速比制御(所謂GN制御)等を適正に行なえる。   In addition, although the present Example demonstrated the case where the pressing force (opening pressure of the pressing force adjustment valve 29b) of the press apparatus 14 was adjusted based on the differential pressure (hydraulic pressure proportional to) which the hydraulic pressure sensor 66 detected, The transmission ratio of the toroidal continuously variable transmission 4 can be adjusted based on the differential pressure detected by the hydraulic sensor 66 (the hydraulic pressure proportional to the differential pressure). Even in such a case, the gear ratio can be adjusted on the basis of the differential pressure (proportional to the pressure) detected quickly and accurately. For example, gear ratio control (so-called GN control) performed at the start of the vehicle, etc. Can be done properly.

又、前述した実施例1の場合は、低速用、高速用各クラッチ7、8の断接を、シフト用電磁弁20によりシフト用切換弁67を介して、高速クラッチ用、低速クラッチ用各切換弁25、26(図1参照)の切り換え状態を切り換える事により行なう。これに対して、本実施例の場合には、低速用、高速用各クラッチ7、8の断接を、低速クラッチ用、高速クラッチ用各電磁切換弁68、69により、高速クラッチ用、低速クラッチ用各切換弁25、26の切り換え状態を切り換える事により行なう。尚、この様な低速用、高速用各クラッチ7、8の断接状態を切り換える為の構造、機構等に就いては、前記特願2005−143583号に詳しく説明されており、本発明の要旨とは関係しない為、詳しい説明は省略する。   In the case of the above-described first embodiment, the low-speed and high-speed clutches 7 and 8 are connected to and disconnected from the high-speed clutch and low-speed clutch by the shift solenoid valve 20 via the shift switching valve 67. This is done by switching the switching state of the valves 25 and 26 (see FIG. 1). On the other hand, in the case of the present embodiment, the low speed and high speed clutches 7 and 8 are connected and disconnected by the low speed clutch and high speed clutch electromagnetic switching valves 68 and 69, respectively. This is done by switching the switching state of each switching valve 25, 26. The structure, mechanism, etc. for switching the connection / disconnection state of each of the low speed and high speed clutches 7 and 8 are described in detail in the aforementioned Japanese Patent Application No. 2005-143583. Detailed description will be omitted.

以上の説明は、本発明を、トロイダル型無段変速機と遊星歯車式変速機とを組み合わせると共に、入力軸を一方向に回転させたまま、出力軸の回転状態を、停止状態を挟んで正転、逆転に切り換えられる、所謂ギヤードニュートラル状態を実現できるモード(低速モード)を備えた無段変速装置に適用した場合に就いて説明した。但し、本発明は、トロイダル型無段変速機と遊星歯車式変速機とを組み合わせると共に、トロイダル型無段変速機のみで動力を伝達するモード(低速モード)と、差動ユニットである遊星歯車式変速機により主動力を伝達し、上記トロイダル型無段変速機により変速比の調節を行なう、所謂パワースプリット状態を実現するモード(高速モード)とを備えた無段変速装置に適用する事もできる。又、自動車用の自動変速機としてだけでなく、各種産業用の変速機としても利用できる。又、トロイダル型無段変速機の構造に関しては、ハーフトロイダル型、フルトロイダル型の何れでも良い。更には、トロイダル型無段変速機単体で構成する無段変速装置にも適用できる。   In the above description, the present invention is combined with a toroidal continuously variable transmission and a planetary gear type transmission, and the rotation state of the output shaft is corrected with the input shaft rotated in one direction. The case where the present invention is applied to a continuously variable transmission equipped with a mode (low speed mode) capable of realizing a so-called geared neutral state that can be switched between rotation and reverse rotation has been described. However, the present invention combines a toroidal type continuously variable transmission and a planetary gear type transmission, a mode in which power is transmitted only by the toroidal type continuously variable transmission (low speed mode), and a planetary gear type which is a differential unit. The present invention can also be applied to a continuously variable transmission having a so-called power split state (high speed mode) in which main power is transmitted by a transmission and the gear ratio is adjusted by the toroidal continuously variable transmission. . Further, it can be used not only as an automatic transmission for automobiles but also as a transmission for various industries. The structure of the toroidal continuously variable transmission may be either a half toroidal type or a full toroidal type. Furthermore, the present invention can also be applied to a continuously variable transmission configured by a toroidal type continuously variable transmission alone.

本発明の実施例1を示す、図5と同様の油圧回路図。The hydraulic circuit diagram similar to FIG. 5 which shows Example 1 of this invention. 図1のA部拡大図。The A section enlarged view of FIG. 本発明の実施例2を示す、図1と同様の油圧回路図。The hydraulic circuit diagram similar to FIG. 1 which shows Example 2 of this invention. 従来の無段変速装置のブロック図。The block diagram of the conventional continuously variable transmission. この無段変速装置に組み込む油圧回路図。The hydraulic circuit diagram incorporated in this continuously variable transmission.

符号の説明Explanation of symbols

1 エンジン
2 ダンパ
3 入力軸
4 トロイダル型無段変速機
5 遊星歯車式変速機
6 クラッチ装置
7 低速用クラッチ
8 高速用クラッチ
9 出力軸
10 入力側ディスク
11 出力側ディスク
12 パワーローラ
13 アクチュエータ
14 押圧装置
15 変速比制御ユニット
16 制御器
17 ステッピングモータ
18 ライン圧制御用電磁開閉弁
19 電磁弁
20 シフト用電磁弁
21 制御弁装置
22 変速比制御弁
23 差圧シリンダ
24a、24b 補正用制御弁
25 高速クラッチ用切換弁
26 低速クラッチ用切換弁
27、27a、27b オイルポンプ
28 油溜
29、29a、29b 押圧力調整弁
30 低圧側調整弁
31 手動油圧切換弁
32、32a、32b 第一のパイロット部
33、33a 第二のパイロット部
34 第三のパイロット部
35 ピストン
36a、36b 油圧室
37 差圧取り出し弁
38a、38b 通油路
39、39a 取り出し油路
40 方向切換弁
41 シリンダ孔
42 スプール
43 源油圧導入ポート
44 圧力導入路
45 第一差圧送り出しポート
46 第二差圧送り出しポート
47a、47b ドレンポート
48 第一油圧導入ポート
49 第二油圧導入ポート
50a、50b 第二圧力導入路
51 第一反力ポート
52 第二反力ポート
53 第一反力室
54 第一油圧導入路
55 第二反力室
56 第二油圧導入路
57 リターンスプリング
58 チェックボール
59 シリンダ孔
60 スリーブ
61 第二のアクチュエータ
62 油圧室
63 スプール
64 ばね
65 前後進切換弁
66 油圧センサ
67 シフト切換弁
68 低速クラッチ用電磁切換弁
69 高速クラッチ用電磁切換弁
DESCRIPTION OF SYMBOLS 1 Engine 2 Damper 3 Input shaft 4 Toroidal type continuously variable transmission 5 Planetary gear type transmission 6 Clutch device 7 Low speed clutch 8 High speed clutch 9 Output shaft 10 Input side disk 11 Output side disk 12 Power roller 13 Actuator 14 Press device DESCRIPTION OF SYMBOLS 15 Gear ratio control unit 16 Controller 17 Stepping motor 18 Line pressure control electromagnetic on-off valve 19 Solenoid valve 20 Shifting solenoid valve 21 Control valve device 22 Gear ratio control valve 23 Differential pressure cylinders 24a, 24b Correction control valve 25 High speed clutch Switching valve 26 Low speed clutch switching valve 27, 27a, 27b Oil pump 28 Oil reservoir 29, 29a, 29b Pressure adjusting valve 30 Low pressure adjusting valve 31 Manual hydraulic switching valve 32, 32a, 32b First pilot section 33, 33a Second pilot section 34 Third pie Lot part 35 Pistons 36a, 36b Hydraulic chamber 37 Differential pressure take-out valve 38a, 38b Oil passage 39, 39a Take-out oil path 40 Direction switching valve 41 Cylinder hole 42 Spool 43 Source oil pressure introduction port 44 Pressure introduction path 45 First differential pressure feed Port 46 Second differential pressure delivery port 47a, 47b Drain port 48 First hydraulic pressure introduction port 49 Second hydraulic pressure introduction port 50a, 50b Second pressure introduction path 51 First reaction force port 52 Second reaction force port 53 First reaction force Chamber 54 First hydraulic pressure introduction path 55 Second reaction force chamber 56 Second hydraulic pressure introduction path 57 Return spring 58 Check ball 59 Cylinder hole 60 Sleeve 61 Second actuator 62 Hydraulic chamber 63 Spool 64 Spring 65 Forward / reverse switching valve 66 Hydraulic sensor 67 Shift switching valve 68 Electromagnetic switching valve for low speed clutch 9 electromagnetic switching valve for high-speed clutch

Claims (4)

互いに同心に、且つ相対回転自在に配置された第一、第二のディスクと、これら両ディスクの中心軸に対し捩れの位置にある枢軸を中心とする揺動変位自在に支持された複数の支持部材と、これら各支持部材に回転自在に支持された状態で、互いに対向する上記第一、第二のディスクの内側面同士の間に挟持された複数のパワーローラと、ピストンを挟んで設けた第一、第二両油圧室への圧油の給排に基づいてこのピストンを軸方向に変位させ、上記各支持部材を上記枢軸の軸方向に変位させる油圧式のアクチュエータと、何れかのアクチュエータを構成する第一、第二両油圧室同士の間に存在する油圧の差に比例した油圧を取り出す差圧取り出し弁とを備えたトロイダル型無段変速機に於いて、この差圧取り出し弁から1本の取り出し油路を通じて、上記第一、第二両油圧室同士の間に存在する油圧の差の絶対値に比例した油圧を取り出す事を特徴としたトロイダル型無段変速機。   A plurality of supports that are supported so as to be able to swing and displace around a pivot that is twisted with respect to the central axes of the first and second disks that are concentrically arranged and relatively rotatable. A member, a plurality of power rollers sandwiched between the inner surfaces of the first and second disks facing each other in a state of being rotatably supported by each of these support members, and a piston A hydraulic actuator for displacing the piston in the axial direction based on supply / discharge of the pressure oil to and from the first and second hydraulic chambers, and displacing the support members in the axial direction of the pivot, and any one of the actuators A toroidal-type continuously variable transmission having a differential pressure extracting valve for extracting hydraulic pressure proportional to the difference between the hydraulic pressures existing between the first and second hydraulic chambers constituting the 1 extraction oil passage Through it, the first, toroidal type continuously variable transmission is characterized in that retrieving the hydraulic pressure in proportion to the absolute value of the difference between the hydraulic pressure existing between the adjacent second double hydraulic chamber. 差圧取り出し弁が、第一、第二両油圧室同士の間に存在する油圧の差に応じて変位するスプールと、油圧源で発生した油圧を導入する為の源油圧導入ポートと、上記第一油圧室の油圧が上記第二油圧室の油圧よりも高い場合に、上記源油圧導入ポートと連通する第一差圧送り出しポートと、同じく上記第二油圧室の油圧が上記第一油圧室の油圧よりも高い場合に、上記源油圧導入ポートと連通する第二差圧送り出しポートとを備えたものであり、上記第一、第二各差圧送り出しポートのうちで、その時点の油圧の差に応じて上記源油圧導入ポートと連通するポートを、取り出し油路に連通自在に接続した、請求項1に記載したトロイダル型無段変速機。   The differential pressure take-off valve is a spool that is displaced according to the difference in hydraulic pressure between the first and second hydraulic chambers, a source hydraulic pressure introduction port for introducing hydraulic pressure generated by the hydraulic power source, and the first When the hydraulic pressure in one hydraulic chamber is higher than the hydraulic pressure in the second hydraulic chamber, the first differential pressure feed port communicating with the source hydraulic pressure introduction port and the hydraulic pressure in the second hydraulic chamber are also in the first hydraulic chamber. A second differential pressure delivery port communicating with the source oil pressure introduction port when the hydraulic pressure is higher than the hydraulic pressure, and the difference between the hydraulic pressures at that time among the first and second differential pressure delivery ports. The toroidal continuously variable transmission according to claim 1, wherein a port communicating with the source oil pressure introduction port is connected to the take-out oil passage in a freely communicable manner. 第一、第二各差圧送り出しポートと取り出し油路とをボール式の方向切換弁を介して接続した、請求項2に記載したトロイダル型無段変速機。   The toroidal continuously variable transmission according to claim 2, wherein the first and second differential pressure feed ports and the take-out oil passage are connected via a ball-type direction switching valve. 油圧センサにより検出される取り出し油路の油圧に応じて、第一、第二の各ディスク同士の変速比と、これら第一、第二の各ディスク同士を互いに近付く方向に押圧する押圧装置の押圧力とのうちの、少なくとも何れかを調節自在とした、請求項1〜3のうちの何れか1項に記載したトロイダル型無段変速機。
Depending on the oil pressure of the take-out oil path detected by the oil pressure sensor, the transmission ratio of the first and second disks and the pressing device that presses the first and second disks in a direction approaching each other. The toroidal continuously variable transmission according to any one of claims 1 to 3, wherein at least one of the pressure and the pressure is adjustable.
JP2005220582A 2005-06-24 2005-07-29 Toroidal continuously variable transmission Pending JP2007032793A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005220582A JP2007032793A (en) 2005-06-24 2005-07-29 Toroidal continuously variable transmission

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005184315 2005-06-24
JP2005220582A JP2007032793A (en) 2005-06-24 2005-07-29 Toroidal continuously variable transmission

Publications (1)

Publication Number Publication Date
JP2007032793A true JP2007032793A (en) 2007-02-08

Family

ID=37792281

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005220582A Pending JP2007032793A (en) 2005-06-24 2005-07-29 Toroidal continuously variable transmission

Country Status (1)

Country Link
JP (1) JP2007032793A (en)

Similar Documents

Publication Publication Date Title
JP4168785B2 (en) Method and apparatus for controlling gear ratio of toroidal continuously variable transmission unit for continuously variable transmission
US20010041640A1 (en) Infinite speed ratio continuously variable transmission
US5649876A (en) Pulley thrust pressure control apparatus for belt-type continuously variable transmission
JP4151500B2 (en) Hydraulic control device with opposed connection of oil flow control valve
JP4670569B2 (en) Continuously variable transmission
JP5249930B2 (en) Device for controlling a continuously variable transmission
JP3991528B2 (en) Starting clutch control device for continuously variable transmission
JP2007032793A (en) Toroidal continuously variable transmission
JP4742723B2 (en) Toroidal continuously variable transmission and continuously variable transmission
JP4599905B2 (en) Continuously variable transmission
JP4924449B2 (en) Continuously variable transmission
US9534686B2 (en) Continuously variable transmission device
JP5181470B2 (en) Continuously variable transmission
JP4742678B2 (en) Continuously variable transmission
JP4735038B2 (en) Continuously variable transmission
JP4736543B2 (en) Continuously variable transmission
JP2007040495A (en) Toroidal type continuously variable transmission
JP4556427B2 (en) Continuously variable transmission
JP2008014357A (en) Continuously variable transmission
JP4853264B2 (en) Continuously variable transmission
JP4534726B2 (en) Toroidal continuously variable transmission and continuously variable transmission
JP4941328B2 (en) Continuously variable transmission
JP2000018353A (en) Continuously variable transmission
JP2008303959A (en) Continuously variable transmission
JP4729955B2 (en) Toroidal continuously variable transmission and continuously variable transmission

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Effective date: 20070517

Free format text: JAPANESE INTERMEDIATE CODE: A7424