JP2008014357A - Continuously variable transmission - Google Patents

Continuously variable transmission Download PDF

Info

Publication number
JP2008014357A
JP2008014357A JP2006184232A JP2006184232A JP2008014357A JP 2008014357 A JP2008014357 A JP 2008014357A JP 2006184232 A JP2006184232 A JP 2006184232A JP 2006184232 A JP2006184232 A JP 2006184232A JP 2008014357 A JP2008014357 A JP 2008014357A
Authority
JP
Japan
Prior art keywords
mode
continuously variable
variable transmission
toroidal
speed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006184232A
Other languages
Japanese (ja)
Inventor
Toshiro Toyoda
俊郎 豊田
Eiji Inoue
英司 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to JP2006184232A priority Critical patent/JP2008014357A/en
Publication of JP2008014357A publication Critical patent/JP2008014357A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H37/00Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00
    • F16H37/02Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings
    • F16H37/06Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings with a plurality of driving or driven shafts; with arrangements for dividing torque between two or more intermediate shafts
    • F16H37/08Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings with a plurality of driving or driven shafts; with arrangements for dividing torque between two or more intermediate shafts with differential gearing
    • F16H37/0833Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings with a plurality of driving or driven shafts; with arrangements for dividing torque between two or more intermediate shafts with differential gearing with arrangements for dividing torque between two or more intermediate shafts, i.e. with two or more internal power paths
    • F16H37/084Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings with a plurality of driving or driven shafts; with arrangements for dividing torque between two or more intermediate shafts with differential gearing with arrangements for dividing torque between two or more intermediate shafts, i.e. with two or more internal power paths at least one power path being a continuously variable transmission, i.e. CVT
    • F16H37/086CVT using two coaxial friction members cooperating with at least one intermediate friction member
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H37/00Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00
    • F16H37/02Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings
    • F16H37/06Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings with a plurality of driving or driven shafts; with arrangements for dividing torque between two or more intermediate shafts
    • F16H37/08Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings with a plurality of driving or driven shafts; with arrangements for dividing torque between two or more intermediate shafts with differential gearing
    • F16H37/0833Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings with a plurality of driving or driven shafts; with arrangements for dividing torque between two or more intermediate shafts with differential gearing with arrangements for dividing torque between two or more intermediate shafts, i.e. with two or more internal power paths
    • F16H37/084Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings with a plurality of driving or driven shafts; with arrangements for dividing torque between two or more intermediate shafts with differential gearing with arrangements for dividing torque between two or more intermediate shafts, i.e. with two or more internal power paths at least one power path being a continuously variable transmission, i.e. CVT
    • F16H2037/088Power split variators with summing differentials, with the input of the CVT connected or connectable to the input shaft
    • F16H2037/0886Power split variators with summing differentials, with the input of the CVT connected or connectable to the input shaft with switching means, e.g. to change ranges

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Friction Gearing (AREA)
  • Transmission Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To attain a structure including an operation mode capable of outputting motive power input from a driving source without passing through a toroidal type continuously variable transmission 10 with a simple structure. <P>SOLUTION: The continuously variable transmission is equipped with a low speed mode for connecting a low speed clutch 14 and cutting off connection of a high speed clutch 15, and a high speed mode for cutting off the connection of the low speed clutch 14 and connecting the high speed clutch 15. Further, other than these low speed and high speed modes, the transmission is equipped with a bypass mode for operating with both the clutches 14 and 15 of low speed clutch 14 and the high speed clutch in connected states. In this bypass mode, all of the motive power input from the driving source to the continuously variable transmission is output via first to third planetary gear transmissions 11 to 13, and motive power is not transmitted to the toroidal type continuously variable transmission 10. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

この発明は、例えば車両(自動車)用自動変速装置として利用する、トロイダル型無段変速機を組み込んだ無段変速装置の改良に関し、効率の向上を図れ、しかも、トロイダル型無段変速機で動力を伝達できない状態が生じた場合でも必要な出力(走行)を行なえる構造を実現するものである。   The present invention relates to an improvement of a continuously variable transmission incorporating a toroidal type continuously variable transmission, which is used as an automatic transmission for a vehicle (automobile), for example, and can improve efficiency, and can be powered by a toroidal type continuously variable transmission. Even when a state where it is impossible to transmit is generated, a structure capable of performing necessary output (running) is realized.

例えば自動車用自動変速装置としてトロイダル型無段変速機を使用する事が、特許文献1、非特許文献1、2等の多くの刊行物に記載され、且つ、一部で実施されて周知である。又、変速度比{変速比(減速比)、速度比(増速比)=1/変速比}の変動幅を大きくすべく、トロイダル型無段変速機と歯車式の差動機構(遊星歯車式変速機)とを組み合わせた無段変速装置も、例えば特許文献2〜5に記載される等により従来から広く知られている。このうちの特許文献2、5には、トロイダル型無段変速機のみで動力を伝達するモード(低速モード)と、差動機構である遊星歯車式変速機により主動力を伝達し、上記トロイダル型無段変速機により変速度比の調節を行なう、所謂パワースプリット状態を実現するモード(高速モード)とを備えた無段変速装置が記載されている。又、特許文献3には、トロイダル型無段変速機の変速度比を所定値(GN値、GNポイント)にする事により、入力軸を一方向に回転させたまま出力軸の回転状態を停止させる、所謂ギヤードニュートラル状態(GN状態)を実現できるモード(低速モード)と、上記トロイダル型無段変速機のみで動力を伝達するモード(高速モード)とを備えた無段変速装置が記載されている。又、特許文献4、5には、ギヤードニュートラル状態を実現するモード(低速モード)と、パワースプリット状態を実現するモード(高速モード)とを備えた無段変速装置が記載されている。   For example, the use of a toroidal-type continuously variable transmission as an automatic transmission for automobiles is described in many publications such as Patent Document 1, Non-Patent Documents 1 and 2, and is partially implemented and well known. . In addition, a toroidal continuously variable transmission and a gear-type differential mechanism (planetary gear) are used to increase the fluctuation range of the variable speed ratio {speed ratio (reduction ratio), speed ratio (speed increase ratio) = 1 / speed ratio}. A continuously variable transmission combined with a transmission (type transmission) is also widely known, for example, as described in Patent Documents 2 to 5. Among them, Patent Documents 2 and 5 describe a mode in which power is transmitted only by a toroidal type continuously variable transmission (low speed mode), and main power is transmitted by a planetary gear type transmission which is a differential mechanism. A continuously variable transmission having a mode (high-speed mode) that realizes a so-called power split state in which a variable speed ratio is adjusted by a continuously variable transmission is described. Further, in Patent Document 3, the rotational speed ratio of the toroidal continuously variable transmission is set to a predetermined value (GN value, GN point), so that the rotation state of the output shaft is stopped while the input shaft is rotated in one direction. A continuously variable transmission having a mode (low speed mode) capable of realizing a so-called geared neutral state (GN state) and a mode (high speed mode) for transmitting power only by the toroidal type continuously variable transmission is described. Yes. Patent Documents 4 and 5 describe a continuously variable transmission having a mode for realizing a geared neutral state (low speed mode) and a mode for realizing a power split state (high speed mode).

この様な無段変速装置のうち、ギヤードニュートラル状態を実現できるモードを備えた構造の場合には、トロイダル型無段変速機の変速度比を調節する事により、出力軸の回転状態を、停止状態を挟んで、正転、逆転に切り換えられる為、トルクコンバータ、発進クラッチ等の発進装置を省略でき、自動変速装置の小型・軽量化を図れる。又、これと共に、上記トルクコンバータがロックアップしていない状態や、上記発進クラッチの接続が半クラッチの状態で走行を行なう必要がなくなる。この為、駆動源であるエンジンからの動力を、出力軸、延いては車輪(タイヤ)に効率良く伝達でき、発進性能の向上も図れる(ダイレクト感のある、応答性の優れた発進フィーリングを得られる)。又、パワースプリット状態を実現できるモードを備えた構造の場合には、動力の一部を、トロイダル型無段変速機をバイパスさせて出力軸に送る事ができる。言い換えれば、入力軸に加えられる動力に比べ、上記トロイダル型無段変速機を通過する動力を低く抑える事ができ、このトロイダル型無段変速機の耐久性の向上、無段変速装置全体としての伝達効率の向上、並びに、許容伝達動力の増大を図れる。   Of these continuously variable transmissions, in the case of a structure equipped with a mode capable of realizing a geared neutral state, the rotational state of the output shaft is stopped by adjusting the variable speed ratio of the toroidal continuously variable transmission. Since it can be switched between forward rotation and reverse rotation across the state, the starting device such as a torque converter and a starting clutch can be omitted, and the automatic transmission can be reduced in size and weight. At the same time, it is not necessary to travel in a state where the torque converter is not locked up or in a state where the start clutch is in a half-clutch state. For this reason, the power from the engine that is the drive source can be efficiently transmitted to the output shaft, and thus the wheels (tires), and the starting performance can be improved (a feeling of direct start with excellent response feeling). can get). Further, in the case of a structure having a mode capable of realizing the power split state, a part of the power can be sent to the output shaft by bypassing the toroidal continuously variable transmission. In other words, compared to the power applied to the input shaft, the power passing through the toroidal continuously variable transmission can be kept low. The durability of the toroidal continuously variable transmission is improved, and the continuously variable transmission as a whole It is possible to improve transmission efficiency and increase allowable transmission power.

又、特許文献6には、図5に示す様な無段変速装置が記載されている。この図5に示した構造の場合は、トロイダル型無段変速機1と第一〜第三遊星歯車式変速機2〜4とを、低速用、高速用各クラッチ5、6並びにエンジン直結用クラッチ7を介して組み合わせて成る。そして、このうちのエンジン直結用クラッチ7を接続すると共に、上記低速用、高速用各クラッチ5、6の接続を断った状態で、エンジンから入力軸8に入力された動力を直接出力軸9に伝達する運転モード(エンジン直結モード)を実現する。この様な運転モードでは、これら入力軸8と出力軸9との間の変速度比が、所定の値(図5の場合は変速比1)に固定される。この状態では、上記トロイダル型無段変速機1に動力が入力されない為、その分伝達効率の向上を図れる。又、この様な伝達効率の向上の他、上記トロイダル型無段変速機1で動力の伝達を行なえなくなる様な、予期せぬ異常が生じた場合でも、上記エンジン直結モードに切り換える事で、上記出力軸9から動力を出力させる事ができる。   Patent Document 6 describes a continuously variable transmission as shown in FIG. In the case of the structure shown in FIG. 5, the toroidal type continuously variable transmission 1 and the first to third planetary gear type transmissions 2 to 4 are connected to the low speed and high speed clutches 5 and 6 and the engine direct coupling clutch. 7 is combined. Of these, the engine direct coupling clutch 7 is connected, and the power input from the engine to the input shaft 8 is directly applied to the output shaft 9 with the low speed and high speed clutches 5 and 6 disconnected. The transmission operation mode (engine direct connection mode) is realized. In such an operation mode, the variable speed ratio between the input shaft 8 and the output shaft 9 is fixed to a predetermined value (in the case of FIG. 5, the transmission ratio is 1). In this state, since no power is input to the toroidal continuously variable transmission 1, the transmission efficiency can be improved accordingly. Further, in addition to such an improvement in transmission efficiency, even when an unexpected abnormality occurs such that power transmission cannot be performed by the toroidal-type continuously variable transmission 1, by switching to the engine direct connection mode, Power can be output from the output shaft 9.

但し、上述の様な特許文献6に記載された構造の場合は、低速モードと高速モードとを実現する低速用、高速用各クラッチ5、6の他に、上述のエンジン直結モードを実現する為だけのエンジン直結用クラッチ7が必要になる。この為、この様にエンジン直結用クラッチ7が必要になる分、無段変速装置の構造が複雑になり、コストの増大を招くと共に、小型、軽量化の妨げとなる。   However, in the case of the structure described in Patent Document 6 as described above, in addition to the low-speed and high-speed clutches 5 and 6 that realize the low-speed mode and the high-speed mode, the above-described engine direct connection mode is realized. Only the engine direct coupling clutch 7 is required. For this reason, the structure of the continuously variable transmission is complicated by the necessity of the engine direct coupling clutch 7 as described above, which increases the cost and hinders the reduction in size and weight.

特開2001−317601号公報JP 2001-317601 A 特開平11−63146号公報JP 11-63146 A 特開平9−210191号公報Japanese Patent Laid-Open No. 9-210191 特開2000−220719号公報JP 2000-220719 A 特開2005−291486号公報JP 2005-291486 A 特開2003−4117号公報JP 2003-4117 A 青山元男著、「別冊ベストカー 赤バッジシリーズ245/クルマの最新メカがわかる本」、株式会社三推社/株式会社講談社、平成13年12月20日、p.92−93Motoo Aoyama, “Bessed Best Car Red Badge Series 245 / A book that understands the latest mechanics of cars”, Sangensha Co., Ltd./Kodansha Co., Ltd., December 20, 2001, p. 92-93 田中裕久著、「トロイダルCVT」、株式会社コロナ社、2000年7月13日Hirohisa Tanaka, “Toroidal CVT”, Corona Inc., July 13, 2000

本発明は、上述の様な事情に鑑みて、駆動源(例えばエンジン)から入力される動力をトロイダル型無段変速機を通過する事なく出力できる運転モードを有する構造を、簡素な構成で実現すべく発明したものである。   In view of the circumstances as described above, the present invention realizes a structure having an operation mode capable of outputting power input from a drive source (for example, an engine) without passing through a toroidal continuously variable transmission with a simple configuration. Invented as much as possible.

本発明の無段変速装置は、従来から知られている無段変速装置と同様に、トロイダル型無段変速機と遊星歯車式変速機とを、クラッチ装置(クラッチ、ブレーキ)を介して組み合わせて成る。
このうちのクラッチ装置は、減速比を大きくする第一のモード(例えば低速モード)を実現する際に接続されて同じく小さくする第二のモード(例えば高速モード)を実現する際に接続を断たれる第一のクラッチ(例えば低速用クラッチ)と、この第二のモード(高速モード)を実現する際に接続されて上記第一のモード(低速モード)を実現する際に接続を断たれる第二のクラッチ(例えば高速用クラッチ)とから成る。
又、必要に応じて、上記クラッチ装置は、上記第一、第二各クラッチの断接状態を切り換える為の制御器を備えたものとする。そして、この制御器により、変速状態を、上記第一のモード(低速モード)と上記第二のモード(高速モード)とのうちの何れかのモードに切り換える。
The continuously variable transmission of the present invention is a combination of a toroidal continuously variable transmission and a planetary gear type transmission via a clutch device (clutch, brake) as in the case of conventionally known continuously variable transmissions. Become.
Of these, the clutch device is connected when realizing the first mode (for example, the low-speed mode) for increasing the reduction ratio and disconnected when realizing the second mode (for example, the high-speed mode) that is also reduced. A first clutch (for example, a low speed clutch) that is connected to realize the second mode (high speed mode) and disconnected when the first mode (low speed mode) is realized. It consists of two clutches (for example, a high speed clutch).
The clutch device is provided with a controller for switching the connection / disconnection state of the first and second clutches as required. The controller switches the shift state to one of the first mode (low speed mode) and the second mode (high speed mode).

尚、これら第一のモード(低速モード)と第二のモード(高速モード)との間のモード切換(動力伝達経路の切換)は、上記無段変速装置の変速度比を、これら第一のモード(低速モード)と第二のモード(高速モード)との両方のモードで実現できる値(モード切換ポイント、回転同期点)に調節した状態で行なう。即ち、上記トロイダル型無段変速機から見ると、このトロイダル型無段変速機の変速度比を、上記両方のモードで実現できる値であるモード切換ポイントに対応する値に調節した状態で行なう。そして、この様にトロイダル型無段変速機の変速度比(延いては無段変速装置の変速度比)をモード切換ポイントに対応する値(延いてはモード切換ポイント)に調節した状態で、上記第一、第二両クラッチ(低速用、高速用両クラッチ)の断接状態を切り換える(モード切換を行なう)事により、上記第一のモード(低速モード)と上記第二のモード(高速モード)との切換の前後で、上記無段変速装置の変速度比を連続的に変化させられる様にする。   Note that mode switching (switching of the power transmission path) between the first mode (low speed mode) and the second mode (high speed mode) is performed by changing the variable speed ratio of the continuously variable transmission. It is performed in a state adjusted to values (mode switching point, rotation synchronization point) that can be realized in both the mode (low speed mode) and the second mode (high speed mode). That is, when viewed from the toroidal continuously variable transmission, the variable speed ratio of the toroidal continuously variable transmission is adjusted to a value corresponding to a mode switching point that can be realized in both modes. Then, with the variable speed ratio of the toroidal type continuously variable transmission (and thus the variable speed ratio of the continuously variable transmission) adjusted to a value corresponding to the mode switching point (and thus the mode switching point), The first mode (low speed mode) and the second mode (high speed mode) are switched by switching the connection / disconnection state of the first and second clutches (both low speed and high speed clutches). The variable speed ratio of the continuously variable transmission can be continuously changed before and after switching to).

特に、本発明の無段変速装置に於いては、上記第一、第二のモード(低速、高速各モード)の他、上記第一のクラッチ(低速用クラッチ)と上記第二のクラッチ(高速用クラッチ)との両方のクラッチを(同時に)接続した状態のまま運転を継続して行なう、第三のモード(例えばバイパスモード)を備えている。この様な第三のモードを実現する為に、例えば上記制御器に、この様な両方のクラッチを(同時に)接続させる機能を持たせる。
尚、この様な第三のモード(バイパスモード)では、上記トロイダル型無段変速機の変速度比がモード切換ポイントに対応する値のまま運転される。即ち、上記無段変速装置の変速度比が、第一のモード(低速モード)と第二のモード(高速モード)との両方のモードで実現できる値である、上記モード切換ポイントに固定された状態で(モード切換ポイントのまま変速度比が変化しない状態で)、運転が継続して行なわれる。この様な第三のモード(バイパスモード)では、駆動源(例えばエンジン)から上記無段変速装置に入力された動力の総てが、上記遊星歯車式変速機を介して出力され、上記トロイダル型無段変速機では動力が伝達されなくなる。
In particular, in the continuously variable transmission of the present invention, in addition to the first and second modes (low speed and high speed modes), the first clutch (low speed clutch) and the second clutch (high speed) A third mode (for example, a bypass mode) in which the operation is continued while both clutches are connected (simultaneously). In order to realize such a third mode, for example, the controller is provided with a function of (simultaneously) connecting both such clutches.
In this third mode (bypass mode), the toroidal continuously variable transmission is operated with the variable speed ratio corresponding to the mode switching point. That is, the variable speed ratio of the continuously variable transmission is fixed to the mode switching point, which is a value that can be realized in both the first mode (low speed mode) and the second mode (high speed mode). In this state (in a state where the speed change ratio remains unchanged at the mode switching point), the operation is continued. In such a third mode (bypass mode), all the power input from the drive source (for example, engine) to the continuously variable transmission is output via the planetary gear type transmission, and the toroidal type In the continuously variable transmission, power is not transmitted.

又、上述の様な本発明の無段変速装置を実施する場合に好ましくは、請求項2に記載した様に、上記第三のモード(バイパスモード)を実現する無段変速装置の変速度比、即ち、上記モード切換ポイントを、増速比で1以下(等速を含む減速側)、より好ましくは0.8以下、更に好ましくは0.5以下とする。この様な増速比の設定は、例えば上記遊星歯車式変速機の減速比や動力伝達機構を構成する各歯車、スプロケット等の歯数比を調節する事により行なえる。
又、請求項3に記載した様に、上記第三のモード(バイパスモード)に切り換えるべく、上記第一、第二の両クラッチを(強制的に)接続する為の操作手段を設ける。そして、この操作手段の操作に基づいて、この第三のモードに切り換え自在とする。
尚、この様な操作手段は、運転者等が必要に応じて操作できる様に、例えば運転席(車内)に設けられたシフトレバー(操作レバー、セレクトレバー)の近傍等、上記運転者が運転時にも操作できる様な位置に設ける事が好ましい。
In the case of implementing the continuously variable transmission of the present invention as described above, preferably, the variable speed ratio of the continuously variable transmission for realizing the third mode (bypass mode) as described in claim 2. That is, the mode switching point is set to 1 or less (a deceleration side including a constant speed) as a speed increase ratio, more preferably 0.8 or less, and still more preferably 0.5 or less. Such a speed increase ratio can be set, for example, by adjusting the reduction ratio of the planetary gear type transmission and the gear ratio of each gear, sprocket, etc. constituting the power transmission mechanism.
According to a third aspect of the present invention, there is provided operating means for (forcibly) connecting the first and second clutches in order to switch to the third mode (bypass mode). Based on the operation of the operation means, the mode can be switched to the third mode.
Such operation means can be operated by the driver, for example, in the vicinity of a shift lever (operating lever, select lever) provided in the driver's seat (in the vehicle) so that the driver can operate as necessary. It is preferable to provide it at a position where it can be operated sometimes.

或いは、請求項4に記載した様に、上記トロイダル型無段変速機の異常を検出する為の異常検出手段を備える。そして、この異常検出手段が異常と判定した場合に、上記第三のモード(バイパスモード)に切り換えるべく、上記第一、第二の両クラッチを(自動的且つ強制的に)接続する。尚、上記異常検出手段は、例えば制御器に、トロイダル型無段変速機の油温や振動、変速度比等が、通常時(異常が生じてない状態)の値から逸脱した(予め設定した閾値を超えた)か否かを判定する機能を持たせる事により構成する事ができる。   Alternatively, as described in claim 4, there is provided an abnormality detecting means for detecting an abnormality of the toroidal type continuously variable transmission. When the abnormality detection means determines that there is an abnormality, the first and second clutches are both connected (automatically and forcibly) to switch to the third mode (bypass mode). Note that the abnormality detecting means is such that, for example, in the controller, the oil temperature, vibration, speed change ratio, etc. of the toroidal-type continuously variable transmission deviates from a normal value (a state in which no abnormality has occurred). It can be configured by providing a function for determining whether or not the threshold value has been exceeded.

又、本発明の無段変速装置を実施する場合に好ましくは、請求項5に記載した様に、上記トロイダル型無段変速機を、各パワーローラを回転自在に支持した各支持部材(トラニオン)を油圧式のアクチュエータにより変位させる事により、変速度比を変化させるものとする。そして、上記第三のモード(バイパスモード)に切り換えた状態で、上記アクチュエータを構成する1対の油圧室同士の油圧を等しくする(油圧室同士の差圧を0にする)。
この場合に好ましくは、請求項6に記載した様に、上記トロイダル型無段変速機の変速度比を制御する為の制御ユニットを、上記アクチュエータの各油圧室への圧油の給排状態を切り換える変速比制御弁を備えたものとする。
Further, when the continuously variable transmission according to the present invention is implemented, preferably, as described in claim 5, each toroidal continuously variable transmission is supported by each support member (trunion) that rotatably supports each power roller. The variable speed ratio is changed by displacing the valve with a hydraulic actuator. Then, in the state switched to the third mode (bypass mode), the hydraulic pressures of the pair of hydraulic chambers constituting the actuator are made equal (the differential pressure between the hydraulic chambers is made zero).
In this case, preferably, as described in claim 6, a control unit for controlling the variable speed ratio of the toroidal type continuously variable transmission is configured so that the supply / discharge state of the pressure oil to each hydraulic chamber of the actuator is controlled. It is assumed that a gear ratio control valve for switching is provided.

即ち、この変速比制御弁の切換に基づき、上記アクチュエータを構成する1対の油圧室同士の間に油圧の差を生じさせ(差圧を発生させ)、この差圧に応じて上記各支持部材を枢軸の軸方向に変位させる。そして、この様な変位に基づき、上記各パワーローラの周面と入力側、出力側各ディスクの内側面との転がり接触部(トラクション部)に作用する、接線方向の力の向きを変化(サイドスリップを発生)させ、上記各パワーローラ延いては上記各支持部材を、上記枢軸を中心に揺動(傾転)させる事により、上記トロイダル型無段変速機の変速度比(入力側ディスクと出力側ディスクとの間の変速度比)を所望の値に調節する。   That is, based on the switching of the gear ratio control valve, a difference in hydraulic pressure is generated between a pair of hydraulic chambers constituting the actuator (a differential pressure is generated), and each of the support members according to the differential pressure. Is displaced in the axial direction of the pivot axis. Based on such displacement, the direction of the tangential force acting on the rolling contact portion (traction portion) between the circumferential surface of each power roller and the inner surface of each disk on the input side and output side is changed (side Slip), and the power rollers and then the support members are swung (tilted) around the pivot, thereby changing the speed ratio of the toroidal continuously variable transmission (to the input side disk). The variable speed ratio between the output side disk and the output side disk is adjusted to a desired value.

そして、上記第三のモードに切り換えられた状態では、上述の様に変速を行なう為の上記変速比制御弁の作動(切り換え)に基づいて、上記アクチュエータの各油圧室同士の油圧を等しくする。尚、この様な変速比制御弁は、ステッピングモータ等の駆動部材の駆動に基づいて切り換え自在とした切換弁を採用する他、この様な変速比制御弁を、電磁弁(例えばサーボ弁、電磁比例弁、電磁切換弁等)とし、この様な電磁弁の制御(開閉の調節)に基づいて、上記アクチュエータの各油圧室への圧油の給排を直接行なう構成を採用する事もできる。
又、何れの構成を採用する場合も、例えば請求項7に記載した様に、上記アクチュエータの各油圧室同士を互いに(強制的に)連通する事により、或いは、請求項8に記載した様に、上記アクチュエータの各油圧室を同じ油圧源に(強制的に)連通する事により、上記各油圧室の油圧を等しくする(油圧室同士の差圧を0にする)事ができる。尚、この様に各油圧室が連通される油圧源は、同じ油圧であれば良く、例えばドレン(油圧0の油圧源)に連通させても良いし、所定圧に調整される油圧源(オイルポンプの吐出口に通じる油路)に連通させても良い。
In the state switched to the third mode, the hydraulic pressures of the hydraulic chambers of the actuator are made equal based on the operation (switching) of the speed ratio control valve for shifting as described above. Such a gear ratio control valve employs a switching valve that can be switched based on the driving of a driving member such as a stepping motor. In addition, such a gear ratio control valve can be an electromagnetic valve (for example, a servo valve, an electromagnetic valve, or the like). It is also possible to adopt a configuration in which pressure oil is directly supplied to and discharged from each hydraulic chamber of the actuator based on such control (regulation of opening and closing) of the solenoid valve.
Further, in any of the configurations, for example, as described in claim 7, the hydraulic chambers of the actuator are communicated with each other (forcibly), or as described in claim 8. By connecting the hydraulic chambers of the actuator to the same hydraulic source (forcibly), the hydraulic pressures of the hydraulic chambers can be made equal (the differential pressure between the hydraulic chambers can be made zero). It should be noted that the hydraulic pressure source in which the hydraulic chambers communicate with each other in this manner may be the same hydraulic pressure. For example, the hydraulic pressure source may be in communication with a drain (hydraulic pressure zero hydraulic pressure source) or may be adjusted to a predetermined pressure. An oil passage leading to the discharge port of the pump may be communicated.

上述の様に、本発明の無段変速装置の場合には、第一のクラッチ(例えば低速用クラッチ)と第二のクラッチ(例えば高速用クラッチ)との両方のクラッチを(同時に)接続した状態のまま運転を行なう、第三のモード(例えばバイパスモード)を備える。この様な第三のモード(バイパスモード)では、駆動源(例えばエンジン)から無段変速装置に入力された動力の総てが遊星歯車式変速機を介して出力され、トロイダル型無段変速機では動力が伝達されなくなる。この為、この様な第三のモードで運転を行なう事で、伝達効率の向上を図れる。又、この様な伝達効率の向上の他、上記トロイダル型無段変速機で動力の伝達を行なえなくなる様な、予期せぬ異常が生じた場合でも、上記第三のモードに切り換える(第三のモードで運転を行なう)事で、上記エンジンから入力される動力を(遊星歯車式変速機のみを介して)出力させる事ができる。しかも、この様な第三のモードを実現するだけの為に、この第三のモード用のクラッチ{例えば前述の特許文献6に記載された構造で必要とされるエンジン直結用クラッチ7(図5参照)}を設ける必要はなく、上記無段変速装置の構造を簡素に構成でき、コスト増大、大型化、重量増大を、何れも防止できる。   As described above, in the case of the continuously variable transmission according to the present invention, both the first clutch (for example, a low speed clutch) and the second clutch (for example, a high speed clutch) are connected (simultaneously). A third mode (for example, a bypass mode) in which operation is performed as it is is provided. In such a third mode (bypass mode), all of the power input from the drive source (for example, engine) to the continuously variable transmission is output via the planetary gear transmission, and the toroidal continuously variable transmission. Then power will not be transmitted. For this reason, the transmission efficiency can be improved by operating in the third mode. In addition to such an improvement in transmission efficiency, even if an unexpected abnormality occurs such that power transmission cannot be performed by the toroidal continuously variable transmission, the mode is switched to the third mode (third By operating in the mode, the power input from the engine can be output (via only the planetary gear type transmission). Moreover, in order to realize such a third mode only, the clutch for this third mode {for example, the engine direct coupling clutch 7 (FIG. 5) required in the structure described in Patent Document 6 described above is used. Need not be provided), the structure of the continuously variable transmission can be simply configured, and any increase in cost, size and weight can be prevented.

尚、前記特許文献3、5には、モード切換を円滑に行なうべく、このモード切換時に低速用クラッチと高速用クラッチとの両方のクラッチを同時に接続する時間を設定する技術が記載されている。但し、これら各特許文献3、5に記載された技術の場合は、この様な両クラッチの接続を、モード切換時の極短時間に行なうものであり、本発明の様に、これら両クラッチが接続された状態のまま{接続された状態を維持(継続)したまま}運転を行なう事を意図しているものではない。   Patent Documents 3 and 5 describe a technique for setting the time for simultaneously connecting both the low speed clutch and the high speed clutch at the time of the mode switching in order to smoothly perform the mode switching. However, in the case of the techniques described in each of these Patent Documents 3 and 5, such clutches are connected in a very short time at the time of mode switching. It is not intended to operate in a connected state {while maintaining (continuing) the connected state}.

又、請求項2に記載した様に、上記第三のモードを実現する無段変速装置の変速度比を、(最終減速比等に応じて増減するが)増速比で1以下とすれば、上記トロイダル型無段変速機で動力の伝達を行なえなくなる様な、予期せぬ異常が生じた場合でも、上記第三のモードのみで車両を発進乃至は走行させる事ができる。この為、例えば無段変速装置から異音が聞こえた場合や意図する走行を行なえない場合等に、運転者が請求項3に記載した操作手段を操作し、上記第三のモードに切り換える事により、上記異常に拘らず、車両を路肩等の安全な場所に避難させたり、或いは、修理工場まで自走する等の必要最低限の走行を行なう事ができる。又、請求項4に記載した様な異常検出手段の判定に基づいて、上記第三のモードに切り換える事によっても、上記異常に拘らず、必要な走行を継続できる。   Further, as described in claim 2, if the variable speed ratio of the continuously variable transmission that realizes the third mode is set to 1 or less in the speed increase ratio (which increases or decreases in accordance with the final speed reduction ratio, etc.) The vehicle can be started or run only in the third mode even when an unexpected abnormality occurs such that the transmission of power cannot be performed by the toroidal continuously variable transmission. For this reason, for example, when an abnormal noise is heard from the continuously variable transmission or when the intended travel cannot be performed, the driver operates the operation means described in claim 3 to switch to the third mode. Regardless of the above-mentioned abnormality, the vehicle can be evacuated to a safe place such as a road shoulder, or can be driven to the minimum necessary, such as traveling to a repair shop. Further, by switching to the third mode based on the determination by the abnormality detecting means as described in claim 4, the required travel can be continued regardless of the abnormality.

尚、ギヤードニュートラル状態を実現できる無段変速装置の場合等、発進装置(トルクコンバータ、発進クラッチ等)を有しない構造の場合には、上記第三のモードに切り換える際に、必要に応じて第一、第二両クラッチで半クラッチ状態を実現できる様にする事が好ましい。この様に半クラッチ状態を実現できれば、上記発進装置を有しない構造の場合でも、上記第三のモードで車両を発進させる事が可能になる。即ち、上記第一のクラッチと第二のクラッチとの両方のクラッチの接続が断たれたニュートラル状態から、例えば上記操作手段の操作に基づき第三のモードに切り換える(第一、第二の両クラッチを接続する)事により、ギヤードニュートラル状態を実現できるモードにする事なく、上記車両を停止状態から発進乃至は走行させる事ができる。   In the case of a structure that does not have a starting device (torque converter, starting clutch, etc.), such as a continuously variable transmission that can realize a geared neutral state, when switching to the third mode, it is necessary to It is preferable to realize a half-clutch state with both the first and second clutches. If the half-clutch state can be realized in this way, the vehicle can be started in the third mode even in the case of the structure without the starting device. That is, from the neutral state in which both the first clutch and the second clutch are disconnected, the mode is switched to the third mode based on the operation of the operating means (both the first and second clutches). ), The vehicle can be started or run from a stopped state without entering a mode in which the geared neutral state can be realized.

又、上述の様に第三のモードに切り換えるべく、上記第一のクラッチと第二のクラッチとの両方のクラッチを接続した場合に、上記トロイダル型無段変速機の変速度比がモード切換ポイントに対応する値からずれていると、トルクシフトに基づき強制的にモード切換ポイントに対応する値に変速させられる。即ち、上記第一、第二の両クラッチが接続されると、遊星歯車式変速機の各構成要素(サンギヤ、リングギヤ、キャリア)の回転速度比(回転数比)は、これら各構成要素の歯数比(減速比)に応じた値(モード切換ポイントを実現する値)に一意的に決まる。そして、上記トロイダル型無段変速機の変速度比は、この様に一意的に決まる回転速度比を実現できる唯一の値(モード切換ポイントに対応する値)に、(弾性変形や組み付け隙間の変化等に基づいて)強制的に変速(トルクシフト)させられる。   In addition, when both the first clutch and the second clutch are connected to switch to the third mode as described above, the variable speed ratio of the toroidal type continuously variable transmission is changed to the mode switching point. If it deviates from the value corresponding to, the gear is forcibly shifted to the value corresponding to the mode switching point based on the torque shift. That is, when both the first and second clutches are connected, the rotational speed ratio (rotational speed ratio) of each component (sun gear, ring gear, carrier) of the planetary gear type transmission is the tooth of each component. It is uniquely determined by a value (a value that realizes the mode switching point) according to the number ratio (reduction ratio). The variable speed ratio of the toroidal-type continuously variable transmission is set to the only value (a value corresponding to the mode switching point) that can realize the rotation speed ratio uniquely determined in this way (change in elastic deformation and assembly gap). Etc.) (for example, based on the above).

この為、例えば上記トロイダル型無段変速機の変速度比がモード切換ポイントに対応する値からずれた状態で、上記第一、第二の両クラッチが接続されると、上記トロイダル型無段変速機に、このトロイダル型無段変速機の変速度比をモード切換ポイントに対応する値に変速(トルクシフト)させる動力が入力される。この様な状態では、このトロイダル型無段変速機に入力される動力が0でない(トルクシフトさせる分の動力が入力される)為、その分(若干ではあるが)動力損失を生じる。一方、上記ずれが大きい状態(モード切換ポイントに対応する値から極端にずれている状態)で、上記第一、第二の両クラッチを接続すると、上記トロイダル型無段変速機に入力される上記動力が過度に大きくなり、その分エンジンに大きな負荷が加わる。そして、この様な負荷が著しい場合には、このエンジンが停止(エンスト)する可能性がある。   For this reason, for example, when the first and second clutches are connected in a state where the variable speed ratio of the toroidal continuously variable transmission is deviated from the value corresponding to the mode switching point, the toroidal continuously variable transmission is performed. Power for shifting (torque shifting) the variable speed ratio of the toroidal type continuously variable transmission to a value corresponding to the mode switching point is input to the machine. In such a state, the power input to the toroidal-type continuously variable transmission is not zero (the power for torque shift is input), and thus a power loss is caused (although slightly). On the other hand, when the first and second clutches are connected in a state where the deviation is large (a state that is extremely different from a value corresponding to the mode switching point), the input to the toroidal continuously variable transmission is performed. The power becomes excessively large and a large load is applied to the engine. When such a load is significant, there is a possibility that the engine will stop (engine stall).

従って、上記第一、第二の両クラッチを接続する(第三のモードに切り換える)場合には、上記トロイダル型無段変速機の変速度比をモード切換ポイントに対応する値に調節した状態で行なう事が好ましい。そして、この様にモード切換ポイントに対応する値に調節された状態で、上記第一、第二の両クラッチを接続すれば、上記エンジンから入力される動力を、上記トロイダル型無段変速機を介さずに(遊星歯車式変速機のみを通じて)出力させられる。尚、この様な、第三のモードとして理想的な状態では、各パワーローラを支持する各支持部材(トラニオン)を変位させる為のアクチュエータを構成する1対の油圧室同士の油圧が互いに等しくなる(差圧が0になる)。そこで、本発明の場合には、請求項5〜8に記載した様に、上記第三のモードに切り換えた状態(第一、第二の両クラッチを接続した状態)で、上記アクチュエータを構成する1対の油圧室同士の油圧を等しくする(差圧を0にする)。   Therefore, when both the first and second clutches are connected (switched to the third mode), the variable speed ratio of the toroidal continuously variable transmission is adjusted to a value corresponding to the mode switching point. It is preferable to do this. When the first and second clutches are connected in the state adjusted to the value corresponding to the mode switching point in this way, the power input from the engine is supplied to the toroidal continuously variable transmission. It is output without intervention (through only the planetary gear type transmission). In such an ideal state as the third mode, the hydraulic pressures of a pair of hydraulic chambers constituting an actuator for displacing each support member (trunnion) supporting each power roller are equal to each other. (Differential pressure becomes 0). Therefore, in the case of the present invention, as described in claims 5 to 8, the actuator is configured in the state switched to the third mode (the state where both the first and second clutches are connected). The hydraulic pressures of the pair of hydraulic chambers are made equal (the differential pressure is set to 0).

この様に油圧を等しくすれば、上記トロイダル型無段変速機の変速度比が上記モード切換ポイントに対応する値からずれていても、この変速度比をこのモード切換ポイントに対応する値に変化させられる(ずれをなくせる)。即ち、上記油圧室の油圧が等しいと、上記トロイダル型無段変速機に加わる動力(トルクシフトさせる動力)に基づいて各支持部材(トラニオン)が軸方向に変位すると共に揺動し、このトロイダル型無段変速機の変速度比が、上記モード切換ポイントに対応する値に変化(変速)させられる。この為、例えば電気的な異常(例えば断線)等に伴って、上記トロイダル型無段変速機の変速度比をモード切換ポイントに対応する値に調節できなくなった場合でも、上記油圧室同士の油圧を等しくする事で、このトロイダル型無段変速機の変速度比をモード切換ポイントに対応する値に変速させられる。この結果、この様な変速度比を調節できない状態でも、上述の様に油圧を等しくすると共に、上記第三のモードに切り換える(第一、第二両クラッチを接続する)事で、前述した様な必要最低限の走行を行なう事ができる。   If the hydraulic pressures are made equal in this way, even if the variable speed ratio of the toroidal continuously variable transmission deviates from the value corresponding to the mode switching point, the variable speed ratio changes to a value corresponding to the mode switching point. (Can eliminate the deviation). That is, when the hydraulic pressures in the hydraulic chambers are equal, the support members (trunnions) are displaced in the axial direction and swing based on the power applied to the toroidal continuously variable transmission (power for torque shifting). The variable speed ratio of the continuously variable transmission is changed (shifted) to a value corresponding to the mode switching point. For this reason, even when, for example, due to an electrical abnormality (for example, disconnection) or the like, the variable speed ratio of the toroidal continuously variable transmission cannot be adjusted to a value corresponding to the mode switching point, the hydraulic pressure between the hydraulic chambers can be reduced. By equalizing, the variable speed ratio of the toroidal type continuously variable transmission can be changed to a value corresponding to the mode switching point. As a result, even in a state where the variable speed ratio cannot be adjusted, the hydraulic pressure is made equal as described above, and the mode is switched to the third mode (the first and second clutches are connected) as described above. It is possible to perform the minimum necessary driving.

図1は、本発明の実施の形態の1例を示している。本例の無段変速装置は、入力軸8と出力軸9との間に、トロイダル型無段変速機10と第一〜第三遊星歯車式変速機11〜13とを、クラッチ装置である低速用、高速用各クラッチ14、15を介して組み合わせて成る。そして、このうちの低速用クラッチ14が接続された低速モード状態で、上記トロイダル型無段変速機10の変速度比(変速比、速度比)の調節に基づいて、上記入力軸8を回転させた状態のまま上記出力軸9を停止させる、変速比無限大(速度比0)の状態(ギヤードニュートラル状態、GN状態)を実現可能としている。この様な無段変速装置を構成する上記入力軸8は、運転時に、図示しないエンジンのクランクシャフト等の駆動軸により回転駆動される。これら入力軸8と駆動軸との間には、トルクコンバータ、発進クラッチ等の発進装置は設けない。   FIG. 1 shows an example of an embodiment of the present invention. The continuously variable transmission of this example includes a toroidal-type continuously variable transmission 10 and first to third planetary gear type transmissions 11 to 13 between a input shaft 8 and an output shaft 9 at a low speed as a clutch device. And high-speed clutches 14 and 15 are combined. Then, in the low speed mode state in which the low speed clutch 14 is connected, the input shaft 8 is rotated based on the adjustment of the variable speed ratio (speed ratio, speed ratio) of the toroidal-type continuously variable transmission 10. In this state, the output shaft 9 is stopped in a state where the gear ratio is infinite (speed ratio 0) (geared neutral state, GN state). The input shaft 8 constituting such a continuously variable transmission is rotationally driven by a drive shaft such as an engine crankshaft (not shown) during operation. No starting device such as a torque converter or a starting clutch is provided between the input shaft 8 and the drive shaft.

又、上記トロイダル型無段変速機10は、動力の伝達を、互いに並列な2系統で行なう、所謂ダブルキャビティ型のものとしており、1対の入力側ディスク16a、16bと、一体型の出力側ディスク17と、複数個のパワーローラ18、18(前述の図5、並びに、後述する図3、4参照)とを備える。このうちの両入力側ディスク16a、16bは、軸方向に互いに離隔した位置に互いに同心に、それぞれがトロイド曲面である軸方向片側面を互いに対向させた状態で配置している。即ち、上記両入力側ディスク16a、16bのうち、上記駆動軸側(図1の左側)に位置する一方の入力側ディスク16aは、上記入力軸8の前端部(この駆動軸側で、図1の左端部)外周面に、この入力軸8と同期した回転を自在に支持している。これに対して他方の入力側ディスク16bは、この入力軸8の後端寄り部分(図1の右端寄り部分)に、上記第一遊星歯車式変速機11を構成する第一キャリア24を介して結合固定し、やはり、上記入力軸8と同期した回転を自在としている。この様な構成により、上記各入力側ディスク16a、16bと上記第一キャリア24とを、動力の伝達可能に(同期した回転を自在に)連結している。   The toroidal continuously variable transmission 10 is of a so-called double cavity type in which power is transmitted in two systems parallel to each other, and a pair of input side disks 16a and 16b and an integrated output side. A disk 17 and a plurality of power rollers 18 and 18 (see FIG. 5 described above and FIGS. 3 and 4 described later) are provided. Of these, both the input side disks 16a and 16b are arranged concentrically at positions spaced apart from each other in the axial direction, with one axial side surface, which is a toroidal curved surface, facing each other. That is, of the two input side disks 16a and 16b, one input side disk 16a located on the drive shaft side (left side in FIG. 1) is the front end of the input shaft 8 (on the drive shaft side, FIG. The rotation synchronized with the input shaft 8 is freely supported on the outer peripheral surface. On the other hand, the other input side disk 16b is provided at the rear end portion (right end portion in FIG. 1) of the input shaft 8 via the first carrier 24 constituting the first planetary gear type transmission 11. The coupling is fixed, and the rotation in synchronism with the input shaft 8 can be freely performed. With such a configuration, the input disks 16a and 16b and the first carrier 24 are connected so as to be able to transmit power (synchronized rotation is freely possible).

又、上記出力側ディスク17は、1対の出力側ディスクの背面同士を突き合わせた状態で一体とした如き形状で、軸方向両側面を、それぞれトロイド曲面としている。この様な出力側ディスク17は、上記両入力側ディスク16a、16b同士の間で上記入力軸8の周囲に、そのトロイド側面をこれら両入力側ディスク16a、16bのトロイド側面に対向させた状態で、上記入力軸8に対する相対回転を自在に設けている。更に、上記各パワーローラ18、18は、上記両入力側ディスク16a、16bと上記出力側ディスク17との、それぞれがトロイド曲面である軸方向側面同士の間に、それぞれ複数個ずつ挟持している。そして、上記各パワーローラ18、18を同期して揺動変位させる事により、上記両入力側ディスク16a、16bと上記出力側ディスク17との間の変速度比を調節自在としている。   The output-side disk 17 has a shape such that the back surfaces of a pair of output-side disks are in contact with each other, and both axial side surfaces are toroidal curved surfaces. Such an output-side disk 17 is formed in a state where the toroid side faces the toroid side surfaces of both the input side disks 16a and 16b around the input shaft 8 between the both input side disks 16a and 16b. The rotation relative to the input shaft 8 is freely provided. Further, each of the power rollers 18 and 18 is sandwiched between the input side disks 16a and 16b and the output side disk 17 between a plurality of axial side surfaces each having a toroidal curved surface. . The speed ratio between the input side disks 16a and 16b and the output side disk 17 can be adjusted by swinging and displacing the power rollers 18 and 18 synchronously.

尚、上記各パワーローラ18、18はそれぞれ、例えば後述する図3、4に示す様に、特許請求の範囲に記載した支持部材に相当するトラニオン19、19の内側面に、回転及び若干の揺動変位自在に支持されている。又、これら各トラニオン19、19は、前記入力軸8に対し捩れの位置にある枢軸20、20を中心とする揺動変位を自在に設けられている。又、上記各トラニオン19、19は、油圧式のアクチュエータ21により上記枢軸20、20の軸方向に変位させる事により、上記入力側ディスク16a、16bと出力側ディスク17との間の変速度比(トロイダル型無段変速機10の変速度比)を変える。即ち、例えば図3の(A)に示す様に、ステッピングモータ37の駆動に基づいて切り換えられる変速比制御弁22の切換に基づいて、上記アクチュエータ21を構成する1対の油圧室23a、23b同士の間に油圧の差を生じさせ(差圧を発生させ)、この差圧に応じて上記各トラニオン19、19を上記枢軸20、20の軸方向に変位させる。尚、上記ステッピングモータ37により駆動される変速比制御弁22に代えて、例えばサーボ弁、電磁比例弁、電磁切換弁等の電磁式の変速比制御弁を組み込み、この様な電磁式の変速比制御弁の制御(開閉の調節)に基づいて、上記アクチュエータ21の各油圧室23a、23bへの圧油の給排を行なう構成を採用する事もできる。   Each of the power rollers 18 and 18 rotates and slightly swings on the inner surface of the trunnions 19 and 19 corresponding to the support members described in the claims, for example, as shown in FIGS. It is supported so that it can be moved and displaced. Each of the trunnions 19 and 19 is provided with a swinging displacement about the pivots 20 and 20 that are twisted with respect to the input shaft 8. Further, the trunnions 19 and 19 are displaced in the axial direction of the pivots 20 and 20 by a hydraulic actuator 21, thereby changing a speed ratio between the input side disks 16 a and 16 b and the output side disk 17 ( The variable speed ratio of the toroidal type continuously variable transmission 10 is changed. That is, for example, as shown in FIG. 3A, a pair of hydraulic chambers 23 a and 23 b constituting the actuator 21 are connected to each other based on the switching of the speed ratio control valve 22 that is switched based on the driving of the stepping motor 37. A difference in hydraulic pressure is generated between them (the differential pressure is generated), and the trunnions 19 and 19 are displaced in the axial direction of the pivots 20 and 20 in accordance with the differential pressure. In place of the speed ratio control valve 22 driven by the stepping motor 37, an electromagnetic speed ratio control valve such as a servo valve, an electromagnetic proportional valve, or an electromagnetic switching valve is incorporated, and such an electromagnetic speed ratio is incorporated. A configuration in which pressure oil is supplied to and discharged from the hydraulic chambers 23a and 23b of the actuator 21 based on control of the control valve (adjustment of opening and closing) can also be adopted.

何れの構造を採用しても、上記各トラニオン19、19の変位に基づいて、上記各パワーローラ18、18の周面と上記入力側、出力側各ディスク16a、16b、17の内側面との転がり接触部(トラクション部)に作用する、接線方向の力の向きを変化(サイドスリップを発生)させる。そして、この様な力の変化に基づき、上記各パワーローラ18、18延いては上記各トラニオン19、19を、上記枢軸20、20を中心に揺動(傾転)させる事により、上記トロイダル型無段変速機10の変速度比(入力側ディスク16a、16bと出力側ディスク17との間の変速度比)を所望の値に調節する。
この様なトロイダル型無段変速機10の構造及び作用は、従来から広く知られているトロイダル型無段変速機と同様である為、詳しい説明は省略する。
Whichever structure is adopted, based on the displacement of each trunnion 19, 19, the circumferential surface of each power roller 18, 18 and the inner surface of each of the input side and output side disks 16 a, 16 b, 17 The direction of the tangential force acting on the rolling contact portion (traction portion) is changed (side slip is generated). Based on such a change in force, the power rollers 18 and 18 and then the trunnions 19 and 19 are swung (tilted) around the pivots 20 and 20 to thereby form the toroidal type. The variable speed ratio of the continuously variable transmission 10 (the variable speed ratio between the input side disks 16a and 16b and the output side disk 17) is adjusted to a desired value.
Since the structure and operation of such a toroidal-type continuously variable transmission 10 are the same as those of conventionally known toroidal-type continuously variable transmissions, detailed description thereof is omitted.

又、この様なトロイダル型無段変速機10の隣に設けた第一遊星歯車式変速機11は、ダブルピニオン式のもので、それぞれが第一キャリア24に回転自在に支持されて対となる第一遊星歯車25a、25bを互いに噛合させると共に、このうちの内径寄りの遊星歯車25aを第一太陽歯車26に、外径寄りの第一遊星歯車25bを第一リング歯車27に、それぞれ噛合させている。又、上記第一太陽歯車26は、中空回転軸28を介して上記出力側ディスク17と動力の伝達を可能に(同期した回転を自在に)連結している。この中空回転軸28は、上記第一太陽歯車26及び出力側ディスク17と同心に設けられ、基端部をこの出力側ディスク17の内径部に結合固定すると共に、先端部に上記第一太陽歯車26を固設している。   Further, the first planetary gear type transmission 11 provided next to such a toroidal type continuously variable transmission 10 is of a double pinion type, and each is rotatably supported by the first carrier 24 to form a pair. The first planetary gears 25a and 25b are meshed with each other, and the planetary gear 25a near the inner diameter is meshed with the first sun gear 26, and the first planetary gear 25b near the outer diameter is meshed with the first ring gear 27. ing. The first sun gear 26 is connected to the output side disk 17 via a hollow rotary shaft 28 so that power can be transmitted (synchronized rotation is freely possible). The hollow rotary shaft 28 is provided concentrically with the first sun gear 26 and the output side disk 17, and a base end portion is coupled and fixed to an inner diameter portion of the output side disk 17, and the first sun gear is mounted at a distal end portion. 26 is fixed.

又、上述の様な第一遊星歯車式変速機11の隣で、上記トロイダル型無段変速機10から離れた側に配置した第二遊星歯車式変速機12は、上記第一キャリア24と共に回転する第二キャリア29を有する。本例の場合には、これら第二キャリア29と第一キャリア24とを一体に構成し、この第一キャリア24に第二キャリア29としての機能も持たせている。そして、この第二キャリア29に回転自在に支持した各第二遊星歯車30を、伝達軸31の一端部(前端部)に固設した第二太陽歯車32に噛合させている。本例の場合、上記各第二遊星歯車30と、上記第一遊星歯車式変速機11を構成する各第一遊星歯車25a、25bのうちの径方向内方に位置する各第一遊星歯車25aとを、互いに同期した回転を自在に結合した、所謂ステップピニオンと呼ばれる組み合わせ遊星歯車としている。尚、上記各第二遊星歯車30の周囲にリング歯車は設けていない。   Further, the second planetary gear type transmission 12 arranged next to the first planetary gear type transmission 11 as described above and away from the toroidal type continuously variable transmission 10 rotates together with the first carrier 24. The second carrier 29 is provided. In the case of this example, the second carrier 29 and the first carrier 24 are integrally formed, and the first carrier 24 also has a function as the second carrier 29. Each second planetary gear 30 rotatably supported by the second carrier 29 is meshed with a second sun gear 32 fixed to one end portion (front end portion) of the transmission shaft 31. In the case of this example, each first planetary gear 25a located radially inward of each second planetary gear 30 and each first planetary gear 25a, 25b constituting the first planetary gear type transmission 11. Are combined planetary gears called so-called step pinions, which freely combine rotations synchronized with each other. Note that no ring gear is provided around each of the second planetary gears 30.

又、上記伝達軸31の他端部(後端部)に、上記第三遊星歯車式変速機13を構成する第三太陽歯車33を固設している。そして、この第三太陽歯車33の周囲に、同じく第三遊星歯車式変速機13を構成する第三キャリア34並びに第三リング歯車35を設けると共に、このうちの第三キャリア34に、第三遊星歯車36a、36bを回転自在に支持している。この様な第三遊星歯車式変速機13も、上記第一遊星歯車式変速機11と同様に、ダブルピニオン式のものとしている。又、上記第三キャリア34と前記出力軸9とを、動力の伝達を可能に(同期した回転を自在に)連結(結合)している。   A third sun gear 33 constituting the third planetary gear type transmission 13 is fixed to the other end portion (rear end portion) of the transmission shaft 31. A third carrier 34 and a third ring gear 35 that also constitute the third planetary gear type transmission 13 are provided around the third sun gear 33, and a third planet 34 is provided on the third carrier 34. Gears 36a and 36b are rotatably supported. Such a third planetary gear type transmission 13 is also of a double pinion type, like the first planetary gear type transmission 11. The third carrier 34 and the output shaft 9 are connected (coupled) so as to be able to transmit power (synchronously rotate freely).

又、上記第一遊星歯車式変速機11を構成する第一リング歯車27と上記第三キャリア34とを、前記低速用クラッチ14を介して動力の伝達を可能に連結自在とすると共に、上記第三リング歯車35とハウジング等の固定の部分とを、前記高速用クラッチ15により係脱自在としている。このうちの低速用クラッチ14が、特許請求の範囲に記載した第一のクラッチに相当するもので、減速比を大きくする(GN状態を含む)低速モード(特許請求の範囲に記載した第一のモードに相当)を実現する際に接続されて同じく小さくする高速モード(同じく第二のモードに相当)を実現する際に接続を断たれる。又、上記高速用クラッチ15が、特許請求の範囲に記載した第二のクラッチに相当するもので、上記高速モードを実現する際に接続されて上記低速モードを実現する際に接続を断たれる。   Further, the first ring gear 27 and the third carrier 34 constituting the first planetary gear type transmission 11 can be connected to each other so that power can be transmitted via the low speed clutch 14, and the first The three ring gear 35 and a fixed part such as a housing can be freely engaged and disengaged by the high speed clutch 15. Of these, the low speed clutch 14 corresponds to the first clutch described in the claims, and the low speed mode (including the GN state) for increasing the reduction ratio (including the first state described in the claims). The connection is cut off when realizing a high-speed mode (also corresponding to the second mode) which is connected when realizing the mode). The high-speed clutch 15 corresponds to the second clutch described in the claims, and is connected when the high-speed mode is realized and disconnected when the low-speed mode is realized. .

又、これら低速用、高速用各クラッチ14、15は、図示しない制御器により断接状態を切り換え(制御)自在としている。この為に、例えば上記制御器の制御信号に基づいて通電状態を制御される、低速クラッチ用、高速クラッチ用各電磁切換弁(図示省略)の切換により、上記低速用、高速用各クラッチ14、15の各油圧室に、それぞれ独立して圧油を導入自在とする。この様な低速クラッチ用、高速クラッチ用各電磁切換弁は、例えばソレノイドへの通電に基づいてスプールを変位させる電磁弁(スプール弁)を採用できる。そして、この様な低速クラッチ用、高速クラッチ用各電磁切換弁のスプールの変位(電磁弁の開閉)に基づき、上記低速用、高速用各クラッチ14、15の油圧室内への圧油の導入状態を切り換える事により、これら低速用、高速用各クラッチ14、18の断接状態を切り換える。   The low-speed and high-speed clutches 14 and 15 can be switched (controlled) by a controller (not shown). For this purpose, for example, the low-speed clutch and the high-speed clutch 14 are switched by switching the electromagnetic switching valves (not shown) for the low-speed clutch and the high-speed clutch whose energization state is controlled based on the control signal of the controller. The hydraulic oil can be introduced independently into each of the 15 hydraulic chambers. For such low-speed clutch and high-speed clutch electromagnetic switching valves, for example, an electromagnetic valve (spool valve) that displaces the spool based on energization of the solenoid can be employed. Then, based on the displacement of the spools of the electromagnetic switching valves for the low speed clutch and the high speed clutch (opening and closing of the electromagnetic valve), the pressure oil is introduced into the hydraulic chambers of the low speed and high speed clutches 14 and 15. Is switched to switch the connection / disconnection state of the low speed and high speed clutches 14 and 18.

図2は、トロイダル型無段変速機10の変速度比(増速比)と無段変速装置全体としての変速度比(増速比)との関係を示している。上記低速用クラッチ14が接続され、上記高速用クラッチ15の接続が断たれた低速モードでは、実線αに示す様に、トロイダル型無段変速機10の変速度比を、GN状態を実現できる値(GN値)から減速する程、無段変速装置全体としての変速度比を停止状態(速度比0の状態)から前進方向(+:正転方向)に増速させられる。又、同じくGN値から増速する程、同じく停止状態から後退方向(−:逆転方向)に増速させられる。一方、上記高速用クラッチ15が接続され、上記低速用クラッチ14の接続が断たれた高速モードでは、破線βに示す様に、上記トロイダル型無段変速機10の変速度比を増速する程、上記無段変速装置全体としての変速度比を(前進方向に)増速させられる。尚、この様な高速モード時には、上記トロイダル型無段変速機10を通過する動力を低減できる、パワースプリット状態が実現される。   FIG. 2 shows the relationship between the variable speed ratio (speed increase ratio) of the toroidal type continuously variable transmission 10 and the variable speed ratio (speed increase ratio) of the continuously variable transmission as a whole. In the low-speed mode in which the low-speed clutch 14 is connected and the high-speed clutch 15 is disconnected, the variable speed ratio of the toroidal continuously variable transmission 10 is a value that can realize the GN state, as indicated by the solid line α. As the speed is decelerated from (GN value), the variable speed ratio of the continuously variable transmission as a whole is increased from the stopped state (state where the speed ratio is 0) to the forward direction (+: forward direction). Similarly, as the speed increases from the GN value, the speed is also increased in the backward direction (-: reverse direction) from the stopped state. On the other hand, in the high speed mode in which the high speed clutch 15 is connected and the low speed clutch 14 is disconnected, the speed change ratio of the toroidal continuously variable transmission 10 is increased as shown by the broken line β. The speed ratio of the continuously variable transmission as a whole can be increased (in the forward direction). In such a high speed mode, a power split state in which the power passing through the toroidal type continuously variable transmission 10 can be reduced is realized.

又、上記低速モードと上記高速モードとの間のモード切換(動力伝達経路の切換)は、上記無段変速装置の変速度比が、これら低速モードと高速モードとの両方のモードで実現できる値(モード切換ポイント、回転同期点)、即ち、図2のaに調節された状態で行なわれる。この場合に、上記トロイダル型無段変速機10から見ると、このトロイダル型無段変速機10の変速度比が、上記両方のモードで実現できる値であるモード切換ポイントaに対応する値、即ち、図2のbに調節された状態で行なわれる。そして、この様にトロイダル型無段変速機10の変速度比(延いては無段変速装置の変速度比)をモード切換ポイントに対応する値b(延いてはモード切換ポイントa)に調節された状態で、上記低速用、高速用両クラッチ14、15の断接状態を切り換える(モード切換を行なう)事により、上記低速モードと上記高速モードとの切換の前後で、上記無段変速装置の変速度比を連続的に変化させられる様にしている。   Further, mode switching between the low speed mode and the high speed mode (switching of the power transmission path) is a value that the variable speed ratio of the continuously variable transmission can be realized in both the low speed mode and the high speed mode. (Mode switching point, rotation synchronization point), that is, in a state adjusted to a in FIG. In this case, when viewed from the toroidal type continuously variable transmission 10, the variable speed ratio of the toroidal type continuously variable transmission 10 corresponds to a value corresponding to the mode switching point a that is a value that can be realized in both modes. 2 is performed in a state adjusted to b in FIG. In this way, the variable speed ratio of the toroidal-type continuously variable transmission 10 (and hence the variable speed ratio of the continuously variable transmission) is adjusted to the value b corresponding to the mode switching point (and thus the mode switching point a). In this state, by switching the connection / disconnection state of the low speed and high speed clutches 14 and 15 (mode switching), before and after switching between the low speed mode and the high speed mode, the continuously variable transmission is The variable speed ratio can be changed continuously.

又、本例の場合には、上述の様な低速モードと高速モードの他、上記低速用クラッチ14と上記高速用クラッチ15との両方のクラッチ14、15を接続した状態のまま運転を行なう、バイパスモード(特許請求の範囲に記載した第三のモードに相当)を実現する機能を、これら各クラッチ14、15の断接制御を行なう為の前記制御器に持たせている。尚、このバイパスモードでは、上記トロイダル型無段変速機10の変速度比がモード切換ポイントに対応する値bのまま運転される。言い換えれば、上記無段変速装置の変速度比が、上記低速モードと上記高速モードとの両方のモードで実現できる値である、上記モード切換ポイントaに固定された状態で(モード切換ポイントaのまま変速度比が変化しない状態で)、運転が行なわれる。この様なバイパスモードでは、駆動源であるエンジンから無段変速装置に入力された動力の総てが、前記第一〜第三遊星歯車式変速機11〜13を介して出力され、上記トロイダル型無段変速機10では動力が伝達されなくなる。この様なバイパスモードは、例えばその時点の車両の走行状態(車速、アクセル開度等)に対応する無段変速装置(トロイダル型無段変速機10)の最適な目標変速度比が、上記モード切換ポイントa(モード切換ポイントに対応する値b)である場合に、上記制御器により切り換えられる。   In the case of this example, in addition to the low speed mode and the high speed mode as described above, the operation is performed with the clutches 14 and 15 of both the low speed clutch 14 and the high speed clutch 15 being connected. The controller for performing connection / disconnection control of each of the clutches 14 and 15 has a function of realizing a bypass mode (corresponding to the third mode described in the claims). In this bypass mode, the variable speed ratio of the toroidal type continuously variable transmission 10 is operated with the value b corresponding to the mode switching point. In other words, the variable speed ratio of the continuously variable transmission is a value that can be realized in both the low speed mode and the high speed mode, and is fixed to the mode switching point a (the mode switching point a The operation is performed with the speed ratio remaining unchanged. In such a bypass mode, all of the power input to the continuously variable transmission from the engine that is the driving source is output via the first to third planetary gear type transmissions 11 to 13, and the toroidal type The continuously variable transmission 10 does not transmit power. In such a bypass mode, for example, the optimum target speed ratio of the continuously variable transmission (toroidal continuously variable transmission 10) corresponding to the vehicle running state (vehicle speed, accelerator opening, etc.) at that time is the above mode. When it is the switching point a (value b corresponding to the mode switching point), it is switched by the controller.

又、本例の場合は、上記バイパスモードを実現する無段変速装置の変速度比、即ち、上記モード切換ポイントaを、(最終減速比等に応じて増減するが)増速比で1以下、より具体的には0.48としている。又、この様なバイパスモードに切り換えるべく、上記低速用、高速用両クラッチ14、15を(強制的に)接続する為の操作手段を、運転席(車内)に設けられたシフトレバー(操作レバー、セレクトレバー)の近傍等に設けている。そして、運転者が必要に応じて上記操作手段を操作する事により、上記バイパスモードに切り換え自在としている。又、本例の場合は、上記トロイダル型無段変速機10の異常を検出する為の異常検出手段を設けている。この様な異常検出手段としては、例えば前記制御器により、上記トロイダル型無段変速機10の油温や振動、変速度比等が、通常時(異常が生じてない状態)の値から逸脱した(予め設定した閾値を超えた)か否かを判定する事により構成する。そして、この様な異常検出手段が異常と判定した場合に、上記第三のモード(バイパスモード)に切り換えるべく、上記低速用、高速用両クラッチ14、15を(自動的且つ強制的に)接続する様にしている。   In the case of this example, the variable speed ratio of the continuously variable transmission that realizes the bypass mode, that is, the mode switching point a is increased or decreased according to the final reduction ratio, etc., at 1 or less. More specifically, it is set to 0.48. Further, in order to switch to such a bypass mode, an operating means for (forcibly) connecting both the low speed and high speed clutches 14 and 15 is a shift lever (operating lever) provided in the driver's seat (in the vehicle). Near the select lever). The driver can switch to the bypass mode by operating the operation means as required. In the case of this example, an abnormality detecting means for detecting an abnormality of the toroidal type continuously variable transmission 10 is provided. As such an abnormality detection means, for example, the controller causes the oil temperature, vibration, variable speed ratio, etc. of the toroidal-type continuously variable transmission 10 to deviate from normal values (states in which no abnormality has occurred). It is configured by determining whether or not (a preset threshold has been exceeded). When such an abnormality detection means determines an abnormality, the low speed and high speed clutches 14 and 15 are connected (automatically and forcibly) to switch to the third mode (bypass mode). I am trying to do it.

尚、上記異常検出手段は、例えば上記トロイダル型無段変速機10内を循環する潤滑油(トラクションオイル)の温度(油温)を温度検出手段(温度センサ)により検出し、この油温が予め設定した閾値(例えば200℃)を超えた場合に、上記異常が生じたと判定する事ができる。この様な場合には、上記トロイダル型無段変速機10のトラクション部(転がり接触部)で過大な滑りを生じ、この様な滑りに伴う発熱に基づいて、上記油温が上昇したと考えられる。そこで、この様な判定に基づいて、上記トロイダル型無段変速機10で動力を伝達しない(第一〜第三遊星歯車式変速機11〜13のみで動力を伝達する)様にすべく、上記バイパスモードに切り換える(低速用、高速用両クラッチ14、15を接続する)。又、例えば上記トロイダル型無段変速機10の振動を振動検出手段(振動センサ)により検出し、この振動が予め設定した閾値を超えた場合に、上記異常が生じたと判定する事もできる。この様な場合には、例えば上記トロイダル型無段変速機10に損傷を生じたり、或いは、異物が混入した等の異常が生じたと考えられる。   The abnormality detecting means detects, for example, the temperature (oil temperature) of the lubricating oil (traction oil) circulating in the toroidal type continuously variable transmission 10 by a temperature detecting means (temperature sensor), and the oil temperature is previously detected. When a set threshold value (for example, 200 ° C.) is exceeded, it can be determined that the abnormality has occurred. In such a case, it is considered that excessive slip occurs in the traction portion (rolling contact portion) of the toroidal type continuously variable transmission 10, and the oil temperature rises based on the heat generated by such slip. . Therefore, based on such a determination, the above-described toroidal-type continuously variable transmission 10 does not transmit power (transmits power only by the first to third planetary gear type transmissions 11 to 13). Switch to bypass mode (connect both low speed and high speed clutches 14 and 15). Further, for example, when the vibration of the toroidal-type continuously variable transmission 10 is detected by a vibration detecting means (vibration sensor) and the vibration exceeds a preset threshold value, it can be determined that the abnormality has occurred. In such a case, for example, it is considered that the toroidal continuously variable transmission 10 is damaged, or an abnormality such as foreign matter is mixed.

又、上記トロイダル型無段変速機10の変速度比を、例えば前記入力側ディスク16a、16bと出力側ディスク17の回転速度の比から求め、この変速度比が閾値を超えた(例えば機械的、設計的に実現できる値の範囲を逸脱した)場合に、上記異常が生じたと判定する事もできる。この様な場合には、グロススリップに基づいて例えば上記入力側ディスク16a、16bの回転速度が過度に上昇した(吹け上がった)等の異常が生じたと考えられる。尚、上記変速度比に代えて、上記出力側ディスク17或いは上記入力側ディスク16a、16bの回転速度が閾値を越えた場合に、上記異常が生じたと判定する事もできる。   The variable speed ratio of the toroidal type continuously variable transmission 10 is obtained from, for example, the ratio of the rotational speeds of the input side disks 16a and 16b and the output side disk 17, and this variable speed ratio exceeds a threshold (for example, mechanical It is also possible to determine that the abnormality has occurred when the value deviates from the range of values that can be realized by design. In such a case, it is considered that an abnormality such as an excessive increase in the rotational speed of the input side disks 16a and 16b has occurred based on the gross slip. In place of the variable speed ratio, it can be determined that the abnormality has occurred when the rotational speed of the output disk 17 or the input disks 16a and 16b exceeds a threshold value.

又、上記トロイダル型無段変速機10の変速度比を調節すべく、前記変速比制御弁22、22aを切り換える旨の変速指令が、前記制御器から出力されているにも拘らず(例えばステッピングモータ37に駆動信号、或いは、電磁弁に開閉信号が出力されているにも拘らず)、上記トロイダル型無段変速機10が変速されない(変速比が変更されない)場合にも、上記異常が生じたと判定する事ができる。この様な場合には、例えば変速を行なう為の制御ユニットを構成する上記変速比制御弁22、22aや、この変速比制御弁22、22aの切り換えを行なう駆動部材(ステッピングモータ37)等に異常(例えばステッピングモータ37の脱線等)が生じたと考えられる。又、これとは逆に、変速指令を出力していないにも拘らず、上記トロイダル型無段変速機10が変速している(変速比が変更している)場合にも、上記異常が生じたと判定する事ができる。この場合には、上記トロイダル型無段変速機10の変速比が周期的にハンチングしている可能性があると考えられる。
何れにしても、上記異常が生じたと判定された場合には、前記バイパスモードに切り換えるべく、前記制御器の機能に基づいて、前記低速用、高速用両クラッチ14、15を(強制的に)接続する。
In addition, in order to adjust the variable speed ratio of the toroidal type continuously variable transmission 10, a gear change command for switching the gear ratio control valves 22, 22a is output from the controller (for example, stepping). The above abnormality also occurs when the toroidal continuously variable transmission 10 is not shifted (the gear ratio is not changed) even though a drive signal is output to the motor 37 or an open / close signal is output to the solenoid valve. Can be determined. In such a case, for example, there is an abnormality in the transmission ratio control valves 22 and 22a constituting the control unit for performing a shift, the drive member (stepping motor 37) for switching the transmission ratio control valves 22 and 22a, and the like. (For example, derailment of the stepping motor 37, etc.) is considered to have occurred. On the other hand, when the toroidal-type continuously variable transmission 10 is shifting (the transmission ratio is changed) even though no shift command is output, the above abnormality occurs. Can be determined. In this case, it is considered that there is a possibility that the gear ratio of the toroidal type continuously variable transmission 10 hunts periodically.
In any case, when it is determined that the abnormality has occurred, the low-speed and high-speed clutches 14 and 15 are (forced) based on the function of the controller to switch to the bypass mode. Connecting.

更に本例の場合は、図3、4に示す様に、上記バイパスモードに切り換えた状態で、上記アクチュエータ21、21を構成する1対の油圧室23a、23a同士の油圧を等しくする(油圧室同士の差圧を0にする)。この為に、例えば図3(A)に示した構造の場合は、上記バイパスモードに切り換えられた状態で、上記変速比制御弁22の切り換えに基づいて、上記アクチュエータ21、21の各油圧室23a、23b同士の油圧を等しくする。具体的には、上記各油圧室23a、23bの油圧を油圧センサにより測定しつつ、これら各油圧室23a、23b同士の油圧が等しくなる様に(油圧の差が0になる様に)、上記変速比制御弁22の切り換えを行なう。又、図3(B)に示す様に、例えば通常は閉じている電磁弁41を開放する事により、上記アクチュエータ21、21の各油圧室23a、23b同士を互いに(強制的に)連通さて、これら各油圧室23a、23b同士の油圧を等しく(差圧を0にする)する事もできる。更には、図4に示す様に、例えば電磁弁38、38により、上記アクチュエータ21、21の各油圧室23a、23bを同じ油圧源、例えば油圧0であるドレン40{図4の(A)}や、所定圧に調整されるオイルポンプ39の吐出口{図4の(B)}に、連通させる事もできる。   Further, in the case of this example, as shown in FIGS. 3 and 4, the hydraulic pressures of the pair of hydraulic chambers 23a and 23a constituting the actuators 21 and 21 are made equal in the state switched to the bypass mode (hydraulic chambers). The differential pressure between them is set to 0). For this reason, for example, in the case of the structure shown in FIG. 3A, the hydraulic chambers 23a of the actuators 21 and 21 are switched based on the switching of the speed ratio control valve 22 in the state of switching to the bypass mode. , 23b are equalized. Specifically, while measuring the hydraulic pressure of each of the hydraulic chambers 23a and 23b with a hydraulic sensor, the hydraulic pressure of each of the hydraulic chambers 23a and 23b is made equal (so that the difference in hydraulic pressure becomes zero). The gear ratio control valve 22 is switched. Further, as shown in FIG. 3B, for example, by opening the normally closed electromagnetic valve 41, the hydraulic chambers 23a, 23b of the actuators 21, 21 are communicated with each other (forcibly), The hydraulic pressures of these hydraulic chambers 23a and 23b can be made equal (the differential pressure is made zero). Furthermore, as shown in FIG. 4, for example, solenoid valves 38 and 38 are used to connect the hydraulic chambers 23a and 23b of the actuators 21 and 21 to the same hydraulic source, for example, a drain 40 having a hydraulic pressure of 0 {FIG. Or it can also be made to communicate with the discharge port {(B) of FIG. 4} of the oil pump 39 adjusted to a predetermined pressure.

上述の様に、本例の無段変速装置の場合には、低速用クラッチ14と高速用クラッチ15との両方のクラッチ14、15を接続した状態のまま運転を行なう、バイパスモード(第三のモード)を備える。この様なバイパスモードでは、駆動源(例えばエンジン)から上記無段変速装置に入力された動力の総てが第一〜第三遊星歯車式変速機11〜13を介して出力され、トロイダル型無段変速機10では動力が伝達されなくなる。この為、この様なバイパスモードで運転を行なう事で、伝達効率の向上を図れる。又、この様な伝達効率の向上の他、上記トロイダル型無段変速機10で動力の伝達を行なえなくなる様な、予期せぬ異常が生じた場合でも、例えば運転者が操作手段を操作する事により、或いは、異常検出手段の判定に基づいて自動的に、上記バイパスモードに切り換える(バイパスモードで運転を行なう)事で、運転を継続できる。即ち、上記エンジンから入力される動力を第一〜第三遊星歯車式変速機11〜13のみを介して出力させる事ができ、上記異常に拘らず、車両を路肩等の安全な場所に避難させたり、或いは、修理工場まで自走する等の必要最低限の走行を行なう事ができる。しかも、この様なバイパスモードを実現するだけの為に、例えば前述の特許文献6に記載された構造で必要とされたエンジン直結用クラッチ7(図5参照)を設ける必要はなく、上記無段変速装置の構造を簡素に構成でき、コスト増大、大型化、重量増大を、何れも防止できる。   As described above, in the case of the continuously variable transmission of the present example, the bypass mode (third mode) is performed in which the clutches 14 and 15 of both the low speed clutch 14 and the high speed clutch 15 are connected. Mode). In such a bypass mode, all of the power input from the drive source (for example, the engine) to the continuously variable transmission is output via the first to third planetary gear type transmissions 11 to 13, and the toroidal type In the step transmission 10, power is not transmitted. For this reason, the transmission efficiency can be improved by operating in such a bypass mode. In addition to the improvement of the transmission efficiency as described above, even if an unexpected abnormality occurs such that the power transmission cannot be performed by the toroidal type continuously variable transmission 10, for example, the driver may operate the operation means. Or, the operation can be continued by automatically switching to the bypass mode (operating in the bypass mode) based on the determination of the abnormality detection means. That is, the power input from the engine can be output only through the first to third planetary gear type transmissions 11 to 13, and the vehicle is evacuated to a safe place such as a road shoulder regardless of the abnormality. Or you can perform the minimum required traveling such as self-running to a repair shop. In addition, in order to realize such a bypass mode, for example, it is not necessary to provide the engine direct coupling clutch 7 (see FIG. 5) required in the structure described in Patent Document 6 described above. The structure of the transmission can be simply configured, and any increase in cost, size, and weight can be prevented.

又、本例の場合は、上記バイパスモードに切り換えた(低速用、高速用両クラッチ14、15を接続した)状態で、各パワーローラ18、18を支持する各トラニオン19、19を変位させる為のアクチュエータ21、21を構成する1対の油圧室23a、23b同士の油圧を、互いに等しくしている(差圧を0にしている)。この為、上記トロイダル型無段変速機10の変速度比がモード切換ポイントに対応する値b(図2参照)からずれていても、この変速度比をこのモード切換ポイントに対応する値bに変化させられる(ずれをなくせる)。即ち、上記油圧室23a、23bの油圧が等しいと、上記トロイダル型無段変速機10に加わる動力(トルクシフトさせる動力)に基づいて上記各トラニオン19、19が軸方向に変位すると共に揺動し、上記トロイダル型無段変速機10の変速度比が、上記モード切換ポイントに対応する値に変化(変速)する。この為、例えば電気的な異常(例えば断線)等に伴って、上記トロイダル型無段変速機10の変速度比をモード切換ポイントに対応する値bに調節できなくなった場合でも、上記油圧室23a、23b同士の油圧を等しくする事で、このトロイダル型無段変速機10の変速度比をモード切換ポイントに対応する値bに変速させられる。この結果、この様に変速度比を調節できない状態でも、上述の様に油圧を等しくすると共に、上記バイパスモードに切り換える(低速用、高速用両クラッチ14、15を接続する)事で、必要最低限の走行を行なう事ができる。   In the case of this example, in order to displace the trunnions 19 and 19 that support the power rollers 18 and 18 in the state where the bypass mode is switched (the low speed and high speed clutches 14 and 15 are connected). The hydraulic pressures of the pair of hydraulic chambers 23a and 23b constituting the actuators 21 and 21 are equal to each other (the differential pressure is set to 0). For this reason, even if the variable speed ratio of the toroidal type continuously variable transmission 10 deviates from the value b corresponding to the mode switching point (see FIG. 2), the variable speed ratio is set to the value b corresponding to the mode switching point. Can be changed (displacement can be eliminated). That is, when the hydraulic pressures in the hydraulic chambers 23a and 23b are equal, the trunnions 19 and 19 are displaced and swung in the axial direction based on the power applied to the toroidal type continuously variable transmission 10 (power for torque shifting). The variable speed ratio of the toroidal continuously variable transmission 10 changes (shifts) to a value corresponding to the mode switching point. For this reason, even when the variable speed ratio of the toroidal continuously variable transmission 10 cannot be adjusted to the value b corresponding to the mode switching point due to, for example, an electrical abnormality (for example, disconnection), the hydraulic chamber 23a. , 23 b are equalized, the variable speed ratio of the toroidal-type continuously variable transmission 10 is changed to a value b corresponding to the mode switching point. As a result, even in a state where the speed change ratio cannot be adjusted in this way, the minimum oil pressure can be obtained by equalizing the hydraulic pressure as described above and switching to the bypass mode (by connecting both the low speed and high speed clutches 14 and 15). You can run as much as possible.

以上の説明は、本発明を、トロイダル型無段変速機と遊星歯車式変速機とを組み合わせると共に、入力軸を一方向に回転させたまま、出力軸の回転状態を、停止状態を挟んで正転、逆転に切り換えられる、所謂ギヤードニュートラル状態を実現できるモード(低速モード)と、上記遊星歯車式変速機により主動力を伝達し、上記トロイダル型無段変速機により変速比の調節を行なう、所謂パワースプリット状態を実現するモード(高速モード)とを備えた無段変速装置に適用した場合に就いて説明した。但し、本発明は、トロイダル型無段変速機と遊星歯車式変速機とを組み合わせると共に、例えばトロイダル型無段変速機のみで動力を伝達するモード(低速モード)と、パワースプリット状態を実現するモード(高速モード)とを備えた無段変速装置や、ギヤードニュートラル状態を実現できるモード(低速モード)とトロイダル型無段変速機のみで動力を伝達するモード(高速モード)とを備えた無段変速装置に適用する事もできる。言い換えれば、トロイダル型無段変速機と遊星歯車式変速機とを組み合わせると共に、第一のモード(例えば低速モード)と第二のモード(例えば高速モード)との切換の前後で、無段変速装置の変速度比を連続的に変化さられる構造であれば、本発明を適用できる。何れの構造の場合も、モード切換ポイントで、第一のクラッチ(例えば低速用クラッチ)と第二のクラッチ(高速用クラッチ)との両方のクラッチを接続したまま運転を行なう事により、第三のモード(例えばバイパスモード)を実現する。
又、トロイダル型無段変速機の構造に関しては、ハーフトロイダル型、フルトロイダル型の何れでも良い。
In the above description, the present invention is combined with a toroidal continuously variable transmission and a planetary gear type transmission, and the rotation state of the output shaft is corrected with the input shaft rotated in one direction. A so-called geared neutral state (low speed mode) that can be switched between rotation and reverse, and the planetary gear type transmission transmits the main power and the toroidal continuously variable transmission adjusts the transmission ratio. The case where the present invention is applied to a continuously variable transmission having a mode (high speed mode) for realizing a power split state has been described. However, the present invention combines a toroidal type continuously variable transmission and a planetary gear type transmission, for example, a mode in which power is transmitted only by the toroidal type continuously variable transmission (low speed mode), and a mode in which a power split state is realized. Continuously variable transmission equipped with (high-speed mode), continuously variable transmission equipped with a mode (low-speed mode) that can realize a geared neutral state and a mode (high-speed mode) that transmits power only by a toroidal-type continuously variable transmission It can also be applied to devices. In other words, the toroidal continuously variable transmission and the planetary gear type transmission are combined, and the continuously variable transmission before and after switching between the first mode (for example, the low speed mode) and the second mode (for example, the high speed mode). The present invention can be applied to any structure that can continuously change the change rate ratio. In any structure, the third switching point is operated by connecting both the first clutch (for example, the low speed clutch) and the second clutch (high speed clutch) at the mode switching point. A mode (for example, bypass mode) is realized.
The structure of the toroidal continuously variable transmission may be either a half toroidal type or a full toroidal type.

本発明の実施の形態の1例を示す半部断面図。The half part sectional view showing an example of an embodiment of the invention. 無段変速装置全体としての変速度比(増速比)とトロイダル型無段変速機の変速度比(増速比)との関係を示す線図。The diagram which shows the relationship between the variable speed ratio (speed increase ratio) as the whole continuously variable transmission, and the variable speed ratio (speed increase ratio) of a toroidal type continuously variable transmission. 変速比制御を行なう部分の構造の2例を示す、要部油圧回路図。The principal part hydraulic circuit diagram which shows two examples of the structure of the part which performs gear ratio control. アクチュエータの油圧室同士の油圧を等しくする為の構造の2例を示す、要部油圧回路図。The principal part hydraulic circuit diagram which shows two examples of the structure for equalizing the hydraulic pressure of the hydraulic chambers of an actuator. 従来の構造の1例を示す略断面図。FIG. 6 is a schematic cross-sectional view showing an example of a conventional structure.

符号の説明Explanation of symbols

1 トロイダル型無段変速機
2 第一遊星歯車式変速機
3 第二遊星歯車式変速機
4 第三遊星歯車式変速機
5 低速用クラッチ
6 高速用クラッチ
7 エンジン直結用クラッチ
8 入力軸
9 出力軸
10 トロイダル型無段変速機
11 第一遊星歯車式変速機
12 第二遊星歯車式変速機
13 第三遊星歯車式変速機
14 低速用クラッチ
15 高速用クラッチ
16a、16b 入力側ディスク
17 出力側ディスク
18 パワーローラ
19 トラニオン
20 枢軸
21 アクチュエータ
22 変速比制御弁
23a、23b 油圧室
24 第一キャリア
25a、25b 第一遊星歯車
26 第一太陽歯車
27 第一リング歯車
28 中空回転軸
29 第二キャリア
30 第二遊星歯車
31 伝達軸
32 第二太陽歯車
33 第三太陽歯車
34 第三キャリア
35 第三リング歯車
36a、36b 第三遊星歯車
37 ステッピングモータ
38 電磁弁
39 オイルポンプ
40 ドレン
41 電磁弁
DESCRIPTION OF SYMBOLS 1 Toroidal type continuously variable transmission 2 1st planetary gear type transmission 3 2nd planetary gear type transmission 4 3rd planetary gear type transmission 5 Low speed clutch 6 High speed clutch 7 Engine direct coupling clutch 8 Input shaft 9 Output shaft DESCRIPTION OF SYMBOLS 10 Toroidal type continuously variable transmission 11 1st planetary gear type transmission 12 2nd planetary gear type transmission 13 Third planetary gear type transmission 14 Low speed clutch 15 High speed clutch 16a, 16b Input side disk 17 Output side disk 18 Power roller 19 Trunnion 20 Axis 21 Actuator 22 Gear ratio control valve 23a, 23b Hydraulic chamber 24 First carrier 25a, 25b First planetary gear 26 First sun gear 27 First ring gear 28 Hollow rotating shaft 29 Second carrier 30 Second Planetary gear 31 Transmission shaft 32 Second sun gear 33 Third sun gear 34 Third carrier 35 First Ring gear 36a, 36b the third planetary gear 37 a stepping motor 38 solenoid valve 39 the oil pump 40 drain 41 solenoid valve

Claims (8)

トロイダル型無段変速機と遊星歯車式変速機とをクラッチ装置を介して組み合わせて成り、このクラッチ装置は、減速比を大きくする第一のモードを実現する際に接続されて同じく小さくする第二のモードを実現する際に接続を断たれる第一のクラッチと、この第二のモードを実現する際に接続されて上記第一のモードを実現する際に接続を断たれる第二のクラッチとから成り、これら各クラッチの断接状態を切り換える事により、変速状態を上記第一のモードと上記第二のモードとのうちの何れかのモードにするものである無段変速装置に於いて、上記第一、第二のモードの他、上記第一のクラッチと上記第二のクラッチとの両方のクラッチを接続した状態のまま運転を継続して行なう、第三のモードを備えた事を特徴とする無段変速装置。   A toroidal-type continuously variable transmission and a planetary gear type transmission are combined through a clutch device, and this clutch device is connected to realize a first mode for increasing the reduction ratio and is also made smaller. The first clutch that is disconnected when realizing the first mode and the second clutch that is connected when realizing the second mode and disconnected when realizing the first mode In the continuously variable transmission that changes the state of shifting of each of these clutches to change the shifting state to one of the first mode and the second mode. In addition to the first and second modes, a third mode is provided in which the operation is continued while both the first clutch and the second clutch are connected. Characteristic continuously variable transmission 第三のモードを実現する無段変速装置の変速度比を、増速比で1以下とした、請求項1に記載した無段変速装置。   The continuously variable transmission according to claim 1, wherein the speed change ratio of the continuously variable transmission that realizes the third mode is set to 1 or less in terms of the speed increasing ratio. 第三のモードに切り換える為の操作手段を設けており、この操作手段の操作に基づいて、この三のモードに切り換え自在とした、請求項1〜2のうちの何れか1項に記載した無段変速装置。   An operation means for switching to the third mode is provided, and based on an operation of the operation means, switching to the three modes is made possible. Step transmission. トロイダル型無段変速機の異常を検出する為の異常検出手段を備えており、この異常検出手段が異常と判定した場合に、第三のモードに切り換える、請求項1〜3のうちの何れか1項に記載した無段変速装置。   An abnormality detection means for detecting an abnormality of the toroidal continuously variable transmission is provided, and when the abnormality detection means determines that there is an abnormality, it switches to the third mode. The continuously variable transmission described in item 1. トロイダル型無段変速機は、各パワーローラを回転自在に支持した各支持部材を油圧式のアクチュエータにより変位させる事により、変速度比を変化させるものであり、第三のモードに切り換えた状態で、上記アクチュエータを構成する1対の油圧室同士の油圧を等しくする、請求項1〜4のうちの何れか1項に記載した無段変速装置。   The toroidal-type continuously variable transmission changes the speed ratio by displacing each support member that rotatably supports each power roller by a hydraulic actuator. The continuously variable transmission according to any one of claims 1 to 4, wherein the hydraulic pressures of a pair of hydraulic chambers constituting the actuator are equalized. トロイダル型無段変速機の変速度比を制御する為の制御ユニットは、アクチュエータの各油圧室への圧油の給排状態を切り換える変速比制御弁を備え、この変速比制御弁の作動に基づいて、上記各油圧室の油圧を等しくする、請求項5に記載した無段変速装置。   The control unit for controlling the variable speed ratio of the toroidal-type continuously variable transmission includes a speed ratio control valve that switches the supply / discharge state of the pressure oil to each hydraulic chamber of the actuator, and is based on the operation of the speed ratio control valve. The continuously variable transmission according to claim 5, wherein the hydraulic pressure in each of the hydraulic chambers is made equal. アクチュエータの各油圧室同士を互いに連通する事により、各油圧室の油圧を等しくする、請求項5〜6のうちの何れか1項に記載した無段変速装置。   The continuously variable transmission according to any one of claims 5 to 6, wherein the hydraulic chambers of the actuator are made to communicate with each other so that the hydraulic pressures of the hydraulic chambers are equalized. アクチュエータの各油圧室を同じ油圧源に連通する事により、各油圧室の油圧を等しくする、請求項5〜6のうちの何れか1項に記載した無段変速装置。   The continuously variable transmission according to any one of claims 5 to 6, wherein each hydraulic chamber of the actuator is connected to the same hydraulic pressure source to equalize the hydraulic pressure of each hydraulic chamber.
JP2006184232A 2006-07-04 2006-07-04 Continuously variable transmission Pending JP2008014357A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006184232A JP2008014357A (en) 2006-07-04 2006-07-04 Continuously variable transmission

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006184232A JP2008014357A (en) 2006-07-04 2006-07-04 Continuously variable transmission

Publications (1)

Publication Number Publication Date
JP2008014357A true JP2008014357A (en) 2008-01-24

Family

ID=39071579

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006184232A Pending JP2008014357A (en) 2006-07-04 2006-07-04 Continuously variable transmission

Country Status (1)

Country Link
JP (1) JP2008014357A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015227717A (en) * 2014-06-03 2015-12-17 日本精工株式会社 Continuously variable transmission
JP2015232348A (en) * 2014-06-09 2015-12-24 日本精工株式会社 Continuously variable transmission

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015227717A (en) * 2014-06-03 2015-12-17 日本精工株式会社 Continuously variable transmission
JP2015232348A (en) * 2014-06-09 2015-12-24 日本精工株式会社 Continuously variable transmission

Similar Documents

Publication Publication Date Title
JP5027521B2 (en) Variable speed transmission
JP2007139160A (en) Continuously variable transmission
JP5463425B2 (en) Continuously variable transmission for vehicle
JP2020070835A (en) Working vehicle
JP2002181185A (en) Clutch controller in continuously variable transmission for vehicle
JP2015017664A (en) Drive device for electric vehicle
JP4857660B2 (en) Shift control device for continuously variable transmission
JP2008014357A (en) Continuously variable transmission
JP4529442B2 (en) Toroidal continuously variable transmission
KR101498810B1 (en) Continuously variable transmission
JP2006029372A (en) Toroidal type stepless speed change device and its system
JP2004076940A (en) Toroidal continuously variable transmission
JP4715794B2 (en) Continuously variable transmission
JP6519991B2 (en) Stepless transmission
JP2017067211A (en) Hydraulic circuit of automatic transmission
JP2015227717A (en) Continuously variable transmission
JP3164028B2 (en) Hydromechanical transmission
JP2005164014A (en) Toroidal type continuously variable transmission
US9534686B2 (en) Continuously variable transmission device
JP4826409B2 (en) Continuously variable transmission
JP2012159159A (en) Continuously variable transmission
JP3009502B2 (en) Vehicle power transmission
JP3157267B2 (en) Vehicle power transmission
JP4534726B2 (en) Toroidal continuously variable transmission and continuously variable transmission
JP6447065B2 (en) Continuously variable transmission