JP2007031560A - Molded product - Google Patents

Molded product Download PDF

Info

Publication number
JP2007031560A
JP2007031560A JP2005216779A JP2005216779A JP2007031560A JP 2007031560 A JP2007031560 A JP 2007031560A JP 2005216779 A JP2005216779 A JP 2005216779A JP 2005216779 A JP2005216779 A JP 2005216779A JP 2007031560 A JP2007031560 A JP 2007031560A
Authority
JP
Japan
Prior art keywords
styrene
mass
rubber
resin
molded body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005216779A
Other languages
Japanese (ja)
Inventor
Atsushi Takahashi
淳 高橋
Takeshi Yamada
毅 山田
Yasuaki Taruta
泰明 樽田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denki Kagaku Kogyo KK filed Critical Denki Kagaku Kogyo KK
Priority to JP2005216779A priority Critical patent/JP2007031560A/en
Publication of JP2007031560A publication Critical patent/JP2007031560A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a molded product suitable for use in a thin/highly precise optical lens by using a rubber modified styrene resin composition having good dimensional stability, impact resistance, high index of refraction and moldability, and moderate transparency. <P>SOLUTION: This molded product is made from the rubber modified styrene resin composition, wherein the rubber modified styrene resin is produced by graft polymerizing a styrene monomer in the presence of a styrene-butadiene copolymer including a 20-50 mass% styrene monomer unit, the rubbery polymer particle of ≥80 volume% that forms a discontinuous phase of the resin has a core/shell structure, and the rubber modified styrene resin composition comprises a 45-100 mass% rubber modified styrene resin (A) with a 0.3-2.0 μm volume median particle diameter (dv) of a rubbery polymer particle, and a 0-55 mass% styrene-(meth)acrylate copolymer resin (B) obtained by copolymerizing a styrene monomer with a (meth)acrylate monomer. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、特定のゴム変成スチレン系樹脂組成物からなる成形体に関する。特にプロジェクションテレビ画面の透過型スクリーンとして使用されるスクリーンレンズ等に用いられる光学レンズ成形体に関する。   The present invention relates to a molded article made of a specific rubber-modified styrene resin composition. In particular, the present invention relates to an optical lens molded body used for a screen lens used as a transmission type screen of a projection television screen.

透過型スクリーン等のスクリーンレンズは、プロジェクションテレビの画像を投与し、目的とする表示を実現するために広く用いられている。このスクリーンレンズは、観察者が観察する際に明るく、視野角が拡大するように、一般的にレンチキューレンズやフレネルレンズ等のレンズ成形体を組み合わせて構成されている。これらスクリーンレンズに使用される投光材料は、透明性に優れたメタクリル樹脂が広く使用されてきており、スクリーンレンズの加工方法もプレス成形、押出成形、キャスト成形や射出成形等により行われてきた。   A screen lens such as a transmission screen is widely used to administer an image of a projection television and realize a target display. This screen lens is generally configured by combining lens moldings such as a lenticule lens and a Fresnel lens so that it is bright when an observer observes and the viewing angle is enlarged. As the light projecting material used for these screen lenses, methacrylic resins having excellent transparency have been widely used, and screen lens processing methods have been performed by press molding, extrusion molding, cast molding, injection molding, and the like. .

このようなスクリーンレンズ用成形体の基材として使用されるメタクリル樹脂は、吸水率が高いためスクリーンレンズ用成形体の寸法変化が生じやすく、光学特性が損なわれたり、枠体からのスクリーンレンズの脱落が生じるという問題を有していた。また、メタクリル樹脂は耐衝撃性に劣り、スクリーンレンズの製造時、輸送時、組み立て時に、割れなどを生じて不良品となることがあった。   The methacrylic resin used as a base material for such a screen lens molded body has a high water absorption rate, so that the dimensional change of the screen lens molded body is likely to occur, the optical characteristics are impaired, and the screen lens from the frame body is damaged. It had the problem of dropping out. In addition, methacrylic resin is inferior in impact resistance, and cracks and the like may occur during manufacture, transportation, and assembly of screen lenses, resulting in defective products.

これらの問題を解決するために、芳香族ビニル単量体、(メタ)アクリル酸エステル系単量体、多官能性不飽和単量体混合物にスチレン−ジエン系共重合体を溶存させて重合し、フレネルレンズを得る方法が開示されている(特許文献1参照)。しかしながら、近年の薄肉化・高精細化要望、さらにはコストダウン要望に対しては十分なものではなく、高屈折率、良成形加工性の樹脂が求められており、さらには安価な成形法として利用されている射出成形や押出成形で成形した光学レンズ成形体が求められている。
特開平5−341101号公報
In order to solve these problems, a styrene-diene copolymer is dissolved in an aromatic vinyl monomer, a (meth) acrylic acid ester monomer, and a polyfunctional unsaturated monomer mixture. A method for obtaining a Fresnel lens is disclosed (see Patent Document 1). However, it is not sufficient for recent demands for thinning and high definition, and further cost reduction, and a resin with high refractive index and good moldability is required. There is a demand for an optical lens molded body formed by injection molding or extrusion molding.
Japanese Patent Laid-Open No. 5-341101

本発明は、寸法安定性、耐衝撃性、高屈折率、成形加工性が良好で、かつ適度な透明性を有するゴム変性スチレン系樹脂組成物を用いることにより、薄肉・高精細な光学レンズ用途に適した成形体を提供するものである。   The present invention provides a thin-walled, high-definition optical lens application by using a rubber-modified styrene resin composition having good dimensional stability, impact resistance, high refractive index, good moldability, and appropriate transparency. The molded object suitable for is provided.

本発明者らは、前記課題を解決すべく鋭意検討した結果、特定のゴム変性スチレン系樹脂組成物が、寸法安定性、耐衝撃性、高屈折率、成形加工性が良好で、かつ実用的な透明性を有し、この特定のゴム変性スチレン系樹脂組成物からなる成形体が、薄肉・高精細な光学レンズ用途に適することを見出し、本発明に到達した。   As a result of intensive studies to solve the above problems, the present inventors have found that a specific rubber-modified styrene-based resin composition has good dimensional stability, impact resistance, high refractive index, moldability, and is practical. The present inventors have found that a molded article having such transparency and comprising this specific rubber-modified styrenic resin composition is suitable for use in a thin-walled, high-definition optical lens.

即ち、本発明は、(1)スチレン系単量体単位の含有量が20〜50質量%であるスチレン−ブタジエン共重合体の存在下、スチレン系単量体をグラフト重合してなるゴム変性スチレン系樹脂であって、前記樹脂の分散相を形成するゴム状重合体粒子の80体積%以上がコア/シェル構造を有し、ゴム状重合体粒子の体積中位粒子径(dv)が0.3〜2.0μmであるゴム変性スチレン系樹脂(A)45〜100質量%と、スチレン系単量体と(メタ)アクリル酸エステル系単量体を共重合してなるスチレン−(メタ)アクリル酸エステル系共重合樹脂(B)0〜55質量%を含有するゴム変性スチレン系樹脂組成物からなる成形体、(2)成形体が押出成形体又は射出成形体ある(1)記載の成形体、(3)成形体が、光学レンズ成形体である(1)又は(2)記載の成形体、(4)成形体が、スクリーンレンズである(1)〜(3)のいずれか1項記載の成形体である。   That is, the present invention relates to (1) a rubber-modified styrene obtained by graft polymerization of a styrene monomer in the presence of a styrene-butadiene copolymer having a styrene monomer unit content of 20 to 50% by mass. 80% by volume or more of the rubber-like polymer particles forming the dispersed phase of the resin have a core / shell structure, and the volume-median particle diameter (dv) of the rubber-like polymer particles is 0.00. Styrene- (meth) acryl obtained by copolymerizing 45 to 100% by mass of a rubber-modified styrene resin (A) 3 to 2.0 μm, a styrene monomer and a (meth) acrylic acid ester monomer A molded article comprising a rubber-modified styrene resin composition containing 0 to 55% by mass of an acid ester copolymer resin (B), (2) the molded article according to (1), wherein the molded article is an extrusion molded article or an injection molded article (3) The molded body is an optical lens molded body. There (1) or (2) molding according a molded body according to any one of (4) molded article is a screen lens (1) to (3).

本発明によれば、寸法安定性、耐衝撃性、高屈折率、成形加工性が良好で、かつ実用的な透明性を有するゴム変性スチレン系樹脂組成物を用いることにより、薄肉・高精細な光学レンズ用途に適した成形体が得られる。   According to the present invention, by using a rubber-modified styrenic resin composition having good dimensional stability, impact resistance, high refractive index, good moldability and practical transparency, it is thin and high-definition. A molded article suitable for optical lens applications can be obtained.

以下、本発明を詳細に説明する。
本発明を構成するゴム変性スチレン系樹脂(A)は、スチレン−ブタジエン共重合体の存在下、スチレン系単量体をグラフト重合してなる。
Hereinafter, the present invention will be described in detail.
The rubber-modified styrene resin (A) constituting the present invention is obtained by graft polymerization of a styrene monomer in the presence of a styrene-butadiene copolymer.

スチレン系単量体は、スチレン、α−メチルスチレン、p−メチルスチレン、p−t−ブチルスチレン等を挙げることができるが、好ましくはスチレンである。これらスチレン系単量体は、単独で用いてもよいし、2種類以上を併用してもよい。
スチレン系単量体以外の単量体、例えば(メタ)アクリル酸エステル系単量体、アクリロニトリル、無水マレイン酸、メタクリル酸等もスチレン系単量体100質量部に対し、10質量部未満であれば使用することができる。
Examples of the styrene monomer include styrene, α-methyl styrene, p-methyl styrene, pt-butyl styrene, and the like, and styrene is preferable. These styrene monomers may be used alone or in combination of two or more.
Monomers other than styrenic monomers, such as (meth) acrylic acid ester monomers, acrylonitrile, maleic anhydride, methacrylic acid, etc. may be less than 10 parts by mass with respect to 100 parts by mass of styrene monomers. Can be used.

スチレン−ブタジエン共重合体は、スチレン系単量体単位の含有量が20〜50質量%、好ましくは30〜45質量%のものを用いる。スチレン系単量体単位の含有量が20質量%未満のスチレン−ブタジエン共重合体あるいはポリブタジエンを用いると、透明性が低いものとなり、50質量%を越えるスチレン−ブタジエン共重合体を用いると、耐衝撃性が低いものとなる。
スチレン−ブタジエン共重合体の構造としては、ランダム、ブロック、テーパー等公知の構造が採用できる。また、スチレン−ブタジエン共重合体は単独で用いてもよいし、2種以上を併用してもよい。さらに、本発明で使用するスチレン−ブタジエン共重合体以外のゴム状重合体、例えばポリブタジエンやスチレン系単量体単位の含有量が20質量%未満のスチレン−ブタジエン共重合体を、本発明で使用するスチレン−ブタジエン共重合体に混合して使用することもできるが、混合する場合は、混合物全体でのスチレン系単量体単位の含有量が20〜50質量%であり、好ましくは30〜45質量%である。
The styrene-butadiene copolymer has a styrene monomer unit content of 20 to 50% by mass, preferably 30 to 45% by mass. When a styrene-butadiene copolymer or polybutadiene having a styrene monomer unit content of less than 20% by mass is used, the transparency is low. When a styrene-butadiene copolymer exceeding 50% by mass is used, Impact resistance is low.
As the structure of the styrene-butadiene copolymer, a known structure such as random, block or taper can be adopted. Moreover, a styrene-butadiene copolymer may be used independently and may use 2 or more types together. Further, a rubbery polymer other than the styrene-butadiene copolymer used in the present invention, such as a styrene-butadiene copolymer having a content of polybutadiene or a styrene monomer unit of less than 20% by mass, is used in the present invention. The styrene-butadiene copolymer can be mixed and used, but when mixed, the content of the styrene monomer unit in the whole mixture is 20 to 50% by mass, preferably 30 to 45%. % By mass.

スチレン−ブタジエン共重合体の割合は、スチレン系単量体100質量部に対し、好ましくは3〜30質量部である。スチレン−ブタジエン共重合体が3質量部未満の場合は耐衝撃性等が低く、また30質量部を越える場合は透明性が低く、目的を達しない場合がある。   The ratio of the styrene-butadiene copolymer is preferably 3 to 30 parts by mass with respect to 100 parts by mass of the styrene monomer. When the styrene-butadiene copolymer is less than 3 parts by mass, impact resistance and the like are low, and when it exceeds 30 parts by mass, the transparency is low and the purpose may not be achieved.

ゴム変性スチレン系樹脂(A)の重合方法は公知の方法が利用できるが、塊状重合法、溶液重合法が好ましい。
そして、公知の技術、例えば重合反応時の撹拌速度、温度などの調整、重合開始剤、連鎖移動剤の添加等により、本発明の条件を充足するゴム変性スチレン系樹脂(A)を得ることができる。重合開始剤としては、過酸化ベンゾイル、アゾビスイソブチロニトリル、t−ブチルパーオキシベンゾネート、1,1−ビス(t−ブチルパーオキシ)−3,3,5−トリメチルシクロヘキサン、t−ブチルパーオキシイソプロピルカーボネート、ジクミルパーオキサイド、t−ブチルパーオキシアセテート、t−ブチルパーオキシ−2−エチルヘキサノエート、2,2−ビス(4,4−ジ−t−ブチルパーオキシシクロヘキシル)プロパン、エチル−3,3−ジ(t−ブチルパーオキシ)ブチレート、t−ブチルパーオキシイソブチレート等が挙げられる。また、連鎖移動剤としてはt−ドデシルメルカプタン、n−ドデシルメルカプタン、α−メチルスチレンダイマー等が挙げられる。
As a polymerization method of the rubber-modified styrene resin (A), a known method can be used, but a bulk polymerization method and a solution polymerization method are preferable.
Then, a rubber-modified styrenic resin (A) satisfying the conditions of the present invention can be obtained by a known technique such as adjustment of the stirring speed and temperature during the polymerization reaction, addition of a polymerization initiator, a chain transfer agent, and the like. it can. As the polymerization initiator, benzoyl peroxide, azobisisobutyronitrile, t-butylperoxybenzoate, 1,1-bis (t-butylperoxy) -3,3,5-trimethylcyclohexane, t-butyl Peroxyisopropyl carbonate, dicumyl peroxide, t-butyl peroxyacetate, t-butylperoxy-2-ethylhexanoate, 2,2-bis (4,4-di-t-butylperoxycyclohexyl) propane , Ethyl-3,3-di (t-butylperoxy) butyrate, t-butylperoxyisobutyrate and the like. Examples of the chain transfer agent include t-dodecyl mercaptan, n-dodecyl mercaptan, α-methylstyrene dimer and the like.

ゴム変性スチレン系樹脂(A)はマトリックスであるスチレン系樹脂と分散相を形成するゴム状重合体粒子からなる。ゴム状重合体粒子中のコア/シェル構造の割合は80体積%以上であり、好ましくは85体積%以上である。コア/シェル構造が80体積%未満である場合は透明性、特に実用的な透明性である平行線透過率が劣り好ましくない。
本発明において、ゴム状重合体粒子中のコア/シェル構造ゴム状重合体粒子の含有割合はゴム変性スチレン系樹脂を四酸化オスミウムで染色し、超薄切片法により試料を形成し、電子顕微鏡で10000倍に拡大した写真を撮影し、この拡大写真中の1000個以上の分散ゴム粒子についてその形状を測定し、次式により求める。
コア/シェル構造ゴム状重合体粒子の含有割合(体積%)=ΣmiDi/ΣniDi
(式中、niは粒子径Diのゴム状重合体粒子の個数を示し、miは粒子径Diのコア/シェル構造ゴム状重合体粒子の個数を示す。)
ゴム状重合体粒子の構造は、重合時の開始剤や撹拌数、ゴム状重合体等で制御できる。
The rubber-modified styrene resin (A) is composed of rubber-like polymer particles that form a dispersed phase with a styrene resin as a matrix. The ratio of the core / shell structure in the rubber-like polymer particles is 80% by volume or more, preferably 85% by volume or more. When the core / shell structure is less than 80% by volume, the transparency, particularly the parallel line transmittance, which is practical transparency, is inferior.
In the present invention, the content ratio of the core / shell structure rubber-like polymer particles in the rubber-like polymer particles is obtained by staining a rubber-modified styrene resin with osmium tetroxide, forming a sample by an ultrathin section method, and using an electron microscope. A photograph magnified 10,000 times is taken, the shape of 1000 or more dispersed rubber particles in the magnified photograph is measured, and the following formula is obtained.
Content ratio (volume%) of core / shell structure rubbery polymer particles = ΣmiDi 3 / ΣniDi 3
(In the formula, ni represents the number of rubber-like polymer particles having a particle diameter Di, and mi represents the number of core / shell structure rubber-like polymer particles having a particle diameter Di.)
The structure of the rubber-like polymer particles can be controlled by the polymerization initiator, the number of stirring, the rubber-like polymer, and the like.

ゴム変性スチレン系樹脂(A)におけるゴム状重合体粒子の体積中位粒子径(dv)は0.3〜2.0μmであり、好ましくは0.3〜1.0μmである。体積中位粒子径(dv)が0.3μm未満であると、得られるゴム変性スチレン系樹脂組成物の耐衝撃性が著しく低下し、2.0μmを越えるようなコア/シェル構造ゴム状重合体粒子を有するゴム変性スチレン系樹脂は透明性が低いものとなる。
体積中位粒子径(dv)は、重合時の開始剤や撹拌数、ゴム状重合体等で制御できる。
The volume median particle diameter (dv) of the rubber-like polymer particles in the rubber-modified styrenic resin (A) is 0.3 to 2.0 μm, preferably 0.3 to 1.0 μm. When the volume median particle diameter (dv) is less than 0.3 μm, the impact resistance of the resulting rubber-modified styrenic resin composition is significantly reduced, and the core / shell structure rubbery polymer exceeds 2.0 μm. The rubber-modified styrene resin having particles has low transparency.
The volume median particle diameter (dv) can be controlled by an initiator, the number of stirring, a rubbery polymer, and the like at the time of polymerization.

本発明において、体積中位粒子径(dv)はゴム変性スチレン系樹脂(A)をジメチルホルムアミドに溶解させ、レーザー回折方式粒度分布測定装置(コールター社製レーザー回折方式粒子アナライザーLS−230型)により測定し、体積基準の粒径分布曲線の中位粒子径をもって体積中位粒子径(dv)とする。   In the present invention, the volume-median particle diameter (dv) is obtained by dissolving the rubber-modified styrene resin (A) in dimethylformamide and using a laser diffraction particle size distribution analyzer (Laser diffraction particle analyzer LS-230 manufactured by Coulter). Measure and use the median particle size of the volume-based particle size distribution curve as the volume median particle size (dv).

スチレン−(メタ)アクリル酸エステル系共重合樹脂(B)は、スチレン系単量体と(メタ)アクリル酸エステル系単量体とを共重合してなる。ここで、(メタ)アクリル酸エステル系単量体としては、メタクリル酸メチル、メタクリル酸エチル、アクリル酸メチル、アクリル酸エチル、アクリル酸n−ブチル等をあげることができるが、好ましくは、メタクリル酸メチルである。重合方法としては、従来から公知の方法が採用できるが、塊状重合法、溶液重合法が好ましい。そして、公知の技術、例えば重合反応時の温度の調整、重合開始剤、連鎖移動剤の添加等により、本発明の条件を充足するスチレン−(メタ)アクリル酸エステル系共重合樹脂(B)を得ることができる。   The styrene- (meth) acrylic acid ester copolymer resin (B) is obtained by copolymerizing a styrene monomer and a (meth) acrylic acid ester monomer. Here, examples of the (meth) acrylic acid ester monomer include methyl methacrylate, ethyl methacrylate, methyl acrylate, ethyl acrylate, and n-butyl acrylate. Preferably, methacrylic acid is used. Methyl. As the polymerization method, conventionally known methods can be employed, but a bulk polymerization method and a solution polymerization method are preferable. And the styrene- (meth) acrylic acid ester copolymer resin (B) satisfying the conditions of the present invention by adjusting the temperature during polymerization reaction, adding a polymerization initiator, a chain transfer agent, etc. Obtainable.

スチレン−(メタ)アクリル酸エステル系共重合樹脂(B)の(メタ)アクリル酸エステル系単量体単位の含有量は、好ましくは0〜80質量%、更に好ましくは5〜25質量%である。含有量が80質量%以上であると、透明性、耐衝撃性が低下する。   The content of the (meth) acrylic acid ester monomer unit in the styrene- (meth) acrylic acid ester copolymer resin (B) is preferably 0 to 80% by mass, more preferably 5 to 25% by mass. . When the content is 80% by mass or more, transparency and impact resistance are lowered.

ゴム変性スチレン系樹脂組成物はゴム変性スチレン系樹脂(A)とスチレン−(メタ)アクリル酸エステル系共重合樹脂(B)からなる。ゴム変性スチレン系樹脂(A)とスチレン−(メタ)アクリル酸エステル系共重合樹脂(B)の比率は、(A):(B)=45〜100質量%:55〜0質量%、好ましくは(A):(B)=55〜100質量%:45〜0質量%である。ゴム変性スチレン系樹脂(A)が45質量%未満の場合には耐衝撃性が低い。   The rubber-modified styrene resin composition is composed of a rubber-modified styrene resin (A) and a styrene- (meth) acrylic ester copolymer resin (B). The ratio of the rubber-modified styrene resin (A) and the styrene- (meth) acrylic ester copolymer resin (B) is (A) :( B) = 45 to 100% by mass: 55 to 0% by mass, preferably (A) :( B) = 55-100% by mass: 45-0% by mass. When the rubber-modified styrenic resin (A) is less than 45% by mass, the impact resistance is low.

ゴム変性スチレン系樹脂組成物のJIS K7210に基づき測定されたメルトマスフローレイト(MFR)は1〜15g/10分であることが好ましい。該範囲外の場合は、透明性や加工性が低下する場合がある。
ゴム変性スチレン系樹脂組成物のマトリックスの屈折率は1.585以上であることが好ましい。屈折率が低いと、薄肉・高精細な光学レンズ用途に対し制限がある。
The melt mass flow rate (MFR) measured based on JIS K7210 of the rubber-modified styrene resin composition is preferably 1 to 15 g / 10 min. If it is out of the range, transparency and workability may be deteriorated.
The matrix refractive index of the rubber-modified styrenic resin composition is preferably 1.585 or more. If the refractive index is low, there is a limitation for thin-walled, high-definition optical lens applications.

本発明を構成するゴム変性スチレン系樹脂組成物には、目的に応じスチレン系樹脂に用いられる公知の可塑剤、滑剤、酸化防止剤、着色剤、耐侯剤、帯電防止剤、難燃剤、摺動剤、顔料等や、スクリーンレンズに用いられる公知のガラスビーズや架橋樹脂粒子を添加することができる。また、これらは、製造時いずれの工程で添加しても差し支えなく、例えばゴム変性スチレン系樹脂(A)やスチレン−(メタ)アクリル酸エステル系共重合樹脂(B)の重合時や、ゴム変性スチレン系樹脂(A)やスチレン−(メタ)アクリル酸エステル系共重合樹脂(B)の溶融混練押出時等があげられる。   The rubber-modified styrenic resin composition constituting the present invention includes known plasticizers, lubricants, antioxidants, colorants, anti-glare agents, antistatic agents, flame retardants, sliding materials used for styrene resins depending on the purpose. Agents, pigments, etc., known glass beads and crosslinked resin particles used for screen lenses can be added. These may be added at any step during production. For example, when the rubber-modified styrene resin (A) or styrene- (meth) acrylate copolymer resin (B) is polymerized or rubber-modified. Examples include the melt-kneading extrusion of the styrene resin (A) and the styrene- (meth) acrylic ester copolymer resin (B).

光学レンズ成形体は公知の手法により得ることができるが、押出成形、射出成形が好ましい。また、形状も公知のものが採用でき、少なくとも一方の面にレンチキュラーレンズ及び/又はフレネルレンズを設けたスクリーンレンズが好適な例としてあげられる。   The optical lens molded body can be obtained by a known method, but extrusion molding and injection molding are preferable. A known shape can also be adopted, and a screen lens in which a lenticular lens and / or a Fresnel lens is provided on at least one surface is a preferable example.

次に本発明を実施例を挙げて詳細に説明するが、本発明はこれらの例によって限定されるものではない。    EXAMPLES Next, although an Example is given and this invention is demonstrated in detail, this invention is not limited by these examples.

参考例1 ゴム変性スチレン系樹脂((A)―1)の重合
撹拌機を付した容積約5Lの第1完全混合型反応器、撹拌機を付した容積約15Lの第2完全混合型反応器、容積約40Lの塔式プラグフロー型反応器、予熱器を付した脱揮槽を直列に接続して構成した。スチレン−ブタジエン共重合体として旭化成ケミカルズ社製アサプレン670A(スチレン系単量体単位:40質量%)15質量部を、スチレン100質量部、エチルベンゼン15質量部で構成される混合溶液に溶解し、さらに1,1−ビス(t−ブチルパーオキシ)−シクロヘキサン0.03質量部、オクタデシル−3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネートを0.05質量部を混合し原料溶液とした。この原料溶液を毎時7kgで温度115℃に制御した第1完全混合型反応器に導入した。第1完全混合型反応器より反応液を連続的に抜き出し、この反応液にn−ドデシルメルカプタンを毎時3.0g加えた後、温度130℃に制御した第2完全混合型反応器に導入した。なお、第2完全混合型反応器の撹拌数は150rpmで実施した。次いで第2完全混合型反応器より反応液を連続的に抜き出し、この反応液にn−ドデシルメルカプタンを毎時4.0g加えた後、流れの方向に向かって温度130℃から150℃の勾配がつくように調整した塔式プラグフロー型反応器に導入した。この反応液を予熱器で加温しながら、温度230℃で圧力1.3kPaに制御した脱揮槽に導入し、未反応単量体等の揮発分を除去した。この樹脂液をギアポンプで抜き出し、ストランド状に押出し切断することによりペレット形状のゴム変性スチレン系樹脂を得た。
Reference Example 1 Polymerization of rubber-modified styrenic resin ((A) -1) A first fully mixed reactor having a volume of about 5 L with a stirrer and a second completely mixed reactor having a volume of about 15 L with a stirrer A tower type plug flow reactor having a volume of about 40 L and a devolatilization tank equipped with a preheater were connected in series. Asaprene 670A manufactured by Asahi Kasei Chemicals Co., Ltd. as a styrene-butadiene copolymer (15 parts by mass) is dissolved in a mixed solution composed of 100 parts by mass of styrene and 15 parts by mass of ethylbenzene. 0.03 part by mass of 1,1-bis (t-butylperoxy) -cyclohexane and 0.05 part by mass of octadecyl-3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate were mixed. A raw material solution was obtained. This raw material solution was introduced into a first complete mixing reactor controlled at a temperature of 115 ° C. at 7 kg / hour. The reaction solution was continuously withdrawn from the first complete mixing reactor, and 3.0 g of n-dodecyl mercaptan was added to the reaction solution per hour, and then introduced into the second complete mixing reactor controlled at a temperature of 130 ° C. The number of stirrings in the second complete mixing reactor was 150 rpm. Next, the reaction solution is continuously withdrawn from the second complete mixing reactor, and 4.0 g of n-dodecyl mercaptan is added to the reaction solution per hour, and then a gradient of 130 ° C. to 150 ° C. is formed in the flow direction. It was introduced into a tower-type plug flow reactor adjusted as described above. While this reaction solution was heated by a preheater, it was introduced into a devolatilization tank controlled at a temperature of 230 ° C. and a pressure of 1.3 kPa to remove volatile components such as unreacted monomers. This resin liquid was extracted with a gear pump, and extruded into a strand shape and cut to obtain a pellet-shaped rubber-modified styrene resin.

参考例2 ゴム変性スチレン系樹脂((A)―2)の重合
第2完全混合型反応器の撹拌数を220rpmとした以外は参考例1と同様に行った。
Reference Example 2 Polymerization of rubber-modified styrenic resin ((A) -2) The same procedure as in Reference Example 1 was conducted except that the stirring rate of the second complete mixing reactor was 220 rpm.

参考例3 ゴム変性スチレン系樹脂((A)―3)の重合
スチレン−ブタジエン共重合体として旭化成ケミカルズ社製アサプレン670A(スチレン系単量体単位:40質量%)10.5質量部、および旭化成ケミカルズ社製タフデン2000A(スチレン系単量体単位:25質量%)4.5質量部を用いた以外は参考例2と同様に行った。
Reference Example 3 Polymerization of Rubber-Modified Styrene Resin ((A) -3) 10.5 parts by mass of Asaprene 670A (styrene monomer unit: 40% by mass) manufactured by Asahi Kasei Chemicals Corporation as a styrene-butadiene copolymer, and Asahi Kasei The same procedure as in Reference Example 2 was performed except that 4.5 parts by mass of Toughden 2000A (styrene monomer unit: 25% by mass) manufactured by Chemicals Co. was used.

参考例4 ゴム変性スチレン系樹脂((A)―4)の重合
スチレン−ブタジエン共重合体として旭化成ケミカルズ社製タフデン2000A(スチレン含量が25質量%)15質量部を用い、1,1−ビス(t−ブチルパーオキシ)−シクロヘキサン0.06質量部、オクタデシル−3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネートを0.10質量部とし、第2完全混合型反応器の撹拌数を220rpmとした以外は実施例1と同様に行った。
Reference Example 4 Polymerization of Rubber-Modified Styrene Resin ((A) -4) As a styrene-butadiene copolymer, 15 parts by mass of Toughden 2000A (styrene content: 25% by mass) manufactured by Asahi Kasei Chemicals Co., Ltd. was used. t-butylperoxy) -cyclohexane 0.06 parts by mass, octadecyl-3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate 0.10 parts by mass, and a second complete mixing type reactor This was carried out in the same manner as in Example 1 except that the stirring number was set at 220 rpm.

参考例5 ゴム変性スチレン系樹脂((A)―5)の重合
第2完全混合型反応器の撹拌数を120rpmとした以外は参考例1と同様に行った。
Reference Example 5 Polymerization of rubber-modified styrenic resin ((A) -5) The same procedure as in Reference Example 1 was conducted except that the stirring rate of the second complete mixing reactor was 120 rpm.

参考例6 ゴム変性スチレン系樹脂((A)―6)の重合
第2完全混合型反応器の撹拌数を20rpmとした以外は参考例1と同様に行った。
Reference Example 6 Polymerization of Rubber-Modified Styrene Resin ((A) -6) The same procedure as in Reference Example 1 was conducted except that the stirring rate of the second complete mixing reactor was 20 rpm.

参考例7 ゴム変性スチレン系樹脂((A)―7)の重合
内容積50Lの完全混合タイプの撹拌機付きオートクレーブ中に、スチレン30kg、スチレン−ブタジエン共重合体として旭化成社製アサプレン670A(スチレン系単量体単位含有量:40質量%)4.5kgを溶解し、原料液とした。この原料液にt−ドデシルメルカプタン48gを加え、窒素置換後密閉して157rpmで撹拌しながら115℃で6時間、塊状重合し、予備重合液を得た。次いで、内容積100Lの撹拌機付きオートクレーブに純水40kg、第三リン酸カルシウム140g、ドデシルベンゼンスルホン酸ナトリウム0.2gを加えて撹拌し、前記の予備重合液35kg及びアゾビスイソブチロニトリル61g、エチル−3,3−ジ(t−ブチルパーオキシ)ブチレート5gを加えて、窒素置換後密閉して温度80℃で5時間、132℃で4時間重合し、重合を完結させた。得られたビーズを洗浄、脱水、乾燥した後、単軸押出機を用いて230℃にて押出を行いペレット形状のゴム変性スチレン系樹脂((A)―7)を得た。
Reference Example 7 Polymerization of Rubber-Modified Styrene Resin ((A) -7) In an autoclave with a stirrer of 50 L internal volume, with a stirrer, 30 kg of styrene, Asaprene 670A (styrene-based) made as a styrene-butadiene copolymer (Monomer unit content: 40% by mass) 4.5 kg was dissolved to obtain a raw material solution. To this raw material liquid, 48 g of t-dodecyl mercaptan was added, and after substituting with nitrogen, it was sealed and bulk polymerized at 115 ° C. for 6 hours with stirring at 157 rpm to obtain a prepolymerized liquid. Next, 40 kg of pure water, 140 g of tribasic calcium phosphate and 0.2 g of sodium dodecylbenzenesulfonate were added to an autoclave with a stirrer having an internal volume of 100 L and stirred, and 35 kg of the prepolymerized solution and 61 g of azobisisobutyronitrile, ethyl After adding 5 g of -3,3-di (t-butylperoxy) butyrate and replacing with nitrogen, it was sealed and polymerized at a temperature of 80 ° C. for 5 hours and at 132 ° C. for 4 hours to complete the polymerization. The obtained beads were washed, dehydrated and dried, and then extruded at 230 ° C. using a single screw extruder to obtain a pellet-shaped rubber-modified styrene resin ((A) -7).

参考例8 ゴム変性スチレン系樹脂((A)―8)の重合
スチレン−ブタジエン共重合体の代わりに旭化成ケミカルズ社製ジエン35A(スチレン含量が0質量%)15質量部を用い、1,1−ビス(t−ブチルパーオキシ)−シクロヘキサン0.06質量部、オクタデシル−3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネートを0.10質量部、第2完全混合型反応器の撹拌数を350rpmとした以外は参考例1と同様に行った。
Reference Example 8 Polymerization of rubber-modified styrene resin ((A) -8) Instead of styrene-butadiene copolymer, 15 parts by mass of diene 35A (styrene content: 0% by mass) manufactured by Asahi Kasei Chemicals Co., Ltd. was used. Bis (t-butylperoxy) -cyclohexane 0.06 parts by mass, octadecyl-3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate 0.10 parts by mass, second complete mixed reaction The same procedure as in Reference Example 1 was performed except that the stirring number of the vessel was changed to 350 rpm.

参考例9 ゴム変性スチレン系樹脂((A)―9)の重合
1,1−ビス(t−ブチルパーオキシ)−シクロヘキサン0.03質量部、オクタデシル−3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネートを0.05質量部とし、撹拌数を250rpmとした以外は参考例4と同様に行った。
Reference Example 9 Polymerization of rubber-modified styrenic resin ((A) -9) 1,3-bis (t-butylperoxy) -cyclohexane 0.03 parts by mass, octadecyl-3- (3,5-di-t- The same procedure as in Reference Example 4 was carried out except that 0.05 part by mass of butyl-4-hydroxyphenyl) propionate was changed to 250 rpm.

参考例10 ゴム変性スチレン系樹脂((A)―10)の重合
スチレン−ブタジエン共重合体として旭化成ケミカルズ社製アサプレン670A(スチレン系単量体単位:40質量%)9.4質量部、さらにポリブタジエンとして旭化成ケミカルズ社製ジエン35A(スチレン系単量体単位:0質量%)5.6質量部を用いた以外は参考例6と同様に行った。
Reference Example 10 Polymerization of Rubber-Modified Styrene Resin ((A) -10) 9.4 parts by mass of Asaprene 670A (styrene monomer unit: 40% by mass) manufactured by Asahi Kasei Chemicals Corporation as a styrene-butadiene copolymer, and polybutadiene As in Reference Example 6, except that 5.6 parts by mass of diene 35A (styrene monomer unit: 0% by mass) manufactured by Asahi Kasei Chemicals Corporation was used.

参考例11 ゴム変性スチレン系樹脂((A)―11)の重合
第2完全混合型反応器の撹拌数を350rpmとした以外は参考例1と同様に行った。
Reference Example 11 Polymerization of Rubber-Modified Styrene Resin ((A) -11) The same procedure as in Reference Example 1 was conducted except that the stirring rate of the second complete mixing reactor was 350 rpm.

参考例12 スチレン−(メタ)アクリル酸エステル系共重合樹脂((B)―1)の重合
容積約20Lの完全混合型攪拌槽である第一反応器と容積約40Lの攪拌機付塔式プラグフロー型反応器である第二反応器を直列に接続し、さらに予熱器を付した脱揮槽を2基直列に接続して構成した。スチレン83質量%、メタクリル酸メチル(以下MMA)17質量%で構成する単量体溶液100質量部に対し、エチルベンゼン15質量部、t−ブチルパーオキシイソプロピルモノカーボネート0.01質量部、n−ドデシルメルカプタン(以下n−DDM)0.1質量部、オクタデシル−3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネート0.03質量部を混合し原料溶液とした。この原料溶液を毎時6.0kgで127℃に制御した第1反応器に供給した。1反応器第2完全混合型反応器より反応液を連続的に抜き出し、127℃から155℃の勾配がつくように調整した第二反応器に導入した。次に予熱器で160℃に加温した後67kPaに減圧した第一脱揮槽に導入し、さらに予熱器で230℃に加温した後1.3kPaに減圧した第二脱揮槽に導入し単量体を除去した。これをストランド状に押出し切断することによりペレット形状のスチレン−(メタ)アクリル酸エステル系共重合樹脂を得た。
Reference Example 12 Polymerization of Styrene- (Meth) Acrylate Ester Copolymer Resin ((B) -1) First Reactor as a Completely Mixing Stirring Tank with a Volume of about 20 L and Tower Type Plug Flow with a Stirrer of about 40 L A second reactor, which is a type reactor, was connected in series, and two devolatilization tanks equipped with a preheater were connected in series. 15 parts by mass of ethylbenzene, 0.01 parts by mass of t-butylperoxyisopropyl monocarbonate, n-dodecyl with respect to 100 parts by mass of a monomer solution composed of 83% by mass of styrene and 17% by mass of methyl methacrylate (hereinafter referred to as MMA) Mercaptan (hereinafter n-DDM) 0.1 part by mass and octadecyl-3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate 0.03 part by mass were mixed to obtain a raw material solution. This raw material solution was fed to the first reactor controlled at 127 ° C. at 6.0 kg / hour. The reaction liquid was continuously withdrawn from the second reactor of the first reactor and introduced into the second reactor adjusted to have a gradient from 127 ° C to 155 ° C. Next, after heating to 160 ° C. with a preheater, it was introduced into the first devolatilization tank reduced to 67 kPa, and further heated to 230 ° C. with a preheater and then introduced into the second devolatilization tank reduced to 1.3 kPa. The monomer was removed. This was extruded and cut into strands to obtain pellet-shaped styrene- (meth) acrylic ester copolymer resin.

参考例13 スチレン−(メタ)アクリル酸エステル系共重合樹脂((B)―2)の重合
単量体溶液をスチレン70質量%、メタクリル酸メチル(以下MMA)30質量%で構成した以外は参考例12と同様に行った。。
Reference Example 13 Polymerization of styrene- (meth) acrylic ester copolymer resin ((B) -2) Reference except that the monomer solution was composed of 70% by mass of styrene and 30% by mass of methyl methacrylate (hereinafter referred to as MMA). Performed as in Example 12. .

参考例14 スチレン−(メタ)アクリル酸エステル系共重合樹脂((B)―3)の重合
単量体溶液をスチレン60質量%、メタクリル酸メチル(以下MMA)40質量%で構成した以外は参考例12と同様に行った。
Reference Example 14 Polymerization of Styrene- (Meth) acrylate Copolymer ((B) -3) Reference except that the monomer solution was composed of 60% by mass of styrene and 40% by mass of methyl methacrylate (hereinafter referred to as MMA). Performed as in Example 12.

実施例1〜7、比較例1〜4
上記の方法で得られた(A)−1〜(A)−11の物性評価結果を表1及び表2に示した。
Examples 1-7, Comparative Examples 1-4
Tables 1 and 2 show the physical property evaluation results of (A) -1 to (A) -11 obtained by the above method.

実施例8〜11、比較例5
ゴム変性スチレン系樹脂(A)とスチレン−(メタ)アクリル酸エステル系共重合樹脂(B)を40mm単軸押出機を用い温度230℃でストランド状に押出し、ペレタイザーにて切断することによりペレット形状のゴム変性共重合樹脂組成物を得た。物性評価結果を表3に示した。
Examples 8-11, Comparative Example 5
A rubber-modified styrene resin (A) and a styrene- (meth) acrylic ester copolymer resin (B) are extruded into strands at a temperature of 230 ° C. using a 40 mm single screw extruder, and cut into pellets by a pelletizer. A rubber-modified copolymer resin composition was obtained. The physical property evaluation results are shown in Table 3.

Figure 2007031560
Figure 2007031560

Figure 2007031560
Figure 2007031560

Figure 2007031560
Figure 2007031560

尚、評価は下記の方法によった。
(1)寸法安定性
Tダイ形式のシート押出機を用いて、シリンダー温度230℃で厚さ2mmのシートを得た。このシートより18cm×18cmの試験片を切り出し、試験片より大きめの鋼板に挟んで、90℃にて5時間加熱した後、24時間放冷した。試験片を取り出し、30cm×23cmの容器に平置きした後、試験片の片面のみが水に浸るように、容器に純水を注いだ。室温にて24時間放置した後、試験片の4隅の反り上がり量(mm)を測定し、これらの平均値を反り量とした。反り量が0.4mm以下を合格とした。
(2)透明性
射出成形機(東芝機械社製IS−50EPN)を用いて、シリンダー温度200℃で厚さ1mm、2mm、3mmの3段プレートを成形した。この3段プレートの2mm部を用い、ASTM D1003に準拠し、ヘーズメーター(日本電色工業社製NDH−1001DP型)を用いてへーズ、さらに実用的な透明性として平行線透過率を測定した(単位:%)。ヘーズが30%以下、平行線透過率が60%以上を合格とした。
(3)耐衝撃性
JIS K7111に基づき、ノッチタイプAを有するタイプ1試験片を用い、打撃方向はエッジワイズを採用してシャルピー衝撃強さを測定した(単位:kJ/m)。
尚、測定機は東洋精機製作所社製デジタル衝撃試験機を使用した。シャルピー衝撃強さが4kJ/m以上を合格とした。
(4)メルトマスフローレイト(MFR)は、JIS K7210に基づき、温度200℃、荷重49Nで樹脂ペレットを用いて測定した(単位:g/10分)。なお、測定機は東洋精機製作所社製メルトインデックサ(F−F01)を使用した。
The evaluation was based on the following method.
(1) Dimensional stability Using a T-die type sheet extruder, a 2 mm thick sheet was obtained at a cylinder temperature of 230 ° C. A test piece of 18 cm × 18 cm was cut out from this sheet, sandwiched between steel plates larger than the test piece, heated at 90 ° C. for 5 hours, and then allowed to cool for 24 hours. After removing the test piece and placing it flat in a 30 cm × 23 cm container, pure water was poured into the container so that only one side of the test piece was immersed in water. After leaving at room temperature for 24 hours, the amount of warping (mm) at the four corners of the test piece was measured, and the average value of these was taken as the amount of warpage. A warpage amount of 0.4 mm or less was regarded as acceptable.
(2) Transparency Using an injection molding machine (IS-50EPN manufactured by Toshiba Machine Co., Ltd.), a three-stage plate having a thickness of 1 mm, 2 mm, and 3 mm was molded at a cylinder temperature of 200 ° C. Using a 2 mm portion of this three-stage plate, in accordance with ASTM D1003, a haze meter (NDH-1001DP type manufactured by Nippon Denshoku Industries Co., Ltd.) was used to measure haze, and parallel transmittance was measured as practical transparency. (unit:%). A haze of 30% or less and a parallel line transmittance of 60% or more were considered acceptable.
(3) Impact resistance Based on JIS K7111, a type 1 test piece having a notch type A was used, and the impact direction was measured by employing edgewise and the Charpy impact strength was measured (unit: kJ / m 2 ).
The measuring machine used was a digital impact tester manufactured by Toyo Seiki Seisakusho. A Charpy impact strength of 4 kJ / m 2 or more was accepted.
(4) Melt mass flow rate (MFR) was measured using resin pellets at a temperature of 200 ° C. and a load of 49 N based on JIS K7210 (unit: g / 10 minutes). The measuring machine used was a melt indexer (F-F01) manufactured by Toyo Seiki Seisakusho.

(5)マトリックスの屈折率
試料3.5gをトルエン350mlに温度25℃で24時間かけて溶解させた後、容量500mlの遠心管に移し、温度10℃以下、14000rpmの条件で40分間遠心分離した。沈殿物を分離後、上澄み液をロータリーエバポレーターで濃縮し、温度70℃の真空乾燥器で24時間乾燥させた。乾燥物をプレス成し、ATAGO精密アッベ屈折計 III型(アタゴ社製)で測定した。
(5) Refractive index of matrix 3.5 g of sample was dissolved in 350 ml of toluene at a temperature of 25 ° C. for 24 hours, then transferred to a 500 ml centrifuge tube, and centrifuged at a temperature of 10 ° C. or lower and 14000 rpm for 40 minutes. . After separating the precipitate, the supernatant was concentrated with a rotary evaporator and dried in a vacuum dryer at a temperature of 70 ° C. for 24 hours. The dried product was pressed and measured with an ATAGO precision Abbe refractometer type III (manufactured by Atago Co., Ltd.).

Claims (4)

スチレン系単量体単位の含有量が20〜50質量%であるスチレン−ブタジエン共重合体の存在下、スチレン系単量体をグラフト重合してなるゴム変性スチレン系樹脂であって、前記樹脂の分散相を形成するゴム状重合体粒子の80体積%以上がコア/シェル構造を有し、ゴム状重合体粒子の体積中位粒子径(dv)が0.3〜2.0μmであるゴム変性スチレン系樹脂(A)45〜100質量%と、スチレン系単量体と(メタ)アクリル酸エステル系単量体を共重合してなるスチレン−(メタ)アクリル酸エステル系共重合樹脂(B)0〜55質量%を含有するゴム変性スチレン系樹脂組成物からなる成形体。   A rubber-modified styrene resin obtained by graft polymerization of a styrene monomer in the presence of a styrene-butadiene copolymer having a styrene monomer unit content of 20 to 50% by mass, comprising: 80% by volume or more of the rubber-like polymer particles forming the dispersed phase have a core / shell structure, and the volume-median particle diameter (dv) of the rubber-like polymer particles is 0.3 to 2.0 μm. Styrene- (meth) acrylic ester copolymer resin (B) obtained by copolymerizing 45-100% by mass of styrene resin (A), styrene monomer and (meth) acrylic acid ester monomer A molded article comprising a rubber-modified styrenic resin composition containing 0 to 55% by mass. 成形体が押出成形体又は射出成形体ある請求項1記載の成形体。   The molded body according to claim 1, wherein the molded body is an extrusion molded body or an injection molded body. 成形体が、光学レンズ成形体である請求項1又は2記載の成形体。   The molded body according to claim 1 or 2, wherein the molded body is an optical lens molded body. 成形体が、スクリーンレンズである請求項1〜3のいずれか1項記載の成形体。   The molded body according to any one of claims 1 to 3, wherein the molded body is a screen lens.
JP2005216779A 2005-07-27 2005-07-27 Molded product Pending JP2007031560A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005216779A JP2007031560A (en) 2005-07-27 2005-07-27 Molded product

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005216779A JP2007031560A (en) 2005-07-27 2005-07-27 Molded product

Publications (1)

Publication Number Publication Date
JP2007031560A true JP2007031560A (en) 2007-02-08

Family

ID=37791191

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005216779A Pending JP2007031560A (en) 2005-07-27 2005-07-27 Molded product

Country Status (1)

Country Link
JP (1) JP2007031560A (en)

Similar Documents

Publication Publication Date Title
JP6055832B2 (en) Copolymer for improving heat resistance of methacrylic resin
JP6148802B1 (en) Method for producing methacrylic resin
EP2910580A1 (en) Copolymer for improving heat resistance of aromatic vinyl-vinyl cyanide resin
JP2008050536A (en) Resin composition and optical molded product
JP2008094912A (en) Resin composition and optical molded article
JP2012208136A (en) Resin composition for optical molded article and optical molded article thereof
JPWO2016024553A1 (en) Copolymer suitable for improving heat resistance of methacrylic resin
JP2016169282A (en) Methacrylic resin composition
JP5789365B2 (en) Optical film
KR20170013293A (en) Copolymer for transparent, scratch-resistant plate, and laminate for transparent, scratch-resistant plate
JP2009128638A (en) Optical molded body
WO2017094748A1 (en) Transparent highly heat-resistant styrene copolymer
JP2007224221A (en) Optical molded item
JP2011184608A (en) Biaxially oriented styrenic resin sheet, and molding thereof
US11111373B2 (en) Polymethacrylate composition and optical device made therefrom, and display apparatus
JP5010184B2 (en) Optical molded body
JP7116660B2 (en) Styrenic resin composition, sheet and molded article
JP2007031560A (en) Molded product
JP4152245B2 (en) Heat-resistant light guide plate
EP3502180A1 (en) Polymethacrylate composition and optical device made therefrom, and display apparatus
JP4723824B2 (en) Styrenic resin composition and molded article thereof
JP4864291B2 (en) Resin material for optical screen and optical screen
JP4170850B2 (en) Molded body for screen lens
JPWO2018016306A1 (en) Resin composition, and film comprising the resin composition
JP2004339357A (en) Transparent rubber-modified polystyrene resin