JP2007030670A - Tandem axle suspension device - Google Patents

Tandem axle suspension device Download PDF

Info

Publication number
JP2007030670A
JP2007030670A JP2005216106A JP2005216106A JP2007030670A JP 2007030670 A JP2007030670 A JP 2007030670A JP 2005216106 A JP2005216106 A JP 2005216106A JP 2005216106 A JP2005216106 A JP 2005216106A JP 2007030670 A JP2007030670 A JP 2007030670A
Authority
JP
Japan
Prior art keywords
elastic body
laminated elastic
spring constant
laminated
driven shaft
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005216106A
Other languages
Japanese (ja)
Other versions
JP4703305B2 (en
Inventor
Takashi Mochizuki
貴司 望月
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hino Motors Ltd
Original Assignee
Hino Motors Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hino Motors Ltd filed Critical Hino Motors Ltd
Priority to JP2005216106A priority Critical patent/JP4703305B2/en
Publication of JP2007030670A publication Critical patent/JP2007030670A/en
Application granted granted Critical
Publication of JP4703305B2 publication Critical patent/JP4703305B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Vehicle Body Suspensions (AREA)
  • Vibration Prevention Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a tandem axle suspension device which can adjust the axle weight distribution acting on a driving shaft and a driven shaft only by changing a laminated elastic body without changing the related parts, improve traveling performance of the vehicle, and enhance versatility. <P>SOLUTION: A spring constant in the vertical direction of the laminated elastic body 7 of the side corresponding to the driving shaft 9 is set to a value higher than the spring constant in the vertical direction of the laminated elastic body 7 of the side (rear side) corresponding to the driven shaft 11, and the spring constant in the horizontal direction of the laminated elastic body 7 of the side corresponding to the driving shaft 9 is set to a value approximately equal to the spring constant in the horizontal direction of the laminated elastic body 7 of the side corresponding to the driven shaft 11, and the axle weight control for the driving shaft 9 and the driven shaft 11 is performed by changing the inclination angle θ<SB>1</SB>and the number of lamination of an elastic member 5 and a plate 6 in the laminated elastic body 7 of the side (front side) corresponding to the driving shaft 9 while keeping the inclination angle θ<SB>0</SB>and the total length H of both mounting surfaces. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、タンデム車軸懸架装置に関するものである。   The present invention relates to a tandem axle suspension system.

バスやトラック等の大型車両では、後輪車軸(リヤアクスル)を駆動軸と従動軸の二軸としたタンデム車軸が一般的であるが、このようにリヤアクスルをタンデム車軸とした車両では、荷重を二つの車軸に分散させることができ、全体の積載荷重を向上させることができる。   For large vehicles such as buses and trucks, tandem axles with the rear axle (rear axle) as the drive shaft and driven shaft are common, but in vehicles with the rear axle as the tandem axle, the load is doubled. It can be distributed on one axle, and the overall load capacity can be improved.

図6は前述の如きタンデム車軸を支持するサスペンション(懸架装置)の従来例を示すものであって、1は車両の前後方向へ延びる車体フレームであり、該車体フレーム1に取り付けられたトラニオンブラケット2と、イコライザビーム3の前後方向中央部に取り付けられたセンターブラケット4との間に、弾性部材5とプレート6とを交互に積層した積層弾性体7をV字状に傾斜配置されるよう介装し、前記イコライザビーム3の前端に駆動側アクスル8を連結配置し、該駆動側アクスル8に駆動軸9を回転自在に支持せしめると共に、前記イコライザビーム3の後端に従動側アクスル10を連結配置し、該従動側アクスル10に従動軸11を回転自在に支持せしめたものである。   FIG. 6 shows a conventional example of a suspension (suspension device) for supporting a tandem axle as described above. Reference numeral 1 denotes a vehicle body frame extending in the longitudinal direction of the vehicle, and a trunnion bracket 2 attached to the vehicle body frame 1. The laminated elastic body 7 in which the elastic members 5 and the plates 6 are alternately laminated is disposed so as to be inclined in a V shape between the center beam 4 and the center bracket 4 attached to the center portion of the equalizer beam 3 in the front-rear direction. A driving axle 8 is connected to the front end of the equalizer beam 3, and a driving shaft 9 is rotatably supported on the driving axle 8, and a driven axle 10 is connected to the rear end of the equalizer beam 3. The driven shaft 11 is rotatably supported by the driven axle 10.

前記積層弾性体7は、一般に、弾性部材5としてゴムを用い、プレート6として金属板を用い、その積層方向両端に配設されたプレート6を、トラニオンブラケット2の傾斜面(傾斜角度θ0)とセンターブラケット4の傾斜面(傾斜角度θ0)とに対し、図示していないボルト・ナット等の締結部材を用いて取り付けるようになっている。 The laminated elastic body 7 generally uses rubber as the elastic member 5 and uses a metal plate as the plate 6, and the plates 6 disposed at both ends in the laminating direction are arranged on the inclined surface (inclination angle θ 0 ) of the trunnion bracket 2. Are attached to the inclined surface (inclination angle θ 0 ) of the center bracket 4 using fastening members such as bolts and nuts (not shown).

尚、図6中、12は駆動軸9を中心に回転する駆動車輪、13は従動軸11を中心に回転する従動車輪である。   In FIG. 6, reference numeral 12 denotes a drive wheel that rotates about the drive shaft 9, and 13 denotes a driven wheel that rotates about the driven shaft 11.

そして、図6に示されるようなタンデム車軸懸架装置においては、前記車体フレーム1側から印加される荷重は、前記積層弾性体7の圧縮及び剪断変形により負担されるようになっている。   In the tandem axle suspension device as shown in FIG. 6, the load applied from the vehicle body frame 1 side is borne by the compression and shear deformation of the laminated elastic body 7.

尚、前述の如きタンデム車軸懸架装置と関連する一般的技術水準を示すものとしては、例えば、特許文献1や特許文献2がある。
特開2000−62423号公報 特開平9−136521号公報
Examples of the general technical level related to the tandem axle suspension system as described above include Patent Document 1 and Patent Document 2.
JP 2000-62423 A JP-A-9-136521

しかしながら、図6に示されるような駆動軸9と従動軸11とを有するタンデム車軸懸架装置では、駆動軸9に作用する荷重(軸重)が分散されるため、その分だけ駆動車輪12に作用する接地荷重が減少してしまい、空車時(軽負荷時)には、車両の発進性が低下するという問題を有していた。   However, in the tandem axle suspension system having the drive shaft 9 and the driven shaft 11 as shown in FIG. 6, the load (axial weight) acting on the drive shaft 9 is dispersed. The grounding load to be reduced is reduced, and when the vehicle is empty (during light load), there is a problem that the startability of the vehicle is reduced.

こうした問題を解消するためには、駆動軸9と従動軸11とに作用する軸重配分を、駆動軸9側が大きくなるよう、例えば、イコライザビーム3の前後の長さを変えたり、或いは前後に配設される積層弾性体7のバネ定数を変えてやることが考えられる。   In order to solve such problems, the axial load distribution acting on the drive shaft 9 and the driven shaft 11 is changed, for example, by changing the length of the equalizer beam 3 in the front and rear direction so that the drive shaft 9 side becomes larger. It is conceivable to change the spring constant of the laminated elastic body 7 provided.

しかしながら、前述の如く、イコライザビーム3の前後の長さを変えるのでは、それに伴って、ほとんど全てのレイアウトや部品を変更しなければならなくなり、車種毎にそれぞれ全く異なる部品を設計して製造する必要が生じ、汎用性が低くなるという欠点を有していた。   However, as described above, when the length of the equalizer beam 3 before and after is changed, almost all layouts and parts must be changed accordingly, and completely different parts are designed and manufactured for each vehicle type. The necessity arises and the versatility is low.

一方、前記積層弾性体7の圧縮方向のバネ定数を単純に上げるためには、その断面積を増やしたり全長を短くすることがごく一般的に知られおり、又、前記積層弾性体7の剪断方向のバネ定数を単純に上げるためには、そのプレート6の枚数を増やすことがごく一般的に知られているが、前記積層弾性体7の全長等が変化した場合、やはり、それに関連する部品の寸法やレイアウトを変更しなければならず、前述と同様、車種毎にそれぞれ全く異なる部品を設計して製造する必要が生じ、汎用性が低くなることは避けられなかった。   On the other hand, in order to simply increase the spring constant in the compression direction of the laminated elastic body 7, it is generally known to increase its cross-sectional area or shorten its overall length. In order to simply increase the spring constant in the direction, it is generally known to increase the number of plates 6, but when the total length of the laminated elastic body 7 changes, the components related to it are still changed. As described above, it is necessary to design and manufacture completely different parts for each vehicle type, and it is inevitable that versatility is reduced.

本発明は、斯かる実情に鑑み、駆動軸と従動軸とに作用する軸重配分を、関連部品の変更を伴わずに積層弾性体の変更のみで調整することができ、車両の走行性能を向上し得ると共に、汎用性をも高め得るタンデム車軸懸架装置を提供しようとするものである。   In view of such circumstances, the present invention can adjust the axle load distribution acting on the drive shaft and the driven shaft only by changing the laminated elastic body without changing the related parts, thereby improving the running performance of the vehicle. It is an object of the present invention to provide a tandem axle suspension device that can be improved and can also improve versatility.

本発明は、車体フレームと駆動軸及び従動軸を有するタンデム車軸との間に、弾性部材とプレートとを交互に積層した積層弾性体を、駆動軸及び従動軸に対応させて前後一対傾斜配置されるよう介装し、車体フレーム側から印加される荷重を前記積層弾性体の圧縮及び剪断変形により負担するよう構成したタンデム車軸懸架装置において、
少なくとも一方の積層弾性体における弾性部材とプレートの傾斜角度並びに積層数を、両端取付面の傾斜角度並びに全長を保持したまま変化させることにより、駆動軸に対応する側の積層弾性体の鉛直方向のバネ定数を、従動軸に対応する側の積層弾性体の鉛直方向のバネ定数より高くし、且つ駆動軸に対応する側の積層弾性体の水平方向のバネ定数を、従動軸に対応する側の積層弾性体の水平方向のバネ定数と略等しくし、駆動軸及び従動軸に対する軸重制御を行うよう構成したことを特徴とするタンデム車軸懸架装置にかかるものである。
In the present invention, a laminated elastic body in which an elastic member and a plate are alternately stacked is disposed between a body frame and a tandem axle having a drive shaft and a driven shaft in a pair of front and rear inclined positions corresponding to the drive shaft and the driven shaft. In the tandem axle suspension system configured to bear the load applied from the body frame side by compression and shear deformation of the laminated elastic body,
By changing the inclination angle and the number of laminations of the elastic member and the plate in at least one laminated elastic body while maintaining the inclination angle and the total length of the mounting surfaces on both ends, the vertical direction of the laminated elastic body on the side corresponding to the drive shaft is changed. The spring constant is set higher than the vertical spring constant of the laminated elastic body on the side corresponding to the driven shaft, and the horizontal spring constant of the laminated elastic body on the side corresponding to the drive shaft is set on the side corresponding to the driven shaft. The present invention relates to a tandem axle suspension device characterized in that it is substantially equal to the spring constant in the horizontal direction of the laminated elastic body and is configured to perform axial load control on the drive shaft and the driven shaft.

上記手段によれば、以下のような作用が得られる。   According to the above means, the following operation can be obtained.

前述の如く構成すると、積層弾性体のバネ定数の変更による駆動軸及び従動軸に対する軸重制御により、駆動車輪に作用する接地荷重が減少してしまうことが避けられ、空車時(軽負荷時)における車両の発進性を高めることが可能となり、しかも、積層弾性体を変更するだけで、それに関連する部品の寸法やレイアウトを変更しなくて済み、車種毎にそれぞれ全く異なる部品を設計して製造する必要がなくなり、汎用性を大幅に高めることが可能となる。   When configured as described above, it is possible to avoid a reduction in the ground load acting on the drive wheel due to the axle load control on the drive shaft and the driven shaft by changing the spring constant of the laminated elastic body. In addition, it is possible to improve the startability of the vehicle at the same time, and by simply changing the laminated elastic body, it is not necessary to change the dimensions and layout of the related parts. Therefore, versatility can be greatly improved.

前記タンデム車軸懸架装置においては、積層弾性体を、ゴムと金属板とを交互に積層した積層ゴムとすることができる。   In the tandem axle suspension device, the laminated elastic body may be a laminated rubber in which rubber and metal plates are alternately laminated.

本発明のタンデム車軸懸架装置によれば、駆動軸と従動軸とに作用する軸重配分を、関連部品の変更を伴わずに積層弾性体の変更のみで調整することができ、車両の走行性能を向上し得ると共に、汎用性をも高め得るという優れた効果を奏し得る。   According to the tandem axle suspension device of the present invention, the axle load distribution acting on the drive shaft and the driven shaft can be adjusted only by changing the laminated elastic body without changing the related parts, and the running performance of the vehicle As a result, it is possible to achieve an excellent effect of improving versatility.

以下、本発明の実施の形態を添付図面を参照して説明する。   Embodiments of the present invention will be described below with reference to the accompanying drawings.

図1は本発明を実施する形態の一例であって、図中、図6と同一の符号を付した部分は同一物を表わしており、基本的な構成は図6に示す従来のものと同様であるが、本図示例の特徴とするところは、図1に示す如く、駆動軸9に対応する側(前側)の積層弾性体7における弾性部材5とプレート6の傾斜角度θ1並びに積層数を、両端取付面の傾斜角度θ0並びに全長Hを保持したまま変化させることにより、駆動軸9に対応する側の積層弾性体7の鉛直方向のバネ定数を、従動軸11に対応する側(後側)の積層弾性体7の鉛直方向のバネ定数より高くし、且つ駆動軸9に対応する側の積層弾性体7の水平方向のバネ定数を、従動軸11に対応する側の積層弾性体7の水平方向のバネ定数と略等しくし、駆動軸9及び従動軸11に対する軸重制御を行うよう構成した点にある。 FIG. 1 is an example of an embodiment of the present invention. In the figure, the same reference numerals as those in FIG. 6 denote the same components, and the basic configuration is the same as the conventional one shown in FIG. However, as shown in FIG. 1, the feature of the illustrated example is that the inclination angle θ 1 of the elastic member 5 and the plate 6 in the laminated elastic body 7 on the side (front side) corresponding to the drive shaft 9 and the number of laminated layers are as follows. Is changed while maintaining the inclination angle θ 0 and the total length H of the both end mounting surfaces, the vertical spring constant of the laminated elastic body 7 on the side corresponding to the drive shaft 9 is changed to the side corresponding to the driven shaft 11 ( The horizontal elastic constant of the laminated elastic body 7 on the side corresponding to the drive shaft 9 is set higher than the vertical spring constant of the laminated elastic body 7 on the rear side) and the laminated elastic body on the side corresponding to the driven shaft 11. 7 is substantially equal to the horizontal spring constant of 7, and is an axis with respect to the drive shaft 9 and the driven shaft 11. It lies in that configured to perform the control.

本図示例の場合、前記積層弾性体7の積層方向両端に配設されたプレート6の厚さを一端側から他端側へ向け漸次変化させて楔状に形成し、且つ各プレート6の向きを互い違いとすることにより、前記積層弾性体7の両端取付面の傾斜角度θ0を変化させずに、弾性部材5とプレート6の傾斜角度がθ1となるようにしてある。 In the case of the illustrated example, the thickness of the plates 6 disposed at both ends in the laminating direction of the laminated elastic body 7 is gradually changed from one end side to the other end side to form a wedge shape, and the orientation of each plate 6 is changed. The staggered angle of the elastic member 5 and the plate 6 is set to θ 1 without changing the tilt angle θ 0 of the both end mounting surfaces of the laminated elastic body 7 by staggering.

ここで、図1に示す例を模式的に表すと図2のようになり、バネ定数k1,k2の二つのバネ(積層弾性体7に相当)に支持された部材(イコライザビーム3に相当)の両端(駆動軸9と従動軸11に相当)に荷重f1,f2が作用し、撓み量がδである場合の釣り合い式は、
[数1]
1+f2=δ・(k1+k2
[数2]
(L−x)・k1・δ+(L+x)・k2・δ=2・L・f2
となり、[数1]より
[数3]
δ=(f1+f2)/(k1+k2
となり、この[数3]と[数2]より
[数4]
(L−x)・k1+(L+x)・k2=2・L・(k1+k2)・f2/(f1+f2
となり、[数4]より、バネ定数k1,k2の関係は、
[数5]
1=k2・{L・(f1−f2)+x・(f1+f2)}/{L・(−f1+f2)+x・(f1+f2)}
となる。
Here, the example shown in FIG. 1 is schematically represented as shown in FIG. 2, and a member (equalized with the equalizer beam 3) supported by two springs (corresponding to the laminated elastic body 7) having spring constants k 1 and k 2. The balance equation when the loads f 1 and f 2 are applied to both ends (corresponding to the drive shaft 9 and the driven shaft 11) and the amount of deflection is δ is:
[Equation 1]
f 1 + f 2 = δ · (k 1 + k 2 )
[Equation 2]
(L−x) · k 1 · δ + (L + x) · k 2 · δ = 2 · L · f 2
From [Formula 1] to [Formula 3]
δ = (f 1 + f 2 ) / (k 1 + k 2 )
From [Equation 3] and [Equation 2], [Equation 4]
(L−x) · k 1 + (L + x) · k 2 = 2 · L · (k 1 + k 2 ) · f 2 / (f 1 + f 2 )
From [Equation 4], the relationship between the spring constants k 1 and k 2 is
[Equation 5]
k 1 = k 2 · {L · (f 1 −f 2 ) + x · (f 1 + f 2 )} / {L · (−f 1 + f 2 ) + x · (f 1 + f 2 )}
It becomes.

このとき、荷重配分(軸重配分)を例えばf1:f2=10:7即ちf1=1、f2=0.7に設定しようとすると、[数5]より、バネ定数k1,k2の間には、
[数6]
1=k2・(0.3・L+1.7・x)/(−0.3・L+1.7・x)
という関係が成立すれば良いことになる。
At this time, if the load distribution (shaft load distribution) is set to, for example, f 1 : f 2 = 10: 7, that is, f 1 = 1 and f 2 = 0.7, the spring constant k 1 , between the k 2,
[Equation 6]
k 1 = k 2 · (0.3 · L + 1.7 · x) / (- 0.3 · L + 1.7 · x)
It would be good if this relationship is established.

一方、前記積層弾性体7を構成する一個の弾性部材5の圧縮方向バネ定数kc *及び剪断方向バネ定数ks *は、図3に示すように、前記一個の弾性部材5の縦、横、高さ寸法が、a、b、hである場合、
[数7]
c *=(3+6.580・S2)・G・(a・b/h)
(但し、Sは形状率であって、S=a・b/{2・(a+b)・h}であり、
Gは積層弾性体7の弾性部材5としてのゴムの横弾性係数である。)
[数8]
s *=1/(1+1/3×h2/a2)×G・(a・b/h)
となり、積層弾性体7を構成する積層ゴムの積層数をnとした場合、積層弾性体7の圧縮方向バネ定数kc *及び剪断方向バネ定数ks *は、
[数9]
c=kc */n
[数10]
s=ks */n
となる。
On the other hand, the compression direction spring constant k c * and the shear direction spring constant k s * of one elastic member 5 constituting the laminated elastic body 7 are the vertical and horizontal directions of the single elastic member 5 as shown in FIG. , If the height dimension is a, b, h,
[Equation 7]
k c * = (3 + 6.580 · S 2 ) · G · (a · b / h)
(Where S is the shape factor, and S = a · b / {2 · (a + b) · h},
G is a transverse elastic modulus of rubber as the elastic member 5 of the laminated elastic body 7. )
[Equation 8]
k s * = 1 / (1 + 1/3 × h 2 / a 2 ) × G · (a · b / h)
When the number of laminated rubbers constituting the laminated elastic body 7 is n, the compression direction spring constant k c * and the shear direction spring constant k s * of the laminated elastic body 7 are
[Equation 9]
k c = k c * / n
[Equation 10]
k s = k s * / n
It becomes.

そして、前記積層弾性体7を図4に示す如く傾斜角度θで傾斜配置した場合の鉛直方向バネ定数ky及び水平方向バネ定数kxは、
[数11]
y=kc・cos2θ+ks・sin2θ
[数12]
x=kc・cos2(90−θ)+ks・sin2(90−θ)
となる。
The vertical spring constant k y and the horizontal spring constant k x when the laminated elastic body 7 is disposed at an inclination angle θ as shown in FIG.
[Equation 11]
k y = k c · cos 2 θ + k s · sin 2 θ
[Equation 12]
k x = k c · cos 2 (90−θ) + k s · sin 2 (90−θ)
It becomes.

今、前記積層弾性体7を構成する一個の弾性部材5の縦寸法a、横寸法b、高さ寸法h、横弾性係数G、積層数n、傾斜角度θ(θ0、θ1)を所要値に設定し、前記[数7]〜[数12]より、形状率S、鉛直方向バネ定数ky及び水平方向バネ定数kx等を求めると、図5に示すようになり、この場合、[数6]において、
L=660[mm]
x=282[mm]
のレイアウトであれば、
1:k2=2.4:1
となり、前記鉛直方向バネ定数kyの前後の比率、即ち、
13827:5817≒2.4:1
を満足する形となり、荷重配分(軸重配分)を
1:f2=10:7
に設定することが可能となる。
Now, the longitudinal dimension a, the lateral dimension b, the height dimension h, the lateral elastic modulus G, the number n of laminations, and the inclination angle θ (θ 0 , θ 1 ) of one elastic member 5 constituting the laminated elastic body 7 are required. When the shape ratio S, the vertical spring constant k y, the horizontal spring constant k x and the like are obtained from the above [Equation 7] to [Equation 12], the result is as shown in FIG. In [Equation 6],
L = 660 [mm]
x = 282 [mm]
If the layout of
k 1 : k 2 = 2.4: 1
The ratio before and after the vertical spring constant k y , that is,
13827: 5817 ≒ 2.4: 1
The load distribution (shaft load distribution) is f 1 : f 2 = 10: 7
It becomes possible to set to.

このように、前述の如く構成すると、駆動軸9に対応する側(前側)の積層弾性体7のバネ定数を変更することによって駆動軸9及び従動軸11に対する軸重制御を行えるようになるため、駆動車輪12に作用する接地荷重が減少してしまうことが避けられ、空車時(軽負荷時)における車両の発進性を高めることが可能となり、しかも、積層弾性体7を変更するだけで、それに関連するイコライザビーム3やセンターブラケット4等の部品の寸法やレイアウトを変更しなくて済み、車種毎にそれぞれ全く異なる部品を設計して製造する必要がなくなり、汎用性を大幅に高めることが可能となる。   As described above, since the spring constant of the laminated elastic body 7 on the side corresponding to the drive shaft 9 (front side) is changed, the axial load control for the drive shaft 9 and the driven shaft 11 can be performed. The ground contact load acting on the drive wheel 12 can be avoided from being reduced, and the vehicle startability can be improved when the vehicle is idle (light load). Moreover, only by changing the laminated elastic body 7, It is not necessary to change the dimensions and layout of the parts such as the equalizer beam 3 and the center bracket 4 related to it, and it is not necessary to design and manufacture completely different parts for each vehicle type, which can greatly increase versatility. It becomes.

こうして、駆動軸9と従動軸11とに作用する軸重配分を、イコライザビーム3やセンターブラケット4等の関連部品の変更を伴わずに積層弾性体7の変更のみで調整することができ、車両の走行性能を向上し得ると共に、汎用性をも高め得る。   Thus, the axial load distribution acting on the drive shaft 9 and the driven shaft 11 can be adjusted only by changing the laminated elastic body 7 without changing the related parts such as the equalizer beam 3 and the center bracket 4. The driving performance can be improved, and versatility can be improved.

尚、本発明のタンデム車軸懸架装置は、上述の図示例にのみ限定されるものではなく、従動軸11に対応する側の積層弾性体7における弾性部材5とプレート6の傾斜角度並びに積層数を、両端取付面の傾斜角度θ0並びに全長Hを保持したまま変化させることにより、駆動軸9に対応する側の積層弾性体7の水平方向のバネ定数と、従動軸11に対応する側の積層弾性体7の水平方向のバネ定数とを略等しくしたまま、従動軸11に対応する側の積層弾性体7の鉛直方向のバネ定数を、駆動軸9に対応する側の積層弾性体7の鉛直方向のバネ定数より低くすることにより、相対的に、駆動軸9に対応する側の積層弾性体7の鉛直方向のバネ定数を、従動軸11に対応する側の積層弾性体7の鉛直方向のバネ定数より高くしても良いこと等、その他、本発明の要旨を逸脱しない範囲内において種々変更を加え得ることは勿論である。 Note that the tandem axle suspension device of the present invention is not limited to the illustrated example described above, and the inclination angle and the number of layers of the elastic member 5 and the plate 6 in the laminated elastic body 7 on the side corresponding to the driven shaft 11 are determined. The horizontal spring constant of the laminated elastic body 7 on the side corresponding to the drive shaft 9 and the lamination on the side corresponding to the driven shaft 11 are changed while maintaining the inclination angle θ 0 and the total length H of the both end mounting surfaces. While the spring constant in the horizontal direction of the elastic body 7 is substantially equal, the vertical spring constant of the laminated elastic body 7 on the side corresponding to the driven shaft 11 is set to the vertical of the laminated elastic body 7 on the side corresponding to the drive shaft 9. The spring constant in the vertical direction of the laminated elastic body 7 on the side corresponding to the drive shaft 9 is relatively reduced in the vertical direction of the laminated elastic body 7 on the side corresponding to the driven shaft 11. For example, it may be higher than the spring constant. Of course, various changes can be made without departing from the scope of the present invention.

本発明を実施する形態の一例を示す側面図である。It is a side view which shows an example of the form which implements this invention. 本発明を実施する形態の一例を模式的に示す概略図である。It is the schematic which shows an example of the form which implements this invention typically. 本発明を実施する形態の一例における積層弾性体を構成する一個の弾性部材の圧縮方向バネ定数kc *及び剪断方向バネ定数ks *を示す斜視図である。Is a perspective view showing a direction of compression spring constant k c * and shear directions spring constant k s for one of the elastic members constituting the laminated elastic body * in an example of the mode for carrying out the present invention. 本発明を実施する形態の一例における積層弾性体を傾斜配置した場合の鉛直方向バネ定数ky及び水平方向バネ定数kxを示す模式図である。It is a schematic diagram showing a vertical spring constant k y and horizontal spring constant k x when the laminated elastic body in an example of the mode for carrying out the present invention has been arranged obliquely. 本発明を実施する形態の一例における積層弾性体の各部寸法、鉛直方向バネ定数ky及び水平方向バネ定数kx等の具体的数値を表形式で示す図である。Various dimensions of the laminated elastic body in an example of the mode for carrying out the present invention, specific values, such as vertical spring constant k y and horizontal spring constant k x is a diagram illustrating in tabular form. 従来例を示す側面図である。It is a side view which shows a prior art example.

符号の説明Explanation of symbols

1 車体フレーム
2 トラニオンブラケット
3 イコライザビーム
4 センターブラケット
5 弾性部材
6 プレート
7 積層弾性体
9 駆動軸
11 従動軸
12 駆動車輪
13 従動車輪
H 全長
y 鉛直方向バネ定数
x 水平方向バネ定数
θ0 傾斜角度
θ1 傾斜角度
DESCRIPTION OF SYMBOLS 1 Body frame 2 Trunnion bracket 3 Equalizer beam 4 Center bracket 5 Elastic member 6 Plate 7 Laminated elastic body 9 Drive shaft 11 Drive shaft 12 Drive wheel 13 Drive wheel H Total length k y Vertical spring constant k x Horizontal spring constant θ 0 Inclination Angle θ 1 Tilt angle

Claims (2)

車体フレームと駆動軸及び従動軸を有するタンデム車軸との間に、弾性部材とプレートとを交互に積層した積層弾性体を、駆動軸及び従動軸に対応させて前後一対傾斜配置されるよう介装し、車体フレーム側から印加される荷重を前記積層弾性体の圧縮及び剪断変形により負担するよう構成したタンデム車軸懸架装置において、
少なくとも一方の積層弾性体における弾性部材とプレートの傾斜角度並びに積層数を、両端取付面の傾斜角度並びに全長を保持したまま変化させることにより、駆動軸に対応する側の積層弾性体の鉛直方向のバネ定数を、従動軸に対応する側の積層弾性体の鉛直方向のバネ定数より高くし、且つ駆動軸に対応する側の積層弾性体の水平方向のバネ定数を、従動軸に対応する側の積層弾性体の水平方向のバネ定数と略等しくし、駆動軸及び従動軸に対する軸重制御を行うよう構成したことを特徴とするタンデム車軸懸架装置。
A laminated elastic body in which elastic members and plates are alternately stacked is disposed between the vehicle body frame and a tandem axle having a drive shaft and a driven shaft so that the pair of front and rear are inclined corresponding to the drive shaft and the driven shaft. In the tandem axle suspension device configured to bear the load applied from the vehicle body frame side by compression and shear deformation of the laminated elastic body,
By changing the inclination angle and the number of laminations of the elastic member and the plate in at least one laminated elastic body while maintaining the inclination angle and the total length of the mounting surfaces on both ends, the vertical direction of the laminated elastic body on the side corresponding to the drive shaft is changed. The spring constant is set higher than the vertical spring constant of the laminated elastic body on the side corresponding to the driven shaft, and the horizontal spring constant of the laminated elastic body on the side corresponding to the drive shaft is set on the side corresponding to the driven shaft. A tandem axle suspension system characterized in that it is substantially equal to the horizontal spring constant of the laminated elastic body and is configured to perform axial load control on the drive shaft and driven shaft.
積層弾性体を、ゴムと金属板とを交互に積層した積層ゴムとした請求項1記載のタンデム車軸懸架装置。   The tandem axle suspension apparatus according to claim 1, wherein the laminated elastic body is a laminated rubber in which rubber and metal plates are alternately laminated.
JP2005216106A 2005-07-26 2005-07-26 Tandem axle suspension system Expired - Fee Related JP4703305B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005216106A JP4703305B2 (en) 2005-07-26 2005-07-26 Tandem axle suspension system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005216106A JP4703305B2 (en) 2005-07-26 2005-07-26 Tandem axle suspension system

Publications (2)

Publication Number Publication Date
JP2007030670A true JP2007030670A (en) 2007-02-08
JP4703305B2 JP4703305B2 (en) 2011-06-15

Family

ID=37790452

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005216106A Expired - Fee Related JP4703305B2 (en) 2005-07-26 2005-07-26 Tandem axle suspension system

Country Status (1)

Country Link
JP (1) JP4703305B2 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4357032A (en) * 1979-06-26 1982-11-02 Dunlop Limited Vehicle suspensions
JPH09136521A (en) * 1995-09-14 1997-05-27 Hitachi Metals Ltd Tandem axle vehicle suspension device
JPH09272320A (en) * 1996-04-08 1997-10-21 Hendorikuson Asia Kk Axle type suspension device
JPH10287114A (en) * 1997-04-18 1998-10-27 Mitsubishi Motors Corp Equalizer beam structure for rubber suspension
JP2000062423A (en) * 1998-08-19 2000-02-29 Mitsubishi Motors Corp Tandem axle suspension device
JP2000062424A (en) * 1998-08-19 2000-02-29 Mitsubishi Motors Corp Tandem axle suspension device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4357032A (en) * 1979-06-26 1982-11-02 Dunlop Limited Vehicle suspensions
JPH09136521A (en) * 1995-09-14 1997-05-27 Hitachi Metals Ltd Tandem axle vehicle suspension device
JPH09272320A (en) * 1996-04-08 1997-10-21 Hendorikuson Asia Kk Axle type suspension device
JPH10287114A (en) * 1997-04-18 1998-10-27 Mitsubishi Motors Corp Equalizer beam structure for rubber suspension
JP2000062423A (en) * 1998-08-19 2000-02-29 Mitsubishi Motors Corp Tandem axle suspension device
JP2000062424A (en) * 1998-08-19 2000-02-29 Mitsubishi Motors Corp Tandem axle suspension device

Also Published As

Publication number Publication date
JP4703305B2 (en) 2011-06-15

Similar Documents

Publication Publication Date Title
JP2005014888A (en) Bolster spring suspension assembly
CN102149551A (en) Dual leaf vehicle suspension with J-shaped spring element
JP4888197B2 (en) Rear wheel suspension system
JP2010018086A (en) Pad for leaf spring
WO2020003836A1 (en) Vehicular battery pack supporting device
JP2010012882A (en) Suspension device
JP4888189B2 (en) Suspension device
JP2008254570A (en) Suspension device
JP4703305B2 (en) Tandem axle suspension system
US20060033300A1 (en) Torsion beam axle-type rear suspension
JPH08198134A (en) Cross-member of aluminum alloy
JP4887235B2 (en) Axle unit structure for air suspension
CN114786979A (en) Electric drive unit
KR20170116912A (en) Assistance apparatus for suspension of vehicle
JP7079422B2 (en) Axle beam
JP2009126206A (en) Suspension device
JP5229374B2 (en) Rear wheel suspension system
JP2007269127A (en) Structure and method for adjusting tilt angle for rear axle
JP2006027316A (en) Working vehicle
KR102238053B1 (en) Multi link rear suspension for vehicle
KR102240958B1 (en) Vehicle lower arm control apparatus for driving stability and soft ride comfort
JP4935557B2 (en) Suspension device
JP3196011B2 (en) Trailing arm rear suspension
KR20170111604A (en) Sub frame reinforcing unit for vehicle
JP2003335119A (en) Leaf spring of suspension structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080613

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100916

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101012

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101202

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110301

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110308

R150 Certificate of patent or registration of utility model

Ref document number: 4703305

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees