JP2007030108A - Gear cutting tool made of surface coated cemented carbide having hard coarted layer exhibiting excellent chipping resistance in hard cutting material hard to cut - Google Patents

Gear cutting tool made of surface coated cemented carbide having hard coarted layer exhibiting excellent chipping resistance in hard cutting material hard to cut Download PDF

Info

Publication number
JP2007030108A
JP2007030108A JP2005218193A JP2005218193A JP2007030108A JP 2007030108 A JP2007030108 A JP 2007030108A JP 2005218193 A JP2005218193 A JP 2005218193A JP 2005218193 A JP2005218193 A JP 2005218193A JP 2007030108 A JP2007030108 A JP 2007030108A
Authority
JP
Japan
Prior art keywords
layer
hard
cutting
carbide
average
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2005218193A
Other languages
Japanese (ja)
Inventor
Tsutomu Ogami
強 大上
Yusuke Tanaka
裕介 田中
Akihiro Kondou
暁裕 近藤
Kazunori Sato
和則 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Mitsubishi Materials Kobe Tools Corp
Original Assignee
Mitsubishi Materials Corp
Mitsubishi Materials Kobe Tools Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp, Mitsubishi Materials Kobe Tools Corp filed Critical Mitsubishi Materials Corp
Priority to JP2005218193A priority Critical patent/JP2007030108A/en
Publication of JP2007030108A publication Critical patent/JP2007030108A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Drilling Tools (AREA)
  • Cutting Tools, Boring Holders, And Turrets (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a cutting tool made of surface coated cemented carbide having a hard coarted layer exhibiting excellent chipping resistance in cutting hard a material hard to cut. <P>SOLUTION: In the cutting tool made of surface coated cemented carbide, a hard coated layer formed of following layers (a) to (d) is formed on the surface of a tungsten carbide-base body or a titanium carbide nitride-base cermet base body: (a) a base body contact layer formed of (Ti, Al)N layer having an average layer thickness ranging from 0.5 to 2 μm and satisfying the composition formula: (Ti<SB>1-Z</SB>Al<SB>Z</SB>)N (wherein Z is 0.30 to 0.70 in an atomic ratio); (b) a lower layer formed of (Ti, Al, B)N layer having an average layer thickness ranging grom 1 to 5 μm and satisfying the composition formula (Ti<SB>1-(X+Y)</SB>Al<SB>X</SB>B<SB>Y</SB>)N (wherein X is 0.40 to 0.70 and Y is 0.01 to 0.20 in an atomic ratio); (c) an inter-layer contact layer formed of a vanadium nitride layer having an average layer thickness ranging from 0.1 to 1.5 μm; and (d) an upper layer formed of a vanadium oxide layer having an average layer thickness ranging from 1 to 5 μm. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

この発明は、特にステンレス鋼や高マンガン鋼、さらに軟鋼などの難削材の切削加工を高切り込みや高送りなどの重切削条件で行った場合に、硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆超硬合金製切削工具(以下、被覆超硬工具という)に関するものである。   This invention exhibits excellent chipping resistance with a hard coating layer, especially when cutting difficult-to-cut materials such as stainless steel, high manganese steel, and mild steel under heavy cutting conditions such as high cutting and high feed. The present invention relates to a surface-coated cemented carbide cutting tool (hereinafter referred to as a coated cemented carbide tool).

一般に、被覆超硬工具には、各種の鋼や鋳鉄などの被削材の旋削加工や平削り加工にバイトの先端部に着脱自在に取り付けて用いられるスローアウエイチップ、前記被削材の穴あけ切削加工などに用いられるドリルやミニチュアドリル、さらに前記被削材の面削加工や溝加工、肩加工などに用いられるソリッドタイプのエンドミルなどがあり、また前記スローアウエイチップを着脱自在に取り付けて前記ソリッドタイプのエンドミルと同様に切削加工を行うスローアウエイエンドミル工具などが知られている。   Generally, for coated carbide tools, a throw-away tip that is attached to the tip of a cutting tool for turning or flattening of various steel and cast iron work materials, and drilling of the work material. There are drills and miniature drills used for processing, etc., and solid type end mills used for chamfering, grooving, shoulder processing, etc. of the work material. A slow-away end mill tool that performs cutting work in the same manner as a type end mill is known.

また、被覆超硬工具として、炭化タングステン(以下、WCで示す)基超硬合金または炭窒化チタン(以下、TiCNで示す)基サーメットで構成された超硬基体の表面に、
組成式:(Ti1-(X+Y)Al)N(ただし、原子比で、Xは0.40〜0.70、Yは0.01〜0.20を示す)を満足するTiとAlとB(ボロン)の複合窒化物[以下、(Ti,Al,B)Nで示す]層からなる硬質被覆層を1〜15μmの平均層厚で物理蒸着してなる被覆超硬工具が知られており、かつ前記被覆超硬工具の硬質被覆層である(Ti,Al,B)N層が、構成成分であるAlによって高温硬さと耐熱性、同Tiによって高温強度を具備し、さらにBの含有によって一段と高温硬さの向上したものになっていることから、これを各種の一般鋼や普通鋳鉄などの連続切削や断続切削加工に用いた場合にすぐれた切削性能を発揮することも知られている。
Further, as a coated carbide tool, on the surface of a carbide substrate composed of tungsten carbide (hereinafter referred to as WC) -based cemented carbide or titanium carbonitride (hereinafter referred to as TiCN) -based cermet,
Ti satisfying the composition formula: (Ti 1- (X + Y) Al X B Y ) N (wherein X is 0.40 to 0.70 and Y is 0.01 to 0.20 in atomic ratio) Known is a coated carbide tool formed by physical vapor deposition of a hard coating layer composed of a composite nitride of Al and B (boron) (hereinafter referred to as (Ti, Al, B) N) with an average layer thickness of 1 to 15 μm. And the (Ti, Al, B) N layer, which is a hard coating layer of the coated carbide tool, has high temperature hardness and heat resistance due to Al as a constituent component, high temperature strength due to the Ti, and B It is also known that when it is used for continuous cutting and intermittent cutting of various general steels and ordinary cast iron, it exhibits excellent cutting performance because it has been further improved in high-temperature hardness by the inclusion of It has been.

さらに、上記の被覆超硬工具が、例えば図2に概略説明図で示される物理蒸着装置の1種であるアークイオンプレーティング装置に上記の超硬基体を装入し、ヒータで装置内を、例えば500℃の温度に加熱した状態で、アノード電極と所定組成を有するTi−Al−B合金がセットされたカソード電極(蒸発源)との間に、例えば電流:90Aの条件でアーク放電を発生させ、同時に装置内に反応ガスとして窒素ガスを導入して、例えば2Paの反応雰囲気とし、一方上記超硬基体には、例えば−100Vのバイアス電圧を印加した条件で、前記超硬基体の表面に、上記(Ti,Al,B)N層からなる硬質被覆層を蒸着することにより製造されることも知られている。
特許第2793696号明細書
Furthermore, the above-mentioned coated carbide tool is, for example, the above-mentioned carbide substrate is inserted into an arc ion plating apparatus which is one type of physical vapor deposition apparatus schematically shown in FIG. For example, an arc discharge is generated between the anode electrode and a cathode electrode (evaporation source) on which a Ti—Al—B alloy having a predetermined composition is set, for example, at a current of 90 A, while being heated to a temperature of 500 ° C. At the same time, nitrogen gas is introduced into the apparatus as a reaction gas to form a reaction atmosphere of, for example, 2 Pa. On the other hand, the carbide substrate is applied to the surface of the carbide substrate under a condition that a bias voltage of, for example, −100 V is applied. It is also known that it is produced by vapor-depositing a hard coating layer composed of the (Ti, Al, B) N layer.
Japanese Patent No. 2793696

近年の切削加工装置のFA化はめざましく、一方で切削加工に対する省力化および省エネ化、さらに低コスト化の要求は強く、これに伴い、切削工具には被削材の材種にできるだけ影響を受けない汎用性、すなわち、できるだけ多くの材種の切削加工が可能な切削工具が求められる傾向にあるが、上記の従来被覆超硬工具においては、これを低合金鋼や炭素鋼などの一般鋼や、ダクタイル鋳鉄やねずみ鋳鉄などの普通鋳鉄の切削加工に用いた場合には問題はないが、特に切粉の粘性が高く、かつ工具表面に溶着し易いステンレス鋼や高マンガン鋼、さらに軟鋼などの難削材(被削材)の切削加工を、切刃部に高負荷が局部的にかかる高切り込みや高送りなどの重切削条件で行った場合には、切削時の発熱によって被削材および切粉は高温に加熱されて粘性度が一段と増大し、これに伴なって硬質被覆層表面に対する粘着性および反応性が一段と増すようになるばかりでなく、硬質被覆層である前記(Ti,Al,B)N層の基体表面に対する密着性が十分でないために、前記難削材の重切削条件での切削加工では、切刃部におけるチッピング(微少欠け)の発生が急激に増加し、これが原因で比較的短時間で使用寿命に至るのが現状である。   In recent years, the use of FA for cutting devices has been remarkable. On the other hand, there is a strong demand for labor saving, energy saving, and cost reduction for cutting processing. There is a tendency to demand cutting tools that can cut as many grades as possible, but in the above-mentioned conventional coated carbide tools, this is applied to general steels such as low alloy steels and carbon steels. There is no problem when used for cutting of ordinary cast iron such as ductile cast iron and gray cast iron, but especially stainless steel, high manganese steel, and mild steel with high chip viscosity and easy welding to the tool surface. When cutting difficult-to-cut materials (work materials) under heavy cutting conditions such as high cutting and high feed, where the load is locally applied to the cutting edge, the work material and Chips are heated As a result, the viscosity further increases, and as a result, not only the adhesion and reactivity to the surface of the hard coating layer further increase, but also the (Ti, Al, B) N layer which is a hard coating layer. Since the adhesiveness to the substrate surface is not sufficient, in the cutting of the difficult-to-cut material under heavy cutting conditions, the occurrence of chipping (small chipping) in the cutting edge portion increases rapidly, and this causes a relatively short time. At present, the service life is reached.

そこで、本発明者等は、上述のような観点から、特に難削材の切削加工を高切り込みや高送りなどの重切削条件で行った場合に、硬質被覆層がすぐれた耐チッピング性を発揮する被覆超硬工具を開発すべく、上記の従来被覆超硬工具に着目し、研究を行った結果、
(a)上記従来被覆超硬工具の硬質被覆層である(Ti,Al,B)N層を下部層として1〜5μmの平均層厚で形成し、これの上に上部層として酸化バナジウム(以下、VOで示す。ただし、Mは酸素のバナジウムに対する相対含有割合の変化値を示し、原子比で、VO、V、V、およびVOなどを示す)層を同じく1〜5μmの平均層厚で形成すると、前記VO層は表面滑り性にすぐれ、この結果切削時の発熱で被削材(難削材)およびその切粉が高温加熱された状態でも切刃部(すくい面および逃げ面と、これら両面が交わる切刃稜線部)と被削材および切粉との間には常にすぐれた滑り性が確保され、前記被削材および切粉の切刃部表面に対する粘着性および反応性が著しく低減し、前記下部層である(Ti,Al,B)N層を十分に保護することから、(Ti,Al,B)N層のもつすぐれた特性が長期に亘って十分に発揮されるようになること。
In view of the above, the present inventors have demonstrated excellent chipping resistance with a hard coating layer, particularly when cutting difficult-to-cut materials under heavy cutting conditions such as high cutting and high feed. As a result of conducting research focusing on the above-mentioned conventional coated carbide tools,
(A) A (Ti, Al, B) N layer, which is a hard coating layer of the above conventional coated carbide tool, is formed with an average layer thickness of 1 to 5 μm as a lower layer, and vanadium oxide (hereinafter referred to as an upper layer) thereon. , VO M, where M represents a change value of the relative content ratio of oxygen to vanadium, and the atomic ratio indicates VO, V 2 O 3 , V 2 O 5 , VO 2, etc.) by forming an average layer thickness of 5 .mu.m, the VO M layer is excellent surface slipperiness, cutting edge even when the result workpiece by heat generated during cutting (difficult-to-cut materials) and its cutting scraps is high temperature heating Excellent slidability is always ensured between the rake face and the flank face and the cutting edge ridge line where both of the surfaces intersect, and the work material and the chip. The lower layer (T , Al, B) an N layer from the fully protected, (Ti, Al, B) having excellent characteristics N layer may become to be sufficiently exhibited for a long time.

(b)一方、上部層であるVO層と下部層である(Ti,Al,B)N層との密着性は十分でなく、特に断続切削を行った場合に前記の層間の密着性不足が原因でチッピングが発生し易いが、前記VO層と(Ti,Al,B)N層との間に窒化バナジウム(以下、VNで示す)層を0.1〜1.5μmの平均層厚で介在させると、前記VN層は前記VO層および(Ti,Al,B)N層のいずれとも強固に密着することから、これら両層間にはすぐれた密着性が確保されるようになること。 (B) On the other hand, a VO M layer and the lower layer is an upper layer (Ti, Al, B) adhesion to the N layer is not sufficient, the lack adhesion between the layers of especially when subjected to intermittent cutting There is easy chipping caused by the VO M layer and (Ti, Al, B) vanadium nitride between the N layer (hereinafter, indicated by VN) layer average thickness of 0.1~1.5μm the in the interposing, the VN layer the VO M layer and (Ti, Al, B) from that firmly adhered with any of the N layer, it comes to be ensured good adhesion to both of these layers .

(c)また、上記の通り上記(Ti,Al,B)N層の超硬基体表面に対する密着性は、難削材の重切削条件での切削加工に十分満足に耐えられるものではないが、B成分を含有しないTiとAlの複合窒化物層[以下、(Ti,Al)Nで示す]層を、組成式:(Ti1-ZAl)N(ただし、原子比で、Zは0.30〜0.70を示す)を満足した状態で、かつ0.5〜2μmの平均層厚で介在させると、前記(Ti,Al)N層は超硬基体表面および(Ti,Al,B)N層のいずれとも強固に密着することから、これら両者間にはすぐれた密着性が確保されるようになること。 (C) Also, as described above, the adhesion of the (Ti, Al, B) N layer to the carbide substrate surface is not sufficiently satisfactorily resistant to cutting under difficult cutting conditions under heavy cutting conditions. A composite nitride layer of Ti and Al that does not contain a B component (hereinafter referred to as (Ti, Al) N) has a composition formula: (Ti 1 -Z Al Z ) N (wherein Z is 0 in terms of atomic ratio) .30 to 0.70) and with an average layer thickness of 0.5 to 2 μm, the (Ti, Al) N layer is formed on the surface of the carbide substrate and (Ti, Al, B). ) Since both N layers are firmly adhered to each other, excellent adhesion can be secured between them.

(d)上記(c)の硬質被覆層は、例えば図1(a)に概略平面図で、同(b)に概略正面図で示される構造のアークイオンプレーティング装置、すなわち装置中央部に超硬基体装着用回転テーブルを設け、前記回転テーブルを挟んで、一方側にカソード電極(蒸発源)として所定の組成を有するTi−Al−B合金、他方側に同じくカソード電極(蒸発源)として所定の組成を有するTi−Al合金を配置し、さらに前記回転テーブルに沿って、かつ前記Ti−Al−B合金およびTi−Al合金のそれぞれから90度離れた位置にカソード電極(蒸発源)として金属Vを配置したアークイオンプレーティング装置を用い、この装置の前記回転テーブル上の中心軸から半径方向に所定距離離れた位置に外周部に沿って複数の超硬基体をリング状に装着し、この状態で装置内雰囲気を窒素雰囲気として前記回転テーブルを回転させると共に、蒸着形成される硬質被覆層の層厚均一化を図る目的で超硬基体自体も自転させながら、基本的に、まず前記Ti−Al合金のカソード電極(蒸発源)とアノード電極との間にアーク放電を発生させて、前記超硬基体の表面に、基体密着層として(Ti,Al)N層を0.5〜2μmの平均層厚で蒸着した後、前記Ti−Al合金のカソード電極(蒸発源)とアノード電極との間のアーク放電を停止し、引き続いて装置内雰囲気を窒素雰囲気に保持したままで、前記Ti−Al−B合金のカソード電極(蒸発源)とアノード電極との間にアーク放電を発生させて、下部層として(Ti,Al,B)N層を1〜5μmの平均層厚で蒸着し、ついで前記Ti−Al−B合金のカソード電極(蒸発源)とアノード電極との間のアーク放電を停止し、同じく装置内雰囲気を窒素雰囲気に保持したままで、カソード電極(蒸発源)である金属Vとアノード電極との間にアーク放電を発生させて、層間密着層としてVN層を0.1〜1.5μmの平均層厚で蒸着した後、前記金属Vとアノード電極との間のアーク放電を停止し、前記蒸着装置内の雰囲気を酸素雰囲気に切り替えた時点で、再びカソード電極(蒸発源)である金属Vとアノード電極との間にアーク放電を発生させて、前記VN層に重ねて上部層として1〜5μmの平均層厚でVO層を蒸着することにより形成することができること。 (D) The hard coating layer of (c) above is, for example, an arc ion plating apparatus having a structure shown in a schematic plan view in FIG. 1A and a schematic front view in FIG. A rotation table for mounting a hard substrate is provided, and a Ti-Al-B alloy having a predetermined composition as a cathode electrode (evaporation source) is provided on one side with the rotation table interposed therebetween, and a predetermined cathode electrode (evaporation source) is also provided on the other side. And a metal as a cathode electrode (evaporation source) at a position 90 degrees away from each of the Ti-Al-B alloy and Ti-Al alloy along the rotary table. The arc ion plating apparatus having V is used, and a plurality of cemented carbide substrates are bonded along the outer peripheral portion at a predetermined distance in the radial direction from the central axis on the rotary table of the apparatus. In this state, the atmosphere inside the apparatus is changed to a nitrogen atmosphere, the rotary table is rotated, and the carbide substrate itself is rotated for the purpose of uniforming the thickness of the hard coating layer formed by vapor deposition. First, an arc discharge is generated between the cathode electrode (evaporation source) and the anode electrode of the Ti—Al alloy, and a (Ti, Al) N layer is formed as a substrate adhesion layer on the surface of the cemented carbide substrate. After vapor deposition with an average layer thickness of 0.5 to 2 μm, the arc discharge between the cathode electrode (evaporation source) of the Ti—Al alloy and the anode electrode was stopped, and the atmosphere in the apparatus was continuously maintained in a nitrogen atmosphere. Then, an arc discharge is generated between the cathode electrode (evaporation source) and the anode electrode of the Ti—Al—B alloy, and the (Ti, Al, B) N layer is an average layer thickness of 1 to 5 μm as a lower layer. Vapor deposition and then before The arc discharge between the cathode electrode (evaporation source) of the Ti—Al—B alloy and the anode electrode is stopped, and the metal V serving as the cathode electrode (evaporation source) is kept in the same nitrogen atmosphere. An arc discharge is generated between the anode electrode and a VN layer is deposited as an interlayer adhesion layer with an average layer thickness of 0.1 to 1.5 μm, and then the arc discharge between the metal V and the anode electrode is stopped. Then, when the atmosphere in the vapor deposition apparatus is switched to the oxygen atmosphere, an arc discharge is generated again between the metal V as the cathode electrode (evaporation source) and the anode electrode, and the upper layer is superimposed on the VN layer. it can be formed by depositing VO M layer with an average layer thickness of 1~5μm as.

(e)上記の基体密着層、下部層、層間密着層、および上部層で構成された硬質被覆層を蒸着形成してなる被覆超硬工具は、特に粘性および粘着性の高いステンレス鋼や高マンガン鋼、さらに軟鋼などの難削材の切削加工を、高負荷のかかる高切り込みや高送りなどの重切削条件で行っても、前記基体密着層を介して超硬基体表面に強固に密着接合した下部層である(Ti,Al,B)N層がすぐれた高温硬さと耐熱性、さらにすぐれた高温強度を有し、かつ層間密着層としてのVN層の介在によって前記下部層との間にすぐれた密着接合性が確保されたVO層の作用で、前記難削材および切粉との間にすぐれた表面滑り性が確保され、前記難削材および切粉の切刃部表面に対する粘着性および反応性は著しく低減された状態で切削加工が行われるようになることから、切刃部におけるチッピングの発生がなくなり、長期に亘ってすぐれた耐摩耗性を発揮するようになること。
以上(a)〜(e)に示される研究結果を得たのである。
(E) Coated carbide tools formed by vapor-depositing a hard coating layer composed of the above-mentioned substrate adhesion layer, lower layer, interlayer adhesion layer, and upper layer are stainless steel and high manganese, which are particularly highly viscous and sticky. Even when cutting difficult-to-cut materials such as steel and mild steel under heavy cutting conditions such as high cutting with high load and high feed, it is firmly bonded to the surface of the carbide substrate through the substrate adhesion layer. The (Ti, Al, B) N layer, which is the lower layer, has excellent high temperature hardness and heat resistance, and excellent high temperature strength, and is superior to the lower layer by interposing the VN layer as an interlayer adhesion layer. in the action of VO M layer adhesion bonding property is ensured, excellent surface slipperiness between the flame cut materials and chips is ensured, adhesion to the cutting edge surface of the flame-cut materials and chips And the cutting process with significantly reduced reactivity. Since this is done, chipping at the cutting edge is eliminated, and excellent wear resistance is exhibited over a long period of time.
The research results shown in (a) to (e) above were obtained.

この発明は、上記の研究結果に基づいてなされたものであって、超硬基体の表面に、
(a)0.5〜2μmの平均層厚を有し、かつ、組成式:(Ti1-ZAl)N(ただし、原子比で、Zは0.30〜0.70を示す)を満足する(Ti,Al)N層からなる基体密着層、
(b)1〜5μmの平均層厚を有し、かつ、組成式:(Ti1-(X+Y)AlX)N(ただし、原子比で、Xは0.40〜0.70、Yは0.01〜0.20を示す)を満足する(Ti,Al,B)N層からなる下部層、
(c)0.1〜1.5μmの平均層厚を有するVN層からなる層間密着層、
(d)1〜5μmの平均層厚を有するVO層からなる上部層、
以上(a)〜(d)で構成された硬質被覆層を形成してなる、難削材の重切削加工で硬質被覆層がすぐれた耐チッピング性を発揮する被覆超硬工具に特徴を有するものである。
This invention was made based on the above research results, and on the surface of the carbide substrate,
(A) having an average layer thickness of 0.5 to 2 μm and a composition formula: (Ti 1-Z Al Z ) N (wherein Z represents 0.30 to 0.70 in atomic ratio) A substrate adhesion layer comprising a satisfactory (Ti, Al) N layer;
(B) having an average layer thickness of 1 to 5 μm, and a composition formula: (Ti 1− (X + Y) Al X B Y ) N (however, in terms of atomic ratio, X is 0.40 to 0.70, Y Is a lower layer composed of a (Ti, Al, B) N layer satisfying 0.01 to 0.20),
(C) an interlayer adhesion layer comprising a VN layer having an average layer thickness of 0.1 to 1.5 μm;
(D) an upper layer composed of VO M layer having an average layer thickness of 1 to 5 [mu] m,
What is characterized by a coated carbide tool that exhibits excellent chipping resistance in heavy cutting of difficult-to-cut materials, formed by forming a hard coating layer composed of (a) to (d) above. It is.

つぎに、この発明の被覆超硬工具の硬質被覆層の構成層に関し、上記の通りに数値限定した理由を説明する。   Next, the reason why the numerical values of the constituent layers of the hard coating layer of the coated carbide tool of the present invention are limited as described above will be described.

(a)基体密着層の組成および平均層厚
上記の下部層である(Ti,Al,B)N層において、B成分は層自体の高温硬さをさらに一段と向上させ、もって耐摩耗性向上に寄与する作用を有する反面、特に超硬基体表面に対する密着性を低下させる成分であり、したがって、基体密着層を構成する(Ti,Al)N層では、前記B成分を含有させず、構成成分であるTiの作用で超硬基体表面および下部層のいずれにも強固な密着性を確保するようにしたものであり、一方同Al成分の含有で、下部層におけると同様に層自体の高温硬さおよび耐熱性を向上させて、硬質被覆層の耐摩耗性向上に寄与するものであるが、Alの割合を示すZ値がTiとの合量に占める割合(原子比、以下同じ)で0.30未満になると、所定の高温硬さおよび耐熱性を確保することができず、これが耐摩耗性低下の原因となり、一方Alの割合を示すZ値が同0.70を越えると、相対的にTiの割合が0.30未満となってしまい、超硬基体表面および下部層間に所望のすぐれた密着性を確保することができなくなることから、Z値を0.30〜0.70と定めたものである。
(A) Composition of substrate adhesion layer and average layer thickness In the (Ti, Al, B) N layer as the lower layer, the B component further improves the high-temperature hardness of the layer itself, thereby improving the wear resistance. On the other hand, it is a component that lowers the adhesion to the surface of the carbide substrate, in particular, and therefore the (Ti, Al) N layer constituting the substrate adhesion layer does not contain the B component and is a component. A certain Ti action ensures strong adhesion to both the surface of the cemented carbide substrate and the lower layer. On the other hand, with the same Al component, the high-temperature hardness of the layer itself is the same as in the lower layer. In addition, it contributes to improving the wear resistance of the hard coating layer by improving the heat resistance, but the Z value indicating the proportion of Al accounts for the proportion of the total amount with Ti (atomic ratio, the same shall apply hereinafter). When less than 30, the predetermined high temperature hardness and Heat resistance cannot be ensured, which causes a decrease in wear resistance. On the other hand, when the Z value indicating the Al ratio exceeds 0.70, the Ti ratio is relatively less than 0.30. Therefore, the desired excellent adhesion cannot be ensured between the surface of the cemented carbide substrate and the lower layer, so the Z value is set to 0.30 to 0.70.

また、その平均層厚が0.5μm未満では、超硬基体表面および下部層間に所望のすぐれた密着性を確保することができず、一方その平均層厚が2μmを越えると、上記の粘性の高い難削材の重切削加工では硬質被覆層の耐摩耗性を低下させる原因となることから、その平均層厚を0.5〜2μmと定めた。   Also, if the average layer thickness is less than 0.5 μm, the desired excellent adhesion cannot be secured between the surface of the cemented carbide substrate and the lower layer, while if the average layer thickness exceeds 2 μm, the above viscosity Since heavy cutting of a highly difficult-to-cut material causes a decrease in the wear resistance of the hard coating layer, the average layer thickness is set to 0.5 to 2 μm.

(b)下部層の組成および平均層厚
下部層を構成する(Ti,Al,B)N層におけるAl成分には高温硬さと耐熱性(高温特性)、同Ti成分には高温強度を向上させ、さらにB成分には高温硬さを一段と向上させる作用があるが、Alの割合を示すX値がTiとBの合量に占める割合(原子比、以下同じ)で0.40未満になると、相対的にTiの割合が多くなり過ぎて、所定の高温硬さおよび耐熱性を確保することができなくなり、この結果摩耗進行が急激に促進するようになり、一方Alの割合を示すX値が同0.70を越えると、相対的にTiの割合が少なくなり過ぎて、高温強度が急激に低下し、この結果切刃部にチッピングなどが発生し易くなることから、X値を0.40〜0.70と定めたものであり、さらにBの割合を示すY値がAlとTiの合量に占める割合で0.01未満では所望の高温硬さ向上効果が得られず、一方同Y値が0.20を超えると、高温強度が急激に低下するようになることから、Y値を0.01〜0.20と定めた。
(B) Composition and average layer thickness of the lower layer (Ti, Al, B) The Al component in the N layer is improved in high temperature hardness and heat resistance (high temperature characteristics), and the Ti component is improved in high temperature strength. Furthermore, the B component has the effect of further improving the high temperature hardness, but when the X value indicating the proportion of Al is less than 0.40 in the proportion of the total amount of Ti and B (atomic ratio, the same shall apply hereinafter), The proportion of Ti becomes relatively large, and the predetermined high-temperature hardness and heat resistance cannot be ensured. As a result, the progress of wear is rapidly promoted, while the X value indicating the proportion of Al is If it exceeds 0.70, the proportion of Ti becomes relatively small and the high-temperature strength sharply decreases. As a result, chipping or the like is likely to occur in the cutting edge portion. ~ 0.70, and the ratio of B is shown If the Y value is less than 0.01 in the ratio of the total amount of Al and Ti, the desired high-temperature hardness improvement effect cannot be obtained, while if the Y value exceeds 0.20, the high-temperature strength rapidly decreases. Therefore, the Y value was determined to be 0.01 to 0.20.

また、その平均層厚が1μm未満では、自身のもつすぐれた耐摩耗性を長期に亘って発揮するには不十分であり、一方その平均層厚が5μmを越えると、上記の粘性の高い難削材の切削加工では切刃部にチッピングが発生し易くなることから、その平均層厚を1〜5μmと定めた。   Further, if the average layer thickness is less than 1 μm, it is insufficient to exhibit its excellent wear resistance over a long period of time, whereas if the average layer thickness exceeds 5 μm, the above-mentioned high viscosity is difficult. In the cutting of the cutting material, chipping is likely to occur at the cutting edge, so the average layer thickness was set to 1 to 5 μm.

(c)層間密着層の平均層厚
その平均層厚が0.1μm未満では、上部層と下部層の間に強固な接合強度を確保することができず、一方その平均層厚が1.5μmを越えると、硬質被覆層の強度が層間密着層部分で急激に低下するようになり、これがチッピング発生の原因となることから、その平均層厚を0.1〜1.5μmと定めた。
(C) Average layer thickness of interlayer adhesion layer If the average layer thickness is less than 0.1 μm, it is not possible to ensure a strong bonding strength between the upper layer and the lower layer, while the average layer thickness is 1.5 μm. If it exceeds 1, the strength of the hard coating layer suddenly decreases at the interlayer adhesion layer portion, which causes the occurrence of chipping. Therefore, the average layer thickness was determined to be 0.1 to 1.5 μm.

(d)上部層の平均層厚
上部層を構成するVO層は、すぐれた表面滑り性を有し、上記の通り被削材(難削材)および切粉に対する粘着性および反応性がきわめて低く、これは切削時に前記被削材が高温加熱された状態でも変わることなく維持されることから、下部層である(Ti,Al,B)N層を前記高温加熱された被削材および切粉から保護し、これのチッピング発生を抑制する作用を発揮するが、その平均層厚が1μm未満では、前記作用に所望の効果が得られず、一方その平均層厚が5μmを越えて厚くなり過ぎると、チッピングが発生し易くなることから、その平均層厚を1〜5μmと定めた。
(D) VO M layer constituting the average layer thickness top layer of the upper layer is excellent has surface slip characteristics were, as described above workpiece tack and reactivity to (difficult-to-cut materials) and chips are very This is low, and this is maintained without change even when the work material is heated at the time of cutting. Therefore, the (Ti, Al, B) N layer as the lower layer is cut into the work material and the cutting material heated at the high temperature. Protects from powder and exerts an action of suppressing the occurrence of chipping. However, if the average layer thickness is less than 1 μm, a desired effect cannot be obtained in the above action, while the average layer thickness exceeds 5 μm. If it is too much, chipping is likely to occur, so the average layer thickness was determined to be 1 to 5 μm.

この発明の被覆超硬工具は、硬質被覆層を構成する下部層の(Ti,Al,B)N層が、基体密着層である(Ti,Al)N層の作用で超硬基体表面に強固に密着接合した状態で、すぐれた高温硬さと耐熱性、さらにすぐれた高温強度を有し、かつ同層間密着層としてのVN層によって強固に密着接合した上部層としてのVO層によって、被削材(難削材)および切粉との間にすぐれた表面滑り性が確保されることから、特に粘性および粘着性の高いステンレス鋼や高マンガン鋼、さらに軟鋼などの難削材の高負荷のかかる重切削加工でも、すぐれた耐チッピング性を示し、長期に亘ってすぐれた耐摩耗性を発揮するものである。 In the coated carbide tool of the present invention, the lower layer (Ti, Al, B) N layer constituting the hard coating layer is firmly attached to the surface of the carbide substrate by the action of the (Ti, Al) N layer which is the substrate adhesion layer. in close contact bonded to, excellent high-temperature hardness and heat resistance, has a more excellent high-temperature strength, and by VO M layer as an upper layer was firmly adhered joined by VN layer as the interlayer adhesion layer, a work Excellent slipperiness between the material (hard-to-cut material) and the chips is ensured, so that high-load of difficult-to-cut materials such as stainless steel, high manganese steel, and mild steel with high viscosity and stickiness are particularly Even in such heavy cutting, excellent chipping resistance is exhibited, and excellent wear resistance is exhibited over a long period of time.

つぎに、この発明の被覆超硬工具を実施例により具体的に説明する。   Next, the coated carbide tool of the present invention will be specifically described with reference to examples.

原料粉末として、いずれも1〜3μmの平均粒径を有するWC粉末、TiC粉末、ZrC粉末、VC粉末、TaC粉末、NbC粉末、Cr3 2 粉末、TiN粉末、TaN粉末、およびCo粉末を用意し、これら原料粉末を、表1に示される配合組成に配合し、ボールミルで72時間湿式混合し、乾燥した後、100MPa の圧力で圧粉体にプレス成形し、この圧粉体を6Paの真空中、温度:1400℃に1時間保持の条件で焼結し、焼結後、切刃部分にR:0.03のホーニング加工を施してISO規格・CNMG120408のチップ形状をもったWC基超硬合金製の超硬基体A−1〜A−10を形成した。 WC powder, TiC powder, ZrC powder, VC powder, TaC powder, NbC powder, Cr 3 C 2 powder, TiN powder, TaN powder and Co powder all having an average particle diameter of 1 to 3 μm are prepared as raw material powders. These raw material powders are blended in the composition shown in Table 1, wet mixed by a ball mill for 72 hours, dried, and then pressed into a green compact at a pressure of 100 MPa. Medium, sintered at 1400 ° C for 1 hour, after sintering, WC-based carbide with honing of R: 0.03 on the cutting edge and chip shape of ISO standard CNMG120408 Alloy carbide substrates A-1 to A-10 were formed.

また、原料粉末として、いずれも0.5〜2μmの平均粒径を有するTiCN(質量比で、TiC/TiN=50/50)粉末、Mo2 C粉末、ZrC粉末、NbC粉末、TaC粉末、WC粉末、Co粉末、およびNi粉末を用意し、これら原料粉末を、表2に示される配合組成に配合し、ボールミルで24時間湿式混合し、乾燥した後、100MPaの圧力で圧粉体にプレス成形し、この圧粉体を2kPaの窒素雰囲気中、温度:1500℃に1時間保持の条件で焼結し、焼結後、切刃部分にR:0.03のホーニング加工を施してISO規格・CNMG120408のチップ形状をもったTiCN系超硬製の超硬基体B−1〜B−6を形成した。 Further, as raw material powders, TiCN (mass ratio, TiC / TiN = 50/50) powder, Mo 2 C powder, ZrC powder, NbC powder, TaC powder, WC, all having an average particle diameter of 0.5 to 2 μm. Prepare powder, Co powder, and Ni powder, mix these raw material powders into the composition shown in Table 2, wet mix for 24 hours with a ball mill, dry, and press-mold into green compact at 100 MPa pressure The green compact was sintered in a nitrogen atmosphere of 2 kPa at a temperature of 1500 ° C. for 1 hour. After sintering, the cutting edge portion was subjected to a honing process of R: 0.03 to meet ISO standards / TiCN-based cemented carbide substrates B-1 to B-6 having a chip shape of CNMG120408 were formed.

(a)ついで、上記の超硬基体A−1〜A−10およびB−1〜B−6のそれぞれを、アセトン中で超音波洗浄し、乾燥した状態で、図1に示されるアークイオンプレーティング装置内の回転テーブル上の中心軸から半径方向に所定距離離れた位置に外周部にそって装着し、前記回転テーブルを挟んで、一方側にカソード電極(蒸発源)として所定の組成を有する下部層形成用Ti−Al−B合金、他方側に同じくカソード電極(蒸発源)として所定の組成を有する基体密着層形成用Ti−Al合金を対向配置し、さらに前記回転テーブルに沿って、両合金のそれぞれから90度離れた位置にカソード電極(蒸発源)として層間密着層および上部層形成用金属Vを配置し、
(b)まず、装置内を排気して0.1Pa以下の真空に保持しながら、ヒーターで装置内を500℃に加熱した後、前記回転テーブル上で自転しながら回転する超硬基体に−1000Vの直流バイアス電圧を印加し、かつカソード電極の前記基体密着層形成用Ti−Al合金とアノード電極との間に100Aの電流を流してアーク放電を発生させ、もって超硬基体表面を前記Ti−Al合金によってボンバード洗浄し、
(c)装置内に反応ガスとして窒素ガスを導入して4Paの反応雰囲気とすると共に、前記回転テーブル上で自転しながら回転する超硬基体に−100Vの直流バイアス電圧を印加し、かつカソード電極の前記Ti−Al合金とアノード電極との間に120Aの電流を流してアーク放電を発生させ、もって前記超硬基体の表面に、表3,4に示される目標組成および目標層厚の(Ti,Al)N層を硬質被覆層の基体密着層として蒸着形成し、
(d)上記基体密着層形成用Ti−Al合金のカソード電極とアノード電極との間のアーク放電を停止し、装置内の雰囲気を同じ4Paの窒素雰囲気に保持すると共に、超硬基体への直流バイアス電圧も同じく−100Vとしたままで、カソード電極の前記Ti−Al−B合金とアノード電極との間に120Aの電流を流してアーク放電を発生させ、もって前記基体密着層の上に、表3,4に示される目標組成および目標層厚の(Ti,Al,B)N層を硬質被覆層の下部層として蒸着形成し、
(e)上記の下部層形成用Ti−Al−B合金のカソード電極とアノード電極との間のアーク放電を停止し、装置内の雰囲気を同じく4Paの窒素雰囲気に保持すると共に、超硬基体への直流バイアス電圧も同じく−100Vとした条件で、カソード電極の前記金属Vとアノード電極との間に120Aの電流を流してアーク放電を発生させ、もって同じく表3,4に示される目標層厚のVN層を硬質被覆層の層間密着層として蒸着形成し、
(f)上記金属Vとアノード電極とのアーク放電を停止し、前記蒸着装置内の雰囲気を0.2Paの酸素雰囲気に切り替えた時点で、再びカソード電極の前記金属Vとアノード電極との間に120Aの電流を流してアーク放電を発生させ、同じく表3,4に示される目標層厚のVO層を硬質被覆層の上部層として蒸着形成することにより、本発明被覆超硬工具としての本発明表面被覆超硬製スローアウエイチップ(以下、本発明被覆チップと云う)1〜16をそれぞれ製造した。
(A) Next, each of the above carbide substrates A-1 to A-10 and B-1 to B-6 was ultrasonically cleaned in acetone and dried, and then the arc ion plate shown in FIG. Attached along the outer periphery at a position that is a predetermined distance in the radial direction from the central axis on the rotary table in the coating apparatus, and has a predetermined composition as a cathode electrode (evaporation source) on one side across the rotary table A Ti—Al—B alloy for forming a lower layer, and a Ti—Al alloy for forming a substrate adhesion layer having a predetermined composition as a cathode electrode (evaporation source) on the other side are arranged opposite to each other. An interlayer adhesion layer and an upper layer forming metal V are disposed as cathode electrodes (evaporation sources) at positions 90 degrees apart from each of the alloys,
(B) First, the inside of the apparatus is evacuated and kept at a vacuum of 0.1 Pa or less, and the inside of the apparatus is heated to 500 ° C. with a heater, and then the carbide substrate that rotates while rotating on the rotary table is set to −1000 V. And applying a current of 100 A between the anode electrode and the Ti—Al alloy for forming the substrate adhesion layer of the cathode electrode to generate an arc discharge, thereby causing the surface of the carbide substrate to adhere to the Ti— Bombarded with Al alloy,
(C) Introducing nitrogen gas as a reaction gas into the apparatus to form a 4 Pa reaction atmosphere, applying a DC bias voltage of −100 V to a carbide substrate rotating while rotating on the rotary table, and a cathode electrode A current of 120 A is passed between the Ti-Al alloy and the anode electrode to generate an arc discharge, so that the surface of the cemented carbide substrate has a target composition and target layer thickness (Ti) shown in Tables 3 and 4. , Al) N layer is formed by vapor deposition as a substrate adhesion layer of a hard coating layer,
(D) The arc discharge between the cathode electrode and the anode electrode of the Ti—Al alloy for forming the substrate adhesion layer is stopped, the atmosphere in the apparatus is maintained in the same nitrogen atmosphere of 4 Pa, and direct current to the carbide substrate is maintained. Similarly, with the bias voltage kept at −100 V, a current of 120 A is passed between the Ti—Al—B alloy of the cathode electrode and the anode electrode to generate an arc discharge. (Ti, Al, B) N layer having a target composition and a target layer thickness shown in 3 and 4 is deposited as a lower layer of the hard coating layer,
(E) The arc discharge between the cathode electrode and the anode electrode of the Ti-Al-B alloy for forming the lower layer is stopped, and the atmosphere in the apparatus is similarly maintained in a nitrogen atmosphere of 4 Pa. Similarly, under the condition that the DC bias voltage is -100 V, a current of 120 A is passed between the metal V of the cathode electrode and the anode electrode to generate arc discharge, and the target layer thicknesses shown in Tables 3 and 4 are also shown. VN layer is deposited as an interlayer adhesion layer of a hard coating layer,
(F) When the arc discharge between the metal V and the anode electrode is stopped and the atmosphere in the vapor deposition apparatus is switched to an oxygen atmosphere of 0.2 Pa, it is again between the metal V and the anode electrode of the cathode electrode. by flowing a 120A current to generate arc discharge, also by the VO M layer of the target layer thicknesses shown in tables 3 to deposit formed as an upper layer of the hard coating layer, the present as the present invention coated cemented carbide Invention surface coated carbide throwaway tips (hereinafter referred to as the present invention coated tips) 1 to 16 were produced.

また、比較の目的で、これら超硬基体A−1〜A−10およびB−1〜B−6を、アセトン中で超音波洗浄し、乾燥した状態で、それぞれ図2に示されるアークイオンプレーティング装置に装入し、カソード電極(蒸発源)として種々の成分組成をもったTi−Al−B合金を装着し、まず、装置内を排気して0.1Pa以下の真空に保持しながら、ヒーターで装置内を500℃に加熱した後、前記超硬基体に−1000Vの直流バイアス電圧を印加し、かつカソード電極の前記Ti−Al−B合金とアノード電極との間に100Aの電流を流してアーク放電を発生させ、もって超硬基体表面を前記Ti−Al−B合金でボンバード洗浄し、ついで装置内に反応ガスとして窒素ガスを導入して3Paの反応雰囲気とすると共に、前記超硬基体に印加するバイアス電圧を−100Vに下げて、前記Ti−Al−B合金のカソード電極とアノード電極との間にアーク放電を発生させ、もって前記超硬基体A−1〜A−10およびB−1〜B−6のそれぞれの表面に、表5,6に示される目標組成および目標層厚の(Ti,Al,B)N層を硬質被覆層として蒸着形成することにより、従来被覆超硬工具としての従来表面被覆超硬製スローアウエイチップ(以下、従来被覆チップと云う)1〜16をそれぞれ製造した。   For the purpose of comparison, these carbide substrates A-1 to A-10 and B-1 to B-6 were ultrasonically cleaned in acetone and dried, respectively, and the arc ion plate shown in FIG. A Ti-Al-B alloy having various component compositions as a cathode electrode (evaporation source) is inserted into a coating apparatus, and first, the inside of the apparatus is evacuated and maintained at a vacuum of 0.1 Pa or less. After heating the inside of the apparatus to 500 ° C. with a heater, a DC bias voltage of −1000 V is applied to the cemented carbide substrate, and a current of 100 A is passed between the Ti—Al—B alloy of the cathode electrode and the anode electrode. Arc discharge is generated, and the surface of the carbide substrate is bombarded with the Ti-Al-B alloy, and then nitrogen gas is introduced into the apparatus as a reaction gas to obtain a reaction atmosphere of 3 Pa. The bias voltage to be applied is lowered to -100V, and arc discharge is generated between the cathode electrode and the anode electrode of the Ti-Al-B alloy, thereby the carbide substrates A-1 to A-10 and B-1 As a conventional coated carbide tool, a (Ti, Al, B) N layer having a target composition and a target layer thickness shown in Tables 5 and 6 is vapor-deposited on each surface of B-6 as a hard coating layer. Conventional surface-coated carbide throwaway tips (hereinafter referred to as conventional coated tips) 1 to 16 were produced, respectively.

つぎに、上記の各種の被覆チップを、いずれも工具鋼製バイトの先端部に固定治具にてネジ止めした状態で、本発明被覆チップ1〜16および従来被覆チップ1〜16について、
被削材:JIS・SUS316の長さ方向等間隔4本縦溝入り丸棒、
切削速度:200m/min.、
切り込み:3.5mm、
送り:0.3mm/rev.、
切削時間:6分、
の条件(切削条件A)でのステンレス鋼の乾式断続高切り込み切削加工試験(通常の切り込みは1.5mm)、
被削材:JIS・S15Cの長さ方向等間隔4本縦溝入り丸棒、
切削速度:280m/min.、
切り込み:1.5mm、
送り:0.5mm/rev.、
切削時間:5分、
の条件(切削条件B)での軟鋼の乾式断続高送り切削加工試験(通常の送りは0.3mm/rev.)、
被削材:JIS・SCMnH1の丸棒、
切削速度:250m/min.、
切り込み:3mm、
送り:0.25mm/rev.、
切削時間:8分、
の条件(切削条件C)での高マンガン鋼の乾式連続高切り込み切削加工試験(通常の切り込みは1.5mm)、を行い、いずれの切削加工試験でも切刃の逃げ面摩耗幅を測定した。この測定結果を表7に示した。
Next, in the state where each of the above various coated chips is screwed to the tip of the tool steel tool with a fixing jig, the present coated chips 1 to 16 and the conventional coated chips 1 to 16 are as follows.
Work material: JIS / SUS316 lengthwise equidistant 4 round grooved round bars,
Cutting speed: 200 m / min. ,
Cutting depth: 3.5mm,
Feed: 0.3 mm / rev. ,
Cutting time: 6 minutes
Stainless steel dry interrupted cutting test (normal cutting is 1.5 mm) under the above conditions (cutting condition A),
Work material: JIS / S15C lengthwise equal length 4 vertical grooved round bars,
Cutting speed: 280 m / min. ,
Incision: 1.5mm,
Feed: 0.5 mm / rev. ,
Cutting time: 5 minutes
Dry interrupted high feed cutting test of mild steel under normal conditions (cutting condition B) (normal feed is 0.3 mm / rev.),
Work material: JIS / SCMnH1 round bar,
Cutting speed: 250 m / min. ,
Incision: 3mm,
Feed: 0.25 mm / rev. ,
Cutting time: 8 minutes
The dry continuous high-cutting cutting test (normal cutting is 1.5 mm) of high manganese steel under the above conditions (cutting condition C) was performed, and the flank wear width of the cutting edge was measured in any cutting test. The measurement results are shown in Table 7.

Figure 2007030108
Figure 2007030108

Figure 2007030108
Figure 2007030108

Figure 2007030108
Figure 2007030108

Figure 2007030108
Figure 2007030108

Figure 2007030108
Figure 2007030108

Figure 2007030108
Figure 2007030108

Figure 2007030108
Figure 2007030108

原料粉末として、平均粒径:5.5μmを有する中粗粒WC粉末、同0.8μmの微粒WC粉末、同1.3μmのTaC粉末、同1.2μmのNbC粉末、同1.2μmのZrC粉末、同2.3μmのCr32粉末、同1.5μmのVC粉末、同1.0μmの(Ti,W)C[質量比で、TiC/WC=50/50]粉末、および同1.8μmのCo粉末を用意し、これら原料粉末をそれぞれ表8に示される配合組成に配合し、さらにワックスを加えてアセトン中で24時間ボールミル混合し、減圧乾燥した後、100MPaの圧力で所定形状の各種の圧粉体にプレス成形し、これらの圧粉体を、6Paの真空雰囲気中、7℃/分の昇温速度で1370〜1470℃の範囲内の所定の温度に昇温し、この温度に1時間保持後、炉冷の条件で焼結して、直径が8mm、13mm、および26mmの3種の超硬基体形成用丸棒焼結体を形成し、さらに前記の3種の丸棒焼結体から、研削加工にて、表7に示される組合せで、切刃部の直径×長さがそれぞれ6mm×13mm、10mm×22mm、および20mm×45mmの寸法、並びにいずれもねじれ角30度の4枚刃スクエア形状をもったWC基超硬合金製の超硬基体(エンドミル)C−1〜C−8をそれぞれ製造した。 As raw material powders, medium coarse WC powder having an average particle diameter of 5.5 μm, fine WC powder of 0.8 μm, TaC powder of 1.3 μm, NbC powder of 1.2 μm, ZrC of 1.2 μm Powder, 2.3 μm Cr 3 C 2 powder, 1.5 μm VC powder, 1.0 μm (Ti, W) C [by mass ratio, TiC / WC = 50/50] powder, and 1 Prepare 8 μm Co powder, mix these raw material powders with the composition shown in Table 8, add wax, ball mill in acetone for 24 hours, dry under reduced pressure, and press at a pressure of 100 MPa. The green compacts were press-molded, and these green compacts were heated to a predetermined temperature in the range of 1370 to 1470 ° C. at a rate of temperature increase of 7 ° C./min in a 6 Pa vacuum atmosphere. After holding at temperature for 1 hour, sintering under furnace cooling conditions 3 types of sintered carbide rod-forming bodies for forming a carbide substrate having diameters of 8 mm, 13 mm, and 26 mm were formed, and further, the three types of sintered rods for round bar were subjected to grinding, as shown in Table 7. Made of WC-base cemented carbide with a combination of 4 blade square shape with diameter and length of 6mm × 13mm, 10mm × 22mm, and 20mm × 45mm respectively, and a twist angle of 30 degrees. Carbide substrates (end mills) C-1 to C-8 were produced.

ついで、これらの超硬基体(エンドミル)C−1〜C−8の表面をアセトン中で超音波洗浄し、乾燥した状態で、同じく図1に示されるアークイオンプレーティング装置に装入し、上記実施例1と同一の条件で、表9に示される目標組成および目標層厚の(Ti,Al)N層からなる基体密着層および(Ti,Al,B)N層からなる下部層と、同じく表9に示される目標層厚のVN層からなる層間密着層およびVO層からなる上部層で構成された硬質被覆層を蒸着形成することにより、本発明被覆超硬工具としての本発明表面被覆超硬製エンドミル(以下、本発明被覆エンドミルと云う)1〜8をそれぞれ製造した。 Then, the surfaces of these carbide substrates (end mills) C-1 to C-8 were ultrasonically cleaned in acetone and dried, and then charged into the arc ion plating apparatus shown in FIG. Under the same conditions as in Example 1, the substrate adhesion layer composed of the (Ti, Al) N layer having the target composition and the target layer thickness shown in Table 9 and the lower layer composed of the (Ti, Al, B) N layer, by the hard coating layer composed of a top layer made of interlayer adhesion layer and VO M layer comprising a target layer thickness of the VN layer formed by evaporation as shown in Table 9, the present invention a surface coating of the present invention coated cemented carbide Carbide end mills (hereinafter referred to as the present invention coated end mills) 1 to 8 were produced, respectively.

また、比較の目的で、上記の超硬基体(エンドミル)C−1〜C−8の表面をアセトン中で超音波洗浄し、乾燥した状態で、同じく図2に示されるアークイオンプレーティング装置に装入し、上記実施例1と同一の条件で、同じく表10に示される目標組成および目標層厚の(Ti,Al,B)N層からなる硬質被覆層を蒸着することにより、従来被覆超硬工具としての従来表面被覆超硬製エンドミル(以下、従来被覆エンドミルと云う)1〜8をそれぞれ製造した。   For the purpose of comparison, the surfaces of the above-mentioned carbide substrates (end mills) C-1 to C-8 are ultrasonically cleaned in acetone and dried, and the arc ion plating apparatus shown in FIG. The hard coating layer consisting of the (Ti, Al, B) N layer having the target composition and target layer thickness shown in Table 10 is deposited under the same conditions as in Example 1 above. Conventional surface-coated carbide end mills (hereinafter referred to as conventional coated end mills) 1 to 8 as hard tools were produced, respectively.

つぎに、上記本発明被覆エンドミル1〜8および従来被覆エンドミル1〜8のうち、本発明被覆エンドミル1〜3および従来被覆エンドミル1〜3については、
被削材−平面寸法:100mm×250mm、厚さ:50mmのJIS・S15Cの板材、
切削速度:60m/min.、
溝深さ(切り込み):5mm、
テーブル送り:200mm/分、
の条件での軟鋼の乾式高切り込み溝切削加工試験(通常の溝深さは3mm)、本発明被覆エンドミル4〜6および従来被覆エンドミル4〜6については、
被削材−平面寸法:100mm×250mm、厚さ:50mmのJIS・SUS316の板材、
切削速度:65m/min.、
溝深さ(切り込み):4mm、
テーブル送り:400mm/分、
の条件でのステンレス鋼の湿式(水溶性切削油使用)高送り溝切削加工試験(通常のテーブル送りは120mm/分)、本発明被覆エンドミル7,8および従来被覆エンドミル7,8については、
被削材−平面寸法:100mm×250mm、厚さ:50mmのJIS・SCMnH1の板材、
切削速度:55m/min.、
溝深さ(切り込み):16mm、
テーブル送り:180mm/分、
の条件での高マンガン鋼の乾式高切り込み溝切削加工試験(通常の溝深さは10mm)をそれぞれ行い、いずれの溝切削加工試験でも切刃部の外周刃の逃げ面摩耗幅が使用寿命の目安とされる0.1mmに至るまでの切削溝長を測定した。この測定結果を表9,10にそれぞれ示した。
Next, of the present invention coated end mills 1-8 and conventional coated end mills 1-8, the present invention coated end mills 1-3 and conventional coated end mills 1-3 are as follows:
Work material-planar dimensions: 100 mm x 250 mm, thickness: 50 mm JIS / S15C plate,
Cutting speed: 60 m / min. ,
Groove depth (cut): 5 mm,
Table feed: 200 mm / min,
About the dry-type high cutting groove cutting test of mild steel under the conditions of (normal groove depth is 3 mm), the present invention coated end mills 4-6 and the conventional coated end mills 4-6,
Work material-Plane dimensions: 100 mm x 250 mm, thickness: 50 mm JIS / SUS316 plate material,
Cutting speed: 65 m / min. ,
Groove depth (cut): 4 mm
Table feed: 400mm / min,
For stainless steel wet conditions (using water-soluble cutting oil), high feed groove cutting test (normal table feed is 120 mm / min), coated end mills 7 and 8 of the present invention, and conventional coated end mills 7 and 8
Work material-planar dimensions: 100 mm × 250 mm, thickness: 50 mm JIS / SCMnH1 plate material,
Cutting speed: 55 m / min. ,
Groove depth (cut): 16 mm,
Table feed: 180mm / min,
The high-manganese steel dry-type high-groove grooving test (normal groove depth is 10 mm) was performed under the conditions described above, and the flank wear width of the outer peripheral edge of the cutting edge was the service life of each grooving test. The cutting groove length up to 0.1 mm as a standard was measured. The measurement results are shown in Tables 9 and 10, respectively.

Figure 2007030108
Figure 2007030108

Figure 2007030108
Figure 2007030108

Figure 2007030108
Figure 2007030108

上記の実施例2で製造した直径が8mm(超硬基体C−1〜C−3形成用)、13mm(超硬基体C−4〜C−6形成用)、および26mm(超硬基体C−7、C−8形成用)の3種の丸棒焼結体を用い、この3種の丸棒焼結体から、研削加工にて、溝形成部の直径×長さがそれぞれ4mm×13mm(超硬基体D−1〜D−3)、8mm×22mm(超硬基体D−4〜D−6)、および16mm×45mm(超硬基体D−7、D−8)の寸法、並びにいずれもねじれ角30度の2枚刃形状をもったWC基超硬合金製の超硬基体(ドリル)D−1〜D−8をそれぞれ製造した。   The diameters produced in Example 2 above were 8 mm (for forming carbide substrates C-1 to C-3), 13 mm (for forming carbide substrates C-4 to C-6), and 26 mm (for carbide substrates C-). 7, for C-8 formation), and from these three types of round bar sintered bodies, the diameter x length of the groove forming portion is 4 mm x 13 mm (by grinding). Carbide substrates D-1 to D-3), 8 mm × 22 mm (Carbide substrates D-4 to D-6), and 16 mm × 45 mm (Carbide substrates D-7 and D-8), and all Carbide substrates (drills) D-1 to D-8 made of a WC-base cemented carbide having a two-blade shape with a twist angle of 30 degrees were produced.

ついで、これらの超硬基体(ドリル)D−1〜D−8の切刃に、ホーニングを施し、アセトン中で超音波洗浄し、乾燥した状態で、同じく図1に示されるアークイオンプレーティング装置に装入し、上記実施例1と同一の条件で、表11に示される目標組成および目標層厚の(Ti,Al)N層からなる基体密着層および(Ti,Al,B)N層からなる下部層と、同じく表11に示される目標層厚のVN層からなる層間密着層およびVO層からなる上部層で構成された硬質被覆層を蒸着形成することにより、本発明被覆超硬工具としての本発明表面被覆超硬製ドリル(以下、本発明被覆ドリルと云う)1〜8をそれぞれ製造した。 Next, the cutting edges of these carbide substrates (drills) D-1 to D-8 are subjected to honing, ultrasonically cleaned in acetone and dried, and the arc ion plating apparatus shown in FIG. 1 is also used. Under the same conditions as in Example 1 above, from the substrate adhesion layer comprising the (Ti, Al) N layer having the target composition and the target layer thickness shown in Table 11 and the (Ti, Al, B) N layer. comprising a lower layer, likewise by hard coating layer composed of a top layer made of interlayer adhesion layer and VO M layer comprising a target layer thickness of the VN layer shown in Table 11 formed by evaporation, the present invention coated cemented carbide The present invention surface-coated carbide drills (hereinafter referred to as the present invention-coated drills) 1 to 8 were produced.

また、比較の目的で、上記の超硬基体(ドリル)D−1〜D−8の表面に、ホーニングを施し、アセトン中で超音波洗浄し、乾燥した状態で、同じく図2に示されるアークイオンプレーティング装置に装入し、上記実施例1と同一の条件で、同じく表12に示される目標組成および目標層厚を有する(Ti,Al,B)N層からなる硬質被覆層を蒸着形成することにより、従来被覆超硬工具としての従来表面被覆超硬製ドリル(以下、従来被覆ドリルと云う)1〜8をそれぞれ製造した。   For comparison purposes, the surfaces of the above-mentioned carbide substrates (drills) D-1 to D-8 are honed, ultrasonically cleaned in acetone, and dried, and the arc shown in FIG. A hard coating layer comprising a (Ti, Al, B) N layer having the target composition and target layer thickness shown in Table 12 is formed by vapor deposition under the same conditions as in Example 1 above. Thus, conventional surface coated carbide drills (hereinafter referred to as conventional coated drills) 1 to 8 as conventional coated carbide tools were manufactured, respectively.

つぎに、上記本発明被覆ドリル1〜8および従来被覆ドリル1〜8のうち、本発明被覆ドリル1〜3および従来被覆ドリル1〜3については、
被削材−平面寸法:100mm×250mm、厚さ:50mmのJIS・SUS316の板材、
切削速度:60m/min.、
送り:0.35mm/rev、
穴深さ:10mm、
の条件でのステンレス鋼の湿式高送り穴あけ切削加工試験(通常の送りは0.2mm/rev)、本発明被覆ドリル4〜6および従来被覆ドリル4〜6については、
被削材−平面寸法:100mm×250mm、厚さ:50mmのJIS・SCMnH1の板材、
切削速度:100m/min.、
送り:0.5mm/rev、
穴深さ:10mm、
の条件での高マンガン鋼の湿式高送り穴あけ切削加工試験(通常の送りは0.25mm/rev)、本発明被覆ドリル7,8および従来被覆ドリル7,8については、
被削材−平面寸法:100mm×250mm、厚さ:50mmのJIS・S15Cの板材、
切削速度:140m/min.、
送り:0.45mm/rev、
穴深さ:18mm、
の条件での軟鋼の湿式高送り穴あけ切削加工試験(通常の送りは0.25mm/rev)、をそれぞれ行い、いずれの湿式高速穴あけ切削加工試験(水溶性切削油使用)でも先端切刃面の逃げ面摩耗幅が0.3mmに至るまでの穴あけ加工数を測定した。この測定結果を表11,12にそれぞれ示した。
Next, of the present invention coated drills 1 to 8 and the conventional coated drills 1 to 8, the present invention coated drills 1 to 3 and the conventional coated drills 1 to 3 are:
Work material-Plane dimensions: 100 mm x 250 mm, thickness: 50 mm JIS / SUS316 plate material,
Cutting speed: 60 m / min. ,
Feed: 0.35mm / rev,
Hole depth: 10mm,
For the stainless steel wet high feed drilling test (normal feed is 0.2 mm / rev), the present invention coated drills 4-6 and the conventional coated drills 4-6,
Work material-planar dimensions: 100 mm × 250 mm, thickness: 50 mm JIS / SCMnH1 plate material,
Cutting speed: 100 m / min. ,
Feed: 0.5mm / rev,
Hole depth: 10mm,
For the high manganese steel wet high feed drilling test under normal conditions (normal feed is 0.25 mm / rev), the present invention coated drills 7 and 8 and the conventional coated drills 7 and 8,
Work material-planar dimensions: 100 mm x 250 mm, thickness: 50 mm JIS / S15C plate,
Cutting speed: 140 m / min. ,
Feed: 0.45mm / rev,
Hole depth: 18mm,
Each of the wet high-feed drilling machining test (normal feed is 0.25 mm / rev) of mild steel under the conditions of each of the above, and any wet high-speed drilling machining test (using water-soluble cutting oil) The number of drilling processes until the flank wear width reached 0.3 mm was measured. The measurement results are shown in Tables 11 and 12, respectively.

Figure 2007030108
Figure 2007030108

Figure 2007030108
Figure 2007030108

この結果得られた本発明被覆超硬工具としての本発明被覆チップ1〜16、本発明被覆エンドミル1〜8、および本発明被覆ドリル1〜8の硬質被覆層を構成する(Ti,Al)N層(基体密着層)および(Ti,Al,B)N層(下部層)の組成、並びに従来被覆超硬工具としての従来被覆チップ1〜16、従来被覆エンドミル1〜8、および従来被覆ドリル1〜8の(Ti,Al,B)N層からなる硬質被覆層の組成を、透過型電子顕微鏡を用いてのエネルギー分散X線分析法により測定したところ、それぞれ目標組成と実質的に同じ組成を示した。   (Ti, Al) N constituting the hard coating layer of the present coated chips 1-16, the present coated end mills 1-8, and the present coated drills 1-8 as the present coated carbide tool obtained as a result of this. Layer (base adhesion layer) and (Ti, Al, B) N layer (lower layer) composition, conventional coated tips 1-16 as conventional coated carbide tools, conventional coated end mills 1-8, and conventional coated drill 1 When the composition of the hard coating layer consisting of (Ti, Al, B) N layers of ~ 8 was measured by energy dispersive X-ray analysis using a transmission electron microscope, the composition was substantially the same as the target composition. Indicated.

さらに、本発明被覆超硬工具の硬質被覆層を構成するVO層(上部層)の組成を同じく測定したところ、原子比で、VOを主体とし、これにV、V、およびVOなどが含有する混合組織を示した。 Furthermore, when VO M layer constituting the hard layer of the present invention coated cemented carbide composition of (upper layer) was also measured, by atomic ratio, mainly the VO, this V 2 O 3, V 2 O 5 , And a mixed structure containing VO 2 or the like.

また、上記の硬質被覆層の構成層の平均層厚を走査型電子顕微鏡を用いて断面測定したところ、いずれも目標層厚と実質的に同じ平均値(5ヶ所の平均値)を示した。   Further, when the average layer thickness of the constituent layers of the hard coating layer was subjected to cross-sectional measurement using a scanning electron microscope, all showed the same average value (average value of five locations) as the target layer thickness.

表3〜12に示される結果から、本発明被覆超硬工具は、いずれも特に粘性および粘着性の高いステンレス鋼や高マンガン鋼、さらに軟鋼などの難削材の高切り込みや高送りなどの重切削条件での切削加工でも、硬質被覆層の下部層である(Ti,Al,B)N層が基体密着層である(Ti,Al)N層によって超硬基体表面に強固に密着接合した状態で、すぐれた高温硬さと耐熱性、さらにすぐれた高温強度を有し、かつ層間密着層としてのVN層によって前記下部層に強固に密着したVO層によって、前記被削材および切粉との間にすぐれた表面滑り性が確保されることから、チッピングの発生なく、長期に亘ってすぐれた耐摩耗性を発揮するのに対して、硬質被覆層が(Ti,Al,B)N層で構成された従来被覆超硬工具においては、いずれも前記難削材の重切削加工では被削材(難削材)および切粉と前記硬質被覆層との粘着性および反応性が一段と高くなり、かつ、前記硬質被覆層の超硬基体表面に対する密着性も不十分であるために、切刃部にチッピングが発生するようになり、比較的短時間で使用寿命に至ることが明らかである。 From the results shown in Tables 3 to 12, all of the coated carbide tools of the present invention have high viscosities such as high cutting and high feed of difficult-to-cut materials such as stainless steel, high manganese steel, and mild steel, which are particularly highly viscous and sticky. Even in cutting under the cutting conditions, the (Ti, Al, B) N layer, which is the lower layer of the hard coating layer, is tightly bonded to the surface of the carbide substrate by the (Ti, Al) N layer, which is the substrate adhesion layer. in, excellent high-temperature hardness and heat resistance, has a more excellent high-temperature strength, and by VO M layer firmly adhered to the lower layer by VN layer as an interlayer adhesion layer, wherein the workpiece and chips Since excellent surface slipping is ensured in the meantime, chipping does not occur and excellent wear resistance is demonstrated over a long period of time, whereas the hard coating layer is a (Ti, Al, B) N layer In constructed conventional coated carbide tools In both cases, in the heavy cutting of the difficult-to-cut material, the adhesiveness and reactivity between the work material (hard-to-cut material) and the chips and the hard coating layer are further increased, and the hard coating layer is made of carbide. It is clear that since the adhesion to the substrate surface is insufficient, chipping occurs at the cutting edge and the service life is reached in a relatively short time.

上述のように、この発明の被覆超硬工具は、一般鋼や普通鋳鉄などの切削加工は勿論のこと、特に上記の難削材の重切削加工でもすぐれた耐チッピング性を発揮し、長期に亘ってすぐれた切削性能を示すものであるから、切削加工装置のFA化、並びに切削加工の省力化および省エネ化、さらに低コスト化に十分満足に対応できるものである。   As described above, the coated carbide tool of the present invention exhibits excellent chipping resistance not only for cutting of general steel and ordinary cast iron, but particularly for heavy cutting of the above difficult-to-cut materials, and for a long time. Since it shows excellent cutting performance over time, it can sufficiently satisfactorily cope with the FA of the cutting apparatus, labor saving and energy saving of the cutting work, and further cost reduction.

本発明被覆超硬工具を構成する硬質被覆層を形成するのに用いたアークイオンプレーティング装置を示し、(a)は概略平面図、(b)は概略正面図である。The arc ion plating apparatus used for forming the hard coating layer which comprises this invention coated carbide tool is shown, (a) is a schematic plan view, (b) is a schematic front view. 通常のアークイオンプレーティング装置の概略説明図である。It is a schematic explanatory drawing of a normal arc ion plating apparatus.

Claims (1)

炭化タングステン基超硬合金または炭窒化チタン基サーメットで構成された超硬基体の表面に、
(a)0.5〜2μmの平均層厚を有し、かつ、組成式:(Ti1-ZAl)N(ただし、原子比で、Zは0.30〜0.70を示す)を満足するTiとAlの複合窒化物層からなる基体密着層、
(b)1〜5μmの平均層厚を有し、かつ、組成式:(Ti1-(X+Y)AlX)N(ただし、原子比で、Xは0.40〜0.70、Yは0.01〜0.20を示す)を満足するTiとAlとB(ボロン)の複合窒化物層からなる下部層、
(c)0.1〜1.5μmの平均層厚を有する窒化バナジウム層からなる層間密着層、
(d)1〜5μmの平均層厚を有する酸化バナジウム層からなる上部層、
以上(a)〜(d)で構成された硬質被覆層を形成してなる、難削材の重切削加工で硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆超硬合金製切削工具。
On the surface of the cemented carbide substrate composed of tungsten carbide based cemented carbide or titanium carbonitride based cermet,
(A) having an average layer thickness of 0.5 to 2 μm and a composition formula: (Ti 1-Z Al Z ) N (wherein Z represents 0.30 to 0.70 in atomic ratio) A substrate adhesion layer comprising a satisfactory nitride layer of Ti and Al,
(B) having an average layer thickness of 1 to 5 μm, and a composition formula: (Ti 1− (X + Y) Al X B Y ) N (however, in terms of atomic ratio, X is 0.40 to 0.70, Y Is a lower layer composed of a composite nitride layer of Ti, Al, and B (boron) satisfying 0.01 to 0.20),
(C) an interlayer adhesion layer comprising a vanadium nitride layer having an average layer thickness of 0.1 to 1.5 μm;
(D) an upper layer comprising a vanadium oxide layer having an average layer thickness of 1 to 5 μm,
A surface-coated cemented carbide cutting tool that exhibits excellent chipping resistance in heavy cutting of difficult-to-cut materials, formed by forming a hard coating layer composed of the above (a) to (d).
JP2005218193A 2005-07-28 2005-07-28 Gear cutting tool made of surface coated cemented carbide having hard coarted layer exhibiting excellent chipping resistance in hard cutting material hard to cut Withdrawn JP2007030108A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005218193A JP2007030108A (en) 2005-07-28 2005-07-28 Gear cutting tool made of surface coated cemented carbide having hard coarted layer exhibiting excellent chipping resistance in hard cutting material hard to cut

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005218193A JP2007030108A (en) 2005-07-28 2005-07-28 Gear cutting tool made of surface coated cemented carbide having hard coarted layer exhibiting excellent chipping resistance in hard cutting material hard to cut

Publications (1)

Publication Number Publication Date
JP2007030108A true JP2007030108A (en) 2007-02-08

Family

ID=37789976

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005218193A Withdrawn JP2007030108A (en) 2005-07-28 2005-07-28 Gear cutting tool made of surface coated cemented carbide having hard coarted layer exhibiting excellent chipping resistance in hard cutting material hard to cut

Country Status (1)

Country Link
JP (1) JP2007030108A (en)

Similar Documents

Publication Publication Date Title
JP2007021650A (en) Cutting tool made of surface coated cemented carbide having coated layer exhibiting excellent chipping resistance in heavy cutting work of hard-to-cut material
JP2007038378A (en) Surface-coated cemented-carbide cutting tool with hard coating layer capable of showing excellent chipping resistance in high speed cutting of difficult-to-cut material
JP2007030100A (en) Cutting tool made of surface coated cemented carbide having hard coated layer exhibiting excellent chipping resistance in hard cutting of material hard to cut
JP4747719B2 (en) Surface coated cermet cutting tool with excellent chipping resistance with hard coating layer in heavy cutting of difficult-to-cut materials
JP4711059B2 (en) Cutting tool made of surface coated cemented carbide with excellent chipping resistance with hard coating layer in difficult-to-cut materials
JP4747718B2 (en) Surface coated cermet cutting tool with excellent chipping resistance with hard coating layer in heavy cutting of difficult-to-cut materials
JP2007038379A (en) Surface-coated cemented-carbide cutting tool with hard coating layer capable of showing excellent chipping resistance in heavy cutting of difficult-to-cut material
JP2007290091A (en) Surface coated cutting tool having hard coating layer exhibiting excellent chipping resistance in high-speed heavy cutting difficult-to-cut material
JP2007030098A (en) Cutting tool made of surface coated cemented carbide having hard coarted layer exhibiting excellent chipping resistance in high-speed cutting material hard to cut
JP2007021649A (en) Cutting tool made of surface coated cemented carbide having coated layer exhibiting excellent chipping resistance in high-speed cutting of hard-to-cut material
JP4682826B2 (en) Surface coated cutting tool with excellent chipping resistance due to hard coating layer in heavy cutting of difficult-to-cut materials
JP2008188739A (en) Surface-coated cutting tool in which hard coating layer shows excellent chipping resistance in heavy cutting of difficult-to-cut material
JP2008188738A (en) Surface-coated cutting tool provided with hard coated layer achieving excellent chipping resistance in heavy cutting of hard-to-cut material
JP4310693B2 (en) Cutting tool made of surface-coated cemented carbide that provides excellent wear resistance with a hard coating layer in high-speed cutting of difficult-to-cut materials
JP2007144595A (en) Surface coated cutting tool having hard coating layer exhibiting excellent chipping resistance in heavy cutting of difficult-to-cut material
JP4747709B2 (en) Surface-coated cermet cutting tool with excellent chipping resistance with hard coating layer in difficult-to-cut materials
JP4747710B2 (en) Surface-coated cermet cutting tool with excellent chipping resistance with hard coating layer in difficult-to-cut materials
JP2007038386A (en) Surface-coated cemented-carbide cutting tool with hard coating layer exerting excellent chipping resistance in heavy cutting of hard-to-cut-material
JP2007030067A (en) Cutting tool made of surface coated cemented carbide having hard coated layer exhibiting excellent chipping resistance in cutting material hard to cut
JP2007021665A (en) Cutting tool made of surface coated cemented carbide having coated layer exhibiting excellent chipping resistance in heavy cutting work of hard-to-cut material
JP4682825B2 (en) Surface coated cutting tool with excellent chipping resistance due to hard coating layer in heavy cutting of difficult-to-cut materials
JP2007030108A (en) Gear cutting tool made of surface coated cemented carbide having hard coarted layer exhibiting excellent chipping resistance in hard cutting material hard to cut
JP4789068B2 (en) Surface coated cutting tool with excellent chipping resistance with hard coating layer in heavy cutting of difficult-to-cut materials
JP2007038383A (en) Surface-coated cemented-carbide cutting tool with hard coating layer exerting excellent chipping resistance in heavy cutting of difficult-to-cut material
JP2007021639A (en) Cutting tool made of surface coated cemented carbide having hard coated layer exhibiting excellent chipping resistance in cutting work of hard-to-cut material

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20071226

A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20081007