JP2007029869A - Treatment method of organic wastes - Google Patents

Treatment method of organic wastes Download PDF

Info

Publication number
JP2007029869A
JP2007029869A JP2005217675A JP2005217675A JP2007029869A JP 2007029869 A JP2007029869 A JP 2007029869A JP 2005217675 A JP2005217675 A JP 2005217675A JP 2005217675 A JP2005217675 A JP 2005217675A JP 2007029869 A JP2007029869 A JP 2007029869A
Authority
JP
Japan
Prior art keywords
gas
furnace
dry distillation
pyrolysis furnace
organic waste
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005217675A
Other languages
Japanese (ja)
Other versions
JP4640016B2 (en
Inventor
Katsumi Numa
勝己 沼
Kazunori Tachikake
一典 太刀掛
Hiroshi Fukuoka
浩 福岡
Akira Yokota
暁 横田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
METTSU CORP KK
Metz Corp
Hiroshima Gas Techno KK
Original Assignee
METTSU CORP KK
Metz Corp
Hiroshima Gas Techno KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by METTSU CORP KK, Metz Corp, Hiroshima Gas Techno KK filed Critical METTSU CORP KK
Priority to JP2005217675A priority Critical patent/JP4640016B2/en
Publication of JP2007029869A publication Critical patent/JP2007029869A/en
Application granted granted Critical
Publication of JP4640016B2 publication Critical patent/JP4640016B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/78Recycling of wood or furniture waste

Landscapes

  • Processing Of Solid Wastes (AREA)
  • Coke Industry (AREA)
  • Gasification And Melting Of Waste (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a treatment method of organic wastes which can make a contained heavy metal harmless and can change the metal to a valuable material to effectively use it, by heating and carbonizing organic wastes to convert them to a carbonized residue and melting an obtained solid material to slag it. <P>SOLUTION: The treatment method of the organic wastes consists of a carbonization step, as the A step, for heating the organic wastes using a carbonization treatment apparatus 1A and a melt slagging step, as the B step, for introducing the carbonized residue obtained in the A step in a rotary combustion apparatus 6 to melt it by heating reduction, using a slagging treatment apparatus 1B, wherein the carbonization treatment apparatus 1A has a reforming furnace 1 having a water-content introduction pipe 16, a gas introduction pipe 14 and a gas discharging pipe 15, a pyrolysis furnace 2 which is mostly surrounded by the reforming furnace and has a plurality of gas drawing pipes 21 in its peripheral side, a supplying apparatus 51, to be connected, of the organic wastes and an discharging apparatus 52 at another end, and the slagging treatment apparatus 1B consists of the rotary combustion apparatus 6 with a reductive-gas supplying opening 61 and a melting chamber 8 connected to its bottom part. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、有機系廃棄物の処理方法に関し、詳しくは、有機系廃棄物を加熱乾留し、得られた乾留残渣を溶融スラグ化する有機系廃棄物の処理方法に関する。   The present invention relates to a method for treating organic waste, and more particularly to a method for treating organic waste in which organic waste is heated and distilled to form a molten slag.

従来より、厨芥(生ゴミ)、紙類、繊維類などの都市ゴミ、廃木材、間伐材、プラスチック類などの有機廃棄物の処理方法として、埋め立て処分または焼却による灰化埋め立て処分が行われている。しかしながら、埋め立て処分地の許容量が限界に近づいてきていることにより、有機廃棄物の再資源化を図り、埋め立て処分量を略零にすることが望まれている。その様な再資源化の方法の1つとして、都市ゴミを粉砕処理した後、乾留して炭化し、得られた炭化物(乾留残渣)を燃料として使用する方法が知られている。
特許2001−288474号公報
Conventionally, landfill disposal or incineration landfill disposal by incineration has been performed as a method of treating organic waste such as garbage (raw garbage), municipal waste such as paper and fibers, waste wood, thinned wood, plastics, etc. Yes. However, since the allowable amount of landfill disposal sites is approaching the limit, it is desired to recycle organic waste and make the landfill disposal amount substantially zero. As one of such recycling methods, a method is known in which municipal waste is pulverized, carbonized by carbonization, and the resulting carbide (carbonization residue) is used as fuel.
Japanese Patent No. 2001-288474

しかしながら、上述の処理方法で得られた炭化物は、重金属を含有しているため、燃料として使用した場合、当該重金属の捕集、回収のために、煙道に電気集塵器などを配置しなければならず経済的でない。   However, since the carbide obtained by the above processing method contains heavy metals, when used as a fuel, an electric dust collector or the like must be placed in the flue to collect and recover the heavy metals. It must be economical.

本発明は、上記の実情に鑑みなされたものであり、その目的は、有機系廃棄物を加熱乾留し、得られた乾留残渣を溶融してスラグ化することによって、有機系廃棄物に含有されている重金属を無害化すると共に、有機系廃棄物を有価物質に変換して有効利用することが出来る有機系廃棄物の処理方法を提供することにある。   The present invention has been made in view of the above circumstances, and its purpose is to contain organic waste by heating and distilling the organic waste and melting the obtained dry distillation residue to form slag. An object of the present invention is to provide a method for treating organic waste, which can detoxify heavy metals and convert organic waste into valuable substances for effective use.

すなわち、本発明の要旨は、有機系廃棄物を原料とする下記A工程より成る乾留工程および前記A工程で得られた乾留残渣を原料とする下記B工程より成る溶融スラグ化工程を包含することを特徴とする有機系廃棄物の処理方法に存する。   That is, the gist of the present invention includes a dry distillation step consisting of the following step A using organic waste as a raw material and a melt slag forming step consisting of the following B step using the dry distillation residue obtained in the step A as a raw material. It exists in the processing method of the organic waste characterized by this.

A工程は、水および/またはスチームの水分導入管とガス導入管とガス排出管とを有する改質炉、および、その大部分が改質炉で包囲され、且つ、その周面に複数のガス抜き管を有する熱分解炉を備え、熱分解炉の一端に有機系廃棄物の供給装置が接続され、他端に排出装置が設けられている炭化処理装置を使用し、熱分解炉に有機系廃棄物を供給し、熱分解炉における加熱乾留により発生し且つガス抜き管から噴出した可燃性ガスと酸化剤とを改質炉中で混合し、可燃性ガスを少なくとも部分燃焼して熱分解炉を加熱する乾留工程である。   In the step A, a reforming furnace having a water and / or steam moisture introduction pipe, a gas introduction pipe and a gas discharge pipe, and the majority of the reforming furnace is surrounded by a reforming furnace, and a plurality of gases are provided on the peripheral surface thereof. Use a carbonization treatment device equipped with a pyrolysis furnace with a vent pipe, an organic waste supply device connected to one end of the pyrolysis furnace, and a discharge device at the other end, and an organic system for the pyrolysis furnace Combustible gas and oxidant generated by heating and dry distillation in the pyrolysis furnace and ejected from the degassing pipe are mixed in the reforming furnace, and the combustible gas is at least partially burned to generate the pyrolysis furnace. It is a dry distillation process which heats.

B工程は、2つから成る少なくとも1組の還元ガス供給口を有する筒状の旋廻燃焼装置と、当該旋廻燃焼装置の底部に接続された溶融チャンバとから構成され、且つ、前記の各還元ガス供給口が、旋廻燃焼装置に対して互いに逆方向の渦流を生ずる様に旋廻燃焼装置の縦方向に間隔を設けて配置されたスラグ化処理装置を使用し、A工程で得られた乾留残渣を前記旋廻燃焼装置に導入し、加熱還元して溶融する溶融スラグ化工程である。   Step B is composed of a cylindrical rotating combustion device having at least one pair of reducing gas supply ports composed of two, and a melting chamber connected to the bottom of the rotating combustion device, and each of the reducing gases described above. Using a slagging treatment device that is arranged at intervals in the longitudinal direction of the swirl combustion device so that vortex flows in opposite directions to the swirl combustion device are generated at the supply port, the dry distillation residue obtained in step A is used. It is a molten slag forming step that is introduced into the revolving combustion device and melted by heat reduction.

本発明によれば、有機系廃棄物に含有される重金属を無害化すると共に、有機系廃棄物を有価物質の前駆体(スラグ)に変換して有効利用することが出来る。さらに、加熱乾留を行なうための燃料を著しく低減することが出来ると共に、乾留残渣を溶融してスラグ化するために必要な熱エネルギー量も低減することが出来る。   ADVANTAGE OF THE INVENTION According to this invention, while making the heavy metal contained in an organic waste harmless, it can convert an organic waste into the precursor (slag) of a valuable substance, and can utilize it effectively. Further, the fuel for heating and carbonizing can be remarkably reduced, and the amount of heat energy required for melting the carbonization residue to form slag can be reduced.

以下、本発明に係る有機系廃棄物の処理方法を図面に基づいて説明する。図1は、本発明に係る有機系廃棄物の処理方法を示す工程図である。図2は、A工程(乾留工程)において使用される炭化処理装置の構成要素を示す一部破断の側面図である。図3は、図2の炭化処理装置の熱分解炉の主要部の構造を示す側面図であり、図4は、図2の炭化処理装置の熱分解炉の内部構造を中心線に直交するB−B線に沿った断面で示した断面図である。   Hereinafter, the organic waste processing method according to the present invention will be described with reference to the drawings. FIG. 1 is a process diagram showing a method for treating organic waste according to the present invention. FIG. 2 is a partially broken side view showing components of the carbonization apparatus used in the process A (dry distillation process). FIG. 3 is a side view showing the structure of the main part of the pyrolysis furnace of the carbonization treatment apparatus of FIG. 2, and FIG. 4 shows the internal structure of the pyrolysis furnace of the carbonization treatment apparatus of FIG. It is sectional drawing shown by the cross section along the -B line.

本発明の有機系廃棄物の処理方法は、図1に示す様に、有機系廃棄物を原料とする下記A工程より成る乾留工程、および前記A工程で得られた乾留残渣を原料とする下記B工程より成る溶融スラグ化工程を包含する方法である。   As shown in FIG. 1, the organic waste treatment method of the present invention includes a dry distillation step comprising the following step A using organic waste as a raw material, and a dry distillation residue obtained in the above step A as a raw material. This is a method including a melt slag forming step consisting of step B.

先ず、A工程(乾留工程)で使用する炭化処理装置(1A)について説明する。炭化処理装置(1A)は、図2に示す様に、水および/またはスチームを導入する水分導入管(16)とガス導入管(14)とガス排出管(15)とが付設された改質炉(1)と、改質炉(1)の内部に回転可能に挿通され且つその周面に複数のガス抜き管(21)が設けられた熱分解炉(2)とから主として構成され、熱分解炉(2)の一端(図2において左側の端部)には、有機系廃棄物の供給装置(51)が接続され、熱分解炉(2)の他端(図2において右側の端部)には、ゲートバルブを含む排出装置(52)が設けられる。   First, the carbonization apparatus (1A) used at A process (dry distillation process) is demonstrated. As shown in FIG. 2, the carbonization treatment apparatus (1A) is provided with a water introduction pipe (16) for introducing water and / or steam, a gas introduction pipe (14), and a gas discharge pipe (15). It is mainly composed of a furnace (1) and a pyrolysis furnace (2) rotatably inserted into the reforming furnace (1) and provided with a plurality of degassing pipes (21) on its peripheral surface. An organic waste supply device (51) is connected to one end (the left end in FIG. 2) of the cracking furnace (2), and the other end (the right end in FIG. 2) of the pyrolysis furnace (2). ) Is provided with a discharge device (52) including a gate valve.

改質炉(1)は、通常、基礎に設置される固定式の炉であり、上記のガス導入管(14)および水分導入管(16)は、改質炉(1)の一端側の底部近傍に接続され、ガス排出管(15)は、改質炉(1)の他端側の上部に接続される。改質炉(1)は、熱分解炉(2)の軸線を傾斜させるため、水平レベルに対して1〜2度程度傾斜した状態に設置される。   The reforming furnace (1) is usually a fixed furnace installed on the foundation, and the gas introduction pipe (14) and the water introduction pipe (16) are located at the bottom on one end side of the reforming furnace (1). The gas discharge pipe (15) is connected in the vicinity and is connected to the upper part on the other end side of the reforming furnace (1). The reforming furnace (1) is installed in a state inclined about 1-2 degrees with respect to the horizontal level in order to incline the axis of the pyrolysis furnace (2).

熱分解炉(2)は、一般的な金属製ロータリーキルンに類似する構造の回転炉である。熱分解炉(2)は、改質炉(1)の内部のガスが外部に漏洩しない様に、改質炉(1)の両端部にシール部(1s)を介して回動自在に挿通され、熱分解炉(2)の両端部は、これら両端部の外周に装着された補強リング(22)を支持ローラー(42)で受けることにより回動自在に支持されている。一方、改質炉(1)の一端側の側方には電動機(3)が設置され、電動機(3)の駆動歯車(32)と熱分解炉(2)の一端外周部に取り付けられた歯車(23)とが噛合しており、熱分解炉(2)は、一方向に例えば0.3〜10rpmの速さで回転する様になされている。   The pyrolysis furnace (2) is a rotary furnace having a structure similar to a general metal rotary kiln. The pyrolysis furnace (2) is rotatably inserted into both ends of the reforming furnace (1) via seal portions (1s) so that the gas inside the reforming furnace (1) does not leak to the outside. The both ends of the pyrolysis furnace (2) are rotatably supported by receiving a reinforcing ring (22) mounted on the outer periphery of these both ends with a support roller (42). On the other hand, an electric motor (3) is installed on the side of one end side of the reforming furnace (1), and a gear attached to the outer peripheral portion of the driving gear (32) of the electric motor (3) and one end of the pyrolysis furnace (2). (23) meshes, and the pyrolysis furnace (2) rotates in one direction at a speed of, for example, 0.3 to 10 rpm.

また、熱分解炉(2)の開放された一端は、摺動部材としてのシール部(41s)を介して装着されたフード(41)によって気密に封止される。更に、フード(41)には、破砕機により破砕された有機系廃棄物を装入するための供給装置(51)が設けられ、斯かる供給装置(51)は、例えば、ホッパー(51h)を備えたスクリューコンベヤによって構成される。従って、ホッパー(51h)に有機系廃棄物を投入することにより、回転状態の熱分解炉(2)に有機系廃棄物を供給することが出来る。   Moreover, the open | released one end of the thermal decomposition furnace (2) is airtightly sealed by the hood (41) with which it mounted | worn through the seal part (41s) as a sliding member. Furthermore, the food | hood (41) is provided with the supply apparatus (51) for charging the organic waste crushed with the crusher, and such a supply apparatus (51) is a hopper (51h), for example. Consists of a provided screw conveyor. Therefore, the organic waste can be supplied to the rotating pyrolysis furnace (2) by introducing the organic waste into the hopper (51h).

他方、熱分解炉(2)の開放された他端は、摺動部材としてのシール部(43s)を介して装着されたフード(43)によって気密に封止される。更に、フード(43)の下部には、乾留残渣を取り出すための上記の排出装置(52)が設けられる。排出装置(52)は、上下方向にシャッター構造のゲートバルブを複数段配置して構成される。従って、熱分解炉(2)からは、排出装置(52)を操作することにより、当該熱分解炉で発生する可燃性ガスを漏出させることなく、得られた乾留残渣を装置外に取り出すことが出来る。   On the other hand, the other open end of the pyrolysis furnace (2) is hermetically sealed by a hood (43) mounted via a seal portion (43s) as a sliding member. Furthermore, the above-mentioned discharge device (52) for taking out the dry distillation residue is provided at the lower part of the hood (43). The discharge device (52) is configured by arranging a plurality of stages of gate valves having a shutter structure in the vertical direction. Therefore, by operating the discharge device (52) from the pyrolysis furnace (2), the obtained dry distillation residue can be taken out from the apparatus without causing the flammable gas generated in the pyrolysis furnace to leak out. I can do it.

また、熱分解炉(2)には、その内部で発生した可燃性ガスを改質炉(1)へ取り出すため、多数のガス抜き管(21)が取り付けられる。ガス抜き管(21)は、図3および図4に示す様に、熱分解炉(2)の周面部から当該熱分解炉の中心線の位置まで挿入されている。ガス抜き管(21)は、熱分解炉(2)の長さ方向に沿って一定のピッチで配列され、かつ、各隣接するガス抜き管(21)は、熱分解炉(2)の中心線を基準とした場合、周面部の互いに90°ずれた方向に伸長されている。すなわち、熱分解炉(2)の一端側から視た場合、多数のガス抜き管(21)は、スパイラル状に順次ずれた状態で中心から周面部に伸長されている。更に、熱分解炉(2)の中心部に位置する各ガス抜き管(21)の開口された先端部は、熱分解炉(2)の他端側、すなわち、被処理物(処理すべき有機系廃棄物)の流れ方向の下流側に向けて屈曲している。   Moreover, in order to take out the combustible gas which generate | occur | produced in the inside to the reforming furnace (1), many degassing pipes (21) are attached to the pyrolysis furnace (2). As shown in FIGS. 3 and 4, the gas vent pipe (21) is inserted from the peripheral surface portion of the pyrolysis furnace (2) to the position of the center line of the pyrolysis furnace. The vent pipes (21) are arranged at a constant pitch along the length direction of the pyrolysis furnace (2), and each adjacent vent pipe (21) is a center line of the pyrolysis furnace (2). Is used as a reference, the peripheral surface portions are extended in directions shifted by 90 ° from each other. That is, when viewed from one end side of the pyrolysis furnace (2), a large number of gas vent pipes (21) are extended from the center to the peripheral surface portion in a state of being sequentially shifted in a spiral shape. Furthermore, the open | released front-end | tip part of each degassing pipe | tube (21) located in the center part of pyrolysis furnace (2) is the other end side of pyrolysis furnace (2), ie, to-be-processed object (organic to be processed). It is bent toward the downstream side in the flow direction of the system waste).

炭化処理装置(1A)においては、上記の様に、多数のガス抜き管(21)が熱分解炉(2)の全体に亙って略均等に配置されていることにより、熱分解炉(2)で発生した可燃性ガスを改質炉(1)へ効率的に排出することが出来、また、ガス抜き管(21)が熱分解炉(2)の中心線まで伸びていることにより、熱分解炉(2)において一層多量の有機系廃棄物を処理できる。しかも、熱分解炉(2)の内部でガス抜き管(21)の先端が屈曲していることにより、熱分解炉(2)内部の固形成分(有機系廃棄物やその乾留残渣)によるガス抜き管(21)の閉塞、および、固形成分の改質炉(1)への落下を防止することが出来る。なお、ガス抜き管(21)の構造としては、熱分解炉(2)内で発生した可燃性ガスだけが通過可能な構造である限り、フィルター構造などの各種の構造を採用し得る。   In the carbonization treatment apparatus (1A), as described above, a large number of gas vent pipes (21) are arranged substantially uniformly over the entire pyrolysis furnace (2), so that the pyrolysis furnace (2 ) Can be efficiently discharged to the reforming furnace (1), and the degassing pipe (21) extends to the center line of the pyrolysis furnace (2). A larger amount of organic waste can be treated in the cracking furnace (2). Moreover, because the tip of the gas vent pipe (21) is bent inside the pyrolysis furnace (2), the gas is released by solid components (organic waste and its dry distillation residue) inside the pyrolysis furnace (2). The blockage of the pipe (21) and the falling of the solid component into the reforming furnace (1) can be prevented. As the structure of the gas vent pipe (21), various structures such as a filter structure can be adopted as long as only the combustible gas generated in the pyrolysis furnace (2) can pass therethrough.

次に、B工程で使用する乾留残渣のスラグ化処理装置(1B)について説明する。スラグ化処理装置(1B)は、2つから成る少なくとも1組、例えば、2つの還元ガス供給口(62)を有する略筒状の旋廻燃焼装置(6)と、当該旋廻燃焼装置の底部に接続されたサイクロンメルター(7)と、それに連結された溶融チャンバ(8)とから構成される。旋廻燃焼装置(6)は、高温の還元ガスによって乾留残渣を溶融してスラグを生成するためのチャンバーであり、通常、その本体は、例えば下端側が一部逆円錘台の外形の円筒状に形成され、その頂部に乾留残渣の挿入口を備えている。   Next, the slag-processing apparatus (1B) of the dry distillation residue used at B process is demonstrated. The slag processing device (1B) is connected to at least one set of two, for example, a substantially cylindrical rotating combustion device (6) having two reducing gas supply ports (62), and a bottom portion of the rotating combustion device. The cyclone melter (7) and a melting chamber (8) connected to the cyclone melter (7). The whirling combustion device (6) is a chamber for producing slag by melting dry distillation residue with a high-temperature reducing gas. Usually, the main body has, for example, a cylindrical shape with a part of an inverted frustum on the lower end side. It is formed and is provided with a dry distillation residue insertion port at its top.

上記の各還元ガス供給口(62)は、通常、旋廻燃焼装置(6)の本体の上部に取り付けられる。これらは、旋廻燃焼装置(6)の内部で互いに逆方向の渦流を生ずる様に、旋廻燃焼装置(6)の本体の中心線に対して互いに反対側にずれた位置、例えば平行な2つの接線に略沿った位置で且つ上下方向に旋廻燃焼装置(6)本体の直径の1/4〜1倍程度の間隔を設けて配置される。これにより、一方向の渦流の場合における欠点、すなわち、旋廻燃焼装置(6)内に反気流が生じて上昇気流となり、乾留残渣が下降せずに旋廻燃焼装置(6)の内壁に付着して閉塞すると言う欠点が解消される。なお、各ガス導入管(62)には、還元ガスが供給するための還元ガス供給ライン(61)が接続されている。   Each said reducing gas supply port (62) is normally attached to the upper part of the main body of a revolving combustion apparatus (6). These are located on the opposite sides of the center line of the main body of the swirl combustion device (6), for example, two parallel tangents, so that vortex flows in opposite directions are generated in the swirl combustion device (6). Are arranged at intervals approximately 1/4 to 1 times as large as the diameter of the main body of the swirling combustion device (6). As a result, a disadvantage in the case of unidirectional vortex flow, that is, a counter airflow is generated in the swirl combustion device (6) to form an ascending air current, and the dry distillation residue does not descend and adheres to the inner wall of the swirl combustion device (6). The disadvantage of blocking is eliminated. Each gas introduction pipe (62) is connected to a reducing gas supply line (61) for supplying a reducing gas.

旋廻燃焼装置(6)の底部のサイクロンメルター(7)に連結される溶融チャンバ(8)は、均一なスラグを生成するための処理容器である。溶融チャンバ(8)の底部には、溶融スラグを取り出すための抜出し口(81)が設けられ、そして、溶融チャンバ(8)の上部には、旋廻燃焼装置(6)から導入された排ガスを抜き出すためのガス排出管(82)が設けられる。なお、ガス排出管(82)から抜き出された排ガスは、ガスタービン、ボイラ等の燃料としても利用可能である。   The melting chamber (8) connected to the cyclone melter (7) at the bottom of the swirling combustion device (6) is a processing vessel for generating uniform slag. An extraction port (81) for taking out molten slag is provided at the bottom of the melting chamber (8), and exhaust gas introduced from the rotating combustion device (6) is extracted at the upper part of the melting chamber (8). A gas exhaust pipe (82) is provided. The exhaust gas extracted from the gas exhaust pipe (82) can also be used as fuel for gas turbines, boilers, and the like.

次に、上記の炭化処理装置(1A)使用したA工程(乾留工程)及びスラグ化処理装置(1B)を使用したB工程(溶融スラグ化工程)を包含する本発明の処理方法について説明する。   Next, the process method of this invention including the A process (dry distillation process) using said carbonization apparatus (1A) and the B process (melting slag conversion process) using the slag processing apparatus (1B) is demonstrated.

先ず、A工程(乾留工程)について説明する。A工程は、有機系廃棄物を乾留残渣と可燃性ガスとに分解する工程である。斯かる工程では、上記の炭化処理装置(1A)を使用し、熱分解炉(2)に有機系廃棄物を供給して加熱乾留をする。そして、熱分解炉(2)内で生成した可燃性ガスは、熱分解炉(2)の周面に設けられたガス抜き管(21)から改質炉(1)内に噴出する。噴出した可燃性ガスは、改質炉(1)内においてガス導入管(14)から供給された酸化剤と混合して可燃性ガスを少なくとも部分燃焼する共に、水分導入管(16)から供給された水および/またはスチームと混合して水性ガス化反応を生起し、可燃性ガスの軽質化および改質化をする。そして、前述の可燃性ガスの少なくとも部分燃焼により熱分解炉(2)が加熱され、有機系廃棄物を加熱乾留する。なお、前述の「少なくとも部分燃焼」とは、可燃性ガスの完全燃焼も含まれる。   First, A process (dry distillation process) is demonstrated. Process A is a process of decomposing organic waste into dry distillation residue and combustible gas. In such a process, the carbonization apparatus (1A) is used, and organic waste is supplied to the thermal cracking furnace (2) for heating and dry distillation. And the combustible gas produced | generated in the pyrolysis furnace (2) is injected in a reforming furnace (1) from the degassing pipe | tube (21) provided in the surrounding surface of the pyrolysis furnace (2). The ejected combustible gas is mixed with the oxidant supplied from the gas introduction pipe (14) in the reforming furnace (1) to at least partially burn the combustible gas, and is supplied from the moisture introduction pipe (16). Mixing with fresh water and / or steam causes a water gasification reaction to lighten and reform the combustible gas. And a pyrolysis furnace (2) is heated by the at least partial combustion of the above-mentioned combustible gas, and organic waste is heat-distilled. The aforementioned “at least partial combustion” includes complete combustion of combustible gas.

本発明においては、前記の加熱乾留を行なう際、改質炉(1)内の酸素濃度を通常12容量%以下に制御する。上述の改質炉(1)内の酸素濃度を12容量%以下に制御する方法は、酸化剤導入管(14)から改質炉(1)に供給する酸化剤の量を調整する。したがって、改質炉(1)内の酸素濃度は、通常12容量%以下、好ましくは8容量%以下である。改質炉(1)内の酸素濃度が12容量%を超えると、大容積のガス化炉を必要とし経済的でない。   In the present invention, the oxygen concentration in the reforming furnace (1) is usually controlled to be 12% by volume or less when performing the heating and dry distillation. The above-described method for controlling the oxygen concentration in the reforming furnace (1) to 12% by volume or less adjusts the amount of oxidant supplied from the oxidant introduction pipe (14) to the reforming furnace (1). Therefore, the oxygen concentration in the reforming furnace (1) is usually 12% by volume or less, preferably 8% by volume or less. If the oxygen concentration in the reforming furnace (1) exceeds 12% by volume, a large-volume gasification furnace is required, which is not economical.

なお、改質炉(1)におけるダイオキシン類の発生を抑制するためには、可燃性ガスを完全燃焼することが必要である。それ故、改質炉(1)に供給する酸化剤量を多くして可燃性ガスを完全燃焼すれば、ダイオキシン類の発生を抑制する出来る。しかしながら、発生する可燃性ガスの量が多いため、供給される酸化剤の量も多くなり、その結果、大容積の熱分解炉および改質炉が必要となり経済的でない。   In order to suppress the generation of dioxins in the reforming furnace (1), it is necessary to completely burn the combustible gas. Therefore, if the amount of oxidant supplied to the reforming furnace (1) is increased and the combustible gas is completely burned, the generation of dioxins can be suppressed. However, since the amount of flammable gas generated is large, the amount of oxidant supplied is also large. As a result, a large-volume pyrolysis furnace and reforming furnace are required, which is not economical.

従って、改質炉(1)内では、熱分解炉(2)中での有機系廃棄物の加熱乾留に必要な熱量を供給するに要する可燃性ガス量が燃焼される。そして、残りの可燃性ガスは、燃焼されることなく、ガス排出管(15)から排出され、次の方法で処理される。例えば、(i)B工程の旋廻燃焼装置に供給される還元ガスとして使用する方法、(ii)後工程で新たに設けた燃焼炉(図示は省略)で完全燃焼する方法、または、(iii)改質装置(図示は省略)で軽質化または改質して燃料として使用する方法が挙げられる。   Therefore, in the reforming furnace (1), the amount of combustible gas required to supply the amount of heat necessary for heating and dry distillation of the organic waste in the pyrolysis furnace (2) is burned. The remaining combustible gas is discharged from the gas discharge pipe (15) without being burned, and is processed in the following manner. For example, (i) a method of using as a reducing gas supplied to the rotating combustion apparatus in step B, (ii) a method of complete combustion in a combustion furnace (not shown) newly provided in a subsequent step, or (iii) There is a method of using it as a fuel after lightening or reforming with a reformer (not shown).

改質炉(1)内に供給される水および/またはスチームの量は、有機系廃棄物(絶乾状態)中の有機成分量に対して通常0.4〜5重量倍である。水および/またはスチームの量が0.4重量倍未満の場合は、熱分解炉(2)が過剰に過熱され、乾留運転の制御が困難となる。水および/またはスチームの量が5重量倍を超える場合は、可燃性ガスの軽質化および改質化をすることが困難である。   The amount of water and / or steam supplied into the reforming furnace (1) is usually 0.4 to 5 times by weight with respect to the amount of organic components in the organic waste (absolutely dry state). When the amount of water and / or steam is less than 0.4 times by weight, the pyrolysis furnace (2) is excessively heated, and it is difficult to control the dry distillation operation. When the amount of water and / or steam exceeds 5 times by weight, it is difficult to lighten and reform the combustible gas.

供給された水および/またはスチームによって、改質炉(1)内で可燃性ガスの水性ガス反応が生起し、可燃性ガスを軽質化、改質化させる。さらに、可燃性ガスが改質炉(1)中でスチームによって稀釈されるため、可燃性ガスの重合化およびタール化が抑制される。そして、可燃性ガスの軽質化によりタール分やコークがガス化されて、改質炉(1)内面のコーキング進行速度を抑制する。   The supplied water and / or steam causes a water gas reaction of the combustible gas in the reforming furnace (1), and the combustible gas is lightened and reformed. Further, since the combustible gas is diluted with steam in the reforming furnace (1), polymerization and tarification of the combustible gas are suppressed. And tar content and coke are gasified by the lightening of combustible gas, and the coking progress speed of the reformer (1) inner surface is controlled.

さらに、有機系廃棄物の構成および性状が変動しても、改質炉(1)への水および/またはスチームの供給量を増減することによって、水性ガス反応量、それに伴う発熱量を容易に調節可能であるため、運転が暴走することなく、乾留運転の安定化を図ることが出来る。その結果、有機系廃棄物が加熱乾留が不十分のまま熱分解炉(2)から排出されたり、熱分解炉(2)が過剰に過熱されたりすることがない。   Furthermore, even if the composition and properties of organic waste vary, the amount of water gas reaction and the amount of heat generated can be easily increased by increasing or decreasing the amount of water and / or steam supplied to the reforming furnace (1). Since it can be adjusted, it is possible to stabilize the dry distillation operation without running out of control. As a result, the organic waste is not discharged from the pyrolysis furnace (2) with insufficient heating and dry distillation, and the pyrolysis furnace (2) is not excessively heated.

改質炉(1)への水および/またはスチームの供給量は、熱分解炉(2)の外面温度を所定の温度範囲に維持する制御システム(図示は省略)によってコントロールされる。この運転安定化制御は、可燃性ガスの部分燃焼に伴う発熱と、水および/またはスチームからのスチームとの水性ガス反応に伴う吸熱(蒸発、加熱によるものも含まれる)とを利用したものである。なお、運転の安定化は、水および/またはスチームの供給量ばかりでなく、改質炉(1)への酸化剤の供給量、有機系廃棄物の供給量の調節によっても可能である。   The amount of water and / or steam supplied to the reforming furnace (1) is controlled by a control system (not shown) that maintains the outer surface temperature of the pyrolysis furnace (2) within a predetermined temperature range. This operation stabilization control uses heat generation due to partial combustion of combustible gas and endotherm (including evaporation and heating) due to water gas reaction with water and / or steam from steam. is there. The operation can be stabilized not only by adjusting the supply amount of water and / or steam, but also by adjusting the supply amount of the oxidizing agent and the supply amount of organic waste to the reforming furnace (1).

改質炉(1)内の温度は、通常600〜750℃、好ましくは600〜650℃である。そして、改質炉(1)内の圧力は、熱分解炉(2)内で発生した重質可燃性ガスが改質炉(1)へ噴出可能となる様に、熱分解炉(2)内のガス圧力よりも僅かに低く保持される。   The temperature in the reforming furnace (1) is usually 600 to 750 ° C, preferably 600 to 650 ° C. The pressure in the reforming furnace (1) is set so that the heavy combustible gas generated in the pyrolysis furnace (2) can be ejected to the reforming furnace (1). Is kept slightly lower than the gas pressure.

熱分解炉(2)内での有機系廃棄物の加熱乾留は、通常、空気遮断状態下で行われる。したがって、熱分解炉(2)内の酸素濃度は、通常0容量%である。しかしながら、原料の有機系廃棄物中に酸素が含有されている場合は、加熱乾留中の熱分解により、熱分解炉(2)内の可燃性ガス中に酸素ガスとして存在することがある。そして、熱分解炉(2)内の温度が可燃性ガスの着火温度よりも高い場合、生成した酸素ガスは、その酸素当量分の可燃性ガスを燃焼(部分燃焼)させることが出来る。   The heating and distillation of the organic waste in the pyrolysis furnace (2) is usually performed in an air shut-off state. Therefore, the oxygen concentration in the pyrolysis furnace (2) is usually 0% by volume. However, when oxygen is contained in the organic waste as a raw material, it may be present as oxygen gas in the combustible gas in the pyrolysis furnace (2) due to thermal decomposition during heating and dry distillation. And when the temperature in a pyrolysis furnace (2) is higher than the ignition temperature of combustible gas, the produced | generated oxygen gas can burn the combustible gas for the oxygen equivalent (partial combustion).

したがって、熱分解炉(2)内の酸素濃度は、通常1容量%以下、好ましくは0.1容量%以下、より好ましくは零容量%である。酸素濃度が1容量%を超える場合は、有機系廃棄物の加熱乾留処理が困難になると共に、ダイオキシン類の発生を抑制することが困難となる。   Therefore, the oxygen concentration in the pyrolysis furnace (2) is usually 1% by volume or less, preferably 0.1% by volume or less, more preferably 0% by volume. When the oxygen concentration exceeds 1% by volume, it is difficult to heat and distill the organic waste, and it is difficult to suppress the generation of dioxins.

熱分解炉(2)内の温度は、通常500〜600℃、好ましくは550〜600℃である。   The temperature in a pyrolysis furnace (2) is 500-600 degreeC normally, Preferably it is 550-600 degreeC.

上述の熱分解炉(2)内の部分燃焼によって、熱分解炉(2)内面に付着したタールやコークも燃焼する。なお、僅少とは言え、熱分解炉(2)内での部分燃焼によって発生する熱量分だけ、熱分解炉(2)の外側から伝えられる熱量が低減される。そのため、熱分解炉(2)の温度が低く抑えられ、それに対する負担(材料の耐熱性)が軽減され、耐熱性の低い材料の使用が可能になる。また、可燃性ガスが前述の部分燃焼によって生成したスチーム及びその他のガスにより稀釈されおよび/またはスチームと水性ガス反応することにより、熱分解炉(2)内のタールやコークの生成が抑制されると共に、コーキング進行速度が抑制され、連続運転期間を延長することが出来る。   Due to the partial combustion in the pyrolysis furnace (2), tar and coke adhered to the inner surface of the pyrolysis furnace (2) are also burned. Note that the amount of heat transmitted from the outside of the pyrolysis furnace (2) is reduced by the amount of heat generated by partial combustion in the pyrolysis furnace (2), although it is small. Therefore, the temperature of the pyrolysis furnace (2) is kept low, the burden on it (heat resistance of the material) is reduced, and it becomes possible to use a material with low heat resistance. In addition, the combustible gas is diluted with the steam and other gases generated by the partial combustion described above and / or reacts with the steam to water gas, thereby suppressing the generation of tar and coke in the pyrolysis furnace (2). At the same time, the coking progress speed is suppressed, and the continuous operation period can be extended.

本発明によれば、熱分解炉(2)内の有機系廃棄物のガス化に必要な熱は、改質炉(1)内で可燃性ガスを少なくとも部分燃焼することによって十分賄われるため、精製された高価な燃料は殆ど不要である。   According to the present invention, the heat necessary for gasifying the organic waste in the pyrolysis furnace (2) is sufficiently covered by at least partial combustion of the combustible gas in the reforming furnace (1). Refined and expensive fuel is almost unnecessary.

生成した乾留残渣は、熱分解炉(2)の他端に接続されている排出装置(51)介して炭化処理装置(1A)から排出される。   The produced dry distillation residue is discharged from the carbonization apparatus (1A) through the discharge apparatus (51) connected to the other end of the pyrolysis furnace (2).

本発明の炭化処理装置(1A)の被処理物である有機系廃棄物としては、厨芥(生ゴミ)、紙類、繊維類などの都市ゴミ、廃木材、間伐材、プラスチック類、カーシュレッダーダスト(ASR:Automobile Shredder Residueとも呼ばれる)、廃電化製品、廃OA機器、下水汚泥などの廃棄物が挙げられる。   Examples of organic wastes to be processed by the carbonization apparatus (1A) of the present invention include garbage (raw garbage), municipal waste such as papers and fibers, waste wood, thinned wood, plastics, and car shredder dust. (ASR: Automobile Shredder Residue), waste electrical appliances, waste OA equipment, waste such as sewage sludge.

本発明の炭化処理装置(1A)で使用する酸化剤としては、酸素ガスまたは酸素を含むガスが挙げられ、具体的には、空気、酸素、酸素富化空気が挙げられる。   Examples of the oxidizing agent used in the carbonization apparatus (1A) of the present invention include oxygen gas or a gas containing oxygen, and specifically include air, oxygen, and oxygen-enriched air.

A工程(乾留工程)で得られた乾留残渣は、上述の被処理物を乾留処理した後の残渣から成り、主としてC、Si、Ca、Mg、Al、Fe等の元素を含有する。   The dry distillation residue obtained in the step A (dry distillation step) is a residue obtained by subjecting the above-mentioned object to be subjected to dry distillation treatment, and mainly contains elements such as C, Si, Ca, Mg, Al, and Fe.

続いて、B工程(溶融スラグ化工程)について説明する。B工程は、スラグ化処理装置(1B)を使用し、A工程で得られた乾留残渣を旋廻燃焼装置(6)にその頂部から導入して高温の還元ガスにより加熱還元して溶融する溶融スラグ化工程である。   Then, B process (melting slag formation process) is demonstrated. In the B process, the slag processing apparatus (1B) is used, and the dry distillation residue obtained in the A process is introduced into the revolving combustion apparatus (6) from the top, and is melted by being heated and reduced with a high-temperature reducing gas. It is a conversion process.

上記の高温の還元ガスは、乾留残渣をスラグ化するためのガスであり、旋廻燃焼装置(6)内において互いに逆方向の渦流を形成する様に、還元ガス供給ライン(61)を通じて各還元ガス導入管(62)から旋廻燃焼装置(6)内に噴射される。そして、上部から供給された乾留残渣は、上述の高温の還元ガスの渦流によって十分に攪拌されて均一な懸濁状態となり、高温の還元ガスと接触してスラグ化し、落下しながら溶融する。   The above-described high-temperature reducing gas is a gas for converting slag into dry distillation residue, and each reducing gas is passed through the reducing gas supply line (61) so as to form vortex flows in opposite directions in the swirling combustion device (6). It is injected from the introduction pipe (62) into the swirl combustion device (6). The dry distillation residue supplied from above is sufficiently agitated by the above-described vortex of the high-temperature reducing gas to be in a uniform suspended state, slags into contact with the high-temperature reducing gas, and melts while falling.

旋廻燃焼装置(6)内の温度は、適切な溶融還元を行なう観点から、通常1350〜1500℃である。旋廻燃焼装置(6)内の温度が1350℃未満の場合は、乾留残渣がスラグ化されないことがある。また、温度が1500を超える場合は、温度が高い割には乾留残渣のスラグ化への寄与率が小さく不経済である。また、旋廻燃焼装置(6)に導入される高温の還元ガスの導入量は、旋廻燃焼装置(6)に導入される乾留残渣に対する量として、通常0.2〜1.2Nm/kg−乾留残渣である。 The temperature in the swirling combustion device (6) is usually 1350 to 1500 ° C. from the viewpoint of performing appropriate smelting reduction. When the temperature in the swirling combustion device (6) is lower than 1350 ° C., the dry distillation residue may not be slagged. On the other hand, when the temperature exceeds 1500, the contribution rate to slag formation of the dry distillation residue is small and uneconomical for the high temperature. The amount of the high-temperature reducing gas introduced into the rotating combustion device (6) is usually 0.2 to 1.2 Nm 3 / kg-dry distillation as the amount with respect to the dry distillation residue introduced into the rotating combustion device (6). It is a residue.

還元ガス導入管(62)から導入される高温の還元ガスは、水素および/または一酸化炭素を含有するガスである。還元ガスとしては、A工程における炭化処理装置(1A)のガス排出管(15)から排出された可燃性ガスを使用する。これによりスラグ化のための必要な熱エネルギー量を低減することが出来る。炭化処理装置(1A)から排出された可燃性ガスだけで、旋廻燃焼装置(6)に導入する還元ガス量を賄えない場合には、気体、液体または固体の化石燃料、廃プラスチック、廃ゴム、ASR(Automobile Shredder Residue、シュレッダー・ダストとも呼ばれる)等の可燃性廃棄物を燃焼することにより製造されるガスを使用することも出来る。   The high-temperature reducing gas introduced from the reducing gas introduction pipe (62) is a gas containing hydrogen and / or carbon monoxide. As reducing gas, the combustible gas discharged | emitted from the gas exhaust pipe (15) of the carbonization apparatus (1A) in A process is used. Thereby, the amount of thermal energy required for slag formation can be reduced. When only the combustible gas discharged from the carbonization treatment device (1A) cannot cover the amount of reducing gas introduced into the revolving combustion device (6), it is a gas, liquid or solid fossil fuel, waste plastic, waste rubber. Gas produced by burning flammable waste such as ASR (also called Automobile Shredder Residue) can also be used.

次いで、旋廻燃焼装置(6)にて溶融還元して得られたスラグは、旋廻燃焼装置(6)の底部のサイクロンメルター(7)を経由して、サイクロンメルター(7)に連結される溶融チャンバ(8)に送られて均質化され、溶融チャンバ(8)底部の抜出し口(81)から取り出される。また、旋廻燃焼装置(6)から送気された還元排ガスは、溶融チャンバ(8)の上部空間からガス排出管(82)を介して抜き出される。なお、溶融チャンバ(8)は、溶融したスラグが固化しない温度、例えば、通常1400〜1550℃に維持される。抜出し口(81)から取り出された溶融スラグ(有価物質の前駆体)は、冷却、粉砕して有価物質である路盤材を形成する。   Next, the slag obtained by melting and reducing in the rotating combustion apparatus (6) is connected to the cyclone melter (7) via the cyclone melter (7) at the bottom of the rotating combustion apparatus (6). It is sent to (8), homogenized, and taken out from the outlet (81) at the bottom of the melting chamber (8). Further, the reduced exhaust gas fed from the rotating combustion device (6) is extracted from the upper space of the melting chamber (8) through the gas discharge pipe (82). The melting chamber (8) is maintained at a temperature at which the molten slag does not solidify, for example, usually 1400 to 1550 ° C. The molten slag (precious material precursor) taken out from the outlet (81) is cooled and pulverized to form a roadbed material that is a valuable material.

以下、本発明を、実施例により更に詳細に説明するが、本発明は、その要旨を超えない限り、以下の実施例に限定されるものではない。   EXAMPLES Hereinafter, although an Example demonstrates this invention still in detail, this invention is not limited to a following example, unless the summary is exceeded.

実施例1:
A工程(乾留工程):先ず、図1に示す炭化処理装置(1A)を使用して有機系廃棄物の乾留工程を行った。すなわち、有機系廃棄物としての都市ゴミを供給装置(51)から熱分解炉(2)に供給すると共に、水分導入管(16)からスチームガス及びガス導入管(14)から空気を改質炉(1)に供給して加熱乾留を行い、乾留残渣を生成した。炭化処理装置(1A)の操作条件を表1示し、ガス排出管(15)からの排ガスの組成を表2に示し、乾留残渣の組成を表3に示す。
Example 1:
Process A (dry distillation process): First, a carbonization treatment apparatus (1A) shown in FIG. 1 was used to perform a dry distillation process of organic waste. That is, municipal waste as organic waste is supplied from the supply device (51) to the pyrolysis furnace (2), and steam is supplied from the moisture introduction pipe (16) and air from the gas introduction pipe (14). The mixture was supplied to (1) and subjected to heating and carbonization to produce a carbonization residue. Table 1 shows the operating conditions of the carbonization treatment apparatus (1A), Table 2 shows the composition of the exhaust gas from the gas discharge pipe (15), and Table 3 shows the composition of the dry distillation residue.

Figure 2007029869
Figure 2007029869

Figure 2007029869
Figure 2007029869

なお、表2におけるダスト濃度、窒素酸化物濃度、硫黄酸化物濃度、塩化水素濃度、ダイオキシン類の濃度は夫々以下の方法で測定した。   The dust concentration, nitrogen oxide concentration, sulfur oxide concentration, hydrogen chloride concentration and dioxin concentration in Table 2 were measured by the following methods.

ダスト濃度は、JIS Z 8808.8に記載の方法に準じて行った。窒素酸化物濃度は、JIS K 0104.4.2に記載の方法に準じて行った。硫黄酸化物濃度は、JIS K0103.6.1に記載の方法に準じて行った。塩化水素濃度は、JIS K 0107.6.2に記載の方法に準じて行った。ダイオキシン類の濃度は、「廃棄物処理におけるダイオキシン類標準測定分析マニュアル」(平成9年2月厚生省生活衛生局水道環境部環境整備課)に記載の方法に準じて行った。   The dust concentration was determined according to the method described in JIS Z 8808.8. The nitrogen oxide concentration was determined according to the method described in JIS K 0104.4.2. The sulfur oxide concentration was determined in accordance with the method described in JIS K0103.6.1. The hydrogen chloride concentration was determined according to the method described in JIS K 0107.6.2. The concentration of dioxins was determined according to the method described in the “Manual for Standard Measurement and Analysis of Dioxins in Waste Treatment” (Environmental Maintenance Division, Department of Health and Welfare, February 1997).

Figure 2007029869
Figure 2007029869

なお、表3における乾留残渣の炭素は、公知の石炭類およびコークス類の工業分析法で、他の成分は、公知のX線分析法で測定した。   In addition, carbon of the carbonization residue in Table 3 was measured by a known industrial analysis method for coals and cokes, and other components were measured by a known X-ray analysis method.

B工程:図1に示すスラグ化処理装置(1B)を使用して乾留残渣の溶融スラグ化処理を行った。すなわち、A工程の炭化処理装置(1A)の排出装置(52)から排出された乾留残渣を旋廻燃焼装置(6)の頂部から導入して高温の還元ガスによって溶融還元した。次いで、溶融チャンバ(8)にて溶融スラグの均質化をし、冷却、粉砕した後、スラグ(有価物質の前駆体)を得た。乾留残渣の導入量は、25Kg/Hrで、高温の還元ガスの導入量は、8.0Nm3/Hrで、スラグの生成量は、12Kg/Hrであった。また、得られたスラグをランダムサンプリングし、X線による成分分析を行った結果、破断面は、サンプルにおいて成分のバラツキがほとんどなく、均質であった。その結果、有価物質である路盤材の前駆体として、適したものであった。旋廻燃焼装置(6)での溶融還元処理および溶融チャンバ(8)での溶融スラグの均質化の操作条件を表4示す。 Step B: The slagging treatment apparatus (1B) shown in FIG. That is, the dry distillation residue discharged from the discharge device (52) of the carbonization treatment device (1A) in step A was introduced from the top of the rotating combustion device (6) and melted and reduced with a high-temperature reducing gas. Next, the molten slag was homogenized in the melting chamber (8), cooled and pulverized to obtain slag (precursor of valuable material). The amount of dry distillation residue introduced was 25 kg / hr, the amount of hot reducing gas introduced was 8.0 Nm 3 / hr, and the amount of slag produced was 12 kg / hr. In addition, as a result of random sampling of the obtained slag and component analysis by X-ray, the fracture surface was homogeneous with almost no component variation in the sample. As a result, it was suitable as a precursor of roadbed material which is a valuable material. Table 4 shows the operating conditions of the smelting reduction treatment in the swirl combustion device (6) and the homogenization of the molten slag in the melting chamber (8).

Figure 2007029869
Figure 2007029869

本発明に係る有機系廃棄物の処理方法を示す工程図Process drawing showing a method for treating organic waste according to the present invention A工程(乾留工程)において使用される炭化処理装置の構成要素を示す一部破断の側面図Side view of a partially broken view showing components of a carbonization apparatus used in step A (dry distillation step) 図2の炭化処理装置の熱分解炉の主要部の構造を示す側面図Side view showing the structure of the main part of the pyrolysis furnace of the carbonization apparatus of FIG. 図2の炭化処理装置の熱分解炉の内部構造を中心線に直交するB−B線に沿った断面で示した断面図Sectional drawing which showed the internal structure of the thermal decomposition furnace of the carbonization apparatus of FIG. 2 with the cross section along the BB line orthogonal to a centerline

符号の説明Explanation of symbols

1A:炭化処理装置
1B:スラグ化処理装置
1 :改質炉
14:ガス導入管
15:ガス排出管
16:水分導入管
1s:シール部
2 :熱分解炉
21:ガス抜き管
22:補強リング
23:歯車
3 :電動機
32;駆動歯車
41:フード
41s:シール部
42:支持ローラー
43:フード
43s:シール部
51:供給装置
51h:ホッパー
52:排出装置
6 :旋廻燃焼装置
61:還元ガス供給ライン
62:還元ガス導入管
7 :サイクロンメルター
8 :溶融チャンバ
81:抜出し口
82:ガス排出管
DESCRIPTION OF SYMBOLS 1A: Carbonization processing apparatus 1B: Slag processing apparatus 1: Reforming furnace 14: Gas introduction pipe 15: Gas discharge pipe 16: Moisture introduction pipe 1s: Seal part 2: Pyrolysis furnace 21: Gas vent pipe 22: Reinforcement ring 23 : Gear 3: Electric motor 32; Drive gear 41: Hood 41 s: Sealing part 42: Support roller 43: Hood 43 s: Sealing part 51: Feeding device 51 h: Hopper 52: Discharging device 6: Rotating combustion device 61: Reducing gas supply line 62 : Reduction gas introduction pipe 7: Cyclone melter 8: Melting chamber 81: Extraction port 82: Gas discharge pipe

Claims (2)

有機系廃棄物を原料とする下記A工程より成る乾留工程および前記A工程で得られた乾留残渣を原料とする下記B工程より成る溶融スラグ化工程を包含することを特徴とする有機系廃棄物の処理方法。
A工程:水および/またはスチームの水分導入管とガス導入管とガス排出管とを有する改質炉、および、その大部分が改質炉で包囲され、且つ、その周面に複数のガス抜き管を有する熱分解炉を備え、熱分解炉の一端に有機系廃棄物の供給装置が接続され、他端に排出装置が設けられている炭化処理装置を使用し、熱分解炉に有機系廃棄物を供給し、熱分解炉における加熱乾留により発生し且つガス抜き管から噴出した可燃性ガスと酸化剤とを改質炉中で混合し、可燃性ガスを少なくとも部分燃焼して熱分解炉を加熱する乾留工程
B工程:2つから成る少なくとも1組の還元ガス供給口を有する筒状の旋廻燃焼装置と、当該旋廻燃焼装置の底部に接続された溶融チャンバとから構成され、且つ、前記の各還元ガス供給口が、旋廻燃焼装置に対して互いに逆方向の渦流を生ずる様に旋廻燃焼装置の縦方向に間隔を設けて配置されたスラグ化処理装置を使用し、A工程で得られた乾留残渣を前記旋廻燃焼装置に導入し、加熱還元して溶融する溶融スラグ化工程
An organic waste comprising a dry distillation step comprising the following step A using organic waste as a raw material, and a molten slag forming step comprising the following B step using the dry distillation residue obtained in the step A as a raw material Processing method.
Step A: a reforming furnace having a water and / or steam moisture introduction pipe, a gas introduction pipe, and a gas discharge pipe, and most of the reformer is surrounded by the reforming furnace, and a plurality of gas vents are formed on the peripheral surface thereof. Use a carbonization device equipped with a pyrolysis furnace with a pipe, connected to an organic waste supply device at one end of the pyrolysis furnace, and provided with a discharge device at the other end. The combustible gas generated by the heating dry distillation in the pyrolysis furnace and ejected from the degassing pipe is mixed in the reforming furnace, and at least a partial combustion of the combustible gas is performed. Heating dry distillation process B process: It is comprised from the cylindrical revolving combustion apparatus which has at least 1 set of 2 reducing gas supply ports which consists of two, and the melting chamber connected to the bottom part of the revolving combustion apparatus, Each reducing gas supply port is connected to the rotating combustion device. Then, using a slagging device disposed at intervals in the longitudinal direction of the rotating combustion device so as to generate vortex flows in opposite directions, the dry distillation residue obtained in step A is introduced into the rotating combustion device, Melting slag process that melts by heat reduction
改質炉から排出された排ガスが還元ガスとして旋廻燃焼装置に供せられる請求項1に記載の処理方法。   The processing method according to claim 1, wherein the exhaust gas discharged from the reforming furnace is provided as a reducing gas to a revolving combustion apparatus.
JP2005217675A 2005-07-27 2005-07-27 Organic waste disposal methods Active JP4640016B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005217675A JP4640016B2 (en) 2005-07-27 2005-07-27 Organic waste disposal methods

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005217675A JP4640016B2 (en) 2005-07-27 2005-07-27 Organic waste disposal methods

Publications (2)

Publication Number Publication Date
JP2007029869A true JP2007029869A (en) 2007-02-08
JP4640016B2 JP4640016B2 (en) 2011-03-02

Family

ID=37789766

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005217675A Active JP4640016B2 (en) 2005-07-27 2005-07-27 Organic waste disposal methods

Country Status (1)

Country Link
JP (1) JP4640016B2 (en)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09243027A (en) * 1996-03-12 1997-09-16 Mitsui Eng & Shipbuild Co Ltd Combustion burner and combustion method
JPH11188333A (en) * 1997-12-26 1999-07-13 Toshiba Corp Waste treatment system
JPH11257619A (en) * 1998-03-13 1999-09-21 Hitachi Ltd City refuse combustion device
JPH11270821A (en) * 1998-03-24 1999-10-05 Nippon Steel Corp Combustion method in waste gasificating combustion furnace
JP2000140800A (en) * 1995-11-28 2000-05-23 Ebara Corp Device for gasification treatment of waste
JP2002205044A (en) * 2001-01-09 2002-07-23 Takuma Co Ltd Waste treatment plant
JP2003065513A (en) * 2001-08-27 2003-03-05 Ngk Insulators Ltd Method for supplying thermally decomposed materials to gas converter
JP2003238966A (en) * 2002-02-14 2003-08-27 Hiroshima Gas Techno Kk Method for gasifying waste tire and apparatus therefor
JP2004323234A (en) * 2003-04-22 2004-11-18 Hiroshima Gas Techno Kk Screw conveyer
JP2006002193A (en) * 2004-06-16 2006-01-05 Mettsu Corporation:Kk Method for treating metal oxide

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000140800A (en) * 1995-11-28 2000-05-23 Ebara Corp Device for gasification treatment of waste
JPH09243027A (en) * 1996-03-12 1997-09-16 Mitsui Eng & Shipbuild Co Ltd Combustion burner and combustion method
JPH11188333A (en) * 1997-12-26 1999-07-13 Toshiba Corp Waste treatment system
JPH11257619A (en) * 1998-03-13 1999-09-21 Hitachi Ltd City refuse combustion device
JPH11270821A (en) * 1998-03-24 1999-10-05 Nippon Steel Corp Combustion method in waste gasificating combustion furnace
JP2002205044A (en) * 2001-01-09 2002-07-23 Takuma Co Ltd Waste treatment plant
JP2003065513A (en) * 2001-08-27 2003-03-05 Ngk Insulators Ltd Method for supplying thermally decomposed materials to gas converter
JP2003238966A (en) * 2002-02-14 2003-08-27 Hiroshima Gas Techno Kk Method for gasifying waste tire and apparatus therefor
JP2004323234A (en) * 2003-04-22 2004-11-18 Hiroshima Gas Techno Kk Screw conveyer
JP2006002193A (en) * 2004-06-16 2006-01-05 Mettsu Corporation:Kk Method for treating metal oxide

Also Published As

Publication number Publication date
JP4640016B2 (en) 2011-03-02

Similar Documents

Publication Publication Date Title
RU2554970C2 (en) Method and device for processing of wastes
CA2594842C (en) Waste treatment process and apparatus
US6005149A (en) Method and apparatus for processing organic materials to produce chemical gases and carbon char
US6178899B1 (en) Waste treatment method and waste treatment apparatus
US20100156104A1 (en) Thermal Reduction Gasification Process for Generating Hydrogen and Electricity
US20020048545A1 (en) Synthesis gas production and power generation with zero emissions
US20120210645A1 (en) Multi-ring Plasma Pyrolysis Chamber
JPH0613718B2 (en) Reactor for producing generator gas
JP5180917B2 (en) Waste melting treatment method and waste melting treatment apparatus
JP4692333B2 (en) Production method of foam glass
JP2007240031A (en) Heating treatment device
JP4640016B2 (en) Organic waste disposal methods
JP4191636B2 (en) Waste melting treatment method using bulk biomass
JP2007093069A (en) Waste melting furnace operating method
CN112625754A (en) Organic solid waste sleeve type gas guide wet ash discharge fixed bed gasification furnace and gasification method
JP4811597B2 (en) Simultaneous treatment of combustible waste and low calorific value waste
JP2003262319A (en) Gasification melting system and gasification melting method
CN214612323U (en) Organic solid waste sleeve type gas guide wet ash discharge fixed bed gasification furnace
EP4026885A1 (en) Reactor and process for gasifying and/or melting of feed materials and for the production of hydrogen
JP4320700B2 (en) Apparatus and method for detoxifying carbon-containing material
JP3759200B2 (en) Thermal decomposition / melting method and apparatus for waste
JPH08143872A (en) Pyrolizer for plastic
JP2006075755A (en) Method for treating car shredder dust
JP5569666B2 (en) Fuel gas reforming method
JP2006112714A (en) Waste gasifying reforming furnace

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080508

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090430

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101102

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101115

R150 Certificate of patent or registration of utility model

Ref document number: 4640016

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131210

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131210

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250