JP2007027655A - Radio wave absorber and manufacturing method thereof - Google Patents

Radio wave absorber and manufacturing method thereof Download PDF

Info

Publication number
JP2007027655A
JP2007027655A JP2005211657A JP2005211657A JP2007027655A JP 2007027655 A JP2007027655 A JP 2007027655A JP 2005211657 A JP2005211657 A JP 2005211657A JP 2005211657 A JP2005211657 A JP 2005211657A JP 2007027655 A JP2007027655 A JP 2007027655A
Authority
JP
Japan
Prior art keywords
radio wave
wave absorber
carbon component
less
carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005211657A
Other languages
Japanese (ja)
Inventor
Takafumi Ishii
隆文 石井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
Nippon Oil Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Oil Corp filed Critical Nippon Oil Corp
Priority to JP2005211657A priority Critical patent/JP2007027655A/en
Publication of JP2007027655A publication Critical patent/JP2007027655A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Laminated Bodies (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a radio wave absorber from which a sufficient dielectric loss of a high frequency radio wave, in particular 2 to 80 GHz can stably be obtained, which has excellent workability, can easily be formed to an excellent complicated shape, has a light weight and excellent attention to environment, can be suitably used for housings of electronic apparatuses or the like, can be easily manufactured, has high versatility, and can be suitable for industrial manufacturing. <P>SOLUTION: The radio wave absorber has at least one layer containing a thermosetting resin component and a carbon component, the carbon component included in the layer has an average particle diameter of 15 μm or below, the thermosetting resin component has a viscosity of 100 Pa s or below as a raw material in blending of the carbon component, the d002 by X rays of the carbon component is 0.3360 nm or over and 0.3380 nm or below and the crystal size in the axis "a" direction is 20 nm or over. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、電波吸収体に関し、より詳しくは周波数が2〜80GHzなどの電波を吸収する電波吸収体やその製造方法に関する。   The present invention relates to a radio wave absorber, and more particularly to a radio wave absorber that absorbs radio waves having a frequency of 2 to 80 GHz and a method for manufacturing the same.

近年、IT化社会の急速な発展に伴い、電子機器の高速処理化が進み、LSIやマイクロプロセッサーなどICの動作周波数は上昇し、通信分野では光ファイバーを用いた高速通信網が使用され、次世代マルチメディヤ移動通信においては具体的に2GHz、ITS(Intelligent Transport System)の分野におけるETS(自動料金収受システム)では5.8GHz、車間距離を測定して運転者に伝える走行支援道路システム(AHS)の自動車搭載レーダーでは76GHzの電波が使用され、今後更に高周波の利用範囲が拡大することが予想される。電波は周波数の上昇に伴いノイズを放出しやすく、一方において、電子機器の小型化、高密度化による電子機器内部のノイズ環境の悪化による誤動作が生じ、このような高周波の利用状況において人体へ及ぼす悪影響も問題となる。   In recent years, with the rapid development of IT society, high-speed processing of electronic devices has progressed, and the operating frequency of ICs such as LSIs and microprocessors has increased. In the communication field, high-speed communication networks using optical fibers have been used, and the next generation 2GHz for multimedia mobile communications, 5.8GHz for ETS (Intelligent Transport System) in the field of ITS (Intelligent Transport System), and a driving support road system (AHS) that measures the distance between vehicles and communicates it to the driver In-car radar uses 76 GHz radio waves, and it is expected that the range of high-frequency usage will be further expanded in the future. Radio waves tend to emit noise as the frequency increases. On the other hand, malfunctions occur due to deterioration of the noise environment inside electronic devices due to downsizing and increasing the density of electronic devices. Negative effects are also a problem.

かかる電磁波の防止材としては、電磁波遮断体と電磁波吸収体があり、電磁波遮断体には一般的に金属材料が使用され、例えば、電磁波を嫌う精密機器などを設置した部屋においては、壁などに金属板を用いて部屋への電磁波の進入を防止している。また、電子機器においては、形状の自由度や、軽量化の点から、表面を導電処理し、あるいは樹脂に導電材を混入して成形したプラスチック製筐体を用いて電磁波を遮断している。   Such electromagnetic wave blocking materials include an electromagnetic wave blocking body and an electromagnetic wave absorbing body. Generally, a metal material is used for the electromagnetic wave blocking body. For example, in a room where precision equipment that hates electromagnetic waves is installed, A metal plate is used to prevent electromagnetic waves from entering the room. Also, in electronic devices, electromagnetic waves are blocked by using a plastic casing formed by conducting a conductive treatment on the surface or mixing a conductive material into a resin from the viewpoint of freedom of shape and weight reduction.

また、電磁波の吸収体としては、フェライトを使用したもの、金属板に絶縁体を介して表面に自由空間の波動インピーダンス値を有する導電損失材からなる抵抗膜を設けたもの、金属板に裏打ちされた誘電損失材料や磁性損失材料を設けたものなどがある。このような電磁波吸収体においては、理論上では、電磁波は電磁波吸収体の表面で一部が反射され、吸収体内に進入した電磁波は金属表面で反射され、この反射電磁波は吸収体の表面、即ち吸収体と自由空間の界面で一部を外部へ放出して再度吸収体内部へ反射される。この反射が反復され内部で多重反射される間に電磁波のエネルギーが熱エネルギーに変換され電磁波はそのエネルギーを失う。一方、電磁波吸収体の表面で反射された電磁波は、吸収体の厚さを電磁波の波長のλ/4に相当する厚さとすることにより、吸収体の内部に進入し金属面表面で反射された反射電磁波が吸収体表面から外部へその一部を放出した電磁波と相互干渉を起こし、吸収体表面で反射された電磁波と吸収体内部から放出された電磁波のエネルギー密度の総和は自由空間から見ると0となる。このように電磁波吸収体においては、理論上、電磁波吸収体の内部で電磁波を多重反射させると共に、反射電磁波の相互干渉により、電磁波のエネルギーを消滅させることができるものである。   In addition, as an electromagnetic wave absorber, a ferrite plate is used, a metal plate is provided with a resistance film made of a conductive loss material having a free space wave impedance value via an insulator, and is backed by a metal plate. There is a material provided with a dielectric loss material or a magnetic loss material. In such an electromagnetic wave absorber, in theory, the electromagnetic wave is partially reflected on the surface of the electromagnetic wave absorber, and the electromagnetic wave entering the absorber is reflected on the metal surface, and this reflected electromagnetic wave is reflected on the surface of the absorber, that is, A part is emitted to the outside at the interface between the absorber and free space, and is reflected again into the absorber. While this reflection is repeated and multiple reflections are made inside, the electromagnetic wave energy is converted into thermal energy, and the electromagnetic wave loses its energy. On the other hand, the electromagnetic wave reflected on the surface of the electromagnetic wave absorber is entered into the absorber and reflected on the surface of the metal surface by setting the thickness of the absorber to a thickness corresponding to λ / 4 of the wavelength of the electromagnetic wave. Reflected electromagnetic waves cause mutual interference with electromagnetic waves that have been partially released from the absorber surface to the outside, and the total energy density of electromagnetic waves reflected from the absorber surface and electromagnetic waves emitted from the inside of the absorber is viewed from free space. 0. As described above, in the electromagnetic wave absorber, the electromagnetic wave can theoretically be subjected to multiple reflection inside the electromagnetic wave absorber, and the energy of the electromagnetic wave can be extinguished by mutual interference of the reflected electromagnetic waves.

このような電磁波吸収体において用いられる誘電損失材料または磁性損失材料としては、ウレタン樹脂系塗料に、黒鉛粉を混入した電磁波の遮へい塗料(特許文献1)や、静電障害と電磁波障害の少なくとも一方から保護しようとする被塗布物上に導電性の保護被膜を形成可能な組成物であって、導電性微粒子と結着材である樹脂とからなり、導電性微粒子が金属、金属酸化物及び炭素系材料のうちから選ばれる1種以上の材料の微粒子であり、結着材の樹脂が、導電性保護皮膜の形成後、溶媒により溶解除去可能なものである導電性樹脂組成物を用いた静電障害及び電磁波障害からの保護方法(特許文献2)や、カーボンブラック粉などの導電性粉体を内部に含んだ合成繊維を含む繊維シートを層状に配置し、相互に熱融着されて電波吸収層を形成した電波吸収体(特許文献3)や、カーボンブラックなどの導電材と無機質中空体の粉粒体とを無機接着剤で結合した電波吸収成形体と、これに接合されたセピオライトを主成分としたスラリーから抄造した不燃性シートまたは無機コーティング剤層とを備えた電波吸収体(特許文献4)などが報告されている。その他、ゴム弾性を示す物質中に平均粒径が100〜400μmの膨張黒鉛が分散してなる電波吸収体(特許文献5)や、溶剤を含まないバインダーを使用し、且つ、このバインダー中に平均粒径が100〜400μmの膨張黒鉛が分散してなる電波吸収体(特許文献6)などが知られている。   Examples of the dielectric loss material or magnetic loss material used in such an electromagnetic wave absorber include an electromagnetic wave shielding coating material (Patent Document 1) in which graphite powder is mixed in a urethane resin coating material, and at least one of electrostatic interference and electromagnetic interference. A composition capable of forming a conductive protective film on a coating object to be protected from, comprising conductive fine particles and a resin as a binder, wherein the conductive fine particles are metal, metal oxide and carbon Static particles using a conductive resin composition which is a fine particle of one or more materials selected from the group of materials and in which the binder resin can be dissolved and removed with a solvent after the formation of the conductive protective film. A method of protecting against electric interference and electromagnetic interference (Patent Document 2) and a fiber sheet containing synthetic fibers containing conductive powder such as carbon black powder in a layered manner and heat-sealed to each other for radio waves absorption The main component is a radio wave absorber (Patent Document 3) formed with a metal, a radio wave absorber molded body in which a conductive material such as carbon black and an inorganic hollow body powder are bonded with an inorganic adhesive, and sepiolite bonded thereto. An electromagnetic wave absorber (Patent Document 4) provided with a non-combustible sheet or an inorganic coating agent layer made from the above slurry has been reported. In addition, a radio wave absorber (Patent Document 5) in which expanded graphite having an average particle size of 100 to 400 μm is dispersed in a material exhibiting rubber elasticity, or a binder containing no solvent is used. An electromagnetic wave absorber (Patent Document 6) in which expanded graphite having a particle size of 100 to 400 μm is dispersed is known.

これらの電波吸収体においては、繊維状の導電性材料を含有させたものは、樹脂に混合された繊維が折れ曲がったりあるいは切断され、均一な誘電損失が得られないなどの問題がある。また、誘電損失材料や磁性損失材料として、樹脂に金属や、金属と共にカーボンブラックなどを含有させたものは軽量化、環境に及ぼす影響などの点で改良の余地がある。   In these radio wave absorbers, those containing a fibrous conductive material have a problem that fibers mixed with the resin are bent or cut, and a uniform dielectric loss cannot be obtained. In addition, as a dielectric loss material or a magnetic loss material, there is room for improvement in terms of weight reduction, environmental impact, and the like, in which a resin or a metal and carbon black or the like is contained in the resin.

また、樹脂にカーボンブラックや、黒鉛などの炭素成分を含有させたものは、金属を含有したものと比較して充分な誘電損失が得られないという問題がある。充分な誘電損失が得られるまで炭素成分の含有量を増加させようと、炭素成分を多量に樹脂に添加すると、高粘度となり、混練が困難となり容易に製造することができない。製造が容易であり、工業的製造に適し、充分な誘電損失を安定して得ることができる電波吸収体は得られていない。特に、ETS(自動料金収受システム)においては、反射した電波による誤作動を高精度に抑制することが要請され、特に、高周波に対し充分な誘電損失を安定して得ることができ、製造が容易な電波吸収体が求められている。
特開昭62−111499号公報 特開2001−234075号公報 特開2004−247720号公報 特開2000−82892号公報 特開2004−39798号公報 特開2004−63578号公報
In addition, when the resin contains a carbon component such as carbon black or graphite, there is a problem that sufficient dielectric loss cannot be obtained as compared with a resin containing a metal. In order to increase the carbon component content until a sufficient dielectric loss is obtained, if a large amount of the carbon component is added to the resin, the viscosity becomes high and kneading becomes difficult and cannot be easily produced. A radio wave absorber that is easy to manufacture, suitable for industrial manufacture, and capable of stably obtaining a sufficient dielectric loss has not been obtained. In particular, in ETS (automatic toll collection system), it is required to suppress malfunction caused by reflected radio waves with high accuracy, and in particular, sufficient dielectric loss can be stably obtained with respect to high frequencies, and manufacturing is easy. Radio wave absorbers are desired.
JP-A-62-111499 JP 2001-234075 A JP 2004-247720 A JP 2000-82892 A JP 2004-39798 A JP 2004-63578 A

本発明の課題は、高周波に対して充分な誘電損失を安定して得ることができ、加工性に優れ複雑な形状に容易に成形することができ、軽量であり、環境にも優れ、電子機器の筐体などに好適に使用することができ、電波、特に、2〜80GHzなどの高周波に対し充分な誘電損失を安定して得ることができ、製造が容易で汎用性が高く工業的製造に適した電波吸収体を提供することにある。   An object of the present invention is to stably obtain a sufficient dielectric loss with respect to a high frequency, can be easily formed into a complicated shape with excellent workability, is lightweight, excellent in environment, and electronic equipment. Can be suitably used for housings, etc., and sufficient dielectric loss can be stably obtained for radio waves, particularly high frequencies such as 2 to 80 GHz, and is easy to manufacture and highly versatile for industrial manufacture. The object is to provide a suitable electromagnetic wave absorber.

電波吸収体の導電性材料として炭素成分を用いる場合、炭素成分を樹脂成分に混練する工程において、樹脂成分に添加・混合する炭素成分が多量となると高粘度となり、せん断力や樹脂の粘度などの混練条件の相違により得られる混合物中の炭素成分の混合状態が不安定となってしまう。その結果、電波の吸収性能が変化し、安定した誘電損失が得られる電波吸収体を製造することができなかった。本発明者らが鋭意研究の結果、樹脂成分として熱硬化性樹脂を選択した場合、炭素成分と樹脂成分との混合時における粘度の上昇を抑制することができ、炭素成分の粒子径が15μm以下のように小さいものであっても熱硬化性樹脂成分原材料の高粘度化が抑制され、これらの混合が困難になることを避けることができることを見い出した。そして炭素成分の混合時に熱硬化性樹脂成分原材料の粘度が100Pa・s以下であれば、混合するときのせん断力や熱硬化性樹脂成分原材料の粘度などの混合条件が相違しても、硬化した熱硬化性樹脂成分に生じる誘電損失の不安定が抑制されることを見い出した。炭素成分の平均粒子径が15μm以下であり、この炭素成分を熱硬化性樹脂成分原材料に混合する際の熱硬化性樹脂原材料の粘度が100Pa・s以下の条件を満たす限りにおいて、せん断力や熱硬化性樹脂成分原材料の粘度などの混合条件が異なっても、その後硬化した熱硬化性樹脂において充分な均一な誘電損失を有し、これにより電波吸収体において充分な誘電損失を安定して得ることができることの知見を得て、本発明をするに至った。   When a carbon component is used as the conductive material of the radio wave absorber, in the process of kneading the carbon component with the resin component, if the amount of the carbon component added / mixed to the resin component becomes large, the viscosity becomes high, such as shearing force and resin viscosity. Due to the difference in the kneading conditions, the mixed state of the carbon components in the obtained mixture becomes unstable. As a result, the radio wave absorber has changed, and a radio wave absorber capable of obtaining a stable dielectric loss cannot be manufactured. As a result of intensive studies by the inventors, when a thermosetting resin is selected as the resin component, an increase in viscosity at the time of mixing the carbon component and the resin component can be suppressed, and the particle size of the carbon component is 15 μm or less. It has been found that even if it is as small as this, the increase in viscosity of the thermosetting resin component raw material is suppressed, and it is possible to avoid the difficulty of mixing them. If the viscosity of the thermosetting resin component raw material is 100 Pa · s or less when the carbon component is mixed, it is cured even if the mixing conditions such as shearing force and viscosity of the thermosetting resin component raw material are different. It has been found that instability of dielectric loss generated in the thermosetting resin component is suppressed. As long as the average particle diameter of the carbon component is 15 μm or less and the viscosity of the thermosetting resin raw material when the carbon component is mixed with the thermosetting resin component raw material satisfies the condition of 100 Pa · s or less, Even if the mixing conditions such as the viscosity of the curable resin component raw materials are different, the cured thermosetting resin has a sufficiently uniform dielectric loss, and thus a sufficient dielectric loss can be stably obtained in the radio wave absorber. As a result, the present invention has been obtained.

すなわち、本発明は、熱硬化性樹脂と炭素成分とを含有する層を少なくとも1層有する電波吸収体であって、前記層に含まれる炭素成分が、15μm以下の平均粒子径を有し、熱硬化性樹脂が、炭素成分の混合時における原材料として100Pa・s以下の粘度を有することを特徴とする電波吸収体に関し、好ましくは、炭素成分が、X線のd002が、0.3360nm以上0.3380nm以下であり、かつa軸方向の結晶サイズが、20nm以上であり、前記層が、炭素成分を15質量%以下の範囲で含有し、前記層が、炭素成分を開放表面に向かって漸減するように含有し、前記層が、吸収電波の波長に対して、0.01〜1倍の厚さを有するものであり、吸収する電波の周波数が2〜80GHz、特に、5.8GHzであることが好ましい。   That is, the present invention is a radio wave absorber having at least one layer containing a thermosetting resin and a carbon component, wherein the carbon component contained in the layer has an average particle diameter of 15 μm or less, The electromagnetic wave absorber is characterized in that the curable resin has a viscosity of 100 Pa · s or less as a raw material when the carbon component is mixed. Preferably, the carbon component has an X-ray d002 of 0.3360 nm or more and 0.3. 3380 nm or less, the crystal size in the a-axis direction is 20 nm or more, the layer contains a carbon component in a range of 15 mass% or less, and the layer gradually reduces the carbon component toward the open surface. And the layer has a thickness of 0.01 to 1 times the wavelength of the absorbed radio wave, and the frequency of the radio wave to be absorbed is 2 to 80 GHz, particularly 5.8 GHz. But Masui.

また、本発明の電波吸収体の製造方法は、熱硬化性樹脂と炭素成分とを含有する電波吸収体を製造する際、15μm以下の平均粒子径を有する炭素成分と、粘度が100Pa・s以下の熱硬化性樹脂原材料とを混合し、熱硬化性樹脂原材料の硬化を行なうことを特徴とする電波吸収体の製造方法に関し、好ましくは、炭素成分として、X線のd002が、0.3360nm以上0.3380nm以下であり、かつa軸方向の結晶サイズが、20nm以上であるものを用い、電波吸収体が炭素成分を15質量%以下の範囲で含有することである。   The method for producing a radio wave absorber according to the present invention, when producing a radio wave absorber containing a thermosetting resin and a carbon component, has a carbon component having an average particle diameter of 15 μm or less and a viscosity of 100 Pa · s or less. And a thermosetting resin raw material is mixed to cure the thermosetting resin raw material. Preferably, as a carbon component, X-ray d002 is 0.3360 nm or more. It is 0.3380 nm or less and the crystal size in the a-axis direction is 20 nm or more, and the radio wave absorber contains a carbon component in a range of 15 mass% or less.

本発明の電波吸収体は、高周波に対して充分な誘電損失を安定して得ることができ、加工性に優れ複雑な形状に容易に成形することができ、軽量であり、環境に対しても好ましく、機械的強度も高く、電子機器の筐体などに好適に使用することができ、製造が容易で汎用性が高く工業的製造に適し、特に、2〜80GHzの高周波に対し充分な誘電損失を安定して得ることができる。   The radio wave absorber of the present invention can stably obtain a sufficient dielectric loss with respect to high frequency, can be easily molded into a complicated shape with excellent workability, is lightweight, and is environmentally friendly. Preferably, it has high mechanical strength and can be suitably used for electronic equipment casings, etc., easy to manufacture, highly versatile and suitable for industrial manufacturing, especially with sufficient dielectric loss for high frequencies of 2 to 80 GHz Can be obtained stably.

本発明の電波吸収体は、熱硬化性樹脂と炭素成分とを含有する層を少なくとも1層有する電波吸収体であって、前記層に含まれる炭素成分が、15μm以下の平均粒子径を有し、熱硬化性樹脂が、炭素成分の混合時における原材料として100Pa・s以下の粘度を有するものであれば、特に限定されるものではない。   The radio wave absorber of the present invention is a radio wave absorber having at least one layer containing a thermosetting resin and a carbon component, and the carbon component contained in the layer has an average particle diameter of 15 μm or less. The thermosetting resin is not particularly limited as long as it has a viscosity of 100 Pa · s or less as a raw material at the time of mixing the carbon components.

本発明の電波吸収体に用いられる熱硬化性樹脂としては、ホモポリマー、コーポリマーを問わず、一般に知られている殆ど総ての熱硬化性樹脂を挙げることができる。具体的には、フェノール樹脂、キシレン樹脂、ユリア樹脂、メラミン樹脂、不飽和ポリエステル樹脂、ビニルエステル樹脂、エポキシ樹脂、シリコーン樹脂、ジアリルフタレート樹脂、フラン樹脂、アニリン樹脂、アセトン−ホルムアルデヒド樹脂、アルキド樹脂などを挙げることができるが、本発明の電波吸収体に適用される熱硬化性樹脂はこれらに限定されるものではなく、また、これらの2種以上を組み合わせたものであってもよい。   Examples of the thermosetting resin used in the radio wave absorber of the present invention include almost all thermosetting resins that are generally known, regardless of homopolymer or copolymer. Specifically, phenol resin, xylene resin, urea resin, melamine resin, unsaturated polyester resin, vinyl ester resin, epoxy resin, silicone resin, diallyl phthalate resin, furan resin, aniline resin, acetone-formaldehyde resin, alkyd resin, etc. The thermosetting resin applied to the radio wave absorber of the present invention is not limited to these, and may be a combination of two or more of these.

上記熱硬化性樹脂は後述する炭素成分の混合時における熱硬化性樹脂原材料として100Pa・s以下の粘度を有するものである。本発明において炭素成分を混合する熱硬化性樹脂原材料としては、熱硬化性樹脂の低縮合体・低重合体、または単量体や、これらを溶解・分散する溶媒・分散媒を含有し、粘度を調整したものであってもよい。炭素成分を混合する熱硬化性樹脂原材料の粘度が100Pa・s以下であると炭素成分の混合を容易に行なうことができる。熱硬化性樹脂原材料の粘度が、50Pa・s以下、更に30Pa・s以下であると、上記効果をより顕著に得ることができる。   The thermosetting resin has a viscosity of 100 Pa · s or less as a thermosetting resin raw material at the time of mixing a carbon component described later. In the present invention, the thermosetting resin raw material for mixing the carbon component contains a low-condensate / low-polymer or monomer of a thermosetting resin, a solvent / dispersion medium for dissolving / dispersing these, and a viscosity. May be adjusted. When the viscosity of the thermosetting resin raw material in which the carbon component is mixed is 100 Pa · s or less, the carbon component can be easily mixed. The said effect can be acquired more notably that the viscosity of a thermosetting resin raw material is 50 Pa * s or less, and also 30 Pa * s or less.

本発明の電波吸収体に用いられる炭素成分としては、平均粒子径が15μm以下であり、好ましくは10μm以下、より好ましくは5μm以下である。炭素成分の平均粒子径が15μm以下であれば、炭素成分の使用量を低減することができ、電波吸収体において少ない使用量で安定した誘電損失を得ることができる。平均粒子径が10μm以下、更に5μm以下であれば、上記効果をより顕著に得ることができる。   The carbon component used in the radio wave absorber of the present invention has an average particle size of 15 μm or less, preferably 10 μm or less, more preferably 5 μm or less. If the average particle diameter of the carbon component is 15 μm or less, the amount of carbon component used can be reduced, and a stable dielectric loss can be obtained with a small amount of use in the radio wave absorber. If the average particle size is 10 μm or less, and further 5 μm or less, the above effect can be obtained more remarkably.

このような炭素成分としては、導電性が高く汎用性に富む黒鉛を用いることが好ましく、具体的には、X線結晶構造解析で以下の性質を満足していることが好ましい。すなわち、X線のd002が、0.3360nm以上0.3380nm以下であり、かつa軸方向の結晶サイズが、20nm以上の黒鉛であることが好ましい。より好ましくは、X線のd002が、0.3360nm以上0.3370nm以下であり、かつa軸方向の結晶サイズが、50nm以上である。このような炭素を用いることにより、電波吸収体において2〜80GHzの高周波に対し充分な誘電損失を得ることができる。   As such a carbon component, it is preferable to use graphite having high conductivity and high versatility. Specifically, it is preferable that the following properties are satisfied by X-ray crystal structure analysis. That is, it is preferable that d002 of X-rays is 0.3360 nm or more and 0.3380 nm or less, and the crystal size in the a-axis direction is 20 nm or more. More preferably, the X-ray d002 is 0.3360 nm or more and 0.3370 nm or less, and the crystal size in the a-axis direction is 50 nm or more. By using such carbon, it is possible to obtain a sufficient dielectric loss for a high frequency of 2 to 80 GHz in the radio wave absorber.

また、本発明の電波吸収体において、上記熱硬化性樹脂や炭素成分とを含有する層を少なくとも1層有する。層中における炭素成分の含有量は15質量%以下であり、好ましくは10質量%以下である。層中の炭素成分の含有量が15質量%以下であれば、層の製造時において粘度が大きくなることがなく、炭素成分を容易に混合することができ、電波吸収体において充分な誘電損失を得ることができる。炭素成分の含有量が10質量%以下であれば、この効果をより顕著に得ることができる。   The radio wave absorber of the present invention has at least one layer containing the thermosetting resin and the carbon component. Content of the carbon component in a layer is 15 mass% or less, Preferably it is 10 mass% or less. If the content of the carbon component in the layer is 15% by mass or less, the viscosity does not increase during the production of the layer, the carbon component can be easily mixed, and sufficient dielectric loss can be obtained in the radio wave absorber. Obtainable. If the carbon component content is 10% by mass or less, this effect can be obtained more remarkably.

また、上記層中、炭素成分を開放表面に向かって漸減するように含有することが好ましい。炭素成分が表面に向かって漸減することにより、電波吸収体において安定した電波吸収が行なわれるようになる。   Moreover, it is preferable to contain the carbon component in the layer so as to gradually decrease toward the open surface. As the carbon component gradually decreases toward the surface, stable radio wave absorption is performed in the radio wave absorber.

上記層には、上記成分の他、これらの成分の機能を阻害しない範囲において、例えば、硬化剤、安定剤、滑剤、離型剤、可塑剤などを含有させることができる。   In addition to the above components, the layer may contain, for example, a curing agent, a stabilizer, a lubricant, a mold release agent, a plasticizer, and the like as long as the functions of these components are not impaired.

本発明の電波吸収体の成形体としては、上記層を少なくとも1層有するものであればよく、また、上記層を多層構造として複数有していてもよい。層の厚さとしては、吸収の対象となる電波の波長の0.01倍以上であると、電波の吸収性能を維持することができるため好ましい。電波吸収体の厚さとしてより好ましくは対象電波の波長の0.02倍以上、さらに好ましくは0.03倍以上であり、このような厚さであれば、上記効果をより顕著に得ることができる。また、吸収の対象とする電波の波長に対して厚さが、1倍以下であれば軽量で取扱い性がよいものとなる。層の厚さはより好ましくは吸収の対象になる電波の波長に対して0.8倍以下、更に好ましくは0.5倍以下であり、このような厚さを有することにより、上記効果をより顕著に得ることができる。層の厚さとしては、具体的には、0.03mm〜15cmなどを挙げることができる。   The molded article of the radio wave absorber according to the present invention may have at least one layer as described above, and may have a plurality of layers as a multilayer structure. The thickness of the layer is preferably 0.01 times or more the wavelength of the radio wave to be absorbed because the radio wave absorption performance can be maintained. More preferably, the thickness of the radio wave absorber is 0.02 or more, more preferably 0.03 or more, the wavelength of the target radio wave. With such a thickness, the above effect can be obtained more remarkably. it can. Further, if the thickness is less than 1 times the wavelength of the radio wave to be absorbed, it is lightweight and easy to handle. The thickness of the layer is more preferably 0.8 times or less, and even more preferably 0.5 times or less, with respect to the wavelength of the radio wave to be absorbed. Remarkably can be obtained. Specific examples of the layer thickness include 0.03 mm to 15 cm.

このような層は、金属に裏打ちされることが好ましい。使用される金属としては、いずれのものであってもよいが、例えば、鉄、ニッケル、アルミニウム、亜鉛、ステンレス鋼などの金属板が好ましい。電波吸収体に使用される金属の厚さは、いずれの厚さであってもよく、例えば50μm〜1mmなどとすることができる。   Such a layer is preferably lined with metal. Any metal may be used, but for example, a metal plate such as iron, nickel, aluminum, zinc, and stainless steel is preferable. The thickness of the metal used for the radio wave absorber may be any thickness, for example, 50 μm to 1 mm.

このような本発明の電波吸収体の形体としては、射出成形品、シート、フィルム、異形品、熱成形体、繊維などいずれの形体であってもよく、電子機器の筐体に適用することができ、また、板、シート、フィルムなどシート状とすることもできる。   The shape of the radio wave absorber of the present invention may be any shape such as an injection molded product, a sheet, a film, a deformed product, a thermoformed product, and a fiber, and can be applied to a casing of an electronic device. It can also be in the form of a sheet such as a plate, sheet, or film.

本発明の電波吸収体において、吸収の対象となる電波の周波数は、電波吸収体の材質、即ちその材質が有する複素誘電率、その厚さ、層構造を制御することにより調整することができ、本発明の電波吸収体が適用される吸収対象の電波の周波数としては、2〜80GHzが好ましく、特に、2〜10GHzが好ましい。   In the radio wave absorber of the present invention, the frequency of radio waves to be absorbed can be adjusted by controlling the material of the radio wave absorber, that is, the complex dielectric constant, the thickness, and the layer structure of the material, The frequency of radio waves to be absorbed to which the radio wave absorber of the present invention is applied is preferably 2 to 80 GHz, and particularly preferably 2 to 10 GHz.

本発明の電波吸収体の製造方法について説明する。   The manufacturing method of the electromagnetic wave absorber of this invention is demonstrated.

本発明の電波吸収体の製造方法は、熱硬化性樹脂と炭素成分とを含有する電波吸収体を製造する際、15μm以下の平均粒子径を有する炭素成分と、粘度が100Pa・s以下の熱硬化性樹脂原材料とを混合した後、熱硬化性樹脂原材料の硬化を行なう方法であれば特に制限されるものではない。本発明の電波吸収体の製造方法に用いる炭素成分としては上記したものであり、熱硬化性樹脂としては熱硬化性樹脂の低縮合体・低重合体、または単量体や、これらを溶解・分散する溶媒・分散媒を含有し、粘度を調整したものであってもよい。これらの混合は、熱硬化性樹脂原材料に炭素成分を所定量配合し、一般的な攪拌装置を備えた混合機を用いて行なうことができる。混合温度は、樹脂の硬化温度以下の温度であればよく、混合時間も、1分〜1日など所望時間行なうことができる。混合を行なうせん断力、即ちせん断量やせん断速度も、その相違によって電波吸収体の誘電損失が不安定になることがないため、適宜選択することができる。   The method for producing a radio wave absorber according to the present invention includes a carbon component having an average particle diameter of 15 μm or less and a heat having a viscosity of 100 Pa · s or less when producing a radio wave absorber containing a thermosetting resin and a carbon component. If it is the method of hardening a thermosetting resin raw material after mixing with a curable resin raw material, it will not restrict | limit in particular. The carbon component used in the method for producing the radio wave absorber of the present invention is as described above, and the thermosetting resin is a low-condensate / low-polymer of a thermosetting resin, or a monomer, It may contain a solvent / dispersion medium to be dispersed and its viscosity adjusted. These mixings can be performed using a mixer equipped with a general stirrer in which a predetermined amount of a carbon component is blended with the thermosetting resin raw material. The mixing temperature should just be the temperature below the curing temperature of resin, and mixing time can also be performed for desired time, such as 1 minute-1 day. A shearing force for mixing, that is, a shearing amount and a shearing speed can be appropriately selected because the dielectric loss of the radio wave absorber does not become unstable due to the difference.

炭素成分と熱硬化性樹脂原材料の混合を行なった後、熱硬化性樹脂原材料の硬化・成形を行なう。硬化・成形は通常の方法によることができ、例えば、圧縮成形、積層成形、トランスファ成形、射出成形、低圧成形、注型成形など公知の方法によることができ、これらの硬化・成形方法により得られる本発明の電波吸収体として、射出成形品、シート、フィルム、異形品、熱成形体、発砲体、繊維などの成形体を挙げることができる。   After mixing the carbon component and the thermosetting resin raw material, the thermosetting resin raw material is cured and molded. Curing / molding can be carried out by ordinary methods, for example, compression molding, laminate molding, transfer molding, injection molding, low pressure molding, cast molding, etc., and can be obtained by these curing / molding methods. Examples of the radio wave absorber of the present invention include molded articles such as injection molded articles, sheets, films, deformed articles, thermoformed bodies, foamed bodies, and fibers.

このような製造方法により得られる本発明の電波吸収体は、炭素成分と熱硬化性樹脂原材料の混合条件が相違しても得られる混合物において安定した誘電損失を有するものとでき、特に、2〜80GHzの電波の吸収体として優れたものである。   The radio wave absorber of the present invention obtained by such a production method can have a stable dielectric loss in a mixture obtained even if the mixing conditions of the carbon component and the thermosetting resin raw material are different. It is an excellent absorber of 80 GHz radio waves.

以下、実施例を挙げて本発明をより詳細に説明する。
諸物性の測定は下記の方法による。
(1)平均粒子径
マルバーン社製レーザー回折式粒度分布計(マスターサーサイザー)を用いて測定した。測定方法、条件は、マルバーン社の推奨する標準条件で行った。すなわち、ミクロスパーテル1杯の試料を少量の水に界面活性剤を用いて分散して装置に投入し、循環しながら超音波を60秒かけることにより、さらに分散した。その後、超音波照射を止めて、測定を行い、粒度分布を求め、その中央値(d50)を測定値とした。
(2)黒鉛のX線回折
X線回折測定装置を用いて、日本学術振興会 第117委員会制定「人造黒鉛の格子定数および結晶子の大きさ測定法」 に準拠して測定・データ処理を行い、面間隔d002および結晶サイズLa011を求めた。
(3)誘電率
厚さ2〜3mmの試料を用意し、5.8GHzにおいて、方形導波管(47.55mm×22.15mm)を用い、導波管終端が金属の場合の定在波の節と腹の電界強度比および節の位置、および金属板の手前に資料を置いた場合の定在波の節と腹の電界強度比および節の位置から複素誘電率を求めた。測定の詳細は、「材料定数測定法」(p45〜65橋本修著、森北出版(2003))によった。
(4)電波吸収率
キーコム社製「レンズアンテナ方式斜入射タイプ電波吸収体(電波吸収材料)・反射減衰量測定装置」を用いて、1〜18GHzで測定を行なった。
〔炭素の調製〕
[炭素1]
石油コークス10kgを大島鉄工製ボールミルBM50を用いて乾式で4時間粉砕した後、2500℃で2時間熱処理することにより、平均粒子径10μmの炭素粒子を得た。X線回折の結果、面間隔d002は0.3375nm、a軸方向の結晶サイズは、30nmであった。
[炭素2]
石油コークス10kgを大島鉄工製ボールミルBM50を用いて乾式で8時間粉砕した後、2800℃で2時間熱処理することにより、平均粒子径5μmの炭素粒子を得た。X線回折の結果、面間隔d002は0.3361nm、a軸方向の結晶サイズは、110nmであった。
[炭素3]
石油コークス10kgを大島鉄工製ボールミルBM50を用いて乾式で20分間粉砕した後、2800℃で2時間熱処理することにより、平均粒子径30μmの炭素粒子を得た。X線回折の結果、面間隔d002は0.3361nm、a軸方向の結晶サイズは、110nmであった。
[炭素4]
石油コークス10kgを大島鉄工製ボールミルBM50を用いて乾式で4間粉砕した後、1900℃で2時間熱処理することにより、平均粒子径10μmの炭素粒子を得た。X線回折の結果、面間隔d002は0.3420nm、a軸方向の結晶サイズは、15nmであった。
[実施例1]
大日本インキ製エポキシ樹脂EPICLON TSR−960 1000gに対し、同社製硬化剤EPICLON EXB−353 200gを室温で混合し、25℃における粘度89Pa・sの組成物を得た。これに、上記炭素1を150g混合し、25℃で10分間攪拌を行い、均一な炭素含有組成物を得た。これを水平を保ったテフロン製枠に流し込み、80℃で10時間、さらに120℃で1時間硬化を行ない、30cm×30cm、厚さ3.5mmのシートを得た。このシートの誘電率を測定した。また、背面に厚さ1mmのアルミ板を配置して電波吸収性能を測定した。さらに同じ材料を使用して、炭素混合後の攪拌を1時間に延長して同様に作製し、誘電率、電波吸収率を測定した。誘電率の測定結果を表1に、電波吸収測定結果を図1に示す。
Hereinafter, the present invention will be described in more detail with reference to examples.
Various physical properties are measured by the following methods.
(1) Average particle diameter It measured using the Malvern company laser diffraction type particle size distribution analyzer (master sizer). The measurement method and conditions were the standard conditions recommended by Malvern. That is, a sample of a micropartite was dispersed in a small amount of water using a surfactant, charged into the apparatus, and further dispersed by applying ultrasonic waves for 60 seconds while circulating. Thereafter, the ultrasonic irradiation was stopped and measurement was performed to obtain the particle size distribution, and the median value (d 50 ) was taken as the measured value.
(2) X-ray diffraction of graphite Using an X-ray diffraction measurement device, measurement and data processing are performed in accordance with the “Measuring Method of Lattice Constants and Crystallite Size of Artificial Graphite” established by the 117th Committee of the Japan Society for the Promotion of Science. The interplanar spacing d002 and the crystal size La011 were determined.
(3) Dielectric constant A sample having a thickness of 2 to 3 mm is prepared, and a standing wave when a waveguide is made of metal at 5.8 GHz using a rectangular waveguide (47.55 mm × 22.15 mm). The complex dielectric constant was calculated from the ratio of the electric field strength between the node and the antinode, the position of the node, and the ratio of the electric field strength between the node and the antinode of the standing wave when the data was placed in front of the metal plate. Details of the measurement were according to “Material Constant Measurement Method” (p. 45-65, Osamu Hashimoto, Morikita Publishing (2003)).
(4) Radio wave absorption rate Measurement was performed at 1 to 18 GHz using a “lens antenna type oblique incidence type radio wave absorber (radio wave absorbing material) / reflection attenuation measuring device” manufactured by Keycom.
(Preparation of carbon)
[Carbon 1]
10 kg of petroleum coke was pulverized in a dry manner for 4 hours using a ball mill BM50 manufactured by Oshima Tekko Co., Ltd. and then heat treated at 2500 ° C. for 2 hours to obtain carbon particles having an average particle diameter of 10 μm. As a result of X-ray diffraction, the interplanar spacing d002 was 0.3375 nm, and the crystal size in the a-axis direction was 30 nm.
[Carbon 2]
After 10 kg of petroleum coke was pulverized in a dry system for 8 hours using a ball mill BM50 manufactured by Oshima Iron Works, heat treatment was performed at 2800 ° C. for 2 hours to obtain carbon particles having an average particle diameter of 5 μm. As a result of X-ray diffraction, the interplanar spacing d002 was 0.3361 nm and the crystal size in the a-axis direction was 110 nm.
[Carbon 3]
10 kg of petroleum coke was pulverized for 20 minutes in a dry manner using a ball mill BM50 manufactured by Oshima Tekko, and then heat-treated at 2800 ° C. for 2 hours to obtain carbon particles having an average particle size of 30 μm. As a result of X-ray diffraction, the interplanar spacing d002 was 0.3361 nm, and the crystal size in the a-axis direction was 110 nm.
[Carbon 4]
After 10 kg of petroleum coke was dry pulverized for 4 hours using a ball mill BM50 manufactured by Oshima Iron Works, carbon particles having an average particle size of 10 μm were obtained by heat treatment at 1900 ° C. for 2 hours. As a result of X-ray diffraction, the interplanar spacing d002 was 0.3420 nm, and the crystal size in the a-axis direction was 15 nm.
[Example 1]
200 g of the curing agent EPICLON EXB-353 manufactured by the same company was mixed with 1000 g of the epoxy resin EPICLON TSR-960 made by Dainippon Ink to obtain a composition having a viscosity of 89 Pa · s at 25 ° C. This was mixed with 150 g of the above carbon 1 and stirred at 25 ° C. for 10 minutes to obtain a uniform carbon-containing composition. This was poured into a horizontal Teflon frame and cured at 80 ° C. for 10 hours and further at 120 ° C. for 1 hour to obtain a sheet of 30 cm × 30 cm and a thickness of 3.5 mm. The dielectric constant of this sheet was measured. In addition, an aluminum plate having a thickness of 1 mm was disposed on the back surface, and the radio wave absorption performance was measured. Furthermore, using the same material, the stirring after carbon mixing was extended to 1 hour in the same manner, and the dielectric constant and radio wave absorption rate were measured. The dielectric constant measurement results are shown in Table 1, and the radio wave absorption measurement results are shown in FIG.

Figure 2007027655
Figure 2007027655

[実施例2]
旭電化製エポキシ樹脂(アデカレジンEP−4010S)1000gに対し、同社製硬化剤EH−455 150gを室温で混合し、25℃における粘度42Pa・sの組成物を得た。これに、上記炭素2を90g混合し、25℃で50分間攪拌を行い、均一な炭素含有組成物を得た。これを水平を保ったテフロン製枠に流し込み、80℃で10時間、さらに120℃で1時間硬化を行ない、30cm×30cm、厚さ4.0mmのシートを得た。このシートの誘電率を測定した。また、背面に厚さ1mmのアルミ板を配置して電波吸収性能を測定した。さらに同じ材料を使用して、炭素混合後の攪拌を1時間に延長して同様に作製し、誘電率、電波吸収率を測定した。誘電率の測定結果を表2に、電波吸収測定結果を図2に示す。
[Example 2]
Asahi Denka Epoxy Resin (Adeka Resin EP-4010S) 1000 g was mixed with 150 g of the curing agent EH-455 manufactured by the same company at room temperature to obtain a composition having a viscosity of 42 Pa · s at 25 ° C. 90 g of the above carbon 2 was mixed with this and stirred at 25 ° C. for 50 minutes to obtain a uniform carbon-containing composition. This was poured into a horizontal Teflon frame and cured at 80 ° C. for 10 hours and further at 120 ° C. for 1 hour to obtain a sheet of 30 cm × 30 cm and a thickness of 4.0 mm. The dielectric constant of this sheet was measured. In addition, an aluminum plate having a thickness of 1 mm was disposed on the back surface, and the radio wave absorption performance was measured. Furthermore, using the same material, the stirring after carbon mixing was extended to 1 hour in the same manner, and the dielectric constant and radio wave absorption rate were measured. The measurement results of the dielectric constant are shown in Table 2, and the radio wave absorption measurement results are shown in FIG.

Figure 2007027655
Figure 2007027655

[実施例3]
大日本インキ製フェノール樹脂1196(25℃における粘度11Pa・s)1000gに対し上記炭素3を120g混合し、25℃で10分間攪拌を行い、均一な炭素含有組成物を得た。これを水平を保ったテフロン製枠に流し込み、80℃で10時間、さらに160℃で1時間硬化を行ない、30cm×30cm、厚さ3.7mmのシートを得た。このシートの誘電率を測定した。また、背面に厚さ1mmのアルミ板を配置して電波吸収性能を測定した。さらに同じ材料を使用して、炭素混合後の攪拌を1時間に延長して同様に作製し、誘電率、電波吸収率を測定した。誘電率の測定結果を表3に、電波吸収測定結果を図3に示す。
[Example 3]
120 g of the above carbon 3 was mixed with 1000 g of Dainippon Ink Phenol Resin 1196 (viscosity 11 Pa · s at 25 ° C.) and stirred at 25 ° C. for 10 minutes to obtain a uniform carbon-containing composition. This was poured into a horizontal Teflon frame and cured at 80 ° C. for 10 hours and further at 160 ° C. for 1 hour to obtain a sheet of 30 cm × 30 cm and a thickness of 3.7 mm. The dielectric constant of this sheet was measured. In addition, an aluminum plate having a thickness of 1 mm was disposed on the back surface, and the radio wave absorption performance was measured. Furthermore, using the same material, the stirring after carbon mixing was extended to 1 hour in the same manner, and the dielectric constant and radio wave absorption rate were measured. The measurement results of the dielectric constant are shown in Table 3, and the radio wave absorption measurement results are shown in FIG.

Figure 2007027655
Figure 2007027655

[比較例1]
使用する炭素として、炭素2の代わりに炭素4を使用した他は、実施例2と同様に、電波吸収体を作製し、誘電率、電波吸収を測定した。誘電率の測定結果を表4に、電波吸収測定結果を図4に示す。
[Comparative Example 1]
A radio wave absorber was prepared in the same manner as in Example 2 except that carbon 4 was used instead of carbon 2 as carbon to be used, and dielectric constant and radio wave absorption were measured. The dielectric constant measurement results are shown in Table 4, and the radio wave absorption measurement results are shown in FIG.

Figure 2007027655
Figure 2007027655

結果から、比較例1の電波吸収体は電波吸収性能を有しないことが分かった。
[比較例2]
炭素1の使用量を350gにした他は、実施例1と同様に、電波吸収体を作製し、誘電率、電波吸収を測定した。誘電率の測定結果を表5に、電波吸収測定結果を図5に示す。
From the results, it was found that the radio wave absorber of Comparative Example 1 did not have radio wave absorption performance.
[Comparative Example 2]
A radio wave absorber was prepared in the same manner as in Example 1 except that the amount of carbon 1 used was 350 g, and the dielectric constant and radio wave absorption were measured. The measurement results of the dielectric constant are shown in Table 5, and the radio wave absorption measurement results are shown in FIG.

Figure 2007027655
Figure 2007027655

結果から、比較例2の電波吸収体は電波吸収性能を有しないことが分かった。
[比較例3]
樹脂および硬化剤を混合後、30℃で攪拌を行い、組成物粘度が200Pa・sに達してから炭素を加えた他は、実施例1と同様に、電波吸収体を作製し、誘電率、電波吸収を測定した。誘電率の測定結果を表6に、電波吸収測定結果を図6に示す。
From the results, it was found that the radio wave absorber of Comparative Example 2 did not have radio wave absorption performance.
[Comparative Example 3]
After mixing the resin and the curing agent, stirring was performed at 30 ° C., and a radio wave absorber was prepared in the same manner as in Example 1 except that carbon was added after the composition viscosity reached 200 Pa · s. Radio wave absorption was measured. Table 6 shows the dielectric constant measurement results, and FIG. 6 shows the radio wave absorption measurement results.

Figure 2007027655
Figure 2007027655

結果から、比較例3の電波吸収体は電波吸収性能が不安定であることが分かった。 From the results, it was found that the radio wave absorber of Comparative Example 3 had unstable radio wave absorption performance.

本発明の電波吸収体の実施例1の電波吸収率を示す図である。It is a figure which shows the electromagnetic wave absorption factor of Example 1 of the electromagnetic wave absorber of this invention. 本発明の電波吸収体の実施例2の電波吸収率を示す図である。It is a figure which shows the electromagnetic wave absorption factor of Example 2 of the electromagnetic wave absorber of this invention. 本発明の電波吸収体の実施例3の電波吸収率を示す図である。It is a figure which shows the electromagnetic wave absorptivity of Example 3 of the electromagnetic wave absorber of this invention. 電波吸収体の比較例1の電波吸収率を示す図である。It is a figure which shows the electromagnetic wave absorption factor of the comparative example 1 of an electromagnetic wave absorber. 電波吸収体の比較例2の電波吸収率を示す図である。It is a figure which shows the electromagnetic wave absorption factor of the comparative example 2 of an electromagnetic wave absorber. 電波吸収体の比較例3の電波吸収率を示す図である。It is a figure which shows the electromagnetic wave absorption factor of the comparative example 3 of an electromagnetic wave absorber.

Claims (10)

熱硬化性樹脂と炭素成分とを含有する層を少なくとも1層有する電波吸収体であって、前記層に含まれる炭素成分が、15μm以下の平均粒子径を有し、熱硬化性樹脂が、炭素成分の混合時における原材料として100Pa・s以下の粘度を有することを特徴とする電波吸収体。   A radio wave absorber having at least one layer containing a thermosetting resin and a carbon component, wherein the carbon component contained in the layer has an average particle diameter of 15 μm or less, and the thermosetting resin is carbon A radio wave absorber characterized by having a viscosity of 100 Pa · s or less as a raw material when mixing components. 炭素成分が、X線のd002が、0.3360nm以上0.3380nm以下であり、かつa軸方向の結晶サイズが、20nm以上であることを特徴とする請求項1記載の電波吸収体。   2. The radio wave absorber according to claim 1, wherein the carbon component has an x-ray d002 of 0.3360 nm or more and 0.3380 nm or less and a crystal size in the a-axis direction of 20 nm or more. 前記層が、炭素成分を15質量%以下の範囲で含有することを特徴とする請求項1または2記載の電波吸収体。   The radio wave absorber according to claim 1 or 2, wherein the layer contains a carbon component in a range of 15 mass% or less. 前記層が、炭素成分を開放表面に向かって漸減するように含有することを特徴とする請求項1〜3のいずれか記載の電波吸収体。   The radio wave absorber according to any one of claims 1 to 3, wherein the layer contains a carbon component so as to gradually decrease toward the open surface. 前記層が、吸収電波の波長に対して、0.01〜1倍の厚さを有することを特徴とする請求項1〜4のいずれか記載の電波吸収体。   The radio wave absorber according to any one of claims 1 to 4, wherein the layer has a thickness of 0.01 to 1 times the wavelength of the absorbed radio wave. 吸収する電波の周波数が2〜80GHzであることを特徴とする請求項1〜5のいずれか記載の電波吸収体。   The radio wave absorber according to any one of claims 1 to 5, wherein the frequency of the radio wave to be absorbed is 2 to 80 GHz. 吸収する電波の周波数が5.8GHzであることを特徴とする請求項6記載の電波吸収体。   The radio wave absorber according to claim 6, wherein the frequency of the radio wave to be absorbed is 5.8 GHz. 熱硬化性樹脂と炭素成分とを含有する電波吸収体を製造する際、15μm以下の平均粒子径を有する炭素成分と、粘度が100Pa・s以下の熱硬化性樹脂原材料とを混合し、熱硬化性樹脂原材料の硬化を行なうことを特徴とする電波吸収体の製造方法。   When producing a radio wave absorber containing a thermosetting resin and a carbon component, a carbon component having an average particle size of 15 μm or less and a thermosetting resin raw material having a viscosity of 100 Pa · s or less are mixed and thermoset. A method for manufacturing a radio wave absorber, comprising curing a resin material. 炭素成分として、X線のd002が、0.3360nm以上0.3380nm以下であり、かつa軸方向の結晶サイズが、20nm以上であるものを用いることを特徴とする請求項8記載の電波吸収体の製造方法。   9. The radio wave absorber according to claim 8, wherein a carbon component having an x-ray d002 of 0.3360 nm or more and 0.3380 nm or less and a crystal size in the a-axis direction of 20 nm or more is used. Manufacturing method. 電波吸収体が炭素成分を15質量%以下の範囲で含有することを特徴とする請求項8または9記載の電波吸収体の製造方法。   The method for producing a radio wave absorber according to claim 8 or 9, wherein the radio wave absorber contains a carbon component in a range of 15 mass% or less.
JP2005211657A 2005-07-21 2005-07-21 Radio wave absorber and manufacturing method thereof Pending JP2007027655A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005211657A JP2007027655A (en) 2005-07-21 2005-07-21 Radio wave absorber and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005211657A JP2007027655A (en) 2005-07-21 2005-07-21 Radio wave absorber and manufacturing method thereof

Publications (1)

Publication Number Publication Date
JP2007027655A true JP2007027655A (en) 2007-02-01

Family

ID=37787976

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005211657A Pending JP2007027655A (en) 2005-07-21 2005-07-21 Radio wave absorber and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP2007027655A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013236064A (en) * 2012-04-10 2013-11-21 Idemitsu Kosan Co Ltd Noise-absorbing laminate

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013236064A (en) * 2012-04-10 2013-11-21 Idemitsu Kosan Co Ltd Noise-absorbing laminate

Similar Documents

Publication Publication Date Title
Wang et al. A general approach to composites containing nonmetallic fillers and liquid gallium
Chen et al. High‐performance epoxy nanocomposites reinforced with three‐dimensional carbon nanotube sponge for electromagnetic interference shielding
KR101128593B1 (en) Resin composition
US20100311866A1 (en) Heirarchial polymer-based nanocomposites for emi shielding
JP4836581B2 (en) Resin composition for GHz band electronic parts and GHz band electronic parts
JP5360947B2 (en) Resin composition
KR20200105625A (en) Composite material for shielding electromagnetic radiation, raw material for additive manufacturing methods and a product comprising the composite material as well as a method of manufacturing the product
JP2009059753A (en) Flame-retardant noise suppressing sheet
JP2007039567A (en) Composite molded article for high-frequency electronic component and composition for producing composite molded article for high-frequency electronic component
Pan et al. Epoxy composite foams with excellent electromagnetic interference shielding and heat‐resistance performance
WO2007013199A1 (en) Electromagnetic wave absorber
JP2009060060A (en) Electromagnetic wave absorbing sheet
JP2006032929A (en) Electromagnetic interference inhibitor, method of reducing electromagnetic interference empolying it, and rf-id device
KR101349161B1 (en) Polymer nanocomposites containing glass fiber coated with metal-carbonnanotube and graphite and a fabrication process thereof
JP2003229694A (en) Electromagnetic wave absorbent and its manufacturing method
Zeng et al. EMI shielding performance of phenolic-based carbon foam modified with GO/SiO2 hybrid nanomaterials
Agrawal et al. Development of vegetable oil-based conducting rigid PU foam
Varshney et al. Improved electromagnetic shielding performance of lightweight compression molded polypyrrole/ferrite composite sheets
JPWO2008126416A1 (en) Electromagnetic interference suppression sheet, high-frequency signal flat cable, flexible printed circuit board, and electromagnetic interference suppression sheet manufacturing method
JP2003158395A (en) Electromagnetic wave absorbing material
JP2005011878A (en) Electromagnetic wave absorber
Merizgui et al. Electromagnetic shielding effectiveness improvement with high temperature in far‐field behavior multiwall carbon nanotube/iron (III) particles addition in composites
JP2009278137A (en) Electromagnetic wave absorbing material
Mehdizadeh et al. Effect of carbon black content on the microwave absorbing properties of CB/epoxy composites
JP2003105108A (en) Heat conductive sheet