JP2007027150A - Concentrating photovoltaic power generation system - Google Patents

Concentrating photovoltaic power generation system Download PDF

Info

Publication number
JP2007027150A
JP2007027150A JP2003177521A JP2003177521A JP2007027150A JP 2007027150 A JP2007027150 A JP 2007027150A JP 2003177521 A JP2003177521 A JP 2003177521A JP 2003177521 A JP2003177521 A JP 2003177521A JP 2007027150 A JP2007027150 A JP 2007027150A
Authority
JP
Japan
Prior art keywords
light
surface
light guide
incident
reflector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003177521A
Other languages
Japanese (ja)
Inventor
Tokutaro Komatsu
徳太郎 小松
Original Assignee
Hitachi Chem Co Ltd
日立化成工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chem Co Ltd, 日立化成工業株式会社 filed Critical Hitachi Chem Co Ltd
Priority to JP2003177521A priority Critical patent/JP2007027150A/en
Publication of JP2007027150A publication Critical patent/JP2007027150A/en
Application status is Pending legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS, OR APPARATUS
    • G02B6/00Light guides
    • G02B6/0001Light guides specially adapted for lighting devices or systems
    • G02B6/0011Light guides specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • G02B6/0035Means for improving the coupling-out of light from the light guide provided on the surface of the light guide or in the bulk of it
    • G02B6/0038Linear indentations or grooves, e.g. arc-shaped grooves or meandering grooves, extending over the full length or width of the light guide
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS, OR APPARATUS
    • G02B6/00Light guides
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS, OR APPARATUS
    • G02B6/00Light guides
    • G02B6/0001Light guides specially adapted for lighting devices or systems
    • G02B6/0011Light guides specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • G02B6/0035Means for improving the coupling-out of light from the light guide provided on the surface of the light guide or in the bulk of it
    • G02B6/0045Means for improving the coupling-out of light from the light guide provided on the surface of the light guide or in the bulk of it by shaping at least a portion of the light guide
    • G02B6/0046Tapered light guide, e.g. wedge-shaped light guide
    • G02B6/0048Tapered light guide, e.g. wedge-shaped light guide with stepwise taper
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS, OR APPARATUS
    • G02B6/00Light guides
    • G02B6/0001Light guides specially adapted for lighting devices or systems
    • G02B6/0011Light guides specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • G02B6/005Means for improving the coupling-out of light from the light guide provided by one optical element, or plurality thereof, placed on the light output side of the light guide
    • G02B6/0053Prismatic sheet or layer; Brightness enhancement element, sheet or layer
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS, OR APPARATUS
    • G02B6/00Light guides
    • G02B6/0001Light guides specially adapted for lighting devices or systems
    • G02B6/0011Light guides specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0075Arrangements of multiple light guides
    • G02B6/0076Stacked arrangements of multiple light guides of the same or different cross-sectional area
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L31/00Semiconductor devices sensitive to infra-red radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus peculiar to the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infra-red radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus peculiar to the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/054Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means
    • H01L31/0543Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means comprising light concentrating means of the refractive type, e.g. lenses
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L31/00Semiconductor devices sensitive to infra-red radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus peculiar to the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infra-red radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus peculiar to the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/054Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means
    • H01L31/0547Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means comprising light concentrating means of the reflecting type, e.g. parabolic mirrors, concentrators using total internal reflection
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/52PV systems with concentrators

Abstract

<P>PROBLEM TO BE SOLVED: To provide a high efficient photovoltaic power generating system with a simple structure which has no movable part causing failure and can be installed at any place. <P>SOLUTION: The photovoltaic power generation system has a light-guiding body having a light incident surface into which external light enters and a light emission surface not parallel to the incident surface, for emitting the external light; and at least one photoelectric conversion element. The light-guiding body has a plurality of reflection bodies for reflecting light having entered the inside of the light-guiding body to at least either the light incident surface or an opposite surface thereof. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

【0001】 [0001]
【発明の属する技術分野】 BACKGROUND OF THE INVENTION
この発明は、導光体およびこれを利用した光発電システムに関する。 The present invention, the light guide and an optical power generation system using the same.
【0002】 [0002]
【従来の技術】 BACKGROUND OF THE INVENTION
光発電システムの発電効率を向上させるためには、できるだけ多くの光線を単位面積当たりの光電変換素子に集める必要がある。 In order to improve the power generation efficiency of the photovoltaic system, it is necessary to collect as much light into the photoelectric conversion element per unit area. このように光線を光電変換素子に集めるシステムとして、レンズ、プリズム、集光鏡、光ファイバなどの集光装置を使用したシステムが知られている(例えば、特許文献1〜3)。 As a system to collect in this way the light beam to the photoelectric conversion element, a lens, a prism, focusing mirror, system using a condenser such as an optical fiber is known (for example, Patent Documents 1 to 3).
【0003】 [0003]
しかし、これらの集光装置を用いたシステムでは、光源がずれると集光点もまたずれるため、効率よく光線を集めるためには光源の移動を追尾して集光装置の向きを変化させる駆動装置が不可欠であり、制御が複雑で大きなシステムになってしまう。 However, these in the system using the condenser, since the light source is shifted focal point also shifted efficiently to collect rays driving apparatus for and track the movement of the light source changes the orientation of the condenser is essential, control becomes complex and large system. また、光発電システムを大型化すると、レンズ等の集光装置の焦点距離が増大するため、厚さが非常に大きく、重量も大きな設備になってしまう。 Further, when the size of the photovoltaic system, the focal length of the condensing device such as a lens is increased, a very large thickness and the weight becomes large facilities. このため、高効率光発電システムの設置場所や支持構造体に著しい制約が課せられてしまうことが、光発電システムの普及を妨げる要因の1つとなっている。 Therefore, significant constraints on the installation location and the support structure of the high-efficiency photovoltaic system that will be imposed, and is one of the factors preventing the spread of photovoltaic systems.
【0004】 [0004]
一方、上記の厚さ・重量の問題を解決するための手段として、光伝導層・光偏向層を組み合わせた層状の集光体を用いた光発電システムが提案されている(例えば、特許文献4)。 On the other hand, as means for solving the above-mentioned thickness and weight problems, photovoltaic systems using condensing body layered combined photoconductive layer, a light deflector layer has been proposed (e.g., Patent Document 4 ).
【0005】 [0005]
この場合の光偏向層は、反射膜を付けた鋸歯形状を下面に有するもので、光伝導層とは別に設けられている。 Light deflecting layer in this case, those having a sawtooth shape with a reflective film on the lower surface, is provided separately from the photoconductive layer. このような形態では、入射光を光伝導層中に閉じこめる効率は極めて低く、大部分の光は光偏向層へ漏れて迷光となる。 In such form, the efficiency of confining the incident light to the photoconductive layer is very low, most of the light becomes stray light leaking into the light deflecting layer. 迷光は、光偏向層中で反射を繰り返し、一部は入射面から再出射されてしまう。 Stray light repeatedly reflected light deflector layer, some would be re-emitted from the incident surface. また、反射膜による反射は必ず損失を伴う。 Moreover, accompanied by reflections always losses due to reflection film. 例えば、可視領域近傍の反射率は、最も反射率の高い銀で98%、アルミニウムで92%、ニッケルで60%程度である。 For example, the reflectance in the visible region near the most 98% highly reflective silver, 92% aluminum, about 60% nickel. これらの反射損失と再出射のため、当該集光体では端面の受光部への集光効率が極めて低い値となり、高々1%程度にとどまる。 For these reflection losses and re-emitted in the light collecting member becomes very low collection efficiency of the light-receiving portion of the end surface, at most only about one percent.
【0006】 [0006]
【特許文献1】特開平6−37344号公報【特許文献2】特開平10−264899号公報【特許文献3】特開平5−211343号公報【特許文献4】特開2000−147262号公報【0007】 [Patent Document 1] JP-A-6-37344 [Patent Document 2] JP-A-10-264899 [Patent Document 3] JP-A-5-211343 [Patent Document 4] JP 2000-147262 JP [0007 ]
【発明が解決しようとする課題】 [Problems that the Invention is to Solve
本発明は、既存の光発電システムが抱える上記問題点を解決すべくなされたものである。 The present invention has been made to solve the above problems existing photovoltaic system faced. すなわち、本発明に置いて解決されるべき第一の課題は、複雑で故障原因となりやすく重量が大きい追尾型集光装置を不要のものとし、光発電システムの設置場所と支持構造体の強度に関する制約を取り除くことである。 That is, the first problem to be solved at the present invention relates to a complex tends weight becomes failure due to large tracking type light-condensing device and that of the unnecessary, the strength of the installation place and the support structure of the photovoltaic system it is to remove the constraints. 第二の課題は、入射光の向きに依らずに光を効率よく光電変換素子に入射させ、さらに損失する光の量を減少させることにより発電効率を高めることである。 The second challenge is to increase the power generation efficiency by reducing the amount of light regardless of the direction of the incident light is incident efficiently photoelectric conversion element, further loss of light. 本発明は、これらの課題を解決することにより、構造が簡単で故障原因となる可動部分がなく、かつ設置場所を選ばない高効率光発電システムを提供することを目的とする。 The present invention is to solve these problems, and an object thereof is moving parts to be failure cause the structure is simple without and provides a high-efficiency photovoltaic systems can be installed almost anywhere.
【0008】 [0008]
【課題を解決するための手段】 In order to solve the problems]
上記の目的を達成するため、本発明による光発電システムは、外部光を入射する入射面と、入射面と平行でなく、前記外部光を出射する出射面とを有する導光体、及び、上記出射面に対向して設けられた光電変換素子を基本構成とし、導光体に反射体を設け、外部光を光電変換素子の存在する方向に導波させる機能を持たせることにより、より広い面積を有する入射面から入射した光を小面積の光電変換素子に集めることができる光発電システムを提供するものである。 To achieve the above object, an optical power generation system according to the present invention, a plane of incidence of the external light, not parallel to the incident surface, the light guide having an exit surface for emitting the external light, and, above a photoelectric conversion element provided opposite to the emission surface is the basic configuration, the reflector is provided on the light guide, by providing the function of guiding the external light in the direction of presence of the photoelectric conversion element, a wider area collecting light incident from the incident surface having a photoelectric conversion element having a small area is to provide a photovoltaic system capable.
【0009】 [0009]
さらに本発明は、入射光を臨界角以上の角度で受けて全反射するような反射体形状を策定するとともに、周辺部材と組み合わせて導光体の集光効果を高めることで、構造が簡単で設置場所を選ばない高効率光発電システムを提供するものである。 The present invention is to develop a reflector shaped to total reflection is received by an angle greater than the critical angle of incident light, by increasing the light condensing effect of the light guide in combination with the peripheral members, the structure is simple there is provided a high-efficiency photovoltaic systems can be installed almost anywhere.
【0010】 [0010]
すなわち本発明は、外部光を入射する入射面と、前記外部光を出射する入射面と平行でない出射面とを有する導光体、及び、上記出射面に対向して設けられた光電変換素子を少なくとも一つ有してなる光発電システムであって、前記導光体は、入射面及びその反対面の少なくともどちらかに、導光体内部に入射した光を反射させる複数の反射体を有してなる光発電システムに関する。 That is, the present invention includes: a plane of incidence of external light, the light guide having an entrance surface and not parallel output surface for emitting the external light, and a photoelectric conversion element provided opposite to the emitting surface a photovoltaic system comprising a least one, the light guide body, at least one of the incident surface and the opposite surface thereof, a plurality of reflectors for reflecting the light incident on the light guide body section It relates to an optical power generation system comprising Te.
【0011】 [0011]
また本発明は、外部光の方向を変換する光偏向シートを、上記入射面に対向して設けてなる上記光発電システムに関する。 The present invention, an optical deflection sheet for converting the direction of the external light, to the optical power generation system comprising opposed to the incident surface.
また本発明は、導光体の出射面以外から出射した光を反射する反射板を、導光体の入射面の反対面に設けてなる上記光発電システムに関する。 The present invention, a reflector for reflecting light emitted from other than the exit surface of the light guide, to the optical power generation system comprising on the opposite side of the incident surface of the light guide.
また本発明は、上記反射板は、上記入射面の法線方向に対して傾斜した面と、その面とは反対の方向に傾斜した面とを有してなる上記光発電システムに関する。 The present invention, the reflector comprises a surface inclined with respect to the normal direction of the incident surface, about said optical power generation system comprising and a sloped in the opposite direction the plane of its surface.
【0012】 [0012]
また本発明は、上記反射体は、上記入射面の法線方向に対して2°〜60°傾斜したA面と、上記入射面の法線方向に対してA面とは反対の方向に80°〜89°傾斜したB面とを有してなる上記光発電システムに関する。 The present invention, the reflector includes a 2 ° to 60 ° inclined surface A with respect to the normal direction of the incident surface 80 in a direction opposite to the A side with respect to the normal direction of the incident surface ° about the optical power generation system comprising and a to 89 ° inclined surface B.
また本発明は、上記反射体は、上記入射面の法線方向に対して2°〜60°傾斜したA面と、上記入射面の法線方向に対してA面とは反対の方向に30°〜50°傾斜したB面とを有してなる上記光発電システムに関する。 The present invention, the reflector 30 in a direction opposite to the 2 ° to 60 ° inclined surface A with respect to the normal direction of the incident face, an A face with respect to the normal direction of the incident surface ° about the optical power generation system comprising and a to 50 ° inclined surface B.
また本発明は、上記反射体は、上記入射面の法線方向に対して40°〜50°傾斜したA面と、上記入射面の法線方向に対してA面とは反対の方向に40°〜50°傾斜したB面とを有してなる上記光発電システムに関する。 The present invention, the reflector has a 40 ° to 50 ° inclined surface A with respect to the normal direction of the incident surface in a direction opposite to the A side with respect to the normal direction of the incident surface 40 ° about the optical power generation system comprising and a to 50 ° inclined surface B.
また本発明は、A面とB面の間に、入射面と平行な面を有してなる上記光発電システムに関する。 The present invention, between the A face and the B face, to the optical power generation system comprising a incident surface and a plane parallel.
また本発明は、上記導光体が複数の導光体の集合体であり、該複数の導光体は、隣接する2枚の導光体の相接する面に相補的な構造の反射体が設けられてなる上記光発電システムに関する。 The present invention, the light guide is a set of a plurality of light guide, the light guide of the plurality of the reflectors of the complementary structures adjoin the surface of the adjacent two light guide about the optical power system is provided.
【発明の実施の形態】 DETAILED DESCRIPTION OF THE INVENTION
【0013】 [0013]
以下、本発明に関わる集光型光発電システムのより好適な形態と動作原理を添付図面に基づいて詳述する。 It will be described in detail below with reference to a more preferred embodiment the operating principle of the light converging optical power generation system according to the present invention in the accompanying drawings. 但し、それぞれの図面は断面模式図であり、装置全体に対する各構成の寸法は発明の内容を理解しやすい大きさに書き直したもので、実際の寸法を反映したものではない。 However, each of the drawings is a schematic cross-sectional view, the dimensions of each component to the total device intended to rewrite the understanding its contents easily size of the invention, does not reflect the actual dimensions.
【0014】 [0014]
本発明の光発電システムは、図1に示すように、外部光を入射する入射面7と、入射面と平行でなく、前記外部光を出射する出射面8とを有する導光体、及び、上記出射面に対向して設けられた光電変換素子を基本構成とする。 Photovoltaic system of the present invention, as shown in FIG. 1, an incident surface 7 which enters the external light, not parallel to the incident surface, the light guide and an exit surface 8 that emits the external light and, and basic structure a photoelectric conversion element provided opposite to the emitting surface.
【0015】 [0015]
前記導光体は、入射面及びその反対面の少なくともどちらかに、導光体内部に入射した光を反射させる複数の反射体5が設けられており、これにより入射光の進行方向を導波可能な角度に変換することができる。 The light guide, at least in one of the incident surface and the opposite surface thereof, a plurality of reflectors 5 for reflecting the light incident on the light guide body section is provided, guided traveling direction of the incident light by this it can be converted into possible angles. 図1では入射面の反対面に反射体を設けた例を示している。 It shows an example in which a reflector on the opposite side of the incident surface in FIG. 導光体中を導波した入射光は端面の光電変換素子に集光されるため、光電変換素子の単位面積当たりの発電効率を向上させることができる。 Incident light guided through the light guide to be condensed on the photoelectric conversion element of the end face, it is possible to improve the power generation efficiency per unit area of ​​the photoelectric conversion element.
【0016】 [0016]
上記の反射体5としては、図1に示すような、入射面7の法線方向に対してある角度(α1)傾斜したA面と、上記入射面7の法線方向に対してA面と反対の方向にある角度(α2)傾斜したB面とを有してなる形状とすることが好ましい。 The reflector 5 above, as shown in FIG. 1, and an angle ([alpha] 1) inclined surface A with respect to the normal direction of the incident surface 7, and A plane with respect to the normal direction of the incident surface 7 it is preferable that the angle ([alpha] 2) comprising an inclined the B-sectional shape in the opposite direction. このようにすることにより、入射光を臨界角以上の角度で受けて全反射させることが可能となり、特定形状の反射体を設ける方法は光のロスが少ないため、高い光収集効率を達成できる点で好ましい。 In this way, the incident light becomes possible to totally reflect receiving at an angle greater than the critical angle, a method of providing a reflector of a specific shape for the loss of light is small, that it can achieve a high light collection efficiency in preferred.
【0017】 [0017]
また、この他にも、例えば、金属蒸着膜等の反射膜を反射体表面に形成し反射体5とする方法等が挙げられる。 Furthermore, In addition, for example, a method and reflector 5 to form a reflective film such as a metal deposition film on the reflecting surface, and the like. この反射膜を設ける方法は、反射率は決して100%に達することはないため、導光体中を導波する光が反射体で何度も反射される場合、わずかな反射ロスであっても最終的な集光効率を大きく低下させてしまうおそれがある点で前者の例より劣るものの、製造が容易であるメリットがある。 A method of providing a reflective film, since the reflectivity can never reach 100% when the light guided through the light guide can also be reflected multiple times by the reflecting body, even slight reflection loss although in that there is a possibility that final greatly reduce the collection efficiency inferior to the former example, there is an advantage due to their ease of production. どちらの方法を選択するかは用途や要求される光電変換能力に応じて決めることができる。 The choice of method may be determined depending on the application and the required photoelectric conversion capability.
【0018】 [0018]
図1の例では、導光体1中に入射した光の一部は、反射体5の一方の反射面5Aで全反射を受け、導光体の入射面の法線に対して臨界角以上の角度をなす方向へ偏向される。 In the example of FIG. 1, a portion of the light incident into the light guide 1, it undergoes total reflection on one of the reflecting surface 5A of the reflector 5, or the critical angle with respect to the normal line of the incident surface of the light guide It is deflected in a direction at an angle of. 偏向された入射光は、導光体の上下面で全反射されながら導光体中を導波して出射面8に至る。 Incident light deflected while being totally reflected by the upper and lower surfaces of the light guide and guided through the light guide body in reaching the exit plane 8. 入射する外部光6の角度が変わっても、集光特性はあまり影響されない。 It changes the angle of the external light 6 entering, condensing characteristics are not significantly affected.
【0019】 [0019]
本発明の光発電システムの第2の形態として、図1の構成にさらに光偏向シート3を設けることができる。 As a second embodiment of the photovoltaic system of the present invention, it can be provided further light deflection sheet 3 to the configuration of FIG. 図2は、光偏向シート3としてプリズムシートを採用した例を示す。 Figure 2 shows an example employing a prism sheet as a light deflection sheet 3.
【0020】 [0020]
ただし、本発明に用いる光偏向シートの動作原理は、下向きプリズムによる屈折と全反射に限るものではない。 However, the operation principle of the optical deflector sheet for use in the present invention is not limited to the refraction and total reflection by the downward prism. 他の原理を用いた光偏向シートとしては、例えば、回折格子など光の干渉効果を用いるものや、レンズアレイのような微小光学素子を配列したもの、上向きプリズムによる屈折を用いたもの等を挙げることができる。 The light deflection sheet using other principles, for example, cited and those using optical interference effect such as a diffraction grating, which was arranged micro-optical element such as a lens array, and the like that use the refraction by upward prism be able to.
【0021】 [0021]
また、図1及び2では、同一形状の反射体5が連続して設けられているが、形状の異なる反射体が混在して設けられていても良く、また、反射体間が離れていても良い。 Further, in FIG. 1 and 2, although the reflector 5 having the same shape are continuously provided, may be different reflector shapes are provided in a mixed manner, also be separated is between reflector good. また、反射体は、導光板下側平面に対して凸状であってもよく、凹状であっても良い。 Also, the reflector may be a convex shape with respect to the light guide plate lower flat, may be concave.
【0022】 [0022]
本発明の光発電システムにおいて、導光体の出射面8と光電変換素子2の受光面9の間は、導光体端面での反射を低減できる点で、導光体と光電変換素子の中間の屈折率を有する媒体で満たされている方が空間となっているよりも好ましい。 In the photovoltaic system of the present invention, between the light receiving surface 9 of the exit surface 8 and the photoelectric conversion element 2 of the light guide body, in that it can reduce the reflection at the light guide end face, an intermediate light guide and a photoelectric conversion element those who are filled with a medium having a refractive index of preferably than has a space.
【0023】 [0023]
次に図2を用いて、導光体に入射した光が導波しうるための入射光角度と反射体形状の条件を述べ、導光体による集光の原理を解説する。 Next, referring to FIG. 2, light incident on the light guide body described the incident light angle and conditions of the reflector shape to be guided, to explain the principle of collecting light by the light guide.
【0024】 [0024]
光偏向シートにより偏向され入射面7の法線方向に対してθ の角度で入射した外部光6は入射面で屈折されて、法線方向に対してθ の角度をもって進行する。 External light 6 incident at theta 1 angle to the normal direction of the light deflection sheet by deflected incident surface 7 is refracted by the incident surface, it proceeds at an angle of theta 2 with respect to the normal direction.
【0025】 [0025]
導光体の屈折率をnとし、導光体の下面に設けた反射体一方の反射面5Aが入射面7の法線方向となす角をαとすれば、入射角θ は、次式で指定される角度範囲内にあることが好ましい。 The refractive index of the light guide is n, if the reflector one of the reflective surface 5A which is provided on the lower surface of the lightguide to the normal direction and the angle of the incident surface 7 and alpha, the angle of incidence theta 2, the following equation in is preferably within the angle range specified.
【数1】 [Number 1]
(式中、θ は当該導光体の材質の臨界角である。) (Wherein, the theta c is the critical angle of the material of the light guide.)
【0026】 [0026]
反射光がさらに導光体上面(すなわち入射面7)で全反射されて導光体中を導波するための条件は、反射波の進行方向が、入射面7の法線方向に対してなす角θ が、 Conditions for guiding totally reflected by the light guide body in reflected light is further lightguide top surface (i.e. the incident surface 7), the traveling direction of the reflected wave, makes with the normal direction of the incident surface 7 angle θ 3 is,
【数2】 [Number 2]
となることである。 It is to become. 90°−α > 0であるから、式(1)が成立すれば式(2)は自動的に満足される。 Because it is 90 ° -α> 0, if satisfied formula (1) has the formula (2) it is automatically satisfied.
【0027】 [0027]
スネルの法則から、θ とθ には【数3】 From Snell's law, the θ 1 and θ 2 [number 3]
の関係があるから、入射光が導光体中を導波するための条件は式(1)、(3)より【数4】 From relationship, the conditions for the incident light is guided through the light guide formula (1), Equation 4] from (3)
となる。 To become.
【0028】 [0028]
図2では、導光体の材質として屈折率1.58のポリカーボネートを想定し、反射面5Aの頂角αを88°としている。 In Figure 2, assuming a polycarbonate having a refractive index of 1.58 as the material of the light guide, and an apex angle α of the reflecting surface 5A and 88 °. ただし、本発明はこれらのパラメータに限定されるものではない。 However, the present invention is not limited to these parameters. この場合、臨界角θ は39.27°であるから、式(4)よりθ > 73.08°であることが要求されることがわかる。 In this case, since the critical angle theta c is 39.27 °, it can be seen that it is θ 1> 73.08 ° from equation (4) is required. 本実施例の光発電システムに入射する光が主に法線方向から来る場合、光偏向フィルムを用いて導光板への入射角を73.08°以上に設定することで、効率的な集光と光電変換が可能である。 If light incident on the photovoltaic system of this embodiment comes primarily from the normal direction, by setting the incident angle to the light guide plate above 73.08 ° by using a light deflecting film, efficient light collection that it is possible to photoelectric conversion.
【0029】 [0029]
図3に、反射面が入射面7の法線方向に対してなす角度αを変えた時に、導光体中を入射光が導波するために要求される入射角の下限がどのように変化するかを例示した。 3, changes when the reflecting surface is changed the angle α, which forms the normal direction of the incident surface 7, how the lower limit of the angle of incidence through the light guide incident light is required in order to guide the or the be exemplified. 導光体の屈折率は1.58とした。 Refractive index of the light guide was 1.58. 図から直ちに分かるように、反射面の角度αに対して入射角下限は単調増加している。 As soon seen, the incident angle lower limit with respect to the angle α of the reflecting surface is monotonically increasing. すなわち、反射面の角度αが大きいほど、導光体によって集光される光の角度範囲は強い制限を受ける。 That is, as the angle of the reflecting surface α is large, the angular range of light collected by the light guide is subjected to strong restriction. 従って、反射面の角度αはある程度小さい方が好ましい。 Therefore, the angle of the reflecting surface α is preferably better somewhat smaller. また、図中矢印で示したように、垂直入射光すなわち入射角が0°の光を導波するためには、反射面の傾きは約50°以下でなければならない。 Further, as shown by the arrow, in order to perpendicularly incident light i.e. the angle of incidence guiding light of 0 °, the tilt of the reflecting surface must be less than about 50 °.
【0030】 [0030]
導光体の反射面で全反射しなかった入射光は、導光体の下面を抜けて漏れ光となる。 Incident light not totally reflected by the reflecting surface of the lightguide, the leaked light passes through the lower surface of the light guide. このような漏れ光を回収する方法として、図4から図5に示すような形態にすることが好ましい。 As a method for recovering such leakage light, it is preferable to form as shown in FIG. 5 from FIG. これらの図面は、導光体がいずれも屈折率1.58と想定した場合の模式図を示しているが、本発明の効果はこの屈折率値に限定されるものではない。 These figures also lightguide any depicts a schematic diagram of assuming a refractive index of 1.58, but the effects of the present invention is not limited to this refractive index value. また、図中では導光体に対して凸形状の、同一形状の反射体が描かれているが、反射体は導光体に対して凹形状であっても良く、異なる形状の反射体が混在していても良い。 Further, the convex shape with respect to the light guide in the figure, the reflection of the same shape is drawn, the reflector may be a concave shape with respect to the light guide, the reflector of different shapes it may be mixed.
【0031】 [0031]
図4に示す本発明の光発電システムの第3の形態は、導光体と、導光体の出射面以外から出射した光を反射する反射板と、導光体の出射面に対向して設けられた光電変換素子を有してなる。 Third embodiment of the photovoltaic system of the present invention shown in FIG. 4, the light guide and, a reflector for reflecting light emitted from other than the exit surface of the light guide, opposite to the exit surface of the light guide comprising a photoelectric conversion element provided. 上記反射板は、平板状反射面でも良いが、図4に示すような、上記入射面の法線方向に対して傾斜した面と、その面とは反対の方向に傾斜した面とを有してなる形状を有する反射板を用いることが好ましい。 The reflector can be a flat reflecting surface, but as shown in FIG. 4 has a surface inclined with respect to the normal direction of the incident surface and a surface inclined in a direction opposite to its surface it is preferable to use a reflector having a comprising Te shape.
【0032】 [0032]
図4に示す第3の形態は、α1及びα2をそれぞれ50°と70°とした模式図である。 Third embodiment shown in FIG. 4 is a schematic diagram in which the α1 and α2 between 50 ° and 70 °, respectively. 経路aで導光体に直接入射した光は、傾きα1の反射面5Aで反射され、水平から上向き10°に進行方向を変えて導光体中を導波し、出射面8から出射し、光電変換素子に至る。 Light directly incident on the light guide in the path a is reflected by the reflecting surface 5A of the slope [alpha] 1, guided through the light guide in changing the traveling direction upward 10 ° from the horizontal, and emitted from the emission surface 8, It reaches the photoelectric conversion element. 経路bで入射した光は、傾きα1の反射面5Aと傾きα2の反射面5Bで連続して反射された後、水平方向に対して上向き50°に進行方向を変えて導光体中を導波する。 The light incident on the path b, and is reflected successively by the reflecting surface 5B of the reflecting surface 5A and inclination α2 of inclination [alpha] 1, guiding the light guide in changing the traveling direction upward 50 ° with respect to the horizontal direction to wave. 経路c及びdで導光体中に入射した光は、反射面を透過して一旦漏れ光となるが、傾斜面をもつ反射板により水平方向へ進行方向を変更され、導光体中へ回収されて導波し、端面に至る。 The light incident into the light guide in the path c and d, but the once leaked light passes through the reflection plane is changed to the traveling direction into a horizontal direction by the reflector having an inclined surface, collected into the light guide It has been guided to reach the end face.
【0033】 [0033]
反射体5を構成する反射面5Aと5Bのそれぞれが入射面7の法線方向となす角度α1及びα2の値には特に制限はなく種々の組み合わせをとることができるが、光電変換システム全体の構成をどのようにするかによって、好ましい値が存在する。 While each of the reflective surfaces 5A and 5B which constitute the reflector 5 can take various combinations no particular restriction on the value of the angle α1 and α2 formed between the normal direction of the incident surface 7, the overall photoelectric conversion system by how the structure, there are preferred values. 例えば、第3の形態に示す光の経路を達成するためには、導光体の材質の屈折率が1.58である場合、α1は45°〜50°であり、α2は120°−α1以下すなわち75°〜70°であることが好ましい。 For example, in order to achieve a path of light shown in the third embodiment, when the refractive index of the material of the light guide is 1.58, [alpha] 1 is 45 ° to 50 °, [alpha] 2 is 120 ° -α1 hereinafter that is preferably 75 ° to 70 °. この角度範囲であれば、図4の経路a、bにおいて、反射面5Aと5Bおよび導光体上面で全反射が起こり、光のロスを低減することができる。 Within this angle range, path a in Figure 4, in b, occurs totally reflected by the reflecting surface 5A and 5B and the light guide member top surface, it is possible to reduce the loss of light.
【0034】 [0034]
また、整列させて一方光に導くためには、α1が2°〜60°、α2が80°〜89°の範囲であることが好ましい。 Further, in order to lead to the aligned with the other hand the light, [alpha] 1 is 2 ° to 60 °, [alpha] 2 is preferably in the range of 80 ° to 89 °. α1の範囲が60°を超えると導光板中の光を全反射して導光板外へ散乱してしまう傾向があり、2°未満であると光が反射面を透過して導光板外へ逃散する傾向がある。 α1 range tends to light in the light guide plate exceeds 60 ° resulting in scattered to the light guide plate outside is totally reflected, escape 2 is less than ° and light is transmitted through the reflecting surface into the light guide plate outside there is a tendency to. また、α2の範囲が89°を超えると、式(4)で示される入射角度の制限が厳しくなりすぎ、80°未満であると集光性が低下する傾向がある。 Also, when the range of α2 exceeds 89 °, too strict a limitation of the incident angle of formula (4), there is a tendency that the condenser is lowered to be less than 80 °.
【0035】 [0035]
また、広い角度範囲の入射光を集光するためには、α1が2°〜60°、α2が30°〜50°の範囲であることが好ましい。 Also, in order for condensing incident light in a wide angular range, [alpha] 1 is 2 ° to 60 °, [alpha] 2 is preferably in the range of 30 ° to 50 °. α1の範囲が60°を超えると導光板中の光を全反射して導光板外へ散乱してしまう傾向があり、2°未満であると光が反射面を透過して導光板外へ逃散する傾向がある。 α1 range tends to light in the light guide plate exceeds 60 ° resulting in scattered to the light guide plate outside is totally reflected, escape 2 is less than ° and light is transmitted through the reflecting surface into the light guide plate outside there is a tendency to. また、α2の範囲が50°を超えると、入射光のうち全反射されずに導光体下面へ逃散するものの割合が増加し、30°未満であると反射面に入射しない光の割合が大きくなる。 Also, when the range of α2 exceeds 50 °, the proportion of those escaping into the light guide member bottom surface without being totally reflected in the incident light is increased, a large fraction of light not incident on the reflecting surface is less than 30 ° Become.
【0036】 [0036]
図5に、複数の導光体で漏れ光を回収することのできる本発明の第4の形態の光発電システムを示した。 Figure 5 shows the photovoltaic system of the fourth embodiment of the present invention capable of recovering the leakage light at the plurality of light guide. 第4の形態は、プリズムによる光偏向シートと、下面に反射体を設けた第一の導光体と、当該導光体の下側に隣接して設けられた第二の導光体と、これらの導光体の左右の出射面に対向するように設けられた光電変換素子からなり、第1の導光体1は入射面と反対側の面だけに反射体5が掲載され、第2の導光体1′は上下両面に反射体5が形成されている。 The fourth embodiment includes a light deflection sheet by the prism, a first light guide having a lower surface reflector, and a second light guide disposed adjacent to the lower side of the light guide, consists photoelectric conversion element provided so as to face the exit surface of the left and right of these light guide, the first light guide body 1 reflector 5 is published only on the surface opposite to the incident surface, the second of the light guide 1 'is the reflector 5 on the upper and lower surfaces are formed. 光偏向シート3が図示するようなプリズムシートに制限されないことや、反射体5の形状が図示した形状に限定されない点は前述の通りである。 And that the light deflection sheet 3 is not limited to the prism sheet as it is shown, that the shape of the reflector 5 is not limited to the shape shown is as described above.
【0037】 [0037]
第4の形態において、2つの導光体1及び1′の位置関係は特に限定されるものではない。 In the fourth embodiment, the positional relationship of the two light guides 1 and 1 'is not particularly limited. 例えば、部分的にまたは全体が接していても良いし、または完全に離れていても良い。 For example, it may be partially or wholly in contact, or may completely be separated. またそれぞれの反射体の形状は、1及び1′の対向する面で合わさる形状であってもよく、そうでなくても良い。 The shapes of reflectors may have a shape mating with opposite sides of 1 and 1 ', or not. また、導光体1及び1′はそれぞれ屈折率の異なる導光体であっても良い。 Further, the light guide 1 and 1 'may be different from the light guide of each refractive index. しかし、製造のしやすさや光の収集効率等の点で、図5に示すように反射体の形状が1及び1′の対向する面で合わさる形状でることが好ましい。 However, in terms of the collection efficiency of production of ease and light, it is preferable that the shape of the reflector as shown in FIG. 5 leaves shape mating with opposing surfaces of 1 and 1 '.
【0038】 [0038]
光偏向シートにより斜め光となった垂直入射光は、経路a及びbで導光体中に入射する。 Normal incident light became oblique light by the light deflection sheet enters the light guide in the path a and b. 経路aで入射した光は、上側の導光体中で全反射を繰り返しながら導波し、右側の光電変換素子へ至る。 Light incident on the path a while repeating total reflection by the upper light guide in guided, leading to the right of the photoelectric conversion element. 一方、経路bで入射した光は、上側の導光体の反射面で全反射できないため、下側の第二の導光体へ入射する。 Meanwhile, light incident on the path b, since that can not be totally reflected by the reflection surface of the upper light guide and enters the lower side of the second lightguide. 下側の導光体は、上面と下面のそれぞれに反射体が設けられている。 Lower lightguide reflector is provided on each of the upper and lower surfaces. そのうち上面の反射体は、相接する上側の導光体の反射体と相補的な形状となっている。 Of which the reflector of the upper surface has a complementary shape to the reflector of the upper light guide contacting phase. 相接する反射体を相補的な形状とすることにより、漏れ光の向きを変えることなく下側の導光体で回収し、効果的に導波させることができる。 With complementary shape reflector in contact phase, recovered at the lower side of the light guide without changing the direction of light leakage can be effectively guided. 下側の導光体中に入射した漏れ光は、上下面の反射体で全反射を繰り返して、左側の光電変換素子へ至る。 Leakage light incident on the lower side of the light guide body, by repeating total reflection at the reflector of the upper and lower surfaces, leading to the left of the photoelectric conversion element.
【0039】 [0039]
図6には、垂直入射光を導波させうる複数の導光体と、導光体の右側端面に設けられた光電変換素子からなる光発電システムの第5の形態を示した。 FIG. 6 shows a plurality of light guides which are capable of guiding the vertical incident light, a fifth embodiment of the photovoltaic system consisting photoelectric conversion elements provided on the right end face of the light guide.
【0040】 [0040]
導光体の相接する面には、互いに相補的な形状の反射体が設けられている。 The phase contact surface of the light guide, and a reflector of complementary shape are provided with each other. 各導光体の素材は1.58の屈折率を有すると想定したが、本発明の効果はこの屈折率の値に限られるものではない。 Material of the lightguide has been assumed to have a refractive index of 1.58, the effect of the present invention is not limited to the value of the refractive index. また、図中では同一形状の反射体が等間隔で設けられているが、形状の異なる反射体が混在していても良く、反射体の間隔が不均等であっても良い。 Further, the reflection of the same shape in the figure are provided at equal intervals, it may have different reflector shapes are mixed, interval of the reflector may be unequal.
【0041】 [0041]
第5の形態において、右側に傾斜した反射面のみが垂直入射光を全反射できる角度に設定されている。 In the fifth embodiment, only the reflection surface inclined to the right is set to an angle which can totally reflect normal incident light. 経路aで入射した光は、最上部の導光体で全反射を受け、水平から上向き10°に進行方向を変更されて、最上部の導光体中を導波して右端端面の光電変換素子へ至る。 The light incident on the path a, undergo total reflection at the top of the light guide, it is changed the traveling direction from the horizontal upwards 10 °, the photoelectric conversion of the right end edge and guided through the top of the lightguide leading to the element. 経路bで入射した光は、左側へ傾斜した反射面を透過して、第二の導光体中へ入射する。 Light incident on the path b is transmitted through the reflection plane inclined to the left and is incident to the second light guide in. 第一の導光体と第二の導光体の相接する反射体は相補的な形状となっているため、bの入射光は進行方向を変えずに第二の導光体の反射面へ入射する。 Since the first light guide body and adjoin the reflector of the second light guide body has a complementary shape, the reflecting surface of the second light guide the incident light of b without changing the traveling direction incident to. 漏れ光を効率的に捕捉できるように、それぞれの導光体の下面に設けられた反射体の位置が図中の左右方向へずれていることが好ましい。 As can capture leakage light efficiently, it is preferable that the position of the reflector disposed on the lower surface of each of the light guide is displaced to the left and right direction in FIG. 経路cで入射した光は、第一の導光体の下側水平面と、第二の導光体の左側へ傾斜した反射面を透過して、第三の導光体へ至る。 Light incident on the path c is a lower horizontal surface of the first light guide is transmitted through the reflecting surface inclined to the left side of the second light guide body, leading to the third light guide. 経路cの光は、第三の導光体中で初めて全反射され、第三の導光体中を導波して右側端面に達する。 Light path c is totally reflected first in the third light guide to reach the right end surface by guiding the third light guide body.
【0042】 [0042]
【発明の効果】 【Effect of the invention】
以上のように、本発明に関わる集光型光発電システムでは、入射された光の大部分を導光体の端面に集めることで、導光体の端面に設けられた光電変換素子の発電効率を高めることができる。 As described above, in the light converging optical power generation system according to the present invention, by collecting a large portion of incident light to the end face of the light guide, the power generation efficiency of the photoelectric conversion elements provided on the end face of the light guide it can be increased. また、光線の入射角に関係なく高効率の集光と発電が行えるため、発電装置を入射光方向に向ける追尾装置が不要となり、装置が小形化される。 Also, since that allows for high efficiency condensing the generator regardless of the incident angle of the light beam, tracking device is not required to direct the power generator to the incident light direction, the device is miniaturized. このため、より多彩な場所に光発電装置を設けることが可能となると共に、携帯用途などへの応用も容易になる。 Therefore, it becomes possible to provide a photovoltaic device in a more versatile place, also facilitates application to portable applications. また、光線の集光比率が約3倍で、高価な光電変換素子の必要面積を1/3に抑えることができるとともに、設備コストも低減できる。 Also, in approximately 3-fold condensing proportion of rays, it is possible to suppress the 1/3 area required expensive photoelectric conversion element, equipment cost can be reduced.
【図面の簡単な説明】 BRIEF DESCRIPTION OF THE DRAWINGS
【図1】導光体を含む光発電システムの第1の形態を示す断面模式図である。 1 is a schematic sectional view showing a first embodiment of the photovoltaic system that includes a light guide.
【図2】導光体とプリズムによる光偏向シートを含む、本発明に関わる光発電システムの第2の形態およびその集光の原理を説明する断面模式図である。 Figure 2 includes an optical deflector sheet according to the light guide and the prism is a schematic sectional view illustrating the principle of the second embodiment and the condenser of the photovoltaic system according to the present invention. 破線は入射光のたどる経路を表す。 The dashed line represents the path followed the incident light.
【図3】導光体への入射光が、導光体中を全反射により導波するために要求される、導光体の反射面の角度と入射角度の関係を例示した図である。 [3] the incident light to the light guide body, through the light guide is required to guided by total reflection, it is illustrating a relationship of the angle between the incident angle of the reflecting surface of the light guide. 導光体素材の屈折率は1.58として計算した。 Refractive index of the light guide material was calculated as 1.58.
【図4】導光体と反射板を含む、本発明に関わる第3の形態の光発電システムの実施例とその集光の原理を説明する断面模式図である。 [4] including the light guide and the reflector, which is a cross-sectional schematic view illustrating an embodiment of the photovoltaic system of the third embodiment according to the present invention and the principles of the condenser. 破線は入射光のたどる経路を表す。 The dashed line represents the path followed the incident light.
【図5】隣接面が相補的構造を持つ2枚の導光体とプリズムによる光偏向シートを用いた、本発明に関わる第4の形態の光発電システムとその集光の原理を示す断面模式図である。 [5] the adjacent surface using the light deflection sheet according to the two light guide and the prism with complementary structures, a fourth embodiment of the photovoltaic system and the cross-sectional view schematically showing the principle of the condenser according to the present invention it is a diagram. 破線は入射光のたどる経路を表す。 The dashed line represents the path followed the incident light.
【図6】隣接面が相補的構造を持つ複数の導光体を用いた、本発明に関わる第5の形態の光発電システムとその集光の原理を示す断面模式図である。 [6] the adjacent surface using a plurality of light guides with complementary structures, is a schematic sectional view showing a photovoltaic system principle of condensing the fifth embodiment according to the present invention. 破線は入射光のたどる経路を表す。 The dashed line represents the path followed the incident light.
【符号の説明】 DESCRIPTION OF SYMBOLS
1、1′、1′′ 導光体2 光電変換素子3 光偏向シート4 反射板5 反射体5A、5B 反射面6 外部光7 入射面8 出射面9 光電変換素子の受光面 1,1 ', 1' 'the light receiving surface of the light guide 2 the photoelectric conversion element 3 light deflection sheet 4 reflector 5 reflector 5A, 5B reflecting surface 6 outside light 7 incident surface 8 exit surface 9 photoelectric conversion element

Claims (9)

  1. 外部光を入射する入射面と、 A plane of incidence of the external light,
    前記外部光を出射する入射面と平行でない出射面とを有する導光体、及び、 Light guide having an entrance surface and not parallel output surface for emitting the external light and,
    上記出射面に対向して設けられた光電変換素子を少なくとも一つ有してなる光発電システムであって、 A photovoltaic system comprising a least one photoelectric conversion element provided opposite to the emission surface,
    前記導光体は、入射面及びその反対面の少なくともどちらかに、導光体内部に入射した光を反射させる複数の反射体を有してなる光発電システム。 The light guide includes an incident surface and at least one photovoltaic system comprising a plurality of reflectors for reflecting the light incident on the light guide body portion of the opposite surface thereof.
  2. 外部光の方向を変換する光偏向シートを、上記入射面に対向して設けてなる請求項1に記載の光発電システム。 The light deflection sheet for converting the direction of the external light, the light power generation system of claim 1 comprising opposed to the incident surface.
  3. 導光体の出射面以外から出射した光を反射する反射板を、導光体の入射面の反対面に設けてなる請求項1又は2に記載の光発電システム。 A reflector for reflecting light emitted from other than the exit surface of the light guide, the light power generation system according to claim 1 or 2 comprising on the opposite side of the incident surface of the light guide.
  4. 上記反射板は、上記入射面の法線方向に対して傾斜した面と、その面とは反対の方向に傾斜した面とを有してなる請求項3記載の光発電システム。 The reflector, the light power generation system of the the inclined surface with respect to the normal direction of the incident surface, according to claim 3, wherein comprising a and inclined in a direction opposite to the surface from its surface.
  5. 上記反射体は、上記入射面の法線方向に対して2°〜60°傾斜したA面と、上記入射面の法線方向に対してA面とは反対の方向に80°〜89°傾斜したB面とを有してなる請求項1〜4のいずれかに記載の光発電システム。 The reflector, and 2 ° to 60 ° inclined surface A with respect to the normal direction of the incident plane, 80 ° to 89 ° inclined in a direction opposite to the A side with respect to the normal direction of the incident surface photovoltaic system according to claim 1 comprising a and the B-side.
  6. 上記反射体は、上記入射面の法線方向に対して2°〜60°傾斜したA面と、上記入射面の法線方向に対してA面とは反対の方向に30°〜50°傾斜したB面とを有してなる請求項1〜4のいずれかに記載の光発電システム。 Said reflector, said the incident surface 2 ° to 60 ° inclined surface A with respect to the normal direction of, 30 ° to 50 ° inclined in a direction opposite to the A side with respect to the normal direction of the incident surface photovoltaic system according to claim 1 comprising a and the B-side.
  7. 上記反射体は、上記入射面の法線方向に対して40°〜50°傾斜したA面と、上記入射面の法線方向に対してA面とは反対の方向に40°〜50°傾斜したB面とを有してなる請求項1〜4のいずれかに記載の光発電システム。 Said reflector, said the 40 ° to 50 ° inclined surface A with respect to the normal direction of the incident plane, 40 ° to 50 ° inclined in a direction opposite to the A side with respect to the normal direction of the incident surface photovoltaic system according to claim 1 comprising a and the B-side.
  8. A面とB面の間に、入射面と平行な面を有してなる請求項5〜7のいずれかに記載の光発電システム。 During the A surface and B surface, photovoltaic system of any of claims 5-7 comprising a incident surface and a plane parallel.
  9. 上記導光体が複数の導光体の集合体であり、該複数の導光体は、隣接する2枚の導光体の相接する面に相補的な構造の反射体が設けられてなる請求項1〜8のいずれかに記載の光発電システム。 The light guide body is an aggregate of a plurality of light guide, the light guide of said plurality of, formed by reflector complementary structures adjoin the surface of the adjacent two of the light guide is provided photovoltaic system of any of claims 1-8.
JP2003177521A 2003-06-23 2003-06-23 Concentrating photovoltaic power generation system Pending JP2007027150A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003177521A JP2007027150A (en) 2003-06-23 2003-06-23 Concentrating photovoltaic power generation system

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2003177521A JP2007027150A (en) 2003-06-23 2003-06-23 Concentrating photovoltaic power generation system
TW093117882A TW200510868A (en) 2003-06-23 2004-06-21 Photoelectric system
PCT/JP2004/009233 WO2004114418A1 (en) 2003-06-23 2004-06-23 Concentrating photovoltaic power generation system

Publications (1)

Publication Number Publication Date
JP2007027150A true JP2007027150A (en) 2007-02-01

Family

ID=33534960

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003177521A Pending JP2007027150A (en) 2003-06-23 2003-06-23 Concentrating photovoltaic power generation system

Country Status (3)

Country Link
JP (1) JP2007027150A (en)
TW (1) TW200510868A (en)
WO (1) WO2004114418A1 (en)

Cited By (73)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009063416A2 (en) * 2007-11-13 2009-05-22 Koninklijke Philips Electronics, N.V. Thin and efficient collecting optics for solar system
WO2010033632A2 (en) * 2008-09-18 2010-03-25 Qualcomm Mems Technologies, Inc. Increasing the angular range of light collection in solar collectors/concentrators
JP2010141297A (en) * 2008-11-14 2010-06-24 Nippon Leiz Co Ltd Light guide, photoelectric converter, and flat surface photoelectric conversion device
JP2010524214A (en) * 2007-04-05 2010-07-15 コミッサリア ア レネルジー アトミーク エ オ ゼネルジ ザルタナテイヴ Thin flat light collector
JP2011503902A (en) * 2007-11-16 2011-01-27 クォルコム・メムズ・テクノロジーズ・インコーポレーテッド Thin film solar concentrator / collector
US7948671B2 (en) 2004-09-27 2011-05-24 Qualcomm Mems Technologies, Inc. Apparatus and method for reducing slippage between structures in an interferometric modulator
WO2011074295A1 (en) * 2009-12-17 2011-06-23 シャープ株式会社 Electronic device
US7982700B2 (en) 2004-09-27 2011-07-19 Qualcomm Mems Technologies, Inc. Conductive bus structure for interferometric modulator array
US7999993B2 (en) 2004-09-27 2011-08-16 Qualcomm Mems Technologies, Inc. Reflective display device having viewable display on both sides
KR101057790B1 (en) * 2009-02-03 2011-08-19 (주) 제이피이 Light collecting type photovoltaic module
US8008736B2 (en) 2004-09-27 2011-08-30 Qualcomm Mems Technologies, Inc. Analog interferometric modulator device
US8023167B2 (en) 2008-06-25 2011-09-20 Qualcomm Mems Technologies, Inc. Backlight displays
WO2011122220A1 (en) * 2010-03-30 2011-10-06 シャープ株式会社 Solar cell module and solar photovoltaic device
US8035883B2 (en) 2004-09-27 2011-10-11 Qualcomm Mems Technologies, Inc. Device having a conductive light absorbing mask and method for fabricating same
US8045252B2 (en) 2004-02-03 2011-10-25 Qualcomm Mems Technologies, Inc. Spatial light modulator with integrated optical compensation structure
US8045256B2 (en) 2004-09-27 2011-10-25 Qualcomm Mems Technologies, Inc. Method and device for compensating for color shift as a function of angle of view
US8054527B2 (en) 2007-10-23 2011-11-08 Qualcomm Mems Technologies, Inc. Adjustably transmissive MEMS-based devices
CN102239569A (en) * 2008-11-03 2011-11-09 康宁股份有限公司 Thin-film semiconductor photovoltaic device
US8058549B2 (en) 2007-10-19 2011-11-15 Qualcomm Mems Technologies, Inc. Photovoltaic devices with integrated color interferometric film stacks
US8061882B2 (en) 2006-10-06 2011-11-22 Qualcomm Mems Technologies, Inc. Illumination device with built-in light coupler
US8068710B2 (en) 2007-12-07 2011-11-29 Qualcomm Mems Technologies, Inc. Decoupled holographic film and diffuser
US8068269B2 (en) 2008-03-27 2011-11-29 Qualcomm Mems Technologies, Inc. Microelectromechanical device with spacing layer
US8081370B2 (en) 2004-09-27 2011-12-20 Qualcomm Mems Technologies, Inc. Support structures for electromechanical systems and methods of fabricating the same
US8081373B2 (en) 2007-07-31 2011-12-20 Qualcomm Mems Technologies, Inc. Devices and methods for enhancing color shift of interferometric modulators
US8098416B2 (en) 2006-06-01 2012-01-17 Qualcomm Mems Technologies, Inc. Analog interferometric modulator device with electrostatic actuation and release
US8098417B2 (en) 2007-05-09 2012-01-17 Qualcomm Mems Technologies, Inc. Electromechanical system having a dielectric movable membrane
JP2012501556A (en) * 2008-09-02 2012-01-19 クォルコム・メムズ・テクノロジーズ・インコーポレーテッド Light collection device having a prismatic light turning features
US8102590B2 (en) 2006-06-30 2012-01-24 Qualcomm Mems Technologies, Inc. Method of manufacturing MEMS devices providing air gap control
WO2012011307A1 (en) * 2010-07-22 2012-01-26 シャープ株式会社 Solar cell module and solar photovoltaic power generation device
WO2012014539A1 (en) * 2010-07-26 2012-02-02 シャープ株式会社 Solar cell module and solar power generation device
US8115987B2 (en) 2007-02-01 2012-02-14 Qualcomm Mems Technologies, Inc. Modulating the intensity of light from an interferometric reflector
US8164821B2 (en) 2008-02-22 2012-04-24 Qualcomm Mems Technologies, Inc. Microelectromechanical device with thermal expansion balancing layer or stiffening layer
US8169688B2 (en) 2004-09-27 2012-05-01 Qualcomm Mems Technologies, Inc. System and method of reducing color shift in a display
US8174752B2 (en) 2008-03-07 2012-05-08 Qualcomm Mems Technologies, Inc. Interferometric modulator in transmission mode
WO2012077661A1 (en) * 2010-12-07 2012-06-14 シャープ株式会社 Solar power generator
US8213075B2 (en) 2004-09-27 2012-07-03 Qualcomm Mems Technologies, Inc. Method and device for multistate interferometric light modulation
US8270062B2 (en) 2009-09-17 2012-09-18 Qualcomm Mems Technologies, Inc. Display device with at least one movable stop element
US8270056B2 (en) 2009-03-23 2012-09-18 Qualcomm Mems Technologies, Inc. Display device with openings between sub-pixels and method of making same
WO2012128339A1 (en) * 2011-03-24 2012-09-27 シャープ株式会社 Solar cell module, solar photovoltaic power generation device, and method for installing solar cell module
US8289613B2 (en) 2004-09-27 2012-10-16 Qualcomm Mems Technologies, Inc. Electromechanical device with optical function separated from mechanical and electrical function
WO2012165899A2 (en) * 2011-06-03 2012-12-06 주식회사 리온아이피엘 High light concentration solar cell module
JP2012531623A (en) * 2009-06-24 2012-12-10 ユニバーシティー オブ ロチェスターUniversity Of Rochester Step-shaped light collecting and condensing system, its components, and methods
JP2012531622A (en) * 2009-06-24 2012-12-10 ユニバーシティー オブ ロチェスターUniversity Of Rochester Dimple type light collecting and condensing system, its components, and methods
WO2013002093A1 (en) * 2011-06-27 2013-01-03 シャープ株式会社 Photovoltaic power generation device
JP2013011904A (en) * 2007-04-30 2013-01-17 Qualcomm Mems Technologies Inc Dual film light guide for illuminating displays
US8358266B2 (en) 2008-09-02 2013-01-22 Qualcomm Mems Technologies, Inc. Light turning device with prismatic light turning features
US8368981B2 (en) 2006-10-10 2013-02-05 Qualcomm Mems Technologies, Inc. Display device with diffractive optics
US8368997B2 (en) 2007-07-02 2013-02-05 Qualcomm Mems Technologies, Inc. Electromechanical device with optical function separated from mechanical and electrical function
US8405899B2 (en) 2004-09-27 2013-03-26 Qualcomm Mems Technologies, Inc Photonic MEMS and structures
US20130125955A1 (en) * 2010-06-02 2013-05-23 Sharp Kabushiki Kaisha Solar cell module, and solar photovoltaic device with same
US8488228B2 (en) 2009-09-28 2013-07-16 Qualcomm Mems Technologies, Inc. Interferometric display with interferometric reflector
JP2013543150A (en) * 2010-11-04 2013-11-28 バニヤン エナジー インコーポレイテッド Heat collecting and compact optical component for a lighting system
US8659816B2 (en) 2011-04-25 2014-02-25 Qualcomm Mems Technologies, Inc. Mechanical layer and methods of making the same
US8736939B2 (en) 2011-11-04 2014-05-27 Qualcomm Mems Technologies, Inc. Matching layer thin-films for an electromechanical systems reflective display device
US8797628B2 (en) 2007-10-19 2014-08-05 Qualcomm Memstechnologies, Inc. Display with integrated photovoltaic device
US8797632B2 (en) 2010-08-17 2014-08-05 Qualcomm Mems Technologies, Inc. Actuation and calibration of charge neutral electrode of a display device
US8817357B2 (en) 2010-04-09 2014-08-26 Qualcomm Mems Technologies, Inc. Mechanical layer and methods of forming the same
US8872085B2 (en) 2006-10-06 2014-10-28 Qualcomm Mems Technologies, Inc. Display device having front illuminator with turning features
US8902484B2 (en) 2010-12-15 2014-12-02 Qualcomm Mems Technologies, Inc. Holographic brightness enhancement film
US8941631B2 (en) 2007-11-16 2015-01-27 Qualcomm Mems Technologies, Inc. Simultaneous light collection and illumination on an active display
US8963159B2 (en) 2011-04-04 2015-02-24 Qualcomm Mems Technologies, Inc. Pixel via and methods of forming the same
US8971675B2 (en) 2006-01-13 2015-03-03 Qualcomm Mems Technologies, Inc. Interconnect structure for MEMS device
US8979349B2 (en) 2009-05-29 2015-03-17 Qualcomm Mems Technologies, Inc. Illumination devices and methods of fabrication thereof
US9019183B2 (en) 2006-10-06 2015-04-28 Qualcomm Mems Technologies, Inc. Optical loss structure integrated in an illumination apparatus
US9025235B2 (en) 2002-12-25 2015-05-05 Qualcomm Mems Technologies, Inc. Optical interference type of color display having optical diffusion layer between substrate and electrode
US9036963B2 (en) 2009-06-24 2015-05-19 University Of Rochester Light collecting and emitting apparatus, method, and applications
US9057872B2 (en) 2010-08-31 2015-06-16 Qualcomm Mems Technologies, Inc. Dielectric enhanced mirror for IMOD display
US9134527B2 (en) 2011-04-04 2015-09-15 Qualcomm Mems Technologies, Inc. Pixel via and methods of forming the same
WO2015173924A1 (en) * 2014-05-15 2015-11-19 一戸 照章 Vertical solar cell unit
US9246038B2 (en) 2009-06-24 2016-01-26 University Of Rochester Light collecting and emitting apparatus, method, and applications
EP2430741A4 (en) * 2009-05-14 2017-06-21 Sunboost Ltd. Light collection system and method
KR20170071436A (en) * 2015-12-15 2017-06-23 성균관대학교산학협력단 Electric energy harvester for display panel
JP2018151626A (en) * 2013-01-21 2018-09-27 合同会社 Holomedia Light-concentrating mechanism, photovoltaic power generation device, and window structure

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7508571B2 (en) 2004-09-27 2009-03-24 Idc, Llc Optical films for controlling angular characteristics of displays
TW200720589A (en) * 2005-09-19 2007-06-01 Koninkl Philips Electronics Nv Luminaire with stack of flat panel light guides
US8107155B2 (en) 2006-10-06 2012-01-31 Qualcomm Mems Technologies, Inc. System and method for reducing visual artifacts in displays
US9040808B2 (en) 2007-05-01 2015-05-26 Morgan Solar Inc. Light-guide solar panel and method of fabrication thereof
US9337373B2 (en) 2007-05-01 2016-05-10 Morgan Solar Inc. Light-guide solar module, method of fabrication thereof, and panel made therefrom
AU2008243623B2 (en) 2007-05-01 2014-09-11 Morgan Solar Inc. Light-guide solar panel and method of fabrication thereof
CN103238091A (en) 2010-10-28 2013-08-07 榕树能量公司 Redirecting optics for concentration and illumination systems
JP2010539428A (en) * 2007-09-10 2010-12-16 バンヤン エナジー,インコーポレイテッドBanyan Energy,Inc Condensing the light energy, compact optical systems for integration and irradiation
US8654061B2 (en) 2008-02-12 2014-02-18 Qualcomm Mems Technologies, Inc. Integrated front light solution
CN101946333A (en) * 2008-02-12 2011-01-12 高通Mems科技公司 Dual layer thin film holographic solar concentrator/collector
US8049951B2 (en) 2008-04-15 2011-11-01 Qualcomm Mems Technologies, Inc. Light with bi-directional propagation
CA2726120A1 (en) 2008-05-28 2009-12-23 Qualcomm Mems Technologies, Inc. Front light devices and methods of fabrication thereof
MX2011002993A (en) * 2008-09-19 2011-05-30 Univ California System and method for solar energy capture and related method of manufacturing.
AT507530B1 (en) 2008-11-04 2013-05-15 Al Systems Gmbh Light guide for lighting equipment and lighting equipment
TWI382551B (en) * 2008-11-06 2013-01-11 Ind Tech Res Inst Solar concentrating module
WO2011062020A1 (en) * 2009-11-18 2011-05-26 シャープ株式会社 Solar cell module, solar power generating apparatus, and window
WO2012050059A1 (en) * 2010-10-15 2012-04-19 シャープ株式会社 Solar cell module and solar power generation device
WO2012053379A1 (en) * 2010-10-18 2012-04-26 シャープ株式会社 Solar battery module and solar power generator
WO2012066935A1 (en) * 2010-11-16 2012-05-24 シャープ株式会社 Solar cell module and solar power generation device
US20130240037A1 (en) * 2010-11-24 2013-09-19 Sharp Kabushiki Kaisha Solar cell module and solar generator
US8885995B2 (en) 2011-02-07 2014-11-11 Morgan Solar Inc. Light-guide solar energy concentrator
WO2012115248A1 (en) * 2011-02-25 2012-08-30 シャープ株式会社 Solar cell module and solar generator device
US8928988B1 (en) 2011-04-01 2015-01-06 The Regents Of The University Of California Monocentric imaging
JP2014132601A (en) * 2011-04-20 2014-07-17 Sharp Corp Solar cell module and photovoltaic generation device
JP2014232739A (en) * 2011-09-26 2014-12-11 シャープ株式会社 Photovoltaic power generation device
JPWO2013069785A1 (en) * 2011-11-11 2015-04-02 シャープ株式会社 Light guide, the solar cell module and solar generator
US8328403B1 (en) 2012-03-21 2012-12-11 Morgan Solar Inc. Light guide illumination devices
CN105823006A (en) * 2016-05-20 2016-08-03 常州大学 CPC light condensation light guide lighting ventilation system

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3185719B2 (en) * 1997-07-25 2001-07-11 トヨタ自動車株式会社 Solar concentrator
JPH11340493A (en) * 1998-05-22 1999-12-10 Toyota Motor Corp Sunlight condensing device
JP2000231803A (en) * 1999-02-09 2000-08-22 Nobuyuki Higuchi Lighting system utilizing solar light power generation

Cited By (96)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9025235B2 (en) 2002-12-25 2015-05-05 Qualcomm Mems Technologies, Inc. Optical interference type of color display having optical diffusion layer between substrate and electrode
US9019590B2 (en) 2004-02-03 2015-04-28 Qualcomm Mems Technologies, Inc. Spatial light modulator with integrated optical compensation structure
US8045252B2 (en) 2004-02-03 2011-10-25 Qualcomm Mems Technologies, Inc. Spatial light modulator with integrated optical compensation structure
US8111445B2 (en) 2004-02-03 2012-02-07 Qualcomm Mems Technologies, Inc. Spatial light modulator with integrated optical compensation structure
US8405899B2 (en) 2004-09-27 2013-03-26 Qualcomm Mems Technologies, Inc Photonic MEMS and structures
US9001412B2 (en) 2004-09-27 2015-04-07 Qualcomm Mems Technologies, Inc. Electromechanical device with optical function separated from mechanical and electrical function
US8970939B2 (en) 2004-09-27 2015-03-03 Qualcomm Mems Technologies, Inc. Method and device for multistate interferometric light modulation
US7948671B2 (en) 2004-09-27 2011-05-24 Qualcomm Mems Technologies, Inc. Apparatus and method for reducing slippage between structures in an interferometric modulator
US8638491B2 (en) 2004-09-27 2014-01-28 Qualcomm Mems Technologies, Inc. Device having a conductive light absorbing mask and method for fabricating same
US7982700B2 (en) 2004-09-27 2011-07-19 Qualcomm Mems Technologies, Inc. Conductive bus structure for interferometric modulator array
US7999993B2 (en) 2004-09-27 2011-08-16 Qualcomm Mems Technologies, Inc. Reflective display device having viewable display on both sides
US9086564B2 (en) 2004-09-27 2015-07-21 Qualcomm Mems Technologies, Inc. Conductive bus structure for interferometric modulator array
US8008736B2 (en) 2004-09-27 2011-08-30 Qualcomm Mems Technologies, Inc. Analog interferometric modulator device
US8390547B2 (en) 2004-09-27 2013-03-05 Qualcomm Mems Technologies, Inc. Conductive bus structure for interferometric modulator array
US8081370B2 (en) 2004-09-27 2011-12-20 Qualcomm Mems Technologies, Inc. Support structures for electromechanical systems and methods of fabricating the same
US8035883B2 (en) 2004-09-27 2011-10-11 Qualcomm Mems Technologies, Inc. Device having a conductive light absorbing mask and method for fabricating same
US9097885B2 (en) 2004-09-27 2015-08-04 Qualcomm Mems Technologies, Inc. Device having a conductive light absorbing mask and method for fabricating same
US8045256B2 (en) 2004-09-27 2011-10-25 Qualcomm Mems Technologies, Inc. Method and device for compensating for color shift as a function of angle of view
US8289613B2 (en) 2004-09-27 2012-10-16 Qualcomm Mems Technologies, Inc. Electromechanical device with optical function separated from mechanical and electrical function
US8243360B2 (en) 2004-09-27 2012-08-14 Qualcomm Mems Technologies, Inc. Device having a conductive light absorbing mask and method for fabricating same
US8213075B2 (en) 2004-09-27 2012-07-03 Qualcomm Mems Technologies, Inc. Method and device for multistate interferometric light modulation
US8169688B2 (en) 2004-09-27 2012-05-01 Qualcomm Mems Technologies, Inc. System and method of reducing color shift in a display
US8861071B2 (en) 2004-09-27 2014-10-14 Qualcomm Mems Technologies, Inc. Method and device for compensating for color shift as a function of angle of view
US8971675B2 (en) 2006-01-13 2015-03-03 Qualcomm Mems Technologies, Inc. Interconnect structure for MEMS device
US8098416B2 (en) 2006-06-01 2012-01-17 Qualcomm Mems Technologies, Inc. Analog interferometric modulator device with electrostatic actuation and release
US8102590B2 (en) 2006-06-30 2012-01-24 Qualcomm Mems Technologies, Inc. Method of manufacturing MEMS devices providing air gap control
US8964280B2 (en) 2006-06-30 2015-02-24 Qualcomm Mems Technologies, Inc. Method of manufacturing MEMS devices providing air gap control
US8061882B2 (en) 2006-10-06 2011-11-22 Qualcomm Mems Technologies, Inc. Illumination device with built-in light coupler
US8872085B2 (en) 2006-10-06 2014-10-28 Qualcomm Mems Technologies, Inc. Display device having front illuminator with turning features
US9019183B2 (en) 2006-10-06 2015-04-28 Qualcomm Mems Technologies, Inc. Optical loss structure integrated in an illumination apparatus
US8368981B2 (en) 2006-10-10 2013-02-05 Qualcomm Mems Technologies, Inc. Display device with diffractive optics
US8115987B2 (en) 2007-02-01 2012-02-14 Qualcomm Mems Technologies, Inc. Modulating the intensity of light from an interferometric reflector
JP2010524214A (en) * 2007-04-05 2010-07-15 コミッサリア ア レネルジー アトミーク エ オ ゼネルジ ザルタナテイヴ Thin flat light collector
JP2013011904A (en) * 2007-04-30 2013-01-17 Qualcomm Mems Technologies Inc Dual film light guide for illuminating displays
US8098417B2 (en) 2007-05-09 2012-01-17 Qualcomm Mems Technologies, Inc. Electromechanical system having a dielectric movable membrane
US8368997B2 (en) 2007-07-02 2013-02-05 Qualcomm Mems Technologies, Inc. Electromechanical device with optical function separated from mechanical and electrical function
US8736949B2 (en) 2007-07-31 2014-05-27 Qualcomm Mems Technologies, Inc. Devices and methods for enhancing color shift of interferometric modulators
US8081373B2 (en) 2007-07-31 2011-12-20 Qualcomm Mems Technologies, Inc. Devices and methods for enhancing color shift of interferometric modulators
US8797628B2 (en) 2007-10-19 2014-08-05 Qualcomm Memstechnologies, Inc. Display with integrated photovoltaic device
US8058549B2 (en) 2007-10-19 2011-11-15 Qualcomm Mems Technologies, Inc. Photovoltaic devices with integrated color interferometric film stacks
US8054527B2 (en) 2007-10-23 2011-11-08 Qualcomm Mems Technologies, Inc. Adjustably transmissive MEMS-based devices
WO2009063416A3 (en) * 2007-11-13 2009-08-06 Koninkl Philips Electronics Nv Thin and efficient collecting optics for solar system
WO2009063416A2 (en) * 2007-11-13 2009-05-22 Koninklijke Philips Electronics, N.V. Thin and efficient collecting optics for solar system
JP2013061149A (en) * 2007-11-16 2013-04-04 Qualcomm Mems Technologies Inc Thin film solar concentrator/collector
US8941631B2 (en) 2007-11-16 2015-01-27 Qualcomm Mems Technologies, Inc. Simultaneous light collection and illumination on an active display
JP2011503902A (en) * 2007-11-16 2011-01-27 クォルコム・メムズ・テクノロジーズ・インコーポレーテッド Thin film solar concentrator / collector
US8068710B2 (en) 2007-12-07 2011-11-29 Qualcomm Mems Technologies, Inc. Decoupled holographic film and diffuser
US8798425B2 (en) 2007-12-07 2014-08-05 Qualcomm Mems Technologies, Inc. Decoupled holographic film and diffuser
US8164821B2 (en) 2008-02-22 2012-04-24 Qualcomm Mems Technologies, Inc. Microelectromechanical device with thermal expansion balancing layer or stiffening layer
US8174752B2 (en) 2008-03-07 2012-05-08 Qualcomm Mems Technologies, Inc. Interferometric modulator in transmission mode
US8693084B2 (en) 2008-03-07 2014-04-08 Qualcomm Mems Technologies, Inc. Interferometric modulator in transmission mode
US8068269B2 (en) 2008-03-27 2011-11-29 Qualcomm Mems Technologies, Inc. Microelectromechanical device with spacing layer
US8023167B2 (en) 2008-06-25 2011-09-20 Qualcomm Mems Technologies, Inc. Backlight displays
US8358266B2 (en) 2008-09-02 2013-01-22 Qualcomm Mems Technologies, Inc. Light turning device with prismatic light turning features
JP2012501556A (en) * 2008-09-02 2012-01-19 クォルコム・メムズ・テクノロジーズ・インコーポレーテッド Light collection device having a prismatic light turning features
WO2010033632A3 (en) * 2008-09-18 2010-12-23 Qualcomm Mems Technologies, Inc. Increasing the angular range of light collection in solar collectors/concentrators
WO2010033632A2 (en) * 2008-09-18 2010-03-25 Qualcomm Mems Technologies, Inc. Increasing the angular range of light collection in solar collectors/concentrators
JP2012503221A (en) * 2008-09-18 2012-02-02 クォルコム・メムズ・テクノロジーズ・インコーポレーテッド Increase in the angular range of light collection in solar collector / concentrator
JP2012507884A (en) * 2008-11-03 2012-03-29 コーニング インコーポレイテッド Thin film semiconductor photovoltaic device
CN102239569A (en) * 2008-11-03 2011-11-09 康宁股份有限公司 Thin-film semiconductor photovoltaic device
JP2010141297A (en) * 2008-11-14 2010-06-24 Nippon Leiz Co Ltd Light guide, photoelectric converter, and flat surface photoelectric conversion device
KR101057790B1 (en) * 2009-02-03 2011-08-19 (주) 제이피이 Light collecting type photovoltaic module
US8270056B2 (en) 2009-03-23 2012-09-18 Qualcomm Mems Technologies, Inc. Display device with openings between sub-pixels and method of making same
EP2430741A4 (en) * 2009-05-14 2017-06-21 Sunboost Ltd. Light collection system and method
US9121979B2 (en) 2009-05-29 2015-09-01 Qualcomm Mems Technologies, Inc. Illumination devices and methods of fabrication thereof
US8979349B2 (en) 2009-05-29 2015-03-17 Qualcomm Mems Technologies, Inc. Illumination devices and methods of fabrication thereof
US9246038B2 (en) 2009-06-24 2016-01-26 University Of Rochester Light collecting and emitting apparatus, method, and applications
US9036963B2 (en) 2009-06-24 2015-05-19 University Of Rochester Light collecting and emitting apparatus, method, and applications
JP2012531622A (en) * 2009-06-24 2012-12-10 ユニバーシティー オブ ロチェスターUniversity Of Rochester Dimple type light collecting and condensing system, its components, and methods
JP2012531623A (en) * 2009-06-24 2012-12-10 ユニバーシティー オブ ロチェスターUniversity Of Rochester Step-shaped light collecting and condensing system, its components, and methods
US8270062B2 (en) 2009-09-17 2012-09-18 Qualcomm Mems Technologies, Inc. Display device with at least one movable stop element
US8488228B2 (en) 2009-09-28 2013-07-16 Qualcomm Mems Technologies, Inc. Interferometric display with interferometric reflector
WO2011074295A1 (en) * 2009-12-17 2011-06-23 シャープ株式会社 Electronic device
WO2011122220A1 (en) * 2010-03-30 2011-10-06 シャープ株式会社 Solar cell module and solar photovoltaic device
US8817357B2 (en) 2010-04-09 2014-08-26 Qualcomm Mems Technologies, Inc. Mechanical layer and methods of forming the same
US20130125955A1 (en) * 2010-06-02 2013-05-23 Sharp Kabushiki Kaisha Solar cell module, and solar photovoltaic device with same
WO2012011307A1 (en) * 2010-07-22 2012-01-26 シャープ株式会社 Solar cell module and solar photovoltaic power generation device
WO2012014539A1 (en) * 2010-07-26 2012-02-02 シャープ株式会社 Solar cell module and solar power generation device
US8797632B2 (en) 2010-08-17 2014-08-05 Qualcomm Mems Technologies, Inc. Actuation and calibration of charge neutral electrode of a display device
US9057872B2 (en) 2010-08-31 2015-06-16 Qualcomm Mems Technologies, Inc. Dielectric enhanced mirror for IMOD display
JP2013543150A (en) * 2010-11-04 2013-11-28 バニヤン エナジー インコーポレイテッド Heat collecting and compact optical component for a lighting system
WO2012077661A1 (en) * 2010-12-07 2012-06-14 シャープ株式会社 Solar power generator
US8902484B2 (en) 2010-12-15 2014-12-02 Qualcomm Mems Technologies, Inc. Holographic brightness enhancement film
WO2012128339A1 (en) * 2011-03-24 2012-09-27 シャープ株式会社 Solar cell module, solar photovoltaic power generation device, and method for installing solar cell module
US8963159B2 (en) 2011-04-04 2015-02-24 Qualcomm Mems Technologies, Inc. Pixel via and methods of forming the same
US9134527B2 (en) 2011-04-04 2015-09-15 Qualcomm Mems Technologies, Inc. Pixel via and methods of forming the same
US8659816B2 (en) 2011-04-25 2014-02-25 Qualcomm Mems Technologies, Inc. Mechanical layer and methods of making the same
WO2012165899A3 (en) * 2011-06-03 2013-03-28 주식회사 리온아이피엘 High light concentration solar cell module
WO2012165899A2 (en) * 2011-06-03 2012-12-06 주식회사 리온아이피엘 High light concentration solar cell module
KR101327211B1 (en) * 2011-06-03 2013-11-11 주식회사 리온아이피엘 High-concentrated photovoltaic module
WO2013002093A1 (en) * 2011-06-27 2013-01-03 シャープ株式会社 Photovoltaic power generation device
US8736939B2 (en) 2011-11-04 2014-05-27 Qualcomm Mems Technologies, Inc. Matching layer thin-films for an electromechanical systems reflective display device
US9081188B2 (en) 2011-11-04 2015-07-14 Qualcomm Mems Technologies, Inc. Matching layer thin-films for an electromechanical systems reflective display device
JP2018151626A (en) * 2013-01-21 2018-09-27 合同会社 Holomedia Light-concentrating mechanism, photovoltaic power generation device, and window structure
WO2015173924A1 (en) * 2014-05-15 2015-11-19 一戸 照章 Vertical solar cell unit
KR20170071436A (en) * 2015-12-15 2017-06-23 성균관대학교산학협력단 Electric energy harvester for display panel

Also Published As

Publication number Publication date
TW200510868A (en) 2005-03-16
WO2004114418A1 (en) 2004-12-29

Similar Documents

Publication Publication Date Title
US5528057A (en) Semiconductor luminous element with light reflection and focusing configuration
US5877874A (en) Device for concentrating optical radiation
US6399874B1 (en) Solar energy module and fresnel lens for use in same
US6008449A (en) Reflective concentrating solar cell assembly
CN1043690C (en) Optical symbol (bar code) reading system and device
KR101455892B1 (en) Compact Optics for Concentration, Aggregation and Illumination of Light Energy
US20080092879A1 (en) Device for concentrating or collimating radiant energy
EP0237579A1 (en) Light deflector
US4505264A (en) Electromagnetic wave concentrator
KR101487896B1 (en) Light-guide solar panel and method of fabrication thereof
CA2816065C (en) Compact optics for concentration and illumination systems
AU670260B2 (en) Platform for recovering solar energy
US4292959A (en) Solar energy collection system
CN102272538B (en) Light collection and concentration system
US5288337A (en) Photovoltaic module with specular reflector
US5952645A (en) Light-sensing array with wedge-like reflective optical concentrators
US6021007A (en) Side-collecting lightguide
US7672549B2 (en) Solar energy concentrator
US20070137691A1 (en) Light collector and concentrator
EP0636232B2 (en) Faceted totally internally reflecting lens with curved faces
US8119905B2 (en) Combination non-imaging concentrator
JP2008133716A (en) Photovoltaic roof tile system
EP0647325A1 (en) Illumination system having an aspherical lens
US9274266B2 (en) System and method for solar energy capture and related method of manufacturing
US9880342B2 (en) Collimating illumination systems employing planar waveguide