JP2007027150A - Concentrating photovoltaic power generation system - Google Patents

Concentrating photovoltaic power generation system Download PDF

Info

Publication number
JP2007027150A
JP2007027150A JP2003177521A JP2003177521A JP2007027150A JP 2007027150 A JP2007027150 A JP 2007027150A JP 2003177521 A JP2003177521 A JP 2003177521A JP 2003177521 A JP2003177521 A JP 2003177521A JP 2007027150 A JP2007027150 A JP 2007027150A
Authority
JP
Japan
Prior art keywords
light
incident
light guide
reflector
photovoltaic system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003177521A
Other languages
Japanese (ja)
Inventor
Tokutaro Komatsu
徳太郎 小松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP2003177521A priority Critical patent/JP2007027150A/en
Priority to TW093117882A priority patent/TW200510868A/en
Priority to PCT/JP2004/009233 priority patent/WO2004114418A1/en
Publication of JP2007027150A publication Critical patent/JP2007027150A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • G02B6/0035Means for improving the coupling-out of light from the light guide provided on the surface of the light guide or in the bulk of it
    • G02B6/0038Linear indentations or grooves, e.g. arc-shaped grooves or meandering grooves, extending over the full length or width of the light guide
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • G02B6/0035Means for improving the coupling-out of light from the light guide provided on the surface of the light guide or in the bulk of it
    • G02B6/0045Means for improving the coupling-out of light from the light guide provided on the surface of the light guide or in the bulk of it by shaping at least a portion of the light guide
    • G02B6/0046Tapered light guide, e.g. wedge-shaped light guide
    • G02B6/0048Tapered light guide, e.g. wedge-shaped light guide with stepwise taper
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • G02B6/005Means for improving the coupling-out of light from the light guide provided by one optical element, or plurality thereof, placed on the light output side of the light guide
    • G02B6/0053Prismatic sheet or layer; Brightness enhancement element, sheet or layer
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0075Arrangements of multiple light guides
    • G02B6/0076Stacked arrangements of multiple light guides of the same or different cross-sectional area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/054Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means
    • H01L31/0543Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means comprising light concentrating means of the refractive type, e.g. lenses
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/054Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means
    • H01L31/0547Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means comprising light concentrating means of the reflecting type, e.g. parabolic mirrors, concentrators using total internal reflection
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/52PV systems with concentrators

Abstract

<P>PROBLEM TO BE SOLVED: To provide a high efficient photovoltaic power generating system with a simple structure which has no movable part causing failure and can be installed at any place. <P>SOLUTION: The photovoltaic power generation system has a light-guiding body having a light incident surface into which external light enters and a light emission surface not parallel to the incident surface, for emitting the external light; and at least one photoelectric conversion element. The light-guiding body has a plurality of reflection bodies for reflecting light having entered the inside of the light-guiding body to at least either the light incident surface or an opposite surface thereof. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

【0001】
【発明の属する技術分野】
この発明は、導光体およびこれを利用した光発電システムに関する。
【0002】
【従来の技術】
光発電システムの発電効率を向上させるためには、できるだけ多くの光線を単位面積当たりの光電変換素子に集める必要がある。このように光線を光電変換素子に集めるシステムとして、レンズ、プリズム、集光鏡、光ファイバなどの集光装置を使用したシステムが知られている(例えば、特許文献1〜3)。
【0003】
しかし、これらの集光装置を用いたシステムでは、光源がずれると集光点もまたずれるため、効率よく光線を集めるためには光源の移動を追尾して集光装置の向きを変化させる駆動装置が不可欠であり、制御が複雑で大きなシステムになってしまう。また、光発電システムを大型化すると、レンズ等の集光装置の焦点距離が増大するため、厚さが非常に大きく、重量も大きな設備になってしまう。このため、高効率光発電システムの設置場所や支持構造体に著しい制約が課せられてしまうことが、光発電システムの普及を妨げる要因の1つとなっている。
【0004】
一方、上記の厚さ・重量の問題を解決するための手段として、光伝導層・光偏向層を組み合わせた層状の集光体を用いた光発電システムが提案されている(例えば、特許文献4)。
【0005】
この場合の光偏向層は、反射膜を付けた鋸歯形状を下面に有するもので、光伝導層とは別に設けられている。このような形態では、入射光を光伝導層中に閉じこめる効率は極めて低く、大部分の光は光偏向層へ漏れて迷光となる。迷光は、光偏向層中で反射を繰り返し、一部は入射面から再出射されてしまう。また、反射膜による反射は必ず損失を伴う。例えば、可視領域近傍の反射率は、最も反射率の高い銀で98%、アルミニウムで92%、ニッケルで60%程度である。これらの反射損失と再出射のため、当該集光体では端面の受光部への集光効率が極めて低い値となり、高々1%程度にとどまる。
【0006】
【特許文献1】特開平6−37344号公報
【特許文献2】特開平10−264899号公報
【特許文献3】特開平5−211343号公報
【特許文献4】特開2000−147262号公報
【0007】
【発明が解決しようとする課題】
本発明は、既存の光発電システムが抱える上記問題点を解決すべくなされたものである。すなわち、本発明に置いて解決されるべき第一の課題は、複雑で故障原因となりやすく重量が大きい追尾型集光装置を不要のものとし、光発電システムの設置場所と支持構造体の強度に関する制約を取り除くことである。第二の課題は、入射光の向きに依らずに光を効率よく光電変換素子に入射させ、さらに損失する光の量を減少させることにより発電効率を高めることである。本発明は、これらの課題を解決することにより、構造が簡単で故障原因となる可動部分がなく、かつ設置場所を選ばない高効率光発電システムを提供することを目的とする。
【0008】
【課題を解決するための手段】
上記の目的を達成するため、本発明による光発電システムは、外部光を入射する入射面と、入射面と平行でなく、前記外部光を出射する出射面とを有する導光体、及び、上記出射面に対向して設けられた光電変換素子を基本構成とし、導光体に反射体を設け、外部光を光電変換素子の存在する方向に導波させる機能を持たせることにより、より広い面積を有する入射面から入射した光を小面積の光電変換素子に集めることができる光発電システムを提供するものである。
【0009】
さらに本発明は、入射光を臨界角以上の角度で受けて全反射するような反射体形状を策定するとともに、周辺部材と組み合わせて導光体の集光効果を高めることで、構造が簡単で設置場所を選ばない高効率光発電システムを提供するものである。
【0010】
すなわち本発明は、外部光を入射する入射面と、前記外部光を出射する入射面と平行でない出射面とを有する導光体、及び、上記出射面に対向して設けられた光電変換素子を少なくとも一つ有してなる光発電システムであって、前記導光体は、入射面及びその反対面の少なくともどちらかに、導光体内部に入射した光を反射させる複数の反射体を有してなる光発電システムに関する。
【0011】
また本発明は、外部光の方向を変換する光偏向シートを、上記入射面に対向して設けてなる上記光発電システムに関する。
また本発明は、導光体の出射面以外から出射した光を反射する反射板を、導光体の入射面の反対面に設けてなる上記光発電システムに関する。
また本発明は、上記反射板は、上記入射面の法線方向に対して傾斜した面と、その面とは反対の方向に傾斜した面とを有してなる上記光発電システムに関する。
【0012】
また本発明は、上記反射体は、上記入射面の法線方向に対して2°〜60°傾斜したA面と、上記入射面の法線方向に対してA面とは反対の方向に80°〜89°傾斜したB面とを有してなる上記光発電システムに関する。
また本発明は、上記反射体は、上記入射面の法線方向に対して2°〜60°傾斜したA面と、上記入射面の法線方向に対してA面とは反対の方向に30°〜50°傾斜したB面とを有してなる上記光発電システムに関する。
また本発明は、上記反射体は、上記入射面の法線方向に対して40°〜50°傾斜したA面と、上記入射面の法線方向に対してA面とは反対の方向に40°〜50°傾斜したB面とを有してなる上記光発電システムに関する。
また本発明は、A面とB面の間に、入射面と平行な面を有してなる上記光発電システムに関する。
また本発明は、上記導光体が複数の導光体の集合体であり、該複数の導光体は、隣接する2枚の導光体の相接する面に相補的な構造の反射体が設けられてなる上記光発電システムに関する。
【発明の実施の形態】
【0013】
以下、本発明に関わる集光型光発電システムのより好適な形態と動作原理を添付図面に基づいて詳述する。但し、それぞれの図面は断面模式図であり、装置全体に対する各構成の寸法は発明の内容を理解しやすい大きさに書き直したもので、実際の寸法を反映したものではない。
【0014】
本発明の光発電システムは、図1に示すように、外部光を入射する入射面7と、入射面と平行でなく、前記外部光を出射する出射面8とを有する導光体、及び、上記出射面に対向して設けられた光電変換素子を基本構成とする。
【0015】
前記導光体は、入射面及びその反対面の少なくともどちらかに、導光体内部に入射した光を反射させる複数の反射体5が設けられており、これにより入射光の進行方向を導波可能な角度に変換することができる。図1では入射面の反対面に反射体を設けた例を示している。導光体中を導波した入射光は端面の光電変換素子に集光されるため、光電変換素子の単位面積当たりの発電効率を向上させることができる。
【0016】
上記の反射体5としては、図1に示すような、入射面7の法線方向に対してある角度(α1)傾斜したA面と、上記入射面7の法線方向に対してA面と反対の方向にある角度(α2)傾斜したB面とを有してなる形状とすることが好ましい。このようにすることにより、入射光を臨界角以上の角度で受けて全反射させることが可能となり、特定形状の反射体を設ける方法は光のロスが少ないため、高い光収集効率を達成できる点で好ましい。
【0017】
また、この他にも、例えば、金属蒸着膜等の反射膜を反射体表面に形成し反射体5とする方法等が挙げられる。この反射膜を設ける方法は、反射率は決して100%に達することはないため、導光体中を導波する光が反射体で何度も反射される場合、わずかな反射ロスであっても最終的な集光効率を大きく低下させてしまうおそれがある点で前者の例より劣るものの、製造が容易であるメリットがある。どちらの方法を選択するかは用途や要求される光電変換能力に応じて決めることができる。
【0018】
図1の例では、導光体1中に入射した光の一部は、反射体5の一方の反射面5Aで全反射を受け、導光体の入射面の法線に対して臨界角以上の角度をなす方向へ偏向される。偏向された入射光は、導光体の上下面で全反射されながら導光体中を導波して出射面8に至る。入射する外部光6の角度が変わっても、集光特性はあまり影響されない。
【0019】
本発明の光発電システムの第2の形態として、図1の構成にさらに光偏向シート3を設けることができる。図2は、光偏向シート3としてプリズムシートを採用した例を示す。
【0020】
ただし、本発明に用いる光偏向シートの動作原理は、下向きプリズムによる屈折と全反射に限るものではない。他の原理を用いた光偏向シートとしては、例えば、回折格子など光の干渉効果を用いるものや、レンズアレイのような微小光学素子を配列したもの、上向きプリズムによる屈折を用いたもの等を挙げることができる。
【0021】
また、図1及び2では、同一形状の反射体5が連続して設けられているが、形状の異なる反射体が混在して設けられていても良く、また、反射体間が離れていても良い。また、反射体は、導光板下側平面に対して凸状であってもよく、凹状であっても良い。
【0022】
本発明の光発電システムにおいて、導光体の出射面8と光電変換素子2の受光面9の間は、導光体端面での反射を低減できる点で、導光体と光電変換素子の中間の屈折率を有する媒体で満たされている方が空間となっているよりも好ましい。
【0023】
次に図2を用いて、導光体に入射した光が導波しうるための入射光角度と反射体形状の条件を述べ、導光体による集光の原理を解説する。
【0024】
光偏向シートにより偏向され入射面7の法線方向に対してθの角度で入射した外部光6は入射面で屈折されて、法線方向に対してθの角度をもって進行する。
【0025】
導光体の屈折率をnとし、導光体の下面に設けた反射体一方の反射面5Aが入射面7の法線方向となす角をαとすれば、入射角θは、次式で指定される角度範囲内にあることが好ましい。
【数1】

Figure 2007027150
(式中、θは当該導光体の材質の臨界角である。)
【0026】
反射光がさらに導光体上面(すなわち入射面7)で全反射されて導光体中を導波するための条件は、反射波の進行方向が、入射面7の法線方向に対してなす角θが、
【数2】
Figure 2007027150
となることである。90°−α > 0であるから、式(1)が成立すれば式(2)は自動的に満足される。
【0027】
スネルの法則から、θとθには
【数3】
Figure 2007027150
の関係があるから、入射光が導光体中を導波するための条件は式(1)、(3)より
【数4】
Figure 2007027150
となる。
【0028】
図2では、導光体の材質として屈折率1.58のポリカーボネートを想定し、反射面5Aの頂角αを88°としている。ただし、本発明はこれらのパラメータに限定されるものではない。この場合、臨界角θは39.27°であるから、式(4)よりθ > 73.08°であることが要求されることがわかる。本実施例の光発電システムに入射する光が主に法線方向から来る場合、光偏向フィルムを用いて導光板への入射角を73.08°以上に設定することで、効率的な集光と光電変換が可能である。
【0029】
図3に、反射面が入射面7の法線方向に対してなす角度αを変えた時に、導光体中を入射光が導波するために要求される入射角の下限がどのように変化するかを例示した。導光体の屈折率は1.58とした。図から直ちに分かるように、反射面の角度αに対して入射角下限は単調増加している。すなわち、反射面の角度αが大きいほど、導光体によって集光される光の角度範囲は強い制限を受ける。従って、反射面の角度αはある程度小さい方が好ましい。また、図中矢印で示したように、垂直入射光すなわち入射角が0°の光を導波するためには、反射面の傾きは約50°以下でなければならない。
【0030】
導光体の反射面で全反射しなかった入射光は、導光体の下面を抜けて漏れ光となる。このような漏れ光を回収する方法として、図4から図5に示すような形態にすることが好ましい。これらの図面は、導光体がいずれも屈折率1.58と想定した場合の模式図を示しているが、本発明の効果はこの屈折率値に限定されるものではない。また、図中では導光体に対して凸形状の、同一形状の反射体が描かれているが、反射体は導光体に対して凹形状であっても良く、異なる形状の反射体が混在していても良い。
【0031】
図4に示す本発明の光発電システムの第3の形態は、導光体と、導光体の出射面以外から出射した光を反射する反射板と、導光体の出射面に対向して設けられた光電変換素子を有してなる。上記反射板は、平板状反射面でも良いが、図4に示すような、上記入射面の法線方向に対して傾斜した面と、その面とは反対の方向に傾斜した面とを有してなる形状を有する反射板を用いることが好ましい。
【0032】
図4に示す第3の形態は、α1及びα2をそれぞれ50°と70°とした模式図である。経路aで導光体に直接入射した光は、傾きα1の反射面5Aで反射され、水平から上向き10°に進行方向を変えて導光体中を導波し、出射面8から出射し、光電変換素子に至る。経路bで入射した光は、傾きα1の反射面5Aと傾きα2の反射面5Bで連続して反射された後、水平方向に対して上向き50°に進行方向を変えて導光体中を導波する。経路c及びdで導光体中に入射した光は、反射面を透過して一旦漏れ光となるが、傾斜面をもつ反射板により水平方向へ進行方向を変更され、導光体中へ回収されて導波し、端面に至る。
【0033】
反射体5を構成する反射面5Aと5Bのそれぞれが入射面7の法線方向となす角度α1及びα2の値には特に制限はなく種々の組み合わせをとることができるが、光電変換システム全体の構成をどのようにするかによって、好ましい値が存在する。例えば、第3の形態に示す光の経路を達成するためには、導光体の材質の屈折率が1.58である場合、α1は45°〜50°であり、α2は120°−α1以下すなわち75°〜70°であることが好ましい。この角度範囲であれば、図4の経路a、bにおいて、反射面5Aと5Bおよび導光体上面で全反射が起こり、光のロスを低減することができる。
【0034】
また、整列させて一方光に導くためには、α1が2°〜60°、α2が80°〜89°の範囲であることが好ましい。α1の範囲が60°を超えると導光板中の光を全反射して導光板外へ散乱してしまう傾向があり、2°未満であると光が反射面を透過して導光板外へ逃散する傾向がある。また、α2の範囲が89°を超えると、式(4)で示される入射角度の制限が厳しくなりすぎ、80°未満であると集光性が低下する傾向がある。
【0035】
また、広い角度範囲の入射光を集光するためには、α1が2°〜60°、α2が30°〜50°の範囲であることが好ましい。α1の範囲が60°を超えると導光板中の光を全反射して導光板外へ散乱してしまう傾向があり、2°未満であると光が反射面を透過して導光板外へ逃散する傾向がある。また、α2の範囲が50°を超えると、入射光のうち全反射されずに導光体下面へ逃散するものの割合が増加し、30°未満であると反射面に入射しない光の割合が大きくなる。
【0036】
図5に、複数の導光体で漏れ光を回収することのできる本発明の第4の形態の光発電システムを示した。第4の形態は、プリズムによる光偏向シートと、下面に反射体を設けた第一の導光体と、当該導光体の下側に隣接して設けられた第二の導光体と、これらの導光体の左右の出射面に対向するように設けられた光電変換素子からなり、第1の導光体1は入射面と反対側の面だけに反射体5が掲載され、第2の導光体1′は上下両面に反射体5が形成されている。光偏向シート3が図示するようなプリズムシートに制限されないことや、反射体5の形状が図示した形状に限定されない点は前述の通りである。
【0037】
第4の形態において、2つの導光体1及び1′の位置関係は特に限定されるものではない。例えば、部分的にまたは全体が接していても良いし、または完全に離れていても良い。またそれぞれの反射体の形状は、1及び1′の対向する面で合わさる形状であってもよく、そうでなくても良い。また、導光体1及び1′はそれぞれ屈折率の異なる導光体であっても良い。しかし、製造のしやすさや光の収集効率等の点で、図5に示すように反射体の形状が1及び1′の対向する面で合わさる形状でることが好ましい。
【0038】
光偏向シートにより斜め光となった垂直入射光は、経路a及びbで導光体中に入射する。経路aで入射した光は、上側の導光体中で全反射を繰り返しながら導波し、右側の光電変換素子へ至る。一方、経路bで入射した光は、上側の導光体の反射面で全反射できないため、下側の第二の導光体へ入射する。下側の導光体は、上面と下面のそれぞれに反射体が設けられている。そのうち上面の反射体は、相接する上側の導光体の反射体と相補的な形状となっている。相接する反射体を相補的な形状とすることにより、漏れ光の向きを変えることなく下側の導光体で回収し、効果的に導波させることができる。下側の導光体中に入射した漏れ光は、上下面の反射体で全反射を繰り返して、左側の光電変換素子へ至る。
【0039】
図6には、垂直入射光を導波させうる複数の導光体と、導光体の右側端面に設けられた光電変換素子からなる光発電システムの第5の形態を示した。
【0040】
導光体の相接する面には、互いに相補的な形状の反射体が設けられている。各導光体の素材は1.58の屈折率を有すると想定したが、本発明の効果はこの屈折率の値に限られるものではない。また、図中では同一形状の反射体が等間隔で設けられているが、形状の異なる反射体が混在していても良く、反射体の間隔が不均等であっても良い。
【0041】
第5の形態において、右側に傾斜した反射面のみが垂直入射光を全反射できる角度に設定されている。経路aで入射した光は、最上部の導光体で全反射を受け、水平から上向き10°に進行方向を変更されて、最上部の導光体中を導波して右端端面の光電変換素子へ至る。経路bで入射した光は、左側へ傾斜した反射面を透過して、第二の導光体中へ入射する。第一の導光体と第二の導光体の相接する反射体は相補的な形状となっているため、bの入射光は進行方向を変えずに第二の導光体の反射面へ入射する。漏れ光を効率的に捕捉できるように、それぞれの導光体の下面に設けられた反射体の位置が図中の左右方向へずれていることが好ましい。経路cで入射した光は、第一の導光体の下側水平面と、第二の導光体の左側へ傾斜した反射面を透過して、第三の導光体へ至る。経路cの光は、第三の導光体中で初めて全反射され、第三の導光体中を導波して右側端面に達する。
【0042】
【発明の効果】
以上のように、本発明に関わる集光型光発電システムでは、入射された光の大部分を導光体の端面に集めることで、導光体の端面に設けられた光電変換素子の発電効率を高めることができる。また、光線の入射角に関係なく高効率の集光と発電が行えるため、発電装置を入射光方向に向ける追尾装置が不要となり、装置が小形化される。このため、より多彩な場所に光発電装置を設けることが可能となると共に、携帯用途などへの応用も容易になる。また、光線の集光比率が約3倍で、高価な光電変換素子の必要面積を1/3に抑えることができるとともに、設備コストも低減できる。
【図面の簡単な説明】
【図1】導光体を含む光発電システムの第1の形態を示す断面模式図である。
【図2】導光体とプリズムによる光偏向シートを含む、本発明に関わる光発電システムの第2の形態およびその集光の原理を説明する断面模式図である。破線は入射光のたどる経路を表す。
【図3】導光体への入射光が、導光体中を全反射により導波するために要求される、導光体の反射面の角度と入射角度の関係を例示した図である。導光体素材の屈折率は1.58として計算した。
【図4】導光体と反射板を含む、本発明に関わる第3の形態の光発電システムの実施例とその集光の原理を説明する断面模式図である。破線は入射光のたどる経路を表す。
【図5】隣接面が相補的構造を持つ2枚の導光体とプリズムによる光偏向シートを用いた、本発明に関わる第4の形態の光発電システムとその集光の原理を示す断面模式図である。破線は入射光のたどる経路を表す。
【図6】隣接面が相補的構造を持つ複数の導光体を用いた、本発明に関わる第5の形態の光発電システムとその集光の原理を示す断面模式図である。破線は入射光のたどる経路を表す。
【符号の説明】
1、1′、1′′ 導光体
2 光電変換素子
3 光偏向シート
4 反射板
5 反射体
5A、5B 反射面
6 外部光
7 入射面
8 出射面
9 光電変換素子の受光面[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a light guide and a photovoltaic system using the same.
[0002]
[Prior art]
In order to improve the power generation efficiency of the photovoltaic system, it is necessary to collect as many rays as possible on the photoelectric conversion elements per unit area. As a system for collecting light rays into a photoelectric conversion element in this way, a system using a condensing device such as a lens, a prism, a condensing mirror, or an optical fiber is known (for example, Patent Documents 1 to 3).
[0003]
However, in a system using these light condensing devices, if the light source is deviated, the condensing point is also deviated. Therefore, in order to collect light efficiently, the drive device that tracks the movement of the light source and changes the direction of the light condensing device Is indispensable, and the control becomes complicated and a large system. Further, when the photovoltaic power generation system is increased in size, the focal length of a condensing device such as a lens increases, so that the equipment becomes very thick and heavy. For this reason, it is one of the factors that hinder the spread of the photovoltaic power generation system that significant restrictions are imposed on the installation place and support structure of the high efficiency photovoltaic power generation system.
[0004]
On the other hand, as a means for solving the above-described problems of thickness and weight, a photovoltaic system using a layered condensing body in which a photoconductive layer and a light deflection layer are combined has been proposed (for example, Patent Document 4). ).
[0005]
The light deflection layer in this case has a sawtooth shape with a reflective film on the lower surface, and is provided separately from the photoconductive layer. In such a form, the efficiency of confining incident light in the photoconductive layer is extremely low, and most of the light leaks to the light deflection layer and becomes stray light. The stray light is repeatedly reflected in the light deflection layer, and a part of it is re-emitted from the incident surface. Moreover, the reflection by the reflective film always involves a loss. For example, the reflectance in the vicinity of the visible region is 98% for silver, 92% for aluminum, and 60% for nickel, which has the highest reflectance. Due to these reflection losses and re-emission, the light collecting body has a very low light collecting efficiency on the light receiving portion on the end face, which is at most about 1%.
[0006]
[Patent Document 1] JP-A-6-37344 [Patent Document 2] JP-A-10-264899 [Patent Document 3] JP-A-5-213443 [Patent Document 4] JP 2000-147262 A ]
[Problems to be solved by the invention]
The present invention has been made to solve the above-described problems of existing photovoltaic power generation systems. That is, the first problem to be solved in the present invention is that the tracking type concentrating device which is complicated and is likely to cause a failure and does not require a large weight is unnecessary, and relates to the installation location of the photovoltaic power generation system and the strength of the support structure. It is to remove the constraints. The second problem is to increase the power generation efficiency by causing light to efficiently enter the photoelectric conversion element regardless of the direction of incident light and further reducing the amount of light lost. An object of the present invention is to provide a high-efficiency photovoltaic power generation system that solves these problems, has a simple structure, has no movable parts that cause failure, and does not select an installation location.
[0008]
[Means for Solving the Problems]
In order to achieve the above object, a photovoltaic system according to the present invention includes a light guide having an incident surface on which external light is incident, an exit surface that is not parallel to the incident surface and emits the external light, and A photoelectric conversion element provided facing the emission surface is the basic configuration, a reflector is provided on the light guide, and a function of guiding external light in the direction in which the photoelectric conversion element exists is provided, thereby providing a wider area. Provided is a photovoltaic system capable of collecting light incident from an incident surface having a small area into a photoelectric conversion element.
[0009]
Furthermore, the present invention has a simple structure by formulating a reflector shape that receives incident light at an angle greater than the critical angle and totally reflects it, and increases the light collection effect of the light guide in combination with peripheral members. A high-efficiency photovoltaic power generation system that can be installed anywhere is provided.
[0010]
That is, the present invention provides a light guide having an incident surface on which external light is incident, an output surface that is not parallel to the incident surface that emits external light, and a photoelectric conversion element provided to face the output surface. A photovoltaic system comprising at least one, wherein the light guide has a plurality of reflectors for reflecting light incident on the inside of the light guide on at least one of the incident surface and the opposite surface. Relates to the photovoltaic power generation system.
[0011]
The present invention also relates to the photovoltaic system, comprising a light deflection sheet that changes the direction of external light so as to face the incident surface.
The present invention also relates to the above photovoltaic system, wherein a reflection plate that reflects light emitted from other than the exit surface of the light guide is provided on the opposite surface of the entrance surface of the light guide.
The present invention also relates to the photovoltaic system, wherein the reflector has a surface inclined with respect to a normal direction of the incident surface and a surface inclined in a direction opposite to the surface.
[0012]
Further, according to the present invention, the reflector includes an A surface inclined by 2 ° to 60 ° with respect to the normal direction of the incident surface, and a direction opposite to the A surface with respect to the normal direction of the incident surface. The present invention relates to the above photovoltaic system having a B surface inclined at an angle of ˜89 °.
Further, according to the present invention, the reflector includes an A plane inclined by 2 ° to 60 ° with respect to a normal direction of the incident surface, and 30 in a direction opposite to the A plane with respect to the normal direction of the incident surface. The present invention relates to the above photovoltaic power generation system having a B-side inclined at 50 ° to 50 °.
Further, according to the present invention, the reflector includes an A surface inclined by 40 ° to 50 ° with respect to a normal direction of the incident surface, and a direction 40 opposite to the A surface with respect to the normal direction of the incident surface. The present invention relates to the above photovoltaic power generation system having a B-side inclined at 50 ° to 50 °.
Moreover, this invention relates to the said photovoltaic system which has a surface parallel to an entrance plane between A surface and B surface.
In the present invention, the light guide is an aggregate of a plurality of light guides, and the plurality of light guides have a structure complementary to a surface where two adjacent light guides meet. The present invention relates to the above photovoltaic power generation system.
DETAILED DESCRIPTION OF THE INVENTION
[0013]
Hereinafter, a more preferable form and operation principle of the concentrating photovoltaic power generation system according to the present invention will be described in detail with reference to the accompanying drawings. However, each drawing is a schematic cross-sectional view, and the dimensions of each component with respect to the entire apparatus are rewritten to a size that makes it easy to understand the contents of the invention, and do not reflect actual dimensions.
[0014]
As shown in FIG. 1, the photovoltaic system of the present invention includes a light guide having an incident surface 7 for incident external light, and an output surface 8 for emitting the external light that is not parallel to the incident surface, and The basic structure is a photoelectric conversion element provided facing the emission surface.
[0015]
The light guide is provided with a plurality of reflectors 5 for reflecting the light incident on the inside of the light guide on at least one of the incident surface and the opposite surface, thereby guiding the traveling direction of the incident light. It can be converted to a possible angle. FIG. 1 shows an example in which a reflector is provided on the surface opposite to the incident surface. Since the incident light guided through the light guide is condensed on the photoelectric conversion element on the end face, the power generation efficiency per unit area of the photoelectric conversion element can be improved.
[0016]
As the reflector 5, as shown in FIG. 1, an A surface inclined at an angle (α1) with respect to the normal direction of the incident surface 7, and an A surface with respect to the normal direction of the incident surface 7 It is preferable to have a shape having a B surface inclined at an angle (α2) in the opposite direction. By doing so, it becomes possible to receive incident light at an angle greater than the critical angle and totally reflect it, and the method of providing a reflector with a specific shape has little light loss, so that high light collection efficiency can be achieved. Is preferable.
[0017]
In addition to this, for example, a method of forming a reflector 5 such as a metal vapor deposition film on the reflector surface to form the reflector 5 can be used. In this method of providing a reflective film, the reflectance never reaches 100%. Therefore, when light guided through the light guide is reflected many times by the reflector, even if there is a slight reflection loss, Although it is inferior to the former example in that the final light collection efficiency may be greatly reduced, there is an advantage that manufacture is easy. Which method is selected can be determined according to the application and the required photoelectric conversion capability.
[0018]
In the example of FIG. 1, part of the light incident on the light guide 1 undergoes total reflection at one reflection surface 5 </ b> A of the reflector 5, and exceeds the critical angle with respect to the normal of the light incident surface of the light guide. It is deflected in a direction that forms an angle of. The deflected incident light is guided through the light guide while being totally reflected by the upper and lower surfaces of the light guide and reaches the exit surface 8. Even if the angle of the incident external light 6 changes, the light collection characteristics are not significantly affected.
[0019]
As a second embodiment of the photovoltaic system of the present invention, a light deflection sheet 3 can be further provided in the configuration of FIG. FIG. 2 shows an example in which a prism sheet is employed as the light deflection sheet 3.
[0020]
However, the operating principle of the light deflection sheet used in the present invention is not limited to refraction and total reflection by the downward prism. Examples of the light deflection sheet using other principles include a light interference effect such as a diffraction grating, a micro optical element such as a lens array, and a refraction using an upward prism. be able to.
[0021]
1 and 2, the reflectors 5 having the same shape are continuously provided. However, reflectors having different shapes may be provided in a mixed manner, and the reflectors may be separated from each other. good. Further, the reflector may be convex or concave with respect to the lower plane of the light guide plate.
[0022]
In the photovoltaic system of the present invention, between the light exit surface 8 of the light guide and the light receiving surface 9 of the photoelectric conversion element 2, it is possible to reduce reflection on the end face of the light guide, and the intermediate between the light guide and the photoelectric conversion element. It is more preferable that the medium is filled with a medium having a refractive index than the space.
[0023]
Next, the conditions of the incident light angle and the reflector shape for allowing the light incident on the light guide to be guided will be described with reference to FIG. 2, and the principle of light collection by the light guide will be explained.
[0024]
The external light 6 deflected by the light deflection sheet and incident at an angle θ 1 with respect to the normal direction of the incident surface 7 is refracted at the incident surface and travels at an angle θ 2 with respect to the normal direction.
[0025]
If the refractive index of the light guide is n, and the angle formed by one reflecting surface 5A of the reflector provided on the lower surface of the light guide with the normal direction of the incident surface 7 is α, the incident angle θ 2 is given by It is preferable to be within the angle range specified by.
[Expression 1]
Figure 2007027150
(In the formula, θ c is a critical angle of the material of the light guide.)
[0026]
The condition for the reflected light to be totally reflected on the upper surface of the light guide (that is, the incident surface 7) and to be guided in the light guide is that the traveling direction of the reflected wave is relative to the normal direction of the incident surface 7. The angle θ 3 is
[Expression 2]
Figure 2007027150
It is to become. Since 90 ° −α> 0, the expression (2) is automatically satisfied if the expression (1) is satisfied.
[0027]
From Snell's law, θ 1 and θ 2 are
Figure 2007027150
Therefore, the conditions for the incident light to be guided through the light guide are as follows from Equations (1) and (3):
Figure 2007027150
It becomes.
[0028]
In FIG. 2, polycarbonate having a refractive index of 1.58 is assumed as the material of the light guide, and the apex angle α of the reflecting surface 5A is 88 °. However, the present invention is not limited to these parameters. In this case, since the critical angle θ c is 39.27 °, it can be seen from the equation (4) that θ 1 > 73.08 ° is required. When light incident on the photovoltaic system of the present embodiment comes mainly from the normal direction, efficient light collection can be achieved by setting the incident angle to the light guide plate to 73.08 ° or more using a light deflection film. And photoelectric conversion.
[0029]
FIG. 3 shows how the lower limit of the incident angle required for the incident light to be guided in the light guide changes when the angle α formed by the reflecting surface with respect to the normal direction of the incident surface 7 is changed. Exemplified how to do. The refractive index of the light guide was 1.58. As can be seen immediately from the figure, the lower limit of the incident angle monotonously increases with respect to the angle α of the reflecting surface. That is, the larger the angle α of the reflecting surface, the stronger the angle range of the light collected by the light guide. Therefore, it is preferable that the angle α of the reflecting surface is small to some extent. Further, as indicated by the arrows in the figure, in order to guide vertically incident light, that is, light having an incident angle of 0 °, the inclination of the reflecting surface must be about 50 ° or less.
[0030]
Incident light that has not been totally reflected by the reflecting surface of the light guide passes through the lower surface of the light guide and becomes leaked light. As a method for recovering such leaked light, it is preferable to adopt a form as shown in FIGS. These drawings show schematic views when the light guides are assumed to have a refractive index of 1.58, but the effects of the present invention are not limited to this refractive index value. Also, in the drawing, a reflector having a convex shape with respect to the light guide and the same shape is depicted, but the reflector may be concave with respect to the light guide, It may be mixed.
[0031]
The photovoltaic power generation system according to the third embodiment of the present invention shown in FIG. 4 has a light guide, a reflector that reflects light emitted from other than the light exit surface of the light guide, and the light exit surface of the light guide. It has a photoelectric conversion element provided. The reflecting plate may be a flat reflecting surface, but has a surface inclined with respect to the normal direction of the incident surface as shown in FIG. 4 and a surface inclined in a direction opposite to the surface. It is preferable to use a reflector having the shape
[0032]
The third embodiment shown in FIG. 4 is a schematic diagram in which α1 and α2 are 50 ° and 70 °, respectively. The light that is directly incident on the light guide along the path a is reflected by the reflection surface 5A having the inclination α1, is guided in the light guide by changing the traveling direction from horizontal to upward 10 °, and is emitted from the emission surface 8. It leads to a photoelectric conversion element. The light incident through the path b is continuously reflected by the reflecting surface 5A having the inclination α1 and the reflecting surface 5B having the inclination α2, and is then guided in the light guide by changing the traveling direction upward by 50 ° with respect to the horizontal direction. To wave. The light that has entered the light guide through the paths c and d passes through the reflection surface and becomes leaked light, but the traveling direction is changed in the horizontal direction by the reflection plate having the inclined surface, and is collected into the light guide. And guided to the end face.
[0033]
There are no particular restrictions on the values of the angles α1 and α2 formed by the reflecting surfaces 5A and 5B constituting the reflector 5 with the normal direction of the incident surface 7, and various combinations can be taken. Depending on how the configuration is done, there are preferred values. For example, in order to achieve the light path shown in the third embodiment, when the refractive index of the light guide material is 1.58, α1 is 45 ° to 50 °, and α2 is 120 ° −α1. The angle is preferably 75 ° to 70 ° below. Within this angle range, total reflection occurs on the reflecting surfaces 5A and 5B and the upper surface of the light guide in the paths a and b in FIG. 4, and light loss can be reduced.
[0034]
Further, in order to align and guide the light to one side, α1 is preferably in the range of 2 ° to 60 ° and α2 is in the range of 80 ° to 89 °. If the range of α1 exceeds 60 °, the light in the light guide plate tends to be totally reflected and scattered outside the light guide plate. If it is less than 2 °, the light passes through the reflection surface and escapes outside the light guide plate. Tend to. Moreover, when the range of α2 exceeds 89 °, the limit of the incident angle represented by the formula (4) becomes too strict, and when it is less than 80 °, the light condensing property tends to decrease.
[0035]
In order to collect incident light in a wide angle range, α1 is preferably in the range of 2 ° to 60 ° and α2 is in the range of 30 ° to 50 °. If the range of α1 exceeds 60 °, the light in the light guide plate tends to be totally reflected and scattered outside the light guide plate. If it is less than 2 °, the light passes through the reflection surface and escapes outside the light guide plate. Tend to. Further, if the range of α2 exceeds 50 °, the proportion of incident light that escapes to the lower surface of the light guide without being totally reflected increases, and if it is less than 30 °, the proportion of light that does not enter the reflecting surface increases. Become.
[0036]
FIG. 5 shows a photovoltaic power generation system according to a fourth embodiment of the present invention that can collect leaked light with a plurality of light guides. The fourth form is a light deflection sheet by a prism, a first light guide provided with a reflector on the lower surface, a second light guide provided adjacent to the lower side of the light guide, It consists of a photoelectric conversion element provided so as to oppose the left and right emission surfaces of these light guides. The first light guide 1 has the reflector 5 only on the surface opposite to the incident surface, and the second The light guide 1 'has reflectors 5 formed on both upper and lower surfaces. As described above, the light deflection sheet 3 is not limited to the prism sheet as illustrated, and the shape of the reflector 5 is not limited to the illustrated shape.
[0037]
In the fourth embodiment, the positional relationship between the two light guides 1 and 1 ′ is not particularly limited. For example, it may be partly or wholly touching or completely separated. Moreover, the shape of each reflector may be the shape which joins on the surface where 1 and 1 'oppose, and it may not be so. The light guides 1 and 1 'may be light guides having different refractive indexes. However, from the viewpoint of ease of manufacture, light collection efficiency, and the like, it is preferable that the shape of the reflector is a shape that meets the opposing surfaces 1 and 1 'as shown in FIG.
[0038]
The vertically incident light that has become oblique light by the light deflecting sheet enters the light guide through the paths a and b. The light incident on the path a is guided while repeating total reflection in the upper light guide, and reaches the right photoelectric conversion element. On the other hand, since the light incident on the path b cannot be totally reflected by the reflection surface of the upper light guide, it enters the lower second light guide. The lower light guide is provided with a reflector on each of the upper surface and the lower surface. Among them, the reflector on the upper surface has a shape complementary to the reflector of the upper light guide which is in contact therewith. By making the adjacent reflectors have a complementary shape, they can be collected by the lower light guide without changing the direction of the leaked light, and can be guided effectively. The leaked light incident on the lower light guide is repeatedly totally reflected by the upper and lower reflectors and reaches the left photoelectric conversion element.
[0039]
FIG. 6 shows a fifth embodiment of a photovoltaic system including a plurality of light guides capable of guiding vertically incident light and photoelectric conversion elements provided on the right end surface of the light guide.
[0040]
Reflectors having shapes complementary to each other are provided on the surfaces of the light guides that contact each other. Although it is assumed that the material of each light guide has a refractive index of 1.58, the effect of the present invention is not limited to this refractive index value. In the drawing, reflectors having the same shape are provided at equal intervals, but reflectors having different shapes may be mixed, and the intervals between the reflectors may be uneven.
[0041]
In the fifth embodiment, only the reflection surface inclined to the right side is set to an angle at which the normal incident light can be totally reflected. The light incident on the path a undergoes total reflection at the uppermost light guide, the direction of travel is changed from 10 ° upward to 10 ° from the horizontal, and the light is guided through the uppermost light guide to photoelectric conversion at the right end facet. To the device. The light incident on the path b passes through the reflecting surface inclined to the left and enters the second light guide. Since the reflectors adjacent to each other of the first light guide and the second light guide have a complementary shape, the incident light of b does not change the traveling direction, and the reflection surface of the second light guide Incident to It is preferable that the position of the reflector provided on the lower surface of each light guide is shifted in the left-right direction in the drawing so that the leaked light can be efficiently captured. The light incident on the path c passes through the lower horizontal surface of the first light guide and the reflecting surface inclined to the left side of the second light guide and reaches the third light guide. The light of the path c is totally reflected in the third light guide for the first time, and is guided through the third light guide to reach the right end surface.
[0042]
【The invention's effect】
As described above, in the concentrating photovoltaic power generation system according to the present invention, the power generation efficiency of the photoelectric conversion element provided on the end surface of the light guide is obtained by collecting most of the incident light on the end surface of the light guide. Can be increased. In addition, since highly efficient light collection and power generation can be performed regardless of the incident angle of the light beam, a tracking device that directs the power generation device in the direction of the incident light is not required, and the device is downsized. For this reason, it becomes possible to provide a photovoltaic device in more various places, and the application to a portable use etc. becomes easy. In addition, the light collection ratio is about 3 times, and the required area of the expensive photoelectric conversion element can be reduced to 1/3, and the equipment cost can be reduced.
[Brief description of the drawings]
FIG. 1 is a schematic cross-sectional view showing a first embodiment of a photovoltaic system including a light guide.
FIG. 2 is a schematic cross-sectional view illustrating a second embodiment of a photovoltaic system according to the present invention including a light deflector and a light deflection sheet using a prism and the principle of light collection. A broken line represents a path followed by incident light.
FIG. 3 is a diagram exemplifying a relationship between an incident angle and an angle of a reflecting surface of a light guide, which is required for light incident on the light guide to be guided through the light guide by total reflection. The refractive index of the light guide material was calculated as 1.58.
FIG. 4 is a schematic cross-sectional view illustrating an embodiment of a photovoltaic power generation system according to the third aspect of the present invention, including a light guide and a reflector, and the principle of light collection. A broken line represents a path followed by incident light.
FIG. 5 is a schematic cross-sectional view showing a photovoltaic power generation system according to a fourth embodiment of the present invention using two light guides having adjacent structures complementary to each other and a light deflecting sheet made of a prism, and its light collecting principle; FIG. A broken line represents a path followed by incident light.
FIG. 6 is a schematic cross-sectional view showing a fifth embodiment of the photovoltaic system according to the present invention using a plurality of light guides whose adjacent surfaces have a complementary structure, and the principle of light collection. A broken line represents a path followed by incident light.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1, 1 ', 1''Light guide 2 Photoelectric conversion element 3 Light deflection sheet 4 Reflection plate 5 Reflector 5A, 5B Reflection surface 6 External light 7 Incident surface 8 Output surface 9 Photosensitive surface of photoelectric conversion element

Claims (9)

外部光を入射する入射面と、
前記外部光を出射する入射面と平行でない出射面とを有する導光体、及び、
上記出射面に対向して設けられた光電変換素子を少なくとも一つ有してなる光発電システムであって、
前記導光体は、入射面及びその反対面の少なくともどちらかに、導光体内部に入射した光を反射させる複数の反射体を有してなる
光発電システム。
An incident surface on which external light is incident;
A light guide having an exit surface that emits the external light and an exit surface that is not parallel; and
A photovoltaic system comprising at least one photoelectric conversion element provided facing the emission surface,
The light guide has a plurality of reflectors that reflect light incident on the inside of the light guide on at least one of the incident surface and the opposite surface.
外部光の方向を変換する光偏向シートを、上記入射面に対向して設けてなる請求項1に記載の光発電システム。  The photovoltaic system according to claim 1, wherein a light deflection sheet for converting the direction of external light is provided to face the incident surface. 導光体の出射面以外から出射した光を反射する反射板を、導光体の入射面の反対面に設けてなる請求項1又は2に記載の光発電システム。  The photovoltaic system of Claim 1 or 2 provided with the reflecting plate which reflects the light radiate | emitted from other than the output surface of a light guide on the surface opposite to the entrance surface of a light guide. 上記反射板は、上記入射面の法線方向に対して傾斜した面と、その面とは反対の方向に傾斜した面とを有してなる請求項3記載の光発電システム。  The photovoltaic system according to claim 3, wherein the reflector has a surface inclined with respect to a normal direction of the incident surface and a surface inclined in a direction opposite to the surface. 上記反射体は、上記入射面の法線方向に対して2°〜60°傾斜したA面と、上記入射面の法線方向に対してA面とは反対の方向に80°〜89°傾斜したB面とを有してなる請求項1〜4のいずれかに記載の光発電システム。  The reflector has an A plane inclined by 2 ° to 60 ° with respect to the normal direction of the incident surface, and an 80 ° to 89 ° inclination in a direction opposite to the A plane with respect to the normal direction of the incident surface. The photovoltaic system according to any one of claims 1 to 4, further comprising a B-plane. 上記反射体は、上記入射面の法線方向に対して2°〜60°傾斜したA面と、上記入射面の法線方向に対してA面とは反対の方向に30°〜50°傾斜したB面とを有してなる請求項1〜4のいずれかに記載の光発電システム。  The reflector has an A plane inclined by 2 ° to 60 ° with respect to the normal direction of the incident surface, and an inclination of 30 ° to 50 ° in a direction opposite to the A plane with respect to the normal direction of the incident surface. The photovoltaic system according to any one of claims 1 to 4, further comprising a B-plane. 上記反射体は、上記入射面の法線方向に対して40°〜50°傾斜したA面と、上記入射面の法線方向に対してA面とは反対の方向に40°〜50°傾斜したB面とを有してなる請求項1〜4のいずれかに記載の光発電システム。  The reflector has an A plane inclined by 40 ° to 50 ° with respect to the normal direction of the incident surface, and an inclination of 40 ° to 50 ° in a direction opposite to the A plane with respect to the normal direction of the incident surface. The photovoltaic system according to any one of claims 1 to 4, further comprising a B-plane. A面とB面の間に、入射面と平行な面を有してなる請求項5〜7のいずれかに記載の光発電システム。  The photovoltaic system in any one of Claims 5-7 which has a surface parallel to an entrance plane between A surface and B surface. 上記導光体が複数の導光体の集合体であり、該複数の導光体は、隣接する2枚の導光体の相接する面に相補的な構造の反射体が設けられてなる請求項1〜8のいずれかに記載の光発電システム。  The light guide is an aggregate of a plurality of light guides, and the plurality of light guides are provided with a reflector having a complementary structure on a surface where two adjacent light guides meet. The photovoltaic system in any one of Claims 1-8.
JP2003177521A 2003-06-23 2003-06-23 Concentrating photovoltaic power generation system Pending JP2007027150A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2003177521A JP2007027150A (en) 2003-06-23 2003-06-23 Concentrating photovoltaic power generation system
TW093117882A TW200510868A (en) 2003-06-23 2004-06-21 Photoelectric system
PCT/JP2004/009233 WO2004114418A1 (en) 2003-06-23 2004-06-23 Concentrating photovoltaic power generation system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003177521A JP2007027150A (en) 2003-06-23 2003-06-23 Concentrating photovoltaic power generation system

Publications (1)

Publication Number Publication Date
JP2007027150A true JP2007027150A (en) 2007-02-01

Family

ID=33534960

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003177521A Pending JP2007027150A (en) 2003-06-23 2003-06-23 Concentrating photovoltaic power generation system

Country Status (3)

Country Link
JP (1) JP2007027150A (en)
TW (1) TW200510868A (en)
WO (1) WO2004114418A1 (en)

Cited By (72)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009063416A2 (en) * 2007-11-13 2009-05-22 Koninklijke Philips Electronics, N.V. Thin and efficient collecting optics for solar system
WO2010033632A2 (en) * 2008-09-18 2010-03-25 Qualcomm Mems Technologies, Inc. Increasing the angular range of light collection in solar collectors/concentrators
JP2010141297A (en) * 2008-11-14 2010-06-24 Nippon Leiz Co Ltd Light guide, photoelectric converter, and flat surface photoelectric conversion device
JP2010524214A (en) * 2007-04-05 2010-07-15 コミッサリア ア レネルジー アトミーク エ オ ゼネルジ ザルタナテイヴ Thin flat concentrator
JP2011503902A (en) * 2007-11-16 2011-01-27 クォルコム・メムズ・テクノロジーズ・インコーポレーテッド Thin film solar concentrator / collector
US7948671B2 (en) 2004-09-27 2011-05-24 Qualcomm Mems Technologies, Inc. Apparatus and method for reducing slippage between structures in an interferometric modulator
WO2011074295A1 (en) * 2009-12-17 2011-06-23 シャープ株式会社 Electronic device
US7982700B2 (en) 2004-09-27 2011-07-19 Qualcomm Mems Technologies, Inc. Conductive bus structure for interferometric modulator array
US7999993B2 (en) 2004-09-27 2011-08-16 Qualcomm Mems Technologies, Inc. Reflective display device having viewable display on both sides
KR101057790B1 (en) * 2009-02-03 2011-08-19 테라웨이브 주식회사 Concentrating solar power module
US8008736B2 (en) 2004-09-27 2011-08-30 Qualcomm Mems Technologies, Inc. Analog interferometric modulator device
US8023167B2 (en) 2008-06-25 2011-09-20 Qualcomm Mems Technologies, Inc. Backlight displays
WO2011122220A1 (en) * 2010-03-30 2011-10-06 シャープ株式会社 Solar cell module and solar photovoltaic device
US8035883B2 (en) 2004-09-27 2011-10-11 Qualcomm Mems Technologies, Inc. Device having a conductive light absorbing mask and method for fabricating same
US8045252B2 (en) 2004-02-03 2011-10-25 Qualcomm Mems Technologies, Inc. Spatial light modulator with integrated optical compensation structure
US8045256B2 (en) 2004-09-27 2011-10-25 Qualcomm Mems Technologies, Inc. Method and device for compensating for color shift as a function of angle of view
US8054527B2 (en) 2007-10-23 2011-11-08 Qualcomm Mems Technologies, Inc. Adjustably transmissive MEMS-based devices
CN102239569A (en) * 2008-11-03 2011-11-09 康宁股份有限公司 Thin film semiconductor photovoltaic device
US8058549B2 (en) 2007-10-19 2011-11-15 Qualcomm Mems Technologies, Inc. Photovoltaic devices with integrated color interferometric film stacks
US8061882B2 (en) 2006-10-06 2011-11-22 Qualcomm Mems Technologies, Inc. Illumination device with built-in light coupler
US8068710B2 (en) 2007-12-07 2011-11-29 Qualcomm Mems Technologies, Inc. Decoupled holographic film and diffuser
US8068269B2 (en) 2008-03-27 2011-11-29 Qualcomm Mems Technologies, Inc. Microelectromechanical device with spacing layer
US8081373B2 (en) 2007-07-31 2011-12-20 Qualcomm Mems Technologies, Inc. Devices and methods for enhancing color shift of interferometric modulators
US8081370B2 (en) 2004-09-27 2011-12-20 Qualcomm Mems Technologies, Inc. Support structures for electromechanical systems and methods of fabricating the same
US8098416B2 (en) 2006-06-01 2012-01-17 Qualcomm Mems Technologies, Inc. Analog interferometric modulator device with electrostatic actuation and release
US8098417B2 (en) 2007-05-09 2012-01-17 Qualcomm Mems Technologies, Inc. Electromechanical system having a dielectric movable membrane
JP2012501556A (en) * 2008-09-02 2012-01-19 クォルコム・メムズ・テクノロジーズ・インコーポレーテッド Light collection device having prismatic light turning features
US8102590B2 (en) 2006-06-30 2012-01-24 Qualcomm Mems Technologies, Inc. Method of manufacturing MEMS devices providing air gap control
WO2012011307A1 (en) * 2010-07-22 2012-01-26 シャープ株式会社 Solar cell module and solar photovoltaic power generation device
WO2012014539A1 (en) * 2010-07-26 2012-02-02 シャープ株式会社 Solar cell module and solar power generation device
US8115987B2 (en) 2007-02-01 2012-02-14 Qualcomm Mems Technologies, Inc. Modulating the intensity of light from an interferometric reflector
US8164821B2 (en) 2008-02-22 2012-04-24 Qualcomm Mems Technologies, Inc. Microelectromechanical device with thermal expansion balancing layer or stiffening layer
US8169688B2 (en) 2004-09-27 2012-05-01 Qualcomm Mems Technologies, Inc. System and method of reducing color shift in a display
US8174752B2 (en) 2008-03-07 2012-05-08 Qualcomm Mems Technologies, Inc. Interferometric modulator in transmission mode
WO2012077661A1 (en) * 2010-12-07 2012-06-14 シャープ株式会社 Solar power generator
US8213075B2 (en) 2004-09-27 2012-07-03 Qualcomm Mems Technologies, Inc. Method and device for multistate interferometric light modulation
US8270062B2 (en) 2009-09-17 2012-09-18 Qualcomm Mems Technologies, Inc. Display device with at least one movable stop element
US8270056B2 (en) 2009-03-23 2012-09-18 Qualcomm Mems Technologies, Inc. Display device with openings between sub-pixels and method of making same
WO2012128339A1 (en) * 2011-03-24 2012-09-27 シャープ株式会社 Solar cell module, solar photovoltaic power generation device, and method for installing solar cell module
US8289613B2 (en) 2004-09-27 2012-10-16 Qualcomm Mems Technologies, Inc. Electromechanical device with optical function separated from mechanical and electrical function
WO2012165899A2 (en) * 2011-06-03 2012-12-06 주식회사 리온아이피엘 High light concentration solar cell module
JP2012531622A (en) * 2009-06-24 2012-12-10 ユニバーシティー オブ ロチェスター Dimple-type light collection and collection system, components and methods thereof
JP2012531623A (en) * 2009-06-24 2012-12-10 ユニバーシティー オブ ロチェスター Stepped light collection and collection system, components thereof, and methods
WO2013002093A1 (en) * 2011-06-27 2013-01-03 シャープ株式会社 Photovoltaic power generation device
JP2013011904A (en) * 2007-04-30 2013-01-17 Qualcomm Mems Technologies Inc Dual film light guide for illuminating displays
US8358266B2 (en) 2008-09-02 2013-01-22 Qualcomm Mems Technologies, Inc. Light turning device with prismatic light turning features
US8368997B2 (en) 2007-07-02 2013-02-05 Qualcomm Mems Technologies, Inc. Electromechanical device with optical function separated from mechanical and electrical function
US8368981B2 (en) 2006-10-10 2013-02-05 Qualcomm Mems Technologies, Inc. Display device with diffractive optics
US8405899B2 (en) 2004-09-27 2013-03-26 Qualcomm Mems Technologies, Inc Photonic MEMS and structures
US20130125955A1 (en) * 2010-06-02 2013-05-23 Sharp Kabushiki Kaisha Solar cell module, and solar photovoltaic device with same
US8488228B2 (en) 2009-09-28 2013-07-16 Qualcomm Mems Technologies, Inc. Interferometric display with interferometric reflector
JP2013543150A (en) * 2010-11-04 2013-11-28 バニヤン エナジー インコーポレイテッド Compact optical components for heat collection and lighting systems
US8659816B2 (en) 2011-04-25 2014-02-25 Qualcomm Mems Technologies, Inc. Mechanical layer and methods of making the same
US8736939B2 (en) 2011-11-04 2014-05-27 Qualcomm Mems Technologies, Inc. Matching layer thin-films for an electromechanical systems reflective display device
US8797628B2 (en) 2007-10-19 2014-08-05 Qualcomm Memstechnologies, Inc. Display with integrated photovoltaic device
US8797632B2 (en) 2010-08-17 2014-08-05 Qualcomm Mems Technologies, Inc. Actuation and calibration of charge neutral electrode of a display device
US8817357B2 (en) 2010-04-09 2014-08-26 Qualcomm Mems Technologies, Inc. Mechanical layer and methods of forming the same
US8872085B2 (en) 2006-10-06 2014-10-28 Qualcomm Mems Technologies, Inc. Display device having front illuminator with turning features
US8902484B2 (en) 2010-12-15 2014-12-02 Qualcomm Mems Technologies, Inc. Holographic brightness enhancement film
US8941631B2 (en) 2007-11-16 2015-01-27 Qualcomm Mems Technologies, Inc. Simultaneous light collection and illumination on an active display
US8963159B2 (en) 2011-04-04 2015-02-24 Qualcomm Mems Technologies, Inc. Pixel via and methods of forming the same
US8971675B2 (en) 2006-01-13 2015-03-03 Qualcomm Mems Technologies, Inc. Interconnect structure for MEMS device
US8979349B2 (en) 2009-05-29 2015-03-17 Qualcomm Mems Technologies, Inc. Illumination devices and methods of fabrication thereof
US9019183B2 (en) 2006-10-06 2015-04-28 Qualcomm Mems Technologies, Inc. Optical loss structure integrated in an illumination apparatus
US9025235B2 (en) 2002-12-25 2015-05-05 Qualcomm Mems Technologies, Inc. Optical interference type of color display having optical diffusion layer between substrate and electrode
US9036963B2 (en) 2009-06-24 2015-05-19 University Of Rochester Light collecting and emitting apparatus, method, and applications
US9057872B2 (en) 2010-08-31 2015-06-16 Qualcomm Mems Technologies, Inc. Dielectric enhanced mirror for IMOD display
US9134527B2 (en) 2011-04-04 2015-09-15 Qualcomm Mems Technologies, Inc. Pixel via and methods of forming the same
WO2015173924A1 (en) * 2014-05-15 2015-11-19 一戸 照章 Vertical solar cell unit
US9246038B2 (en) 2009-06-24 2016-01-26 University Of Rochester Light collecting and emitting apparatus, method, and applications
EP2430741A4 (en) * 2009-05-14 2017-06-21 Sunboost Ltd. Light collection system and method
JP2018151626A (en) * 2013-01-21 2018-09-27 合同会社 Holomedia Light-concentrating mechanism, photovoltaic power generation device, and window structure

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7508571B2 (en) 2004-09-27 2009-03-24 Idc, Llc Optical films for controlling angular characteristics of displays
TW200720589A (en) * 2005-09-19 2007-06-01 Koninkl Philips Electronics Nv Luminaire with stack of flat panel light guides
US8107155B2 (en) 2006-10-06 2012-01-31 Qualcomm Mems Technologies, Inc. System and method for reducing visual artifacts in displays
US9337373B2 (en) 2007-05-01 2016-05-10 Morgan Solar Inc. Light-guide solar module, method of fabrication thereof, and panel made therefrom
US7873257B2 (en) 2007-05-01 2011-01-18 Morgan Solar Inc. Light-guide solar panel and method of fabrication thereof
US9040808B2 (en) 2007-05-01 2015-05-26 Morgan Solar Inc. Light-guide solar panel and method of fabrication thereof
WO2009035986A2 (en) * 2007-09-10 2009-03-19 Banyan Energy, Inc Compact optics for concentration, aggregation and illumination of light energy
CN101946334B (en) * 2008-02-12 2013-08-21 高通Mems科技公司 Dual layer thin film holographic solar concentrator/collector
US8654061B2 (en) 2008-02-12 2014-02-18 Qualcomm Mems Technologies, Inc. Integrated front light solution
US8049951B2 (en) 2008-04-15 2011-11-01 Qualcomm Mems Technologies, Inc. Light with bi-directional propagation
JP5451754B2 (en) 2008-05-28 2014-03-26 クォルコム・メムズ・テクノロジーズ・インコーポレーテッド Optical waveguide panel having turning microstructure, method for manufacturing the same, and display device
US9274266B2 (en) * 2008-09-19 2016-03-01 The Regents Of The University Of California System and method for solar energy capture and related method of manufacturing
AT507530B1 (en) * 2008-11-04 2013-05-15 Al Systems Gmbh LIGHTING ELEMENT FOR A LIGHTING DEVICE AND LIGHTING DEVICE
TWI382551B (en) * 2008-11-06 2013-01-11 Ind Tech Res Inst Solar concentrating module
US20120167951A1 (en) * 2009-11-18 2012-07-05 Sharp Kavushiki Kaisha Solar cell module, solar power generating apparatus, and window
WO2012050059A1 (en) * 2010-10-15 2012-04-19 シャープ株式会社 Solar cell module and solar power generation device
WO2012053379A1 (en) * 2010-10-18 2012-04-26 シャープ株式会社 Solar battery module and solar power generator
CN103238091A (en) 2010-10-28 2013-08-07 榕树能量公司 Redirecting optics for concentration and illumination systems
WO2012066935A1 (en) * 2010-11-16 2012-05-24 シャープ株式会社 Solar cell module and solar power generation device
WO2012070533A1 (en) * 2010-11-24 2012-05-31 シャープ株式会社 Solar cell module and photovolatic power generation device
US8885995B2 (en) 2011-02-07 2014-11-11 Morgan Solar Inc. Light-guide solar energy concentrator
WO2012115248A1 (en) * 2011-02-25 2012-08-30 シャープ株式会社 Solar cell module and solar generator device
US8928988B1 (en) 2011-04-01 2015-01-06 The Regents Of The University Of California Monocentric imaging
JP2014132601A (en) * 2011-04-20 2014-07-17 Sharp Corp Solar cell module and photovoltaic generation device
JP2014232739A (en) * 2011-09-26 2014-12-11 シャープ株式会社 Photovoltaic power generation device
WO2013069785A1 (en) * 2011-11-11 2013-05-16 シャープ株式会社 Light guide body, solar cell module, and photovoltaic power generation device
US8328403B1 (en) 2012-03-21 2012-12-11 Morgan Solar Inc. Light guide illumination devices
CN105823006A (en) * 2016-05-20 2016-08-03 常州大学 CPC light condensation light guide lighting ventilation system

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3185719B2 (en) * 1997-07-25 2001-07-11 トヨタ自動車株式会社 Solar concentrator
JPH11340493A (en) * 1998-05-22 1999-12-10 Toyota Motor Corp Sunlight condensing device
JP2000231803A (en) * 1999-02-09 2000-08-22 Nobuyuki Higuchi Lighting system utilizing solar light power generation

Cited By (95)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9025235B2 (en) 2002-12-25 2015-05-05 Qualcomm Mems Technologies, Inc. Optical interference type of color display having optical diffusion layer between substrate and electrode
US8045252B2 (en) 2004-02-03 2011-10-25 Qualcomm Mems Technologies, Inc. Spatial light modulator with integrated optical compensation structure
US9019590B2 (en) 2004-02-03 2015-04-28 Qualcomm Mems Technologies, Inc. Spatial light modulator with integrated optical compensation structure
US8111445B2 (en) 2004-02-03 2012-02-07 Qualcomm Mems Technologies, Inc. Spatial light modulator with integrated optical compensation structure
US9086564B2 (en) 2004-09-27 2015-07-21 Qualcomm Mems Technologies, Inc. Conductive bus structure for interferometric modulator array
US8035883B2 (en) 2004-09-27 2011-10-11 Qualcomm Mems Technologies, Inc. Device having a conductive light absorbing mask and method for fabricating same
US8169688B2 (en) 2004-09-27 2012-05-01 Qualcomm Mems Technologies, Inc. System and method of reducing color shift in a display
US7948671B2 (en) 2004-09-27 2011-05-24 Qualcomm Mems Technologies, Inc. Apparatus and method for reducing slippage between structures in an interferometric modulator
US8638491B2 (en) 2004-09-27 2014-01-28 Qualcomm Mems Technologies, Inc. Device having a conductive light absorbing mask and method for fabricating same
US7982700B2 (en) 2004-09-27 2011-07-19 Qualcomm Mems Technologies, Inc. Conductive bus structure for interferometric modulator array
US7999993B2 (en) 2004-09-27 2011-08-16 Qualcomm Mems Technologies, Inc. Reflective display device having viewable display on both sides
US8243360B2 (en) 2004-09-27 2012-08-14 Qualcomm Mems Technologies, Inc. Device having a conductive light absorbing mask and method for fabricating same
US8008736B2 (en) 2004-09-27 2011-08-30 Qualcomm Mems Technologies, Inc. Analog interferometric modulator device
US8861071B2 (en) 2004-09-27 2014-10-14 Qualcomm Mems Technologies, Inc. Method and device for compensating for color shift as a function of angle of view
US8970939B2 (en) 2004-09-27 2015-03-03 Qualcomm Mems Technologies, Inc. Method and device for multistate interferometric light modulation
US8081370B2 (en) 2004-09-27 2011-12-20 Qualcomm Mems Technologies, Inc. Support structures for electromechanical systems and methods of fabricating the same
US8289613B2 (en) 2004-09-27 2012-10-16 Qualcomm Mems Technologies, Inc. Electromechanical device with optical function separated from mechanical and electrical function
US8045256B2 (en) 2004-09-27 2011-10-25 Qualcomm Mems Technologies, Inc. Method and device for compensating for color shift as a function of angle of view
US8405899B2 (en) 2004-09-27 2013-03-26 Qualcomm Mems Technologies, Inc Photonic MEMS and structures
US8390547B2 (en) 2004-09-27 2013-03-05 Qualcomm Mems Technologies, Inc. Conductive bus structure for interferometric modulator array
US9001412B2 (en) 2004-09-27 2015-04-07 Qualcomm Mems Technologies, Inc. Electromechanical device with optical function separated from mechanical and electrical function
US9097885B2 (en) 2004-09-27 2015-08-04 Qualcomm Mems Technologies, Inc. Device having a conductive light absorbing mask and method for fabricating same
US8213075B2 (en) 2004-09-27 2012-07-03 Qualcomm Mems Technologies, Inc. Method and device for multistate interferometric light modulation
US8971675B2 (en) 2006-01-13 2015-03-03 Qualcomm Mems Technologies, Inc. Interconnect structure for MEMS device
US8098416B2 (en) 2006-06-01 2012-01-17 Qualcomm Mems Technologies, Inc. Analog interferometric modulator device with electrostatic actuation and release
US8102590B2 (en) 2006-06-30 2012-01-24 Qualcomm Mems Technologies, Inc. Method of manufacturing MEMS devices providing air gap control
US8964280B2 (en) 2006-06-30 2015-02-24 Qualcomm Mems Technologies, Inc. Method of manufacturing MEMS devices providing air gap control
US8061882B2 (en) 2006-10-06 2011-11-22 Qualcomm Mems Technologies, Inc. Illumination device with built-in light coupler
US9019183B2 (en) 2006-10-06 2015-04-28 Qualcomm Mems Technologies, Inc. Optical loss structure integrated in an illumination apparatus
US8872085B2 (en) 2006-10-06 2014-10-28 Qualcomm Mems Technologies, Inc. Display device having front illuminator with turning features
US8368981B2 (en) 2006-10-10 2013-02-05 Qualcomm Mems Technologies, Inc. Display device with diffractive optics
US8115987B2 (en) 2007-02-01 2012-02-14 Qualcomm Mems Technologies, Inc. Modulating the intensity of light from an interferometric reflector
JP2010524214A (en) * 2007-04-05 2010-07-15 コミッサリア ア レネルジー アトミーク エ オ ゼネルジ ザルタナテイヴ Thin flat concentrator
JP2013011904A (en) * 2007-04-30 2013-01-17 Qualcomm Mems Technologies Inc Dual film light guide for illuminating displays
US8098417B2 (en) 2007-05-09 2012-01-17 Qualcomm Mems Technologies, Inc. Electromechanical system having a dielectric movable membrane
US8368997B2 (en) 2007-07-02 2013-02-05 Qualcomm Mems Technologies, Inc. Electromechanical device with optical function separated from mechanical and electrical function
US8081373B2 (en) 2007-07-31 2011-12-20 Qualcomm Mems Technologies, Inc. Devices and methods for enhancing color shift of interferometric modulators
US8736949B2 (en) 2007-07-31 2014-05-27 Qualcomm Mems Technologies, Inc. Devices and methods for enhancing color shift of interferometric modulators
US8058549B2 (en) 2007-10-19 2011-11-15 Qualcomm Mems Technologies, Inc. Photovoltaic devices with integrated color interferometric film stacks
US8797628B2 (en) 2007-10-19 2014-08-05 Qualcomm Memstechnologies, Inc. Display with integrated photovoltaic device
US8054527B2 (en) 2007-10-23 2011-11-08 Qualcomm Mems Technologies, Inc. Adjustably transmissive MEMS-based devices
WO2009063416A3 (en) * 2007-11-13 2009-08-06 Koninkl Philips Electronics Nv Thin and efficient collecting optics for solar system
WO2009063416A2 (en) * 2007-11-13 2009-05-22 Koninklijke Philips Electronics, N.V. Thin and efficient collecting optics for solar system
US8941631B2 (en) 2007-11-16 2015-01-27 Qualcomm Mems Technologies, Inc. Simultaneous light collection and illumination on an active display
JP2011503902A (en) * 2007-11-16 2011-01-27 クォルコム・メムズ・テクノロジーズ・インコーポレーテッド Thin film solar concentrator / collector
JP2013061149A (en) * 2007-11-16 2013-04-04 Qualcomm Mems Technologies Inc Thin film solar concentrator/collector
US8798425B2 (en) 2007-12-07 2014-08-05 Qualcomm Mems Technologies, Inc. Decoupled holographic film and diffuser
US8068710B2 (en) 2007-12-07 2011-11-29 Qualcomm Mems Technologies, Inc. Decoupled holographic film and diffuser
US8164821B2 (en) 2008-02-22 2012-04-24 Qualcomm Mems Technologies, Inc. Microelectromechanical device with thermal expansion balancing layer or stiffening layer
US8693084B2 (en) 2008-03-07 2014-04-08 Qualcomm Mems Technologies, Inc. Interferometric modulator in transmission mode
US8174752B2 (en) 2008-03-07 2012-05-08 Qualcomm Mems Technologies, Inc. Interferometric modulator in transmission mode
US8068269B2 (en) 2008-03-27 2011-11-29 Qualcomm Mems Technologies, Inc. Microelectromechanical device with spacing layer
US8023167B2 (en) 2008-06-25 2011-09-20 Qualcomm Mems Technologies, Inc. Backlight displays
US8358266B2 (en) 2008-09-02 2013-01-22 Qualcomm Mems Technologies, Inc. Light turning device with prismatic light turning features
JP2012501556A (en) * 2008-09-02 2012-01-19 クォルコム・メムズ・テクノロジーズ・インコーポレーテッド Light collection device having prismatic light turning features
WO2010033632A3 (en) * 2008-09-18 2010-12-23 Qualcomm Mems Technologies, Inc. Increasing the angular range of light collection in solar collectors/concentrators
WO2010033632A2 (en) * 2008-09-18 2010-03-25 Qualcomm Mems Technologies, Inc. Increasing the angular range of light collection in solar collectors/concentrators
JP2012503221A (en) * 2008-09-18 2012-02-02 クォルコム・メムズ・テクノロジーズ・インコーポレーテッド Increasing the angular range of light collection in solar collectors / collectors
CN102239569A (en) * 2008-11-03 2011-11-09 康宁股份有限公司 Thin film semiconductor photovoltaic device
JP2012507884A (en) * 2008-11-03 2012-03-29 コーニング インコーポレイテッド Thin film semiconductor photovoltaic device
JP2010141297A (en) * 2008-11-14 2010-06-24 Nippon Leiz Co Ltd Light guide, photoelectric converter, and flat surface photoelectric conversion device
KR101057790B1 (en) * 2009-02-03 2011-08-19 테라웨이브 주식회사 Concentrating solar power module
US8270056B2 (en) 2009-03-23 2012-09-18 Qualcomm Mems Technologies, Inc. Display device with openings between sub-pixels and method of making same
EP2430741A4 (en) * 2009-05-14 2017-06-21 Sunboost Ltd. Light collection system and method
US9121979B2 (en) 2009-05-29 2015-09-01 Qualcomm Mems Technologies, Inc. Illumination devices and methods of fabrication thereof
US8979349B2 (en) 2009-05-29 2015-03-17 Qualcomm Mems Technologies, Inc. Illumination devices and methods of fabrication thereof
JP2012531622A (en) * 2009-06-24 2012-12-10 ユニバーシティー オブ ロチェスター Dimple-type light collection and collection system, components and methods thereof
JP2012531623A (en) * 2009-06-24 2012-12-10 ユニバーシティー オブ ロチェスター Stepped light collection and collection system, components thereof, and methods
US9246038B2 (en) 2009-06-24 2016-01-26 University Of Rochester Light collecting and emitting apparatus, method, and applications
US9036963B2 (en) 2009-06-24 2015-05-19 University Of Rochester Light collecting and emitting apparatus, method, and applications
US8270062B2 (en) 2009-09-17 2012-09-18 Qualcomm Mems Technologies, Inc. Display device with at least one movable stop element
US8488228B2 (en) 2009-09-28 2013-07-16 Qualcomm Mems Technologies, Inc. Interferometric display with interferometric reflector
WO2011074295A1 (en) * 2009-12-17 2011-06-23 シャープ株式会社 Electronic device
WO2011122220A1 (en) * 2010-03-30 2011-10-06 シャープ株式会社 Solar cell module and solar photovoltaic device
US8817357B2 (en) 2010-04-09 2014-08-26 Qualcomm Mems Technologies, Inc. Mechanical layer and methods of forming the same
US20130125955A1 (en) * 2010-06-02 2013-05-23 Sharp Kabushiki Kaisha Solar cell module, and solar photovoltaic device with same
WO2012011307A1 (en) * 2010-07-22 2012-01-26 シャープ株式会社 Solar cell module and solar photovoltaic power generation device
WO2012014539A1 (en) * 2010-07-26 2012-02-02 シャープ株式会社 Solar cell module and solar power generation device
US8797632B2 (en) 2010-08-17 2014-08-05 Qualcomm Mems Technologies, Inc. Actuation and calibration of charge neutral electrode of a display device
US9057872B2 (en) 2010-08-31 2015-06-16 Qualcomm Mems Technologies, Inc. Dielectric enhanced mirror for IMOD display
JP2013543150A (en) * 2010-11-04 2013-11-28 バニヤン エナジー インコーポレイテッド Compact optical components for heat collection and lighting systems
WO2012077661A1 (en) * 2010-12-07 2012-06-14 シャープ株式会社 Solar power generator
US8902484B2 (en) 2010-12-15 2014-12-02 Qualcomm Mems Technologies, Inc. Holographic brightness enhancement film
WO2012128339A1 (en) * 2011-03-24 2012-09-27 シャープ株式会社 Solar cell module, solar photovoltaic power generation device, and method for installing solar cell module
US9134527B2 (en) 2011-04-04 2015-09-15 Qualcomm Mems Technologies, Inc. Pixel via and methods of forming the same
US8963159B2 (en) 2011-04-04 2015-02-24 Qualcomm Mems Technologies, Inc. Pixel via and methods of forming the same
US8659816B2 (en) 2011-04-25 2014-02-25 Qualcomm Mems Technologies, Inc. Mechanical layer and methods of making the same
WO2012165899A2 (en) * 2011-06-03 2012-12-06 주식회사 리온아이피엘 High light concentration solar cell module
WO2012165899A3 (en) * 2011-06-03 2013-03-28 주식회사 리온아이피엘 High light concentration solar cell module
KR101327211B1 (en) * 2011-06-03 2013-11-11 주식회사 리온아이피엘 High-concentrated photovoltaic module
WO2013002093A1 (en) * 2011-06-27 2013-01-03 シャープ株式会社 Photovoltaic power generation device
US9081188B2 (en) 2011-11-04 2015-07-14 Qualcomm Mems Technologies, Inc. Matching layer thin-films for an electromechanical systems reflective display device
US8736939B2 (en) 2011-11-04 2014-05-27 Qualcomm Mems Technologies, Inc. Matching layer thin-films for an electromechanical systems reflective display device
JP2018151626A (en) * 2013-01-21 2018-09-27 合同会社 Holomedia Light-concentrating mechanism, photovoltaic power generation device, and window structure
WO2015173924A1 (en) * 2014-05-15 2015-11-19 一戸 照章 Vertical solar cell unit

Also Published As

Publication number Publication date
WO2004114418A1 (en) 2004-12-29
TW200510868A (en) 2005-03-16

Similar Documents

Publication Publication Date Title
JP2007027150A (en) Concentrating photovoltaic power generation system
US20240027675A1 (en) Thin and flexible edge-lit waveguide illumination systems with complex surface topologies and light converting properties
US7160522B2 (en) Device for concentrating or collimating radiant energy
US7672549B2 (en) Solar energy concentrator
US8498505B2 (en) Dimpled light collection and concentration system, components thereof, and methods
US8885995B2 (en) Light-guide solar energy concentrator
JP2012531623A (en) Stepped light collection and collection system, components thereof, and methods
CN103201657A (en) Compact optics for concentration and illumination systems
JP2000147262A (en) Converging device and photovoltaic power generation system utilizing the device
US8749898B2 (en) Stepped flow-line concentrators and collimators
KR20080038405A (en) Fresnel lens
JP2013526786A (en) Light-emitting solar condensing system
US8519325B1 (en) Optical radiation concentrator
JPH07151565A (en) Photoelectric encoder
US20160284910A1 (en) Optical concentrator/diffuser using graded index waveguide
WO2013058381A1 (en) Optical condenser device, optical power generation device and photothermal conversion device
JPH11340493A (en) Sunlight condensing device
JP3185719B2 (en) Solar concentrator
JPH1127968A (en) Power generation system
WO2015098209A1 (en) Light condensing optical element and light condensing device provided with same
JP2014013306A (en) Light condensing element and solar battery system
JP2011059323A (en) Condensing module and condensing unit using the same
KR102188580B1 (en) Apparatus and device for generating solar power based on functional waveguide structure and solar window including the same
WO2023151506A1 (en) Photoelectric detection element, image sensor and electronic device
JP2009264615A (en) Solar light collector