JP2009264615A - Solar light collector - Google Patents

Solar light collector Download PDF

Info

Publication number
JP2009264615A
JP2009264615A JP2008111920A JP2008111920A JP2009264615A JP 2009264615 A JP2009264615 A JP 2009264615A JP 2008111920 A JP2008111920 A JP 2008111920A JP 2008111920 A JP2008111920 A JP 2008111920A JP 2009264615 A JP2009264615 A JP 2009264615A
Authority
JP
Japan
Prior art keywords
section
incident
light
substantially parabolic
cross
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008111920A
Other languages
Japanese (ja)
Inventor
Hisanao Maruyama
久直 丸山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Press Kogyo Co Ltd
Original Assignee
Press Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Press Kogyo Co Ltd filed Critical Press Kogyo Co Ltd
Priority to JP2008111920A priority Critical patent/JP2009264615A/en
Publication of JP2009264615A publication Critical patent/JP2009264615A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S23/00Arrangements for concentrating solar-rays for solar heat collectors
    • F24S23/70Arrangements for concentrating solar-rays for solar heat collectors with reflectors
    • F24S23/80Arrangements for concentrating solar-rays for solar heat collectors with reflectors having discontinuous faces
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S23/00Arrangements for concentrating solar-rays for solar heat collectors
    • F24S23/70Arrangements for concentrating solar-rays for solar heat collectors with reflectors
    • F24S23/71Arrangements for concentrating solar-rays for solar heat collectors with reflectors with parabolic reflective surfaces
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S23/00Arrangements for concentrating solar-rays for solar heat collectors
    • F24S23/70Arrangements for concentrating solar-rays for solar heat collectors with reflectors
    • F24S23/74Arrangements for concentrating solar-rays for solar heat collectors with reflectors with trough-shaped or cylindro-parabolic reflective surfaces
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers

Abstract

<P>PROBLEM TO BE SOLVED: To provide a solar light collector capable of being miniaturized by shortening a focal length. <P>SOLUTION: This solar light collector is provided with a collector 1 having a reflecting face formation layer 4 as a reflecting face 5 on one face of a transparent body of which one face has a cross-section of roughly parabolic shape and of which the other face opposite to the face is composed of a straight line or a curved line bulging in the direction separating from the roughly parabolic shape only at its peripheral section, and made of a transparent substance, and having a solar light incidence plane on the other face, the solar light from the incidence plane is reflected by the reflecting face, and the reflected light is refracted from the incidence plane and emitted to the external, thus a focal length of the emitted light can be shortened. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

この発明は、焦点距離を短縮して小型化しうる太陽光集光装置の改良に関する。   The present invention relates to an improvement in a solar light collecting device that can be reduced in size by shortening a focal length.

従来の反射板式太陽光集光装置は、特表平11−502602号に示すように略放物線断面の反射板15で太陽光を集光し、その焦点より後方に受光器20を配した構造(図8参照)が知られている。
しかし、受光面が太陽電池のように略平面形状である場合は、太陽入射光の進行方向に向かって反射面は受光面の後方に配置できないだけでなく、受光面の受光効率上さらに前方に配置しなければならない。
従って、反射板の大きさと、焦点距離の幾何学的関係から略焦点位置に配置された受光面までの距離が反射板の大きさの半分程度と比較的大きくなり、装置の厚さが直接集光式の太陽電池に比べて大きくなる、という問題があった。
これを防ぐには反射板の大きさを小さくし、小型のユニットを複数配置する方法が考えられるが、反射板の大きさを1m以下にしたとしても、受光器の高さが50cm程度は必要となり、これをさらに小さくするには小型の太陽電池セルを多数結線する必要が生じ、手間がかかり複雑化するため効率的でない。
一方、焦点距離を短くするためには、反射面に曲率の大きい略放物線断面を用いざるを得ず、一体に連続する略放物線断面の反射板ではその深さも長くなり大型化する。
因みに、前記のような焦点距離が反射板の直径の1/2程度の場合には、反射板の深さは焦点距離の1/2程度となり、反射板の大きさが1m程度の場合には、その深さは20cm以上となる。
これを短くするためには、図9に示すように反射板15を多数に分割し単位板16を略平面状に配置すればよい(特願2007−319010号参照)。
この場合、単位板16には光軸L10に近い部分と遠い部分の間に段差部17ができ、光軸から遠く光軸に対して法線の傾斜角の大きい反射面周辺部ほど段差部17は大きくなり、反射面から焦点に向かつて反射する反射光は前記法線の傾斜角の2倍傾斜するため、前記段差部17により一部がさえぎられてしまうという現象が生じる。
特表平11−502602号 特願2007−319010号
A conventional reflector-type solar concentrator collects sunlight with a reflector 15 having a substantially parabolic cross section as shown in JP-A-11-502602, and has a structure in which a light receiver 20 is arranged behind the focal point ( FIG. 8) is known.
However, when the light receiving surface has a substantially planar shape like a solar cell, the reflecting surface cannot be disposed behind the light receiving surface in the traveling direction of solar incident light, but further forward in view of the light receiving efficiency of the light receiving surface. Must be placed.
Accordingly, the distance from the geometrical relationship between the size of the reflecting plate and the focal length to the light receiving surface disposed at the substantially focal position is relatively large, about half the size of the reflecting plate, and the thickness of the apparatus is directly collected. There was a problem that it was larger than the optical solar cell.
To prevent this, a method of reducing the size of the reflector and arranging a plurality of small units is conceivable, but the height of the light receiver is required to be about 50 cm even if the size of the reflector is 1 m or less. In order to further reduce this, it is necessary to connect a large number of small solar cells, which is troublesome and complicated, and is not efficient.
On the other hand, in order to shorten the focal length, a substantially parabolic cross section having a large curvature must be used on the reflecting surface, and the reflector plate having a substantially parabolic cross section that is integrally continuous increases in depth and size.
Incidentally, when the focal length is about ½ of the diameter of the reflector, the depth of the reflector is about ½ of the focal length, and when the size of the reflector is about 1 m. The depth is 20 cm or more.
In order to shorten this, as shown in FIG. 9, the reflecting plate 15 may be divided into a large number and the unit plate 16 may be arranged in a substantially flat shape (see Japanese Patent Application No. 2007-31910).
In this case, the unit plate 16 has a stepped portion 17 between a portion close to and far from the optical axis L10, and the stepped portion 17 is closer to the periphery of the reflecting surface that is farther from the optical axis and has a larger normal angle to the optical axis. The reflected light that is reflected from the reflecting surface toward the focal point is inclined twice the inclination angle of the normal line, so that a part of the stepped portion 17 is interrupted.
Special table 11-115022 Japanese Patent Application No. 2007-31010

この発明は上記実情に鑑みてなされたもので、その主たる課題は、反射面の大きさに対して焦点距離を短く設定することができる構造が簡単な太陽光集光装置を提供することにある。
また、この発明では、反射光の集光率の大きい平坦な分割略放物線断面の反射面を有する太陽光集光装置を提供することにある。
The present invention has been made in view of the above circumstances, and a main problem thereof is to provide a solar condensing device having a simple structure capable of setting a focal length short with respect to the size of a reflecting surface. .
Another object of the present invention is to provide a solar light collecting device having a reflective surface with a flat divided substantially parabolic cross section with a high concentration of reflected light.

上記課題を解決するために、請求項1の発明では、
一方の面の断面が略放物線形状からなり、該一方の面と対峙する他方の面の断面が直線または周辺部のみ略放物線形状から離れる方向に膨らんだ曲線からなる透明体の前記一方の面に反射面を一体に設け、前記他方の面を太陽光の入射面とした集光器を設け、
入射面から入射した太陽光を上記反射面で反射させ、該反射光を前記入射面から屈折して外へ出射させることで、出射光の焦点距離を短縮してなることを特徴とする。
また、請求項2の発明では、
前記反射面が、略放物線形状の断面を複数に分割した単位面からなり、両端に配置された単位面の外端部間を結ぶ入射面の断面を直線状とし、
前記略放物線形状の断面で最下位となる単位面を除く各単位面を光軸と平行な面からなる段差部を介して前記最下位の単位面と並ぶように下方に変位して連結してなることを特徴とする。
更に、請求項3の発明では、
前記太陽光の入射面を平面とし、反射面の傾斜角を光軸から離れるに従って反射面の断面の略放物線形状の傾斜角より小さくしたことを特徴とする。
In order to solve the above problem, the invention of claim 1
A cross-section of one surface has a substantially parabolic shape, and a cross-section of the other surface facing the one surface is a straight line or a curved portion bulging in a direction away from the substantially parabolic shape only at the peripheral portion on the one surface of the transparent body. A reflector is provided integrally, and a condenser with the other surface as an incident surface of sunlight is provided.
The incident light is reflected by the reflecting surface, and the reflected light is refracted from the incident surface and emitted to the outside, thereby shortening the focal length of the emitted light.
In the invention of claim 2,
The reflection surface is composed of a unit surface obtained by dividing a substantially parabolic section into a plurality of sections, and a cross section of an incident surface connecting between outer end portions of unit surfaces arranged at both ends is linear,
Each unit surface excluding the lowest unit surface in the substantially parabolic section is displaced downward and connected so as to be aligned with the lowest unit surface through a step portion made of a plane parallel to the optical axis. It is characterized by becoming.
Furthermore, in the invention of claim 3,
The incident surface of sunlight is a flat surface, and the inclination angle of the reflection surface is made smaller than the inclination angle of the substantially parabolic shape of the cross section of the reflection surface as the distance from the optical axis increases.

この発明では、反射面で反射した太陽光が透明体の入射面から出射する際に透明な入射面によつて屈折するため、屈折のない場合に比べて大幅に焦点距離を短縮化でき、受光器を含めた集光装置の厚みないし高さを低減することができる。
これに伴い、太陽光集光装置の設置スペースやコストを節減できるだけでなく、反射面の形状精度が透明な物質により保持されて補強され、受光面への集光品質が安定し、地震や台風等の影響も少なくなる。
In this invention, since the sunlight reflected by the reflecting surface is refracted by the transparent incident surface when it is emitted from the incident surface of the transparent body, the focal length can be greatly shortened compared to the case where there is no refraction. The thickness or height of the light collecting device including the vessel can be reduced.
As a result, not only the installation space and cost of the solar concentrator can be saved, but the shape accuracy of the reflecting surface is maintained and reinforced by a transparent material, and the condensing quality on the light receiving surface is stabilized, resulting in earthquakes and typhoons. The influence of etc. also decreases.

この発明は、透明体の一面を入射面とし他面に反射面を設けて、入射した太陽光を反射させ、その反射光を更に入射面で屈曲させることで、焦点距離の短縮化または集光の効率化を実現した。   In the present invention, one surface of the transparent body is used as an incident surface, and a reflecting surface is provided on the other surface to reflect incident sunlight, and the reflected light is further bent at the incident surface, thereby shortening the focal length or collecting light. Realized efficiency improvement.

以下に、この発明の太陽光集光装置の好適な実施の形態について図面を参照しながら説明する。
太陽光集光装置が有する集光器1は、図1および図2に示すように、 一方の面2’の断面が略放物線形状からなり、該一方の面2’と対峙する他方の面3’の断面がほぼ直線形状からなる無垢の透明の物質で形成された透明体の前記一方の面2’に沿って反射面形成層4を設けて反射面5とし、前記他方の面3’を太陽光の入射面3とした構成からなっている。
Hereinafter, preferred embodiments of the solar light collecting device of the present invention will be described with reference to the drawings.
As shown in FIG. 1 and FIG. 2, the concentrator 1 included in the solar light concentrator has a cross section of one surface 2 ′ having a substantially parabolic shape, and the other surface 3 facing the one surface 2 ′. A reflecting surface forming layer 4 is provided along the one surface 2 'of the transparent body made of an innocuous transparent substance having a substantially straight cross-section, and the other surface 3' is formed as a reflecting surface 5. The solar light incident surface 3 is used.

反射面形成層4は、透明体の一方の面2’に反射材料を接合ないしコーティングするものでもよい。
また、本実施例では入射面3をほぼ直線状としたが、周辺部のみ略放物線形状から離れる方向に膨らんだ曲線としてもよい(図示省略)。
The reflective surface forming layer 4 may be formed by bonding or coating a reflective material to one surface 2 ′ of the transparent body.
In the present embodiment, the incident surface 3 is substantially linear, but only the peripheral portion may be a curved curve that swells away from the substantially parabolic shape (not shown).

集光器1では、太陽光が平坦な入射面3から入射し、この入射光L1が略放物線断面の反射面5で反射され、この反射光L2を前記入射面3から出射(放射)させる。
この反射光L2は、光軸部L0を除いて反射面5の傾斜角θ1とそれに等しい角度θ2の和、すなわちθ1の2倍で傾斜するが、出射光L3は光の入射面3に対して更に屈曲傾斜して放出される。
In the collector 1, sunlight is incident from the flat incident surface 3, the incident light L 1 is reflected by the reflecting surface 5 having a substantially parabolic cross section, and the reflected light L 2 is emitted (radiated) from the incident surface 3.
The reflected light L2 is inclined by the sum of the inclination angle θ1 of the reflecting surface 5 and the angle θ2 equal to that, that is, twice the angle θ1, except for the optical axis portion L0, but the outgoing light L3 is relative to the light incident surface 3. Further, it is discharged with a bending inclination.

すなわち、反射光L2が屈折なしで到達する焦点P1よりも反射面5側に近接する方に偏って屈折(θ3)して焦点P2に到達する。
前記平坦な入射面3から焦点P2までの距離h2は、透明体の屈折率によって異なる。
In other words, the reflected light L2 is refracted (θ3) in a direction closer to the reflecting surface 5 side than the focal point P1 that arrives without refraction, and reaches the focal point P2.
The distance h2 from the flat incident surface 3 to the focal point P2 varies depending on the refractive index of the transparent body.

透明体がガラスやプラスチックなどの通常のレンズ材料からなる場合、屈折率は約1.7程度となり、反射だけでその後に屈折しない従来構造の距離h1に比べて約40%ほど短縮させた距離h2とすることができる。
従って、焦点の近傍に配置する受光器(図示せず)の距離も40%ほど短くなるので小型化できる。
When the transparent body is made of a normal lens material such as glass or plastic, the refractive index is about 1.7, and the distance h2 is shortened by about 40% compared to the distance h1 of the conventional structure that is only reflected and is not refracted thereafter. It can be.
Accordingly, the distance of the light receiver (not shown) arranged in the vicinity of the focal point is also shortened by about 40%, so that the size can be reduced.

図1に示すように、上記反射面5が一連の略放物線断面からなる反射面で形成される場合には、透明体は凸レンズ状となり所定の厚みが必要となり、集光器1はそれに応じた形状、重量となる。   As shown in FIG. 1, when the reflecting surface 5 is formed of a reflecting surface having a series of substantially parabolic cross sections, the transparent body has a convex lens shape and a predetermined thickness is required. Shape and weight.

ここで、焦点距離を短縮する必要のない場合には、同じ集光効果を得るために反射面5の傾斜角を光軸から離れるに従って反射面の断面の略放物線形状の傾斜角より小さくすることができる。
同じ面積の反射面5の場合には、反射面5の深さ、即ち透明体の厚さは従来の半分程度で済む。
そのため、例えば集光器1の長さ(または直径)が1m程度の場合には深さ乃至厚さは10cm程度で済む。
Here, when it is not necessary to shorten the focal length, the inclination angle of the reflection surface 5 is made smaller than the inclination angle of the substantially parabolic shape of the cross section of the reflection surface as the distance from the optical axis is increased in order to obtain the same light collection effect. Can do.
In the case of the reflecting surface 5 having the same area, the depth of the reflecting surface 5, that is, the thickness of the transparent body is only about half that of the conventional one.
Therefore, for example, when the length (or diameter) of the condenser 1 is about 1 m, the depth or thickness may be about 10 cm.

上記実施例1では、反射面5の断面が連続した単一の略放物線形状からなり、入射面3が平坦面の場合を説明したが、この場合には反射面の周辺で反射光と屈折面の傾斜が大きくなるほど屈折の影響も大きくなる。   In the first embodiment, the case where the reflecting surface 5 has a continuous substantially parabolic shape and the incident surface 3 is a flat surface has been described. In this case, the reflected light and the refracting surface are formed around the reflecting surface. The greater the inclination of, the greater the influence of refraction.

焦点を光軸近傍の反射光と同じにするためには、周辺部の入射面を反射面の角度に近づけてふちを盛り上げるか、入射面を平面のままとし、反射面の周辺部を略放物線の傾斜角より小さくすればよい。
後者の場合には、反射面5の深さが浅くなった分、透明材料の厚さも薄くでき、材料費低減や軽量化の効果がある。
前者の場合には、反射面5の深さは変わらないが、入射面の縁を盛り上げる代わりに中央部を凹ませてもよく、後者と同様、透明材料の厚さを薄くすることができる。
In order to make the focal point the same as the reflected light near the optical axis, the peripheral incident surface is brought close to the angle of the reflective surface and the edge is raised, or the incident surface remains flat and the peripheral portion of the reflective surface is substantially parabolic. It may be smaller than the inclination angle.
In the latter case, the thickness of the transparent material can be reduced as the reflecting surface 5 becomes shallower, which has the effect of reducing the material cost and reducing the weight.
In the former case, the depth of the reflecting surface 5 does not change, but the central portion may be recessed instead of raising the edge of the incident surface, and the thickness of the transparent material can be reduced as in the latter case.

図3と図4または図7に示す太陽光集光装置の集光器1は、図9の従来例2に準じた構成として、反射面5を複数の単位面6で形成し、各単位面6の断面形状が分割された略放物線を直線に配置しなおして多面体とした形状からなっている。   The concentrator 1 of the solar light collecting device shown in FIG. 3 and FIG. 4 or FIG. 7 has a reflection surface 5 formed of a plurality of unit surfaces 6 as a configuration according to the conventional example 2 of FIG. 6 is formed into a polyhedron by rearranging the substantially parabola in which the cross-sectional shape of 6 is divided into straight lines.

この場合、各単位面6の断面の線分は均一な長さとしてもよいが、実施例2の集光器1では、各単位面6の断面の線分の長さD1、D2、D3・・を、反射面5の中央から端部側に向かって徐々に短くなるよう配置してあり、各単位面6の焦点における光束の断面積が、ほぼ受光器の受光面に等しくなるように設定することで、受光面の受光効率を向上させることができる。
その他の構成は前記実施例1と同様なので説明を省略する。
In this case, the line segments of the cross section of each unit surface 6 may have a uniform length. However, in the collector 1 of the second embodiment, the lengths D1, D2, D3,. Is arranged so that it gradually becomes shorter from the center of the reflecting surface 5 toward the end side, and the sectional area of the light beam at the focal point of each unit surface 6 is set to be substantially equal to the light receiving surface of the light receiver. As a result, the light receiving efficiency of the light receiving surface can be improved.
Since other configurations are the same as those of the first embodiment, description thereof is omitted.

次に、図5および図6に示す実施例3の集光器1は、前記実施例2の反射面5と同様に両端に配置された単位面6の外端部間を結ぶ入射面3の断面を直線状としているが、厚さを薄肉状にしている。   Next, the concentrator 1 of Example 3 shown in FIGS. 5 and 6 is similar to the reflective surface 5 of Example 2 in that the incident surface 3 connecting the outer end portions of the unit surfaces 6 arranged at both ends is provided. The cross section is straight, but the thickness is thin.

即ち、反射面5を構成する単位面6の最下位の単位面(説明の便宜上6’とする)を除く各単位面6を光軸と平行な面からなる段差部7を介して前記最下位の単位面6’とほぼ並ぶように下方位置に変位して連結してなり、略平盤状に配置している。
そして、前記段差部7の上端は入射面3より僅かな長さだけ離れた位置に設定することで、透明体の厚さを可及的に薄く且つ軽量化することができる。
That is, each unit surface 6 excluding the lowest unit surface of the unit surface 6 constituting the reflecting surface 5 (referred to as 6 'for convenience of explanation) passes through the stepped portion 7 formed of a surface parallel to the optical axis. The unit surface 6 'is displaced and connected to a lower position so as to be substantially aligned with the unit surface 6', and is arranged in a substantially flat plate shape.
And the upper end of the said level | step-difference part 7 can set the thickness of a transparent body as thin as possible and weight reduction by setting it in the position away only a little length from the entrance plane 3. FIG.

また同じ焦点距離であっても、図の右半分に比較のために示した屈折のない従来の反射板15を用いる場合に比べて、段差部7に当たって反射面として使用できないエリア(従来例の場合をE1、実施例3の場合をE2とする)を短縮化でき、反射光の集光効率を大幅に改善できることがわかる。   Further, even when the focal length is the same, an area that cannot be used as a reflecting surface by hitting the stepped portion 7 (in the case of the conventional example) compared to the case where the conventional reflecting plate 15 without refraction shown in the right half of the figure is used for comparison. Can be shortened, and the light collection efficiency of the reflected light can be greatly improved.

図6では、受光器10の受光面11を平面とした場合を例示したが、この発明では受光面の形状は特に限定されない。
例えば、図7に示したように受光器10が円筒形状であって、受光面11が湾曲面となるものであっても、同様の効果を奏することができる。
Although FIG. 6 illustrates the case where the light receiving surface 11 of the light receiver 10 is a flat surface, the shape of the light receiving surface is not particularly limited in the present invention.
For example, as shown in FIG. 7, even when the light receiver 10 has a cylindrical shape and the light receiving surface 11 is a curved surface, the same effect can be obtained.

集光器1の反射面は、前述のように、球面状や断面円弧状であってもよいし、あるいは多面体であってもよい。
更に、単位面は、中央を円形とし、反射面の端部に向かって徐々に拡径する同心の環状体を多数隙間無く組み合わせて構成してもよい(図示せず)。
As described above, the reflecting surface of the condenser 1 may have a spherical shape, a circular arc shape, or a polyhedron.
Furthermore, the unit surface may be configured by combining a plurality of concentric annular bodies having a circular center at the center and gradually increasing in diameter toward the end of the reflecting surface without any gap (not shown).

また、反射面は、略球面に限らず、断面の略放物線をそのまま奥行き方向に延長した略断面円弧形状の半円筒形状であってもよい(図7参照)。
その他、要するにこの発明の要旨を変更しない範囲で種々設計変更しうること勿論である。
Further, the reflecting surface is not limited to a substantially spherical surface, but may be a semi-cylindrical shape having a substantially cross-sectional arc shape in which a substantially parabolic cross-section is extended in the depth direction as it is (see FIG. 7).
In addition, it goes without saying that various design changes can be made without departing from the scope of the present invention.

太陽光集光装置の実施例1の集光器の断面を示す模式図である。It is a schematic diagram which shows the cross section of the collector of Example 1 of a sunlight condensing device. 図1の集光器の焦点距離の短縮化を説明する図である。It is a figure explaining shortening of the focal distance of the collector of FIG. 実施例2の集光器の断面を示す模式図である。FIG. 6 is a schematic diagram showing a cross section of a concentrator of Example 2. 図3の集光器の斜視図である。FIG. 4 is a perspective view of the light collector of FIG. 3. 左半分に実施例3の集光器の断面を示し、右半分に従来の反射板の断面を示した説明図である。It is explanatory drawing which showed the cross section of the collector of Example 3 in the left half, and showed the cross section of the conventional reflecting plate in the right half. 実施例3の集光器と受光器を示す斜視図である。It is a perspective view which shows the collector and light receiver of Example 3. 受光器の異なる実施例を示す斜視図である。It is a perspective view which shows the Example from which a light receiver differs. 集光器が反射板からなる従来例1の断面図である。It is sectional drawing of the prior art example 1 in which a collector | concentrator consists of a reflecting plate. 反射板が分割された単位面からなる従来例2の断面図である。It is sectional drawing of the prior art example 2 which consists of a unit surface where the reflecting plate was divided | segmented.

符号の説明Explanation of symbols

1 集光器
2’ 透明体の一方の面
3 入射面
3’ 透明体の他方の面
4 反射面形成層
5 反射面
6 単位面
7 段差部
10 受光器
11 受光面
DESCRIPTION OF SYMBOLS 1 Light collector 2 'One surface 3 of a transparent body Incident surface 3' The other surface 4 of a transparent body 4 Reflecting surface formation layer 5 Reflecting surface 6 Unit surface 7 Step part 10 Light receiver 11 Light receiving surface

Claims (3)

一方の面の断面が略放物線形状からなり、該一方の面と対峙する他方の面の断面が直線または周辺部のみ略放物線形状から離れる方向に膨らんだ曲線からなる透明体の前記一方の面に反射面を一体に設け、前記他方の面を太陽光の入射面とした集光器を設け、
入射面から入射した太陽光を上記反射面で反射させ、該反射光を前記入射面から屈折して外へ出射させることで、出射光の焦点距離を短縮してなることを特徴とする太陽光集光装置。
A cross-section of one surface has a substantially parabolic shape, and a cross-section of the other surface facing the one surface is a straight line or a curved portion bulging in a direction away from the substantially parabolic shape only at the peripheral portion on the one surface of the transparent body. A reflector is provided integrally, and a condenser with the other surface as an incident surface of sunlight is provided.
Sunlight incident from the incident surface is reflected by the reflecting surface, and the reflected light is refracted from the incident surface and emitted to the outside, thereby reducing the focal length of the emitted light. Concentrator.
反射面が、略放物線形状の断面を複数に分割した単位面からなり、両端に配置された単位面の外端部間を結ぶ入射面の断面を直線状とし、
前記略放物線形状の断面で最下位となる単位面を除く各単位面を光軸と平行な面からなる段差部を介して前記最下位の単位面と並ぶように下方に変位して連結してなることを特徴とする請求項1に記載の太陽光集光装置。
The reflecting surface is composed of a unit surface obtained by dividing a substantially parabolic section into a plurality of sections, and the section of the incident surface connecting between the outer ends of the unit surfaces arranged at both ends is linear,
Each unit surface excluding the lowest unit surface in the substantially parabolic section is displaced downward and connected so as to be aligned with the lowest unit surface through a step portion made of a plane parallel to the optical axis. The solar light collecting apparatus according to claim 1, wherein
太陽光の入射面を平面とし、反射面の傾斜角を光軸から離れるに従って反射面の断面の略放物線形状の傾斜角より小さくしたことを特徴とする請求項1または2に記載の太陽光集光装置。   The solar light collection according to claim 1 or 2, wherein the incident surface of sunlight is a flat surface, and the inclination angle of the reflection surface is made smaller than the inclination angle of the substantially parabolic shape of the cross section of the reflection surface as the distance from the optical axis increases. Optical device.
JP2008111920A 2008-04-22 2008-04-22 Solar light collector Pending JP2009264615A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008111920A JP2009264615A (en) 2008-04-22 2008-04-22 Solar light collector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008111920A JP2009264615A (en) 2008-04-22 2008-04-22 Solar light collector

Publications (1)

Publication Number Publication Date
JP2009264615A true JP2009264615A (en) 2009-11-12

Family

ID=41390681

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008111920A Pending JP2009264615A (en) 2008-04-22 2008-04-22 Solar light collector

Country Status (1)

Country Link
JP (1) JP2009264615A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102080859A (en) * 2010-12-01 2011-06-01 杨礼诚 Temperature and humidity adjustment system utilizing light energy

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102080859A (en) * 2010-12-01 2011-06-01 杨礼诚 Temperature and humidity adjustment system utilizing light energy
CN102080859B (en) * 2010-12-01 2013-04-10 杨礼诚 Temperature and humidity adjustment system utilizing light energy

Similar Documents

Publication Publication Date Title
US8498505B2 (en) Dimpled light collection and concentration system, components thereof, and methods
US7672549B2 (en) Solar energy concentrator
US8371078B2 (en) Sunlight collection system and apparatus
US8749898B2 (en) Stepped flow-line concentrators and collimators
US9246038B2 (en) Light collecting and emitting apparatus, method, and applications
US9036963B2 (en) Light collecting and emitting apparatus, method, and applications
US20100116336A1 (en) Light Collection and Concentration System
US20070014035A1 (en) Compact non-imaging light collector
KR20100072005A (en) Compact optics for concentration, aggregation and illumination of light energy
CN101995592B (en) Total reflection optical device
JP5054725B2 (en) Fresnel lens for solar system and solar system
JPH11340493A (en) Sunlight condensing device
KR101207852B1 (en) Planar type high concentration photovoltaic power generator module and sun tracker using this module
KR101007649B1 (en) Light guider having multiple channels
JP2009264615A (en) Solar light collector
TWI473279B (en) Solar concentrator
CN103809227A (en) Thin Fresnel lens with a short focal length
CN202929224U (en) Thin type Fresnel Lens with short focal length
KR101059759B1 (en) Prism Hybrid Solar Concentrator
JP2014134790A (en) Convergence device and convergence module
CN107023802A (en) A kind of efficient panel type natural light collector
JP2009139872A (en) Solar light collector
US10784391B2 (en) Multiple layer optics for light collecting and emitting apparatus
KR101059761B1 (en) Prism Solar Concentrator
KR101059760B1 (en) Lens integrated prism light guide and method for using that