WO2015098209A1 - Light condensing optical element and light condensing device provided with same - Google Patents

Light condensing optical element and light condensing device provided with same Download PDF

Info

Publication number
WO2015098209A1
WO2015098209A1 PCT/JP2014/074828 JP2014074828W WO2015098209A1 WO 2015098209 A1 WO2015098209 A1 WO 2015098209A1 JP 2014074828 W JP2014074828 W JP 2014074828W WO 2015098209 A1 WO2015098209 A1 WO 2015098209A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
optical element
light guide
condensing optical
condensing
Prior art date
Application number
PCT/JP2014/074828
Other languages
French (fr)
Japanese (ja)
Inventor
賢司 鎌田
敏行 三原
金高 健二
Original Assignee
独立行政法人産業技術総合研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 独立行政法人産業技術総合研究所 filed Critical 独立行政法人産業技術総合研究所
Priority to JP2015554605A priority Critical patent/JP6385959B2/en
Publication of WO2015098209A1 publication Critical patent/WO2015098209A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S11/00Non-electric lighting devices or systems using daylight
    • F21S11/002Non-electric lighting devices or systems using daylight characterised by the means for collecting or concentrating the sunlight, e.g. parabolic reflectors or Fresnel lenses
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V5/00Refractors for light sources
    • F21V5/02Refractors for light sources of prismatic shape
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • G02B5/0273Diffusing elements; Afocal elements characterized by the use
    • G02B5/0284Diffusing elements; Afocal elements characterized by the use used in reflection
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/04Prisms
    • G02B5/045Prism arrays
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/054Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means
    • H01L31/0543Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means comprising light concentrating means of the refractive type, e.g. lenses
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S23/00Arrangements for concentrating solar-rays for solar heat collectors
    • F24S23/10Prisms
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S23/00Arrangements for concentrating solar-rays for solar heat collectors
    • F24S23/12Light guides
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0075Arrangements of multiple light guides
    • G02B6/0076Stacked arrangements of multiple light guides of the same or different cross-sectional area
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/20Solar thermal
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/52PV systems with concentrators

Definitions

  • the present invention relates to a condensing optical element and a condensing device including the condensing optical element.
  • solar cells, solar water heaters, solar lighting, etc. that use solar energy effectively are known.
  • a plurality of lenses that collect sunlight a plurality of lenses that collect sunlight, an optical fiber that guides sunlight collected by the lens, an optical sensor that detects the position of the sun, and a detection result of the optical sensor.
  • a device equipped with a sun tracking mechanism for tracking the movement of sunlight by moving the lens is used.
  • the light collected by the lens is guided indoors through an optical fiber or the like, it is used as indoor illumination that is difficult for sunlight to reach (see, for example, Non-Patent Document 1). .
  • Non-Patent Document 1 In sunlight illumination as disclosed in Non-Patent Document 1, since the dependency on the incident angle of sunlight is high, the solar tracking that tracks the movement of the sun with the light incident surface directed toward the sun. A mechanism is needed. There is a problem that the solar light collecting device provided with the sun tracking mechanism is large. Therefore, such a solar light collecting device can be installed on the roof or roof of a building, but it is very difficult to install it on the wall surface of a building, for example, and there is a great restriction on the installation location. There is.
  • Patent Document 1 discloses a transmissive solar diffusion plate installed toward the sky, and sunlight transmitted through the solar diffusion plate installed on the lower surface of the solar diffusion plate, as a light receiving surface.
  • a multi total reflection surface type condensing prism that totally reflects by a plurality of inclined optical surfaces formed on the opposite surface and guides it in a desired direction, and condenses sunlight emitted from the multi total reflection surface type condensing prism
  • a solar condensing device comprising: a condensing condensing lens to be coupled; and an optical fiber for guiding sunlight condensed by the condensing condensing lens.
  • Patent Document 2 two light guides each having a prism-shaped portion intermittently formed on the bottom surface are disposed on the top surface, and the top and bottom surfaces of the light guide are flat.
  • a device that guides light toward an end face side by totally reflecting light on the surface is disclosed.
  • Patent Document 3 includes a light guide, a first layer provided on one surface side of the light guide, and a second layer provided on the other surface side.
  • the first layer and the second layer are made of a material having a light refractive index smaller than that of the light guide, and a concavo-convex structure is formed on the surface of the second layer opposite to the light guide side.
  • a light collecting structure is disclosed. In the light condensing structure of Patent Document 3, light can be guided to the end face side by total reflection of a planar portion in the light guide.
  • Patent Document 4 discloses a solar cell module including a light guide unit that collects light from the outside and a solar cell element that receives light emitted from the light guide unit.
  • the light guide unit has a refractive index lower than that of the first light guide, which is gradually increased as it approaches the end surface on the light guiding direction side, and is transmitted through the first light guide.
  • What is provided with the 2nd light guide which has a reflective surface in which the reflected light is reflected is disclosed.
  • JP 2012-225611 A JP 2013-611149 A JP 2012-99681 A JP 2012-156445 A
  • Patent Documents 1 to 4 For example, as in Patent Documents 1 to 4, light incident from above the condensing optical element is reflected in the condensing optical element to guide the light to a desired position, so that the solar tracking mechanism is not used every moment. It is conceivable to improve the light collection efficiency of light from the moving sun.
  • Patent Documents 1 to 3 do not discuss the light collection efficiency at the end surface (hereinafter referred to as “end surface light collection rate”), and Patent Document 4 also has one incident angle (35 °).
  • end-face arrival rate of light is only studied by simulation. As described above, in the present situation, there is insufficient study on a method for efficiently condensing light incident at various incident angles on the end face side.
  • the main object of the present invention is to provide a novel condensing optical element capable of achieving both high end-face condensing efficiency and downsizing, and a condensing device that does not require a sun tracking mechanism using the same.
  • the present inventor has intensively studied to solve the above problems.
  • it is a condensing optical element comprising a laminate in which a plurality of light guides are laminated on the main surface side, and the light guide has a plurality of prism structures continuous to at least one of the main surfaces, Condensing optical element in which external light incident from the main surface side of the light guide is refracted or reflected by the prism structure, propagates through the plurality of light guides, and is emitted from at least one end face of the light guide Found that it is possible to achieve both high end face condensing efficiency and miniaturization for light incident at various incident angles.
  • the present invention has been completed by further studies based on such findings.
  • a condensing optical element comprising a laminate in which a plurality of light guides are laminated on the main surface side,
  • the light guide has a plurality of prism structures continuous to at least one of the main surfaces, External light incident from the main surface side of the light guide is refracted or reflected by the prism structure, propagates through the plurality of light guides, and is emitted from at least one end surface of the light guide.
  • Condensing optical element Item 2.
  • the cross-sectional shape in the stacking direction of the prism structure is triangular. Item 2.
  • the condensing optical element according to Item 1 wherein in the cross-sectional shape of the prism structure, an apex angle protruding from the light guide is in a range of 45 ° to 120 °.
  • Item 3. The cross-sectional shape in the stacking direction of the prism structure is triangular.
  • the condensing optical element according to Item 1 or 2 wherein a cross-sectional shape of the prism structure is axisymmetric with respect to a stacking direction.
  • the cross-sectional shape in the stacking direction of the prism structure is triangular.
  • the condensing optical element according to Item 1 or 2 wherein a cross-sectional shape of the prism structure is non-axisymmetric with respect to a stacking direction.
  • Item 5. The condensing optical element according to any one of Items 1 to 4, wherein the prism structure is formed by a plurality of continuous V-shaped grooves formed on a main surface of the light guide.
  • Item 6. The condensing optical element according to any one of Items 1 to 5, wherein a pitch of the plurality of prism structures is in a range of 0.01 to 1 mm.
  • Item 7. Item 7. The condensing optical element according to any one of Items 1 to 6, wherein the thickness of each light guide is in the range of 0.1 to 10 mm.
  • Item 8. Item 8. The condensing optical element according to any one of Items 1 to 7, wherein the number of laminated light guides is in the range of 2 to 6.
  • Item 9. Item 9.
  • Item 10. Item 10. The condensing optical element according to any one of Items 1 to 9, wherein the prism structure is formed on substantially the entire main surface on at least one side of the light guide.
  • the light guide located on the outermost surface side where external light enters in the condensing optical element has the prism structure on the main surface on the outermost surface side, Item 11.
  • Item 12. Item 12.
  • Item 13 Item 13.
  • a condensing device comprising the condensing optical element according to any one of Items 1 to 12.
  • the condensing optical element can achieve both high end-face condensing efficiency and downsizing for light incident at various incident angles.
  • the condensing optical element can efficiently reflect external light to a desired position by reflecting light incident at various incident angles inside the condensing optical element. For this reason, the condensing apparatus provided with the said condensing optical element does not need to use a sun tracking mechanism, For example, you may install and use on the wall surface etc. of a building.
  • 10 is a graph showing the relationship between the incident angle of light and the end face condensing efficiency in the condensing optical element of Example 3. It is a graph which shows the relationship between the incident angle of the light in the condensing optical element of Example 4, and an end surface condensing efficiency.
  • 6 is a graph showing the relationship between the incident angle of light and the end face condensing efficiency in the condensing optical element of Comparative Example 1; It is a graph which shows the relationship between the incident angle of the light in the condensing optical element of Example 5, and an end surface condensing efficiency. It is a graph which shows the relationship between the end surface condensing efficiency and incident angle in the condensing optical element of the simulation 5 in this invention. It is a graph which shows the relationship between the end surface condensing efficiency and incident angle in the condensing optical element of the simulation 6 in this invention.
  • the condensing optical element of the present invention is a condensing optical element including a laminated body in which a plurality of light guides are laminated on the main surface side, and the light guide includes a plurality of continuous light beams on at least one of the main surfaces. External light that has a prism structure and is incident from the main surface side of the light guide is refracted or reflected by the prism structure, propagates through the plurality of light guides, and is emitted from at least one end face of the light guide. It is characterized by that.
  • the condensing optical element of the present invention and the condensing device provided with the same will be described in detail.
  • the condensing optical element 1 of the present invention includes a laminated body in which a plurality of light guides 2 are laminated on the principal surfaces 2a and 2b.
  • Each light guide 2 includes the main surfaces 2a and 2b, at least one end surface 2c and 2d from which light is emitted, and a width direction x (a direction in which a plurality of prism structures 2g described later are continuously formed). It is a transparent substrate having side surfaces 2e and 2f extending in the direction of the end surface from which light is emitted.
  • each light guide 2 has a rectangular shape when viewed from the stacking direction y.
  • a fan shape may be used. When the shape of each light guide 2 is a fan shape, light can be concentrated on the end surface having the smaller area, and strong light can be emitted from the small end surface.
  • each light guide (length in the stacking direction y) is not particularly limited, but is preferably 0.1 to 10 mm from the viewpoint of achieving both high end face light collection efficiency and downsizing of the light collection optical element. A range of about 0.2 to 3 mm is preferable.
  • each light guide is not particularly limited, but is preferably about 50 to 500 mm, more preferably from the viewpoint of achieving both high end face condensing efficiency and downsizing of the condensing optical element.
  • the range is about 50 to 150 mm.
  • ECE end face light collection efficiency
  • the optical power corresponds to a value obtained by integrating the light intensity (optical power density) over the entire area of the incident surface or the exit surface.
  • the length of each light guide in the depth direction z is not particularly limited. However, if the length in the depth direction is increased, the area of the end face from which light is emitted increases, so that the number of optical fibers 5 and the like for guiding outgoing light from the end face as shown in FIG. There is a problem that the optical element becomes large. For example, since the number of optical fibers is normally assumed to be about 10 to 200, the length in the depth direction z of each light guide is preferably in the range of about 10 to 200 mm. .
  • the light receiving area is 0.8 m 2 .
  • the total incident light flux to the condensing optical element is calculated as illuminance ⁇ light receiving area, and is 78400 lumens.
  • a condensing optical element having an end face condensing efficiency of 5% 5% of the total incident light flux is emitted from the end face, so the illuminance of light emitted from the end face is 3920 lumens.
  • the illuminance is calculated as light flux ⁇ irradiation area, and thus becomes 392 lux.
  • each light guide 2 has a plurality of continuous prism structures 2g on at least one of the main surfaces 2a and 2b.
  • the plurality of continuous prism structures 2g means that at least two, preferably three or more adjacent prism structures that refract or reflect light do not pass through a flat surface extending in the width direction x. More preferably, it refers to a structure in which four or more are formed.
  • the plurality of continuous prism structures may be formed only on one main surface of each light guide, or may be formed on both main surfaces.
  • the other main surface is preferably a flat surface (mirror surface).
  • the laminated structure of the condensing optical element of the present invention (1) a laminated structure in which only a light guide having a prism structure formed on only one main surface is laminated, and (2) both main surfaces. Laminated structure in which only light guides having prism structures are laminated, or (3) A light guide having prism structures formed only on one main surface and a light guide having prism structures formed on both main surfaces. A laminated structure in which both bodies are laminated is mentioned. Among these laminated structures, the laminated structure of the above (1) or (3) is preferable, and the laminated structure of the above (1) is more preferable from the viewpoint of simplification of the member used and cost reduction.
  • a prism structure is formed on the main surface on the incident surface side of the external light, and the main surface on the back surface side is a flat surface.
  • the light body is denoted as “F”
  • the light guide on which the principal surface on the incident surface side of the external light is a flat surface and the prism structure is formed on the principal surface on the back surface side is denoted as “B”.
  • a particularly preferable laminated structure from the viewpoint of achieving both high end-face condensing efficiency and downsizing of the optical optical element is as follows.
  • the condensing optical element of the present invention has two layers of light guides
  • a laminated structure of BF and a laminated structure of FB are preferable in order from the back side of the condensing optical element.
  • the laminated structure of BBF and the laminated structure of FFB are preferable in order from the back surface side of a condensing optical element.
  • a BBBF laminated structure and an FFFB laminated structure are preferable in this order from the back side of the condensing optical element.
  • a BBBBF stacked structure and a FFFFB stacked structure are preferable in this order from the back side of the condensing optical element.
  • a BBBBBBF stacked structure and a FFFFFB stacked structure are preferable in this order from the back side of the condensing optical element.
  • the laminated structure of “BBBF” refers to the main surface 2 a on the incident light side of the light guide 21 located on the outermost surface side where external light is incident among the plurality of light guides 2.
  • a prism structure 2g is formed (F), and a prism structure 2g is formed on the main surface 2b on the back side of the other light guides 22 to 24 (BBB). That is, the light guide located on the outermost surface side where external light is incident in the condensing optical element has the prism structure on the main surface on the outermost surface side, and the other light guide is the main surface on the outermost surface side.
  • One prism structure formed on the light guide is not particularly limited as long as the light incident on the light guide 2 is refracted or reflected, but the light collecting optical element has high end face light collection efficiency and downsizing. From the viewpoint of achieving both, a triangular prism structure is preferable. That is, for example, as shown in FIG. 3, the cross-sectional shape of the prism structure 2g in the stacking direction y and the width direction x (xy plane) of the light guide 2 is preferably triangular.
  • Such a prism structure can be provided by forming a plurality of continuous V-shaped grooves on the main surface 2a or 2b of the light guide 2 as shown in FIG.
  • a plurality of continuous V-shaped grooves are formed by a method of cutting a transparent base material of a light guide having a flat surface, a method of pouring a resin into a mold having a corresponding shape, and the like. Can do.
  • the V-shaped groove is formed substantially parallel (parallel) to the end faces 2 c and 2 d so as to extend in the depth direction z.
  • the V-shaped groove forming the prism structure is formed concentrically with the end surface side having the smaller area as the center. It is preferable that
  • the cross-sectional shape of the prism structure 2g in the stacking direction y and the width direction x (xy plane) is triangular
  • the cross-sectional shape of the prism structure 2g is line-symmetric with respect to the stacking direction y as shown in FIG. It may be non-axisymmetric as shown in FIG. 5, for example.
  • the apex angle a protruding from the light guide 2 in the cross-sectional shape of the prism structure 2g is not particularly limited.
  • the angle b is not particularly limited, but is preferably 0 ° to about 1/2 ° of the angle c, more preferably 0 ° to 0 °, from the viewpoint of achieving both high end-face condensing efficiency and downsizing.
  • a range of about 2 ° is mentioned.
  • the angle of the larger angle c is not particularly limited, but is preferably about 50 ° to 65 °, more preferably 58 ° to 62 ° from the viewpoint of achieving both high end surface light collection efficiency and downsizing. A range of degrees is mentioned.
  • the prism structure on at least one of the principal surfaces of the light guide 2 is provided on substantially the entire surface (entire surface) of at least one of the principal surfaces. It is preferable.
  • the plurality of prism structures may have the same shape or different shapes. Further, the size of the prism structure may be the same or different.
  • the pitch p (interval) of the plurality of prism structures is not particularly limited, but preferably from about 0.01 to 1 mm, more preferably from 0.05 to 1 mm, from the viewpoint of achieving both high end-face condensing efficiency and downsizing.
  • the range is about 0.15 mm.
  • the material constituting the light guide is not particularly limited as long as it has high transparency, and preferably includes a transparent organic material such as acrylic resin and polycarbonate resin, or a transparent inorganic material such as glass.
  • a transparent organic material such as acrylic resin and polycarbonate resin
  • a transparent inorganic material such as glass.
  • the term “transparent” means that at least visible light is transmitted.
  • the light guide for example, a light having a transmittance of 90% or more for light having a wavelength of about 360 nm to 800 nm is preferable.
  • the refractive index of the light guide is not particularly limited, but is preferably about 1.3 to 1.6, more preferably about 1.4 to 1.5.
  • light guides having substantially the same refractive index may be used, or light guides having different refractive indexes may be used in combination.
  • the light guides may be laminated so that they are in contact with each other, or at least a part of the light guides may be laminated. Air may exist between the light guides.
  • the light guides may be optically connected to each other. In that case, the optically connected light guides together constitute one light guide.
  • light may be emitted from one end face, or light may be emitted from both end faces.
  • a light reflector is disposed on the end face opposite to the end face from which the emitted light is emitted, and the light that has reached the opposite end face is reflected to the exit end face.
  • the high end face condensing of the condensing optical element 1 is performed. From the viewpoint of achieving both efficiency and miniaturization, it is preferable to emit light from the end face on the smaller angle b side.
  • the external light incident on the condensing optical element is not particularly limited and may be appropriately selected depending on the light to be collected, and preferably includes sunlight.
  • the light scatterer As a simple approach for changing the direction of the light beam, there is a method in which some kind of light scatterer is disposed on or inside the transparent substrate. By providing the light scatterer, a part of the incident light becomes less than the critical angle in the transparent base material and is easily guided to the end face. However, since the light scatterer itself hinders total reflection and becomes a loss when light is guided to the end surface within the transparent base material, the light scatterer is used as a condensing optical element having high end surface condensing efficiency. It is difficult.
  • the condensing optical element 1 of the present invention as shown in FIGS. 1 and 3, for example, the main part on the incident light side of the light guide 2 located on the outermost surface side of the condensing optical element 1 is used. From the surface 2a, external light enters at various incident angles and travels along various optical paths A. The incident light is repeatedly reflected and refracted by the prism structure 2g formed on the light guide 2 and the flat surface of the main surface opposite to the main surface on which the prism structure 2g is formed, so that the end surfaces 2c, 2d The light is guided in the direction, and light is emitted from the end faces 2c and 2d.
  • a part of incident light is refracted by the continuous prism structure formed in the light guide, and light reaching the flat surface of the light guide at a critical angle or more is 100% efficient by total reflection. Reflected. Thereafter, the light reaches the surface having the prism structure again and is transmitted or reflected, but a certain percentage of the light again travels toward the flat surface at an angle greater than the critical angle with respect to the flat surface.
  • light reaches the end face of the light guide. Light with an angle less than the critical angle is also reflected, although the reflectance is lower than that of total reflection, and is reflected again, and the traveling direction can be changed again by the prism structure. To reach.
  • the condensing optical element of the present invention since a plurality of light guides having such a specific structure are laminated, external light is repeatedly reflected, refracted, and transmitted within the light guide, and is emitted from the end face with high light collection efficiency. It is considered to be done.
  • the condensing optical element of the present invention it is more preferable that a prism structure is formed on the back side of the light guide.
  • a prism structure is formed on the back side of the light guide.
  • the incident light from the outside is normal incidence (stacking direction, incident angle 0 °) or close to it, a part of the incident light is known as a corner cube as in the optical path A shown at the left end of FIG. It returns to the incident side in the same manner as the reflection structure.
  • the remaining light enters the next light guide as in the central optical path A in FIG. 3, or travels through the light guide in the right optical path A in FIG.
  • the light incident on the next light guide repeats the same action.
  • the amount of light traveling to the end face increases when the number of light guides stacked is increased, but by further increasing the number of light guides stacked, the amount of light is increased from the back surface of the condensing optical element to the outside. Since the amount of emitted light decreases, the effect of improving the light collection efficiency accompanying the increase in the number of stacked light guides becomes gradually limited.
  • a light guide having a prism structure formed on the incident light side is laminated on the outermost surface side, and the other light guides are prisms on the back surface side. More preferably, a structure is formed. For example, as shown in FIG. 2, a prism structure is formed on the main surface 2a on the incident light side of the light guide 21 (first light guide 21) located on the outermost surface side, and the main surface on the back surface side.
  • the surface 2b is a flat surface, and the main surface on the incident light side of the light guide 22 (second-layer light guide 22) positioned immediately below is a flat surface, and a prism structure is formed on the main surface on the back surface side.
  • the condensing optical element 1 the light vertically incident on and transmitted through the first light guide 21 is bent in the traveling direction by the prism structure 2 g of the first light guide 21.
  • the prism structure 2 g of the first light guide 21 When the light enters the light guide 22, it is not perpendicular incidence.
  • the light incident on the second-layer light guide 22 is guided to the end face of the light guide 22.
  • the third and fourth light guides 23 and 24 are also two.
  • the same effect as that of the light guide 22 of the layer is exhibited, and a certain amount of light returned from the light guide closer to the rearmost surface is also guided to the end surface, and as a result, the light is guided to the end surface.
  • the total amount of light flux to be increased increases, and the return light from the resurface to the incident light direction can be suppressed.
  • the number of stacked light guides 2 increases, the light collection efficiency increases. For example, even if the number of stacked layers exceeds 6, the effect of improving the light collection efficiency is reduced, but the thickness is reduced. The disadvantage of becoming larger becomes larger.
  • the number of laminated light guides is not particularly limited as long as it is 2 or more, but is preferably 2 to 6 and more preferably 2 to 2 from the viewpoint of achieving both high end face condensing efficiency and downsizing of the condensing optical element. 5, more preferably 3 to 5, particularly preferably 4 to 5.
  • the condensing optical element of the present invention may be laminated with a light guide without a prism structure in addition to the light guide with the prism structure described above. From the viewpoint of achieving both high end surface light collection efficiency and miniaturization, it is preferable that only light guides having a prism structure are stacked.
  • the light collecting device of the present invention includes the above-described light collecting optical element.
  • the condensing device 10 includes a condensing optical element 1, a lens that condenses light emitted from the end face of the condensing optical element 1, or a function equivalent to this. And the optical fiber 5 that guides the light transmitted through the lens and the like.
  • a light reflection plate 3 is disposed on a main surface on the side where external light is incident and on a surface other than an end surface from which the light is emitted.
  • the sunlight can be guided into the room by the optical fiber 5.
  • a photoelectric conversion element can be arrange
  • sunlight can be guide
  • the condensing device of the present invention since the above-described condensing optical element having both high end-face condensing efficiency and downsizing is provided, light incident at various incident angles is contained inside the condensing optical element. The light can be reflected and efficiently guided to a desired position. For this reason, it is not necessary to use this solar tracking mechanism, the restriction of the installation location is reduced, and solar energy can be effectively used as a panel-type light collecting device that is installed on the wall surface of a building, for example.
  • the light guide in the first layer is arranged with the prism structure facing the incident surface in order from the light incident direction (denoted as F).
  • the light guide of the 5th layer arranges the same prism structure on the opposite side (back side) from the entrance surface (represented as B), and is a laminate of 5 layers (with a light reflector on the back side) BBBBF laminated structure from the back side).
  • the efficiency of light emitted from one end face of the laminated body was simulated in the case where external light was incident with the incident angle changed.
  • the stacking direction of the stacked body is an incident angle of 0 °.
  • the wavelength ⁇ is 632 nm
  • the divergence angle of incident light is 1 ° (in FIG. 7 to FIG. 12, expressed as “Aim1 °”).
  • a simulation was performed in the case where light rays of external light were incident from the end face at positions of 5 mm, 10 mm, and 20 mm, respectively. The results are shown in the graph of FIG. As is apparent from the graph shown in FIG. 7, a high end face condensing efficiency exceeding several percent is obtained with a low angle dependency over an incident angle of ⁇ 40 ° to + 40 °.
  • Simulation 2 A simulation was performed in the same manner as in Simulation 1 except that one layer of the light guide on the back surface side was removed and a four-layer structure (BBBF structure from the back side, refractive index 1.52 (BK7)) was used. .
  • the results are shown in the graph of FIG.
  • BBBF structure from the back side, refractive index 1.52 (BK7) refractive index 1.52
  • Simulation 3 Simulation 2 except that the first and second light guides are in optical contact with each other and that the refractive index of the light guide is 1.49 (acrylic resin). A similar simulation was performed. The results are shown in the graph of FIG.
  • the simulation 3 corresponds to the case where one layer of a double-thickness light guide body in which the first layer and the second layer are combined and prism structures are formed on both main surfaces is used.
  • the end face light collection efficiency near an incident angle of ⁇ 45 ° was improved.
  • the end face condensing efficiency at other incident angles was not significantly different from those of simulations 1 and 2.
  • Example 1 Plate-shaped acrylic resin with a V-shaped groove (prism structure) with a width of 1 cm and apex angle of 90 ° provided on the entire main surface on one side (refractive index of 1.49, dimensions are 4 cm width x depth 1 cm x thickness 2 mm) is used as a light guide, and a laminate (stacked structure of FFFFF from the back side) is produced by stacking the light guides in a five-tiered manner with the prism structure facing the incident light side (denoted as F). An optical optical element was obtained. In the condensing optical element, a light diffuse reflection plate was provided on the back surface (surface opposite to the incident side) of the laminate.
  • a light beam having a ribbon shape of 632 nm (width 1 mm, height 1 cm, height parallel to the depth direction of the laminate) was incident.
  • the output light power from the end face was measured with a detector arranged on the end face, and the end face condensing efficiency was calculated.
  • the incident angle of light was set to minus on the side where the angle formed by the incident surface of the condensing optical element and the incident light was less than 90 °, and vertical incidence was set to 0 °.
  • Example 2 As shown in FIG. 2, in order from the incident direction of light, the first-layer light guide is arranged with the prism structure facing the incident surface (F), and the second to fifth-layer light guides are the same.
  • Example 4 In the condensing optical element of Example 2, the size of the light guide is 9.8 cm wide ⁇ 9.5 cm deep ⁇ 8 mm thick, and one light guide located on the back surface is removed, and a four-layer structure (back surface) BBBF from the side) is used as a condensing optical element, and pseudo sunlight (AM1.5) is applied to the F-side surface of this condensing optical element in the xy plane as shown in FIG. Except that the incident angle was changed and the incident angle was changed, the output light power from the end face was measured with a detector disposed on the end face, and the end face condensing efficiency was calculated in the same manner as in Example 1. As a result, as shown in FIG. 14, the end face condensing efficiency is an average of 4.4% in the range of the incident angle of ⁇ 40 to + 20 °, and the end face condensing is as high as 5.3% at the incident angle of ⁇ 10 °. Showed efficiency.
  • the output light power from the end surface is measured with a detector arranged on the end surface in the same manner as in Example 4.
  • the end face light collection efficiency was calculated.
  • the end face condensing efficiency is an average of 11.6% in an incident angle range of ⁇ 40 to + 20 °, and the end face condensing efficiency is a maximum of 13.8% at an incident angle of ⁇ 11 °. showed that.

Abstract

[Problem] To provide: a novel light condensing optical element which is able to have a good balance between high end-face light condensing efficiency and size reduction; and a light condensing device which uses this light condensing optical element and does not require a solar tracking mechanism. [Solution] A light condensing optical element which is provided with a laminate wherein a plurality of light guide bodies are laminated on the main surfaces of one another. Each light guide body has a continuous series of prism structures on at least one main surface thereof. The external light incident on the main surfaces of the light guide bodies is refracted or reflected by the prism structures, travels within the light guide bodies, and is emitted from at least one end face of each light guide body.

Description

集光光学素子、及びこれを備えた集光装置Condensing optical element and condensing device provided with the same
 本発明は、集光光学素子、及びこれを備えた集光装置に関する。 The present invention relates to a condensing optical element and a condensing device including the condensing optical element.
 従来、太陽光のエネルギーを有効利用した、太陽電池、太陽熱温水器、太陽光照明などが知られている。例えば、太陽光照明では、太陽光を集光する複数のレンズと、当該レンズで集光した太陽光を導く光ファイバと、太陽の位置を検出する光センサーと、当該光センサーの検出結果に基づき上記レンズを動かして太陽光の動きを追尾する太陽追尾機構とを備えたものが利用されている。このような太陽光照明においては、レンズで集光された光が光ファイバなどを通じて室内に導かれるため、太陽光が届きにくい屋内の照明として利用されている(例えば、非特許文献1を参照)。 Conventionally, solar cells, solar water heaters, solar lighting, etc. that use solar energy effectively are known. For example, in sunlight illumination, a plurality of lenses that collect sunlight, an optical fiber that guides sunlight collected by the lens, an optical sensor that detects the position of the sun, and a detection result of the optical sensor. A device equipped with a sun tracking mechanism for tracking the movement of sunlight by moving the lens is used. In such sunlight illumination, since the light collected by the lens is guided indoors through an optical fiber or the like, it is used as indoor illumination that is difficult for sunlight to reach (see, for example, Non-Patent Document 1). .
 しかしながら、例えば非特許文献1に開示されたような太陽光照明においては、太陽光の入射角による依存性が高いため、光の入射面を太陽の方向に向けて太陽の動きを追尾する太陽追尾機構が必要である。太陽追尾機構を備えた太陽光集光装置は、大型になるという問題がある。よって、このような太陽光集光装置は、建物の屋根や屋上に設置することはできるが、例えば建物の壁面などに設置することは非常に困難であり、設置場所に大きな制約があるという問題がある。 However, for example, in sunlight illumination as disclosed in Non-Patent Document 1, since the dependency on the incident angle of sunlight is high, the solar tracking that tracks the movement of the sun with the light incident surface directed toward the sun. A mechanism is needed. There is a problem that the solar light collecting device provided with the sun tracking mechanism is large. Therefore, such a solar light collecting device can be installed on the roof or roof of a building, but it is very difficult to install it on the wall surface of a building, for example, and there is a great restriction on the installation location. There is.
 そこで、太陽追尾機構を用いずに太陽光の集光効率を高める技術が種々検討されている。このような技術としては、例えば、日周運動する太陽からさまざまな入射角で入射する光を集光光学素子の内部で反射させ、光を所望の位置に導く方法が知られている。 Therefore, various techniques for increasing the light collection efficiency without using the solar tracking mechanism have been studied. As such a technique, for example, a method is known in which light incident at various incident angles from the diurnal sun is reflected inside the condensing optical element to guide the light to a desired position.
 例えば、特許文献1には、天空に向けて設置される透過型の太陽光拡散板と、この太陽光拡散板の下面に設置され、前記太陽光拡散板を透過した太陽光を、受光面と反対側の面に形成された複数の傾斜光学面で全反射して所望の方向に導くマルチ全反射面型集光プリズムと、このマルチ全反射面型集光プリズムを出射した太陽光を集光する結合用集光レンズと、この結合用集光レンズによって集光された太陽光を導く光ファイバとを備えることを特徴とする太陽光集光装置が開示されている。 For example, Patent Document 1 discloses a transmissive solar diffusion plate installed toward the sky, and sunlight transmitted through the solar diffusion plate installed on the lower surface of the solar diffusion plate, as a light receiving surface. A multi total reflection surface type condensing prism that totally reflects by a plurality of inclined optical surfaces formed on the opposite surface and guides it in a desired direction, and condenses sunlight emitted from the multi total reflection surface type condensing prism There is disclosed a solar condensing device comprising: a condensing condensing lens to be coupled; and an optical fiber for guiding sunlight condensed by the condensing condensing lens.
 また、例えば、特許文献2には、一方の上面が平面であり、底面に間欠的に形成されたプリズム形状部を有する導光体を2枚配置し、当該導光体の上面及び底面の平坦面で光を全反射させることにより、光を端面側に導くデバイスが開示されている。 Further, for example, in Patent Document 2, two light guides each having a prism-shaped portion intermittently formed on the bottom surface are disposed on the top surface, and the top and bottom surfaces of the light guide are flat. A device that guides light toward an end face side by totally reflecting light on the surface is disclosed.
 また、例えば、特許文献3には、導光体と、当該導光体の一方側の面側に設けられた第1の層と、他方側の面側に設けられた第2の層とを備え、第1の層及び第2の層を導光体よりも光の屈折率が小さな材質で形成し、さらに第2の層の導光体側の面とは反対側の面に凹凸構造を形成した集光構造体が開示されている。特許文献3の集光構造体では、導光体内の平面部分の全反射によって光を端面側に導くことができるとされている。 Further, for example, Patent Document 3 includes a light guide, a first layer provided on one surface side of the light guide, and a second layer provided on the other surface side. The first layer and the second layer are made of a material having a light refractive index smaller than that of the light guide, and a concavo-convex structure is formed on the surface of the second layer opposite to the light guide side. A light collecting structure is disclosed. In the light condensing structure of Patent Document 3, light can be guided to the end face side by total reflection of a planar portion in the light guide.
 さらに、例えば、特許文献4には、外部からの光を集光する導光体ユニットと、当該導光体ユニットから出射された光を受光する太陽電池素子とを備える太陽電池モジュールにおいて、当該導光体ユニットが、光を導く方向側の端面に近づくにつれて徐々に厚くなっている第1の導光体と、第1の導光体よりも屈折率が低く、第1の導光体を透過した光を反射させる反射面を有する第2の導光体とを備えたものが開示されている。 Further, for example, Patent Document 4 discloses a solar cell module including a light guide unit that collects light from the outside and a solar cell element that receives light emitted from the light guide unit. The light guide unit has a refractive index lower than that of the first light guide, which is gradually increased as it approaches the end surface on the light guiding direction side, and is transmitted through the first light guide. What is provided with the 2nd light guide which has a reflective surface in which the reflected light is reflected is disclosed.
特開2012-225611号公報JP 2012-225611 A 特開2013-61149号公報JP 2013-611149 A 特開2012-99681号公報JP 2012-99681 A 特開2012-156445号公報JP 2012-156445 A
 例えば特許文献1~4のように、集光光学素子の上から入射した光を集光光学素子内で反射させて、光を所望の位置に導くことにより、太陽追尾機構を用いずに、刻々と移動する太陽からの光の集光効率を高めることが考えられる。しかしながら、例えば特許文献1~3においては、端面における集光効率(以下、「端面集光率」と表記する)について検討されておらず、特許文献4においても、1つの入射角(35°)における光の端面到達率がシミュレーションにより検討されているに過ぎない。このように、現状においては、種々の入射角で入射する光を効率よく端面側に集光する方法についての検討は不十分な状況にある。また、導光体に加えて、プリズム構造を有する他の部材を設ける場合には、集光光学素子が大きくなるため、建物の壁面などに設置することが困難になる場合がある。このような状況下、種々の入射角で入射する光に対する高い端面集光効率と小型化とを両立できる新規な集光光学素子が求められている。
 本発明は、高い端面集光効率と小型化とを両立できる新規な集光光学素子、及びこれを用いた太陽追尾機構が不要な集光装置を提供することを主な目的とする。
For example, as in Patent Documents 1 to 4, light incident from above the condensing optical element is reflected in the condensing optical element to guide the light to a desired position, so that the solar tracking mechanism is not used every moment. It is conceivable to improve the light collection efficiency of light from the moving sun. However, for example, Patent Documents 1 to 3 do not discuss the light collection efficiency at the end surface (hereinafter referred to as “end surface light collection rate”), and Patent Document 4 also has one incident angle (35 °). The end-face arrival rate of light is only studied by simulation. As described above, in the present situation, there is insufficient study on a method for efficiently condensing light incident at various incident angles on the end face side. Moreover, when providing other members having a prism structure in addition to the light guide, the condensing optical element becomes large, so that it may be difficult to install on the wall surface of the building. Under such circumstances, there is a need for a novel condensing optical element that can achieve both high end-face condensing efficiency and downsizing for light incident at various incident angles.
The main object of the present invention is to provide a novel condensing optical element capable of achieving both high end-face condensing efficiency and downsizing, and a condensing device that does not require a sun tracking mechanism using the same.
 本発明者は、上記のような課題を解決すべく鋭意検討を行った。その結果、複数の導光体が主面側において積層された積層体を備える集光光学素子であって、当該導光体は、主面の少なくとも一方に連続する複数のプリズム構造を有し、導光体の主面側から入射された外部光が、プリズム構造により屈折または反射し、複数の導光体内を伝播して、前記導光体の少なくとも一方の端面から出射される集光光学素子は、種々の入射角で入射する光に対する高い端面集光効率と小型化とを両立できることを見出した。本発明は、このような知見に基づいて、さらに検討を重ねることにより完成された発明である。 The present inventor has intensively studied to solve the above problems. As a result, it is a condensing optical element comprising a laminate in which a plurality of light guides are laminated on the main surface side, and the light guide has a plurality of prism structures continuous to at least one of the main surfaces, Condensing optical element in which external light incident from the main surface side of the light guide is refracted or reflected by the prism structure, propagates through the plurality of light guides, and is emitted from at least one end face of the light guide Found that it is possible to achieve both high end face condensing efficiency and miniaturization for light incident at various incident angles. The present invention has been completed by further studies based on such findings.
 すなわち、本発明は、下記に掲げる態様の発明を提供する。
項1. 複数の導光体が主面側において積層された積層体を備える集光光学素子であって、
 前記導光体は、前記主面の少なくとも一方に連続する複数のプリズム構造を有し、
 前記導光体の主面側から入射された外部光が、前記プリズム構造により屈折または反射し、前記複数の導光体内を伝播して、前記導光体の少なくとも一方の端面から出射される、集光光学素子。
項2. 前記プリズム構造の積層方向における断面形状が三角形状であり、
 前記プリズム構造の断面形状において、前記導光体から突出している頂角が、45°~120°の範囲にある、項1に記載の集光光学素子。
項3. 前記プリズム構造の積層方向における断面形状が三角形状であり、
 前記プリズム構造の断面形状が、積層方向に対して線対称である、項1または2に記載の集光光学素子。
項4. 前記プリズム構造の積層方向における断面形状が三角形状であり、
 前記プリズム構造の断面形状が、積層方向に対して非線対称である、項1または2に記載の集光光学素子。
項5. 前記プリズム構造が、前記導光体の主面に形成された連続する複数のV字状の溝により形成されている、項1~4のいずれかに記載の集光光学素子。
項6. 前記複数のプリズム構造のピッチが、0.01~1mmの範囲にある、項1~5のいずれかに記載の集光光学素子。
項7. 前記各導光体の厚みが、それぞれ、0.1~10mmの範囲にある、項1~6のいずれかに記載の集光光学素子。
項8. 前記導光体の積層数が2~6の範囲にある、項1~7のいずれかに記載の集光光学素子。
項9. 前記複数の導光体の屈折率が、実質的に同一である、項1~8のいずれかに記載の集光光学素子。
項10. 前記プリズム構造が、前記導光体の少なくとも一方側の主面の略全面に形成されている、項1~9のいずれかに記載の集光光学素子。
項11. 前記集光光学素子において外部光が入射する最表面側に位置する導光体が、前記最表面側の主面に前記プリズム構造を有し、
 他の導光体は、前記最表面側の主面とは反対側の主面に前記プリズム構造を有する、項1~10のいずれかに記載の集光光学素子。
項12. 前記導光体は、積層方向からみた場合の形状が、矩形状または扇形である、項1~11のいずれかに記載の集光光学素子。
項13. 項1~12のいずれかに記載の集光光学素子を備える、集光装置。
That is, this invention provides the invention of the aspect hung up below.
Item 1. A condensing optical element comprising a laminate in which a plurality of light guides are laminated on the main surface side,
The light guide has a plurality of prism structures continuous to at least one of the main surfaces,
External light incident from the main surface side of the light guide is refracted or reflected by the prism structure, propagates through the plurality of light guides, and is emitted from at least one end surface of the light guide. Condensing optical element.
Item 2. The cross-sectional shape in the stacking direction of the prism structure is triangular.
Item 2. The condensing optical element according to Item 1, wherein in the cross-sectional shape of the prism structure, an apex angle protruding from the light guide is in a range of 45 ° to 120 °.
Item 3. The cross-sectional shape in the stacking direction of the prism structure is triangular.
Item 3. The condensing optical element according to Item 1 or 2, wherein a cross-sectional shape of the prism structure is axisymmetric with respect to a stacking direction.
Item 4. The cross-sectional shape in the stacking direction of the prism structure is triangular.
Item 3. The condensing optical element according to Item 1 or 2, wherein a cross-sectional shape of the prism structure is non-axisymmetric with respect to a stacking direction.
Item 5. Item 5. The condensing optical element according to any one of Items 1 to 4, wherein the prism structure is formed by a plurality of continuous V-shaped grooves formed on a main surface of the light guide.
Item 6. Item 6. The condensing optical element according to any one of Items 1 to 5, wherein a pitch of the plurality of prism structures is in a range of 0.01 to 1 mm.
Item 7. Item 7. The condensing optical element according to any one of Items 1 to 6, wherein the thickness of each light guide is in the range of 0.1 to 10 mm.
Item 8. Item 8. The condensing optical element according to any one of Items 1 to 7, wherein the number of laminated light guides is in the range of 2 to 6.
Item 9. Item 9. The condensing optical element according to any one of Items 1 to 8, wherein the plurality of light guides have substantially the same refractive index.
Item 10. Item 10. The condensing optical element according to any one of Items 1 to 9, wherein the prism structure is formed on substantially the entire main surface on at least one side of the light guide.
Item 11. The light guide located on the outermost surface side where external light enters in the condensing optical element has the prism structure on the main surface on the outermost surface side,
Item 11. The condensing optical element according to any one of Items 1 to 10, wherein the other light guide has the prism structure on a main surface opposite to the main surface on the outermost surface side.
Item 12. Item 12. The condensing optical element according to any one of Items 1 to 11, wherein the light guide has a rectangular shape or a sector shape when viewed from the stacking direction.
Item 13. Item 13. A condensing device comprising the condensing optical element according to any one of Items 1 to 12.
 本発明によれば、種々の入射角で入射する光に対する高い端面集光効率と小型化とを両立することのできる集光光学素子を提供することができる。当該集光光学素子は、さまざまな入射角で入射する光を集光光学素子の内部で反射させて外部光を所望の位置に効率よく導くことができる。このため、当該集光光学素子を備えた集光装置は、太陽追尾機構を用いる必要が無く、例えば建物の壁面などへ設置して用いてもよい。 According to the present invention, it is possible to provide a condensing optical element that can achieve both high end-face condensing efficiency and downsizing for light incident at various incident angles. The condensing optical element can efficiently reflect external light to a desired position by reflecting light incident at various incident angles inside the condensing optical element. For this reason, the condensing apparatus provided with the said condensing optical element does not need to use a sun tracking mechanism, For example, you may install and use on the wall surface etc. of a building.
本発明の集光光学素子の一例の略図的断面図である。It is a schematic sectional drawing of an example of the condensing optical element of this invention. 本発明の集光光学素子の一例の略図的分解図である。It is a schematic exploded view of an example of the condensing optical element of this invention. 本発明における導光体のプリズム構造の一例を拡大した略図的断面図である。It is schematic-drawing sectional drawing to which an example of the prism structure of the light guide in this invention was expanded. 本発明における導光体のプリズム構造の一例を拡大した略図的断面図である。It is schematic-drawing sectional drawing to which an example of the prism structure of the light guide in this invention was expanded. 本発明における導光体のプリズム構造の一例を拡大した略図的断面図である。It is schematic-drawing sectional drawing to which an example of the prism structure of the light guide in this invention was expanded. 本発明における集光装置の模式図である。It is a schematic diagram of the condensing apparatus in this invention. 本発明におけるシミュレーション1の集光光学素子における端面集光効率と入射角との関係を示すグラフである。It is a graph which shows the relationship between the end surface condensing efficiency and incident angle in the condensing optical element of the simulation 1 in this invention. 本発明におけるシミュレーション2の集光光学素子における端面集光効率と入射角との関係を示すグラフである。It is a graph which shows the relationship between the end surface condensing efficiency and incident angle in the condensing optical element of the simulation 2 in this invention. 本発明におけるシミュレーション3の集光光学素子における端面集光効率と入射角との関係を示すグラフである。It is a graph which shows the relationship between the end surface condensing efficiency and incident angle in the condensing optical element of the simulation 3 in this invention. 本発明におけるシミュレーション4の集光光学素子における端面集光効率と入射角との関係を示すグラフである。It is a graph which shows the relationship between the end surface condensing efficiency and incident angle in the condensing optical element of the simulation 4 in this invention. 実施例1の集光光学素子における光の入射角と端面集光効率との関係を示すグラフである。6 is a graph showing the relationship between the incident angle of light and the end face condensing efficiency in the condensing optical element of Example 1. 実施例2の集光光学素子における光の入射角と端面集光効率との関係を示すグラフである。It is a graph which shows the relationship between the incident angle of light in the condensing optical element of Example 2, and an end surface condensing efficiency. 実施例3の集光光学素子における光の入射角と端面集光効率との関係を示すグラフである。10 is a graph showing the relationship between the incident angle of light and the end face condensing efficiency in the condensing optical element of Example 3. 実施例4の集光光学素子における光の入射角と端面集光効率との関係を示すグラフである。It is a graph which shows the relationship between the incident angle of the light in the condensing optical element of Example 4, and an end surface condensing efficiency. 比較例1の集光光学素子における光の入射角と端面集光効率との関係を示すグラフである。6 is a graph showing the relationship between the incident angle of light and the end face condensing efficiency in the condensing optical element of Comparative Example 1; 実施例5の集光光学素子における光の入射角と端面集光効率との関係を示すグラフである。It is a graph which shows the relationship between the incident angle of the light in the condensing optical element of Example 5, and an end surface condensing efficiency. 本発明におけるシミュレーション5の集光光学素子における端面集光効率と入射角との関係を示すグラフである。It is a graph which shows the relationship between the end surface condensing efficiency and incident angle in the condensing optical element of the simulation 5 in this invention. 本発明におけるシミュレーション6の集光光学素子における端面集光効率と入射角との関係を示すグラフである。It is a graph which shows the relationship between the end surface condensing efficiency and incident angle in the condensing optical element of the simulation 6 in this invention.
 本発明の集光光学素子は、複数の導光体が主面側において積層された積層体を備える集光光学素子であって、導光体は、前記主面の少なくとも一方に連続する複数のプリズム構造を有し、導光体の主面側から入射された外部光が、プリズム構造により屈折または反射し、複数の導光体内を伝播して、導光体の少なくとも一方の端面から出射されることを特徴とする。以下、本発明の集光光学素子及びこれを備えた集光装置について詳述する。 The condensing optical element of the present invention is a condensing optical element including a laminated body in which a plurality of light guides are laminated on the main surface side, and the light guide includes a plurality of continuous light beams on at least one of the main surfaces. External light that has a prism structure and is incident from the main surface side of the light guide is refracted or reflected by the prism structure, propagates through the plurality of light guides, and is emitted from at least one end face of the light guide. It is characterized by that. Hereinafter, the condensing optical element of the present invention and the condensing device provided with the same will be described in detail.
 例えば図1及び図2に示されるように、本発明の集光光学素子1は、複数の導光体2が主面2a,2b側において積層された積層体を備えている。各導光体2は、上記の主面2a、2bと、光が出射される少なくとも一方の端面2c,2dと、幅方向x(後述する複数のプリズム構造2gが連続して形成されている方向であり、光が出射される端面方向)に伸びる側面2e,2fとを有する透明基材である。図1及び図2において、各導光体2は、積層方向yから見た際の形状が矩形状であるが、本発明においては、例えば扇形などであってもよい。各導光体2の形状が扇形である場合、面積の小さい方の端面に光を集中させることができ、小さな端面から強い光を出射させることができる。 For example, as shown in FIGS. 1 and 2, the condensing optical element 1 of the present invention includes a laminated body in which a plurality of light guides 2 are laminated on the principal surfaces 2a and 2b. Each light guide 2 includes the main surfaces 2a and 2b, at least one end surface 2c and 2d from which light is emitted, and a width direction x (a direction in which a plurality of prism structures 2g described later are continuously formed). It is a transparent substrate having side surfaces 2e and 2f extending in the direction of the end surface from which light is emitted. 1 and 2, each light guide 2 has a rectangular shape when viewed from the stacking direction y. However, in the present invention, for example, a fan shape may be used. When the shape of each light guide 2 is a fan shape, light can be concentrated on the end surface having the smaller area, and strong light can be emitted from the small end surface.
 各導光体の厚み(積層方向yにおける長さ)としては、特に制限されないが、集光光学素子の高い端面集光効率と小型化とを両立する観点からは、好ましくは0.1~10mm程度、より好ましくは0.2~3mm程度の範囲が挙げられる。 The thickness of each light guide (length in the stacking direction y) is not particularly limited, but is preferably 0.1 to 10 mm from the viewpoint of achieving both high end face light collection efficiency and downsizing of the light collection optical element. A range of about 0.2 to 3 mm is preferable.
 各導光体の幅方向xの長さとしては、特に制限されないが、集光光学素子の高い端面集光効率と小型化とを両立する観点からは、好ましくは50~500mm程度、より好ましくは50~150mm程度の範囲が挙げられる。当該幅方向xにおける導光体の長さが長くなるほど、例えば図1に示す主面2aから入射された外部光が端面2c,2dに至るまでの距離が長くなるため、集光効率が低下しやすくなる。なお、本発明において、集光効率とは、端面集光効率(ECE)をいい、端面出射光パワー÷入射光パワー×100で算出される値(%)をいう。ここで光パワーとは、入射面または出射面の全域にわたって光強度(光パワー密度)を積分した値に相当する。 The length in the width direction x of each light guide is not particularly limited, but is preferably about 50 to 500 mm, more preferably from the viewpoint of achieving both high end face condensing efficiency and downsizing of the condensing optical element. The range is about 50 to 150 mm. As the length of the light guide in the width direction x increases, for example, the distance from the external surface incident from the main surface 2a shown in FIG. 1 to the end surfaces 2c and 2d increases, and thus the light collection efficiency decreases. It becomes easy. In the present invention, the light collection efficiency refers to end face light collection efficiency (ECE), which is a value (%) calculated by end face emission light power ÷ incident light power × 100. Here, the optical power corresponds to a value obtained by integrating the light intensity (optical power density) over the entire area of the incident surface or the exit surface.
 各導光体の奥行方向zの長さとしては、特に制限されない。ただし、奥行方向の長さが長くなると、光が出射される端面の面積が大きくなるため、図6に示すような端面からの出射光を導くための光ファイバ5などの本数が増え、集光光学素子が大きくなるという問題がある。例えば、光ファイバの本数としては、通常、10~200本程度とすることが想定されるため、各導光体の奥行方向zの長さとしては、好ましくは10~200mm程度の範囲が挙げられる。 The length of each light guide in the depth direction z is not particularly limited. However, if the length in the depth direction is increased, the area of the end face from which light is emitted increases, so that the number of optical fibers 5 and the like for guiding outgoing light from the end face as shown in FIG. There is a problem that the optical element becomes large. For example, since the number of optical fibers is normally assumed to be about 10 to 200, the length in the depth direction z of each light guide is preferably in the range of about 10 to 200 mm. .
 例えば幅方向100mm、奥行方向100mmの集光光学素子を80枚組み合わせると、その受光面積は0.8m2となる。この受光面積において、晴天正午の屋外光の平均的な照度98000ルクスを受光すると、集光光学素子への全入射光束は照度×受光面積で計算されるので、78400ルーメンとなる。例えば端面集光効率が5%の集光光学素子では、全入射光束の5%が端面からの出射光束となるため、端面から出射される光の照度は3920ルーメンとなる。この出射光束で10m2の室内(6畳程度)を照明すると、照度は光束÷照射面積と計算されるので392ルクスとなり、一般的な室内の照度300ルクスと同程度の照明が可能になる。 For example, when 80 condensing optical elements having a width direction of 100 mm and a depth direction of 100 mm are combined, the light receiving area is 0.8 m 2 . In this light receiving area, when the average illuminance of 98000 lux of outdoor light at noon on a clear day is received, the total incident light flux to the condensing optical element is calculated as illuminance × light receiving area, and is 78400 lumens. For example, in a condensing optical element having an end face condensing efficiency of 5%, 5% of the total incident light flux is emitted from the end face, so the illuminance of light emitted from the end face is 3920 lumens. When a 10 m 2 room (about 6 tatami mats) is illuminated with the emitted light flux, the illuminance is calculated as light flux ÷ irradiation area, and thus becomes 392 lux.
 例えば図3に示されるように、各導光体2は、それぞれ、主面2a,2bの少なくとも一方に、連続する複数のプリズム構造2gを有している。本発明において、連続する複数のプリズム構造2gとは、光を屈折または反射させるプリズム構造が、幅方向xに伸びる平坦面を介することなく、隣接して少なくとも2つ以上、好ましくは3つ以上、より好ましくは4つ以上形成されている構造をいう。 For example, as shown in FIG. 3, each light guide 2 has a plurality of continuous prism structures 2g on at least one of the main surfaces 2a and 2b. In the present invention, the plurality of continuous prism structures 2g means that at least two, preferably three or more adjacent prism structures that refract or reflect light do not pass through a flat surface extending in the width direction x. More preferably, it refers to a structure in which four or more are formed.
 連続する複数のプリズム構造は、各導光体の一方側の主面にのみ形成されていてもよいし、両主面に形成されていてもよい。連続する複数のプリズム構造が導光体の一方側の主面にのみ形成されている場合、他方側の主面は、平坦面(鏡面)であることが好ましい。また、本発明の集光光学素子の積層構造としては、(1)一方側の主面にのみにプリズム構造が形成された導光体のみが積層された積層構造、(2)両主面にプリズム構造が形成された導光体のみが積層された積層構造、または(3)一方側の主面のみにプリズム構造が形成された導光体と両主面にプリズム構造が形成された導光体の両方が積層された積層構造が挙げられる。これらの積層構造の中でも、上記(1)または(3)の積層構造が好ましく、使用部材の単純化及び低コスト化の観点からは、上記(1)の積層構造がより好ましい。 The plurality of continuous prism structures may be formed only on one main surface of each light guide, or may be formed on both main surfaces. When a plurality of continuous prism structures are formed only on one main surface of the light guide, the other main surface is preferably a flat surface (mirror surface). Further, as the laminated structure of the condensing optical element of the present invention, (1) a laminated structure in which only a light guide having a prism structure formed on only one main surface is laminated, and (2) both main surfaces. Laminated structure in which only light guides having prism structures are laminated, or (3) A light guide having prism structures formed only on one main surface and a light guide having prism structures formed on both main surfaces. A laminated structure in which both bodies are laminated is mentioned. Among these laminated structures, the laminated structure of the above (1) or (3) is preferable, and the laminated structure of the above (1) is more preferable from the viewpoint of simplification of the member used and cost reduction.
 さらに、本発明の集光光学素子において、上記(1)の積層構造の中でも、外部光の入射面側の主面にプリズム構造が形成されており、裏面側の主面が平坦面である導光体を「F」と表記し、外部光の入射面側の主面が平坦面であり、裏面側の主面にプリズム構造が形成されている導光体を「B」と表記すると、集光光学素子の高い端面集光効率と小型化とを両立する観点から特に好ましい積層構造は、以下の通りである。 Furthermore, in the condensing optical element of the present invention, among the laminated structure of (1), a prism structure is formed on the main surface on the incident surface side of the external light, and the main surface on the back surface side is a flat surface. The light body is denoted as “F”, the light guide on which the principal surface on the incident surface side of the external light is a flat surface and the prism structure is formed on the principal surface on the back surface side is denoted as “B”. A particularly preferable laminated structure from the viewpoint of achieving both high end-face condensing efficiency and downsizing of the optical optical element is as follows.
 本発明の集光光学素子が2層の導光体を有する場合、集光光学素子の裏面側から順に、BFの積層構造、FBの積層構造が好ましい。また、3層の導光体を有する場合、集光光学素子の裏面側から順に、BBFの積層構造、FFBの積層構造が好ましい。4層の導光体を有する場合、集光光学素子の裏面側から順に、BBBFの積層構造、FFFBの積層構造が好ましい。5層の導光体を有する場合、集光光学素子の裏面側から順に、BBBBFの積層構造、FFFFBの積層構造が好ましい。6層の導光体を有する場合、集光光学素子の裏面側から順に、BBBBBFの積層構造、FFFFFBの積層構造が好ましい。 When the condensing optical element of the present invention has two layers of light guides, a laminated structure of BF and a laminated structure of FB are preferable in order from the back side of the condensing optical element. Moreover, when it has 3 layers of light guides, the laminated structure of BBF and the laminated structure of FFB are preferable in order from the back surface side of a condensing optical element. When a four-layer light guide is provided, a BBBF laminated structure and an FFFB laminated structure are preferable in this order from the back side of the condensing optical element. In the case of having five layers of light guides, a BBBBF stacked structure and a FFFFB stacked structure are preferable in this order from the back side of the condensing optical element. In the case of having six layers of light guides, a BBBBBBF stacked structure and a FFFFFB stacked structure are preferable in this order from the back side of the condensing optical element.
 例えば上記「BBBF」の積層構造とは、図2に示されるように、複数の導光体2のうち外部光が入射する最表面側に位置する導光体21の入射光側の主面2aにプリズム構造2gが形成されており(F)、他の導光体22~24の裏面側の主面2bにプリズム構造2gが形成されている(BBB)積層構造である。すなわち、集光光学素子において外部光が入射する最表面側に位置する導光体が最表面側の主面に前記プリズム構造を有し、他の導光体が最表面側の主面とは反対側(裏面側)の主面にプリズム構造を有することにより、後述の通り、垂直方向付近(積層方向y、入射角0°)から入射する外部光がプリズム構造のコーナーキューブにより反射されやすくなる。このため、集光光学素子に垂直入射した光が端面に導かれずに裏面側から抜けていくことを抑制することができ、より高い端面集光効率と小型化とを発揮することができる。 For example, as shown in FIG. 2, the laminated structure of “BBBF” refers to the main surface 2 a on the incident light side of the light guide 21 located on the outermost surface side where external light is incident among the plurality of light guides 2. A prism structure 2g is formed (F), and a prism structure 2g is formed on the main surface 2b on the back side of the other light guides 22 to 24 (BBB). That is, the light guide located on the outermost surface side where external light is incident in the condensing optical element has the prism structure on the main surface on the outermost surface side, and the other light guide is the main surface on the outermost surface side. By having a prism structure on the main surface on the opposite side (back side), as will be described later, external light incident from the vicinity in the vertical direction (stacking direction y, incident angle 0 °) is easily reflected by the corner cube of the prism structure. . For this reason, it can suppress that the light perpendicularly incident on the condensing optical element escapes from the back surface side without being guided to the end surface, and can exhibit higher end surface condensing efficiency and downsizing.
 導光体に形成された1つのプリズム構造は、導光体2に入射した光が屈折または反射される形状であれば、特に制限されないが、集光光学素子の高い端面集光効率と小型化とを両立する観点からは、三角プリズム構造であることが好ましい。すなわち、例えば図3に示されるように、導光体2の積層方向y及び幅方向x(xy平面)におけるプリズム構造2gの断面形状が三角形状であることが好ましい。このようなプリズム構造は、例えば図2に示されるように、導光体2の主面2a又は2bに、連続する複数のV字状の溝を形成することにより設けることができる。なお、連続する複数のV字状の溝は、平坦面を有する導光体の透明基材を切削加工する方法、対応する形状を有する金型に樹脂を流し込んで成形する方法などにより形成することができる。図2において、V字状の溝は、奥行方向zに伸びるようにして、端面2c,2dと略平行(平行)に形成されている。なお、導光体を積層方向yから見たときの形状が扇形である場合には、プリズム構造を形成するV字状の溝は、面積の小さい方の端面側を中心とした同心円状に形成されていることが好ましい。 One prism structure formed on the light guide is not particularly limited as long as the light incident on the light guide 2 is refracted or reflected, but the light collecting optical element has high end face light collection efficiency and downsizing. From the viewpoint of achieving both, a triangular prism structure is preferable. That is, for example, as shown in FIG. 3, the cross-sectional shape of the prism structure 2g in the stacking direction y and the width direction x (xy plane) of the light guide 2 is preferably triangular. Such a prism structure can be provided by forming a plurality of continuous V-shaped grooves on the main surface 2a or 2b of the light guide 2 as shown in FIG. A plurality of continuous V-shaped grooves are formed by a method of cutting a transparent base material of a light guide having a flat surface, a method of pouring a resin into a mold having a corresponding shape, and the like. Can do. In FIG. 2, the V-shaped groove is formed substantially parallel (parallel) to the end faces 2 c and 2 d so as to extend in the depth direction z. In addition, when the shape when the light guide is viewed from the stacking direction y is a fan shape, the V-shaped groove forming the prism structure is formed concentrically with the end surface side having the smaller area as the center. It is preferable that
 プリズム構造2gの積層方向y及び幅方向x(xy平面)における断面形状が三角形状である場合、プリズム構造2gの断面形状は、例えば図4に示されるように積層方向yに対して線対称であってもよいし、例えば図5に示されるように非線対称であってもよい。また、プリズム構造2gの断面形状が図4に示すように線対称である場合、プリズム構造2gの断面形状において、導光体2から突出している頂角aの角度としては、特に限定されないが、高い端面集光効率と小型化とを両立する観点からは、好ましくは45°~120°程度、より好ましくは85°~95°程度の範囲にあることが好ましい。プリズム構造2gの断面形状が図5に示されるように非線対称である場合、導光体2から突出している頂角と積層方向yの直線とで形成される角b,cのうち、小さい方の角bの角度としては、特に限定されないが、高い端面集光効率と小型化とを両立する観点からは、好ましくは0°~角cの1/2°程度、より好ましくは0°~2°程度の範囲が挙げられる。また、大きい方の角cの角度としては、特に限定されないが、高い端面集光効率と小型化とを両立する観点からは、好ましくは50°~65°程度、より好ましくは58°~62°程度の範囲が挙げられる。 When the cross-sectional shape of the prism structure 2g in the stacking direction y and the width direction x (xy plane) is triangular, the cross-sectional shape of the prism structure 2g is line-symmetric with respect to the stacking direction y as shown in FIG. It may be non-axisymmetric as shown in FIG. 5, for example. Further, when the cross-sectional shape of the prism structure 2g is line symmetric as shown in FIG. 4, the apex angle a protruding from the light guide 2 in the cross-sectional shape of the prism structure 2g is not particularly limited. From the viewpoint of achieving both high end face light collection efficiency and downsizing, it is preferably in the range of about 45 ° to 120 °, more preferably about 85 ° to 95 °. When the cross-sectional shape of the prism structure 2g is non-symmetrical as shown in FIG. 5, the smaller one of the angles b and c formed by the apex angle protruding from the light guide 2 and the straight line in the stacking direction y. The angle b is not particularly limited, but is preferably 0 ° to about 1/2 ° of the angle c, more preferably 0 ° to 0 °, from the viewpoint of achieving both high end-face condensing efficiency and downsizing. A range of about 2 ° is mentioned. Further, the angle of the larger angle c is not particularly limited, but is preferably about 50 ° to 65 °, more preferably 58 ° to 62 ° from the viewpoint of achieving both high end surface light collection efficiency and downsizing. A range of degrees is mentioned.
 集光光学素子の高い端面集光効率と小型化とを両立する観点からは、導光体2の主面の少なくとも一方におけるプリズム構造は、少なくとも一方の主面の略全面(全面)に設けられていることが好ましい。複数のプリズム構造は、それぞれ同一の形状であってもよいし、異なる形状であってもよい。また、プリズム構造の大きさも、同一であってもよいし、異なっていてもよい。 From the viewpoint of achieving both high end-face condensing efficiency and downsizing of the condensing optical element, the prism structure on at least one of the principal surfaces of the light guide 2 is provided on substantially the entire surface (entire surface) of at least one of the principal surfaces. It is preferable. The plurality of prism structures may have the same shape or different shapes. Further, the size of the prism structure may be the same or different.
 複数のプリズム構造のピッチp(間隔)としては、特に制限されないが、高い端面集光効率と小型化とを両立する観点からは、好ましくは0.01~1mm程度、より好ましくは0.05~0.15mm程度の範囲が挙げられる。 The pitch p (interval) of the plurality of prism structures is not particularly limited, but preferably from about 0.01 to 1 mm, more preferably from 0.05 to 1 mm, from the viewpoint of achieving both high end-face condensing efficiency and downsizing. The range is about 0.15 mm.
 導光体を構成する材料としては、透明性の高いものであれば特に制限されず、好ましくはアクリル樹脂、ポリカーボネート樹脂などの透明な有機材料、またはガラスなどの透明な無機材料が挙げられる。本発明の集光光学素子においては、同一の材料により構成された導光体のみを用いてもよいし、異なる材料により構成された導光体を組み合わせて用いてもよい。なお、本発明において、透明とは、少なくとも可視光を透過することを意味する。導光体としては、例えば、360nm~800nm程度の波長の光を90%以上の透過率を有するものが好ましい。 The material constituting the light guide is not particularly limited as long as it has high transparency, and preferably includes a transparent organic material such as acrylic resin and polycarbonate resin, or a transparent inorganic material such as glass. In the condensing optical element of the present invention, only light guides made of the same material may be used, or light guides made of different materials may be used in combination. In the present invention, the term “transparent” means that at least visible light is transmitted. As the light guide, for example, a light having a transmittance of 90% or more for light having a wavelength of about 360 nm to 800 nm is preferable.
 導光体の屈折率としては、特に制限されないが、好ましくは1.3~1.6程度、より好ましくは1.4~1.5程度が挙げられる。本発明の集光光学素子においては、実質的に同一の屈折率を有する導光体を用いてもよいし、異なる屈折率を有する導光体を組み合わせて用いてもよい。 The refractive index of the light guide is not particularly limited, but is preferably about 1.3 to 1.6, more preferably about 1.4 to 1.5. In the condensing optical element of the present invention, light guides having substantially the same refractive index may be used, or light guides having different refractive indexes may be used in combination.
 本発明の集光光学素子においては、導光体同士が互いに接触するようにして積層されていてもよいし、少なくとも一部の導光体同士が離間するように積層されていてもよい。各導光体の間には、空気が存在していてもよい。なお、導光体同士が互いに光学的に接続されていてもよいが、その場合、光学的に接続された導光体が併せて1つの導光体を構成する。 In the condensing optical element of the present invention, the light guides may be laminated so that they are in contact with each other, or at least a part of the light guides may be laminated. Air may exist between the light guides. Note that the light guides may be optically connected to each other. In that case, the optically connected light guides together constitute one light guide.
 本発明の集光光学素子においては、一方側の端面から光を出射させてもよいし、両側の端面から光を出射させてもよい。一方側の端面から光を出射させる場合、出射光が出射される端面とは反対側の端面に光反射板を配置し、当該反対側の端面に到達した光を出射側の端面に反射させることが好ましい。また、一方側の端面から光を出射させる場合において、図5のように、プリズム構造2gの断面形状が積層方向yに対して非線対称である場合、集光光学素子1の高い端面集光効率と小型化とを両立する観点からは、上記小さい方の角b側の端面から光を出射させることが好ましい。 In the condensing optical element of the present invention, light may be emitted from one end face, or light may be emitted from both end faces. When light is emitted from one end face, a light reflector is disposed on the end face opposite to the end face from which the emitted light is emitted, and the light that has reached the opposite end face is reflected to the exit end face. Is preferred. Further, when light is emitted from the end face on one side, as shown in FIG. 5, when the cross-sectional shape of the prism structure 2 g is axisymmetric with respect to the stacking direction y, the high end face condensing of the condensing optical element 1 is performed. From the viewpoint of achieving both efficiency and miniaturization, it is preferable to emit light from the end face on the smaller angle b side.
 集光光学素子に入射される外部光としては、特に制限されず、集光させる光に応じて適宜選択すればよいが、好ましくは太陽光が挙げられる。 The external light incident on the condensing optical element is not particularly limited and may be appropriately selected depending on the light to be collected, and preferably includes sunlight.
 例えば、周囲よりも屈折率が高く、外部光が入射する主面が平行かつ平坦面である透明基材の内部において、臨界角以上で伝搬する光は、全反射により効率良く端面に導光される。しかしながら、透明基材の外部から入射する光は、当該透明基材の内部においては常に臨界角以下となるため、透明基材の内部において全反射を繰り返して光を端面まで導くことはできない。そこで、透明基材の主面から入射した光を透明基材の内部を伝播させて効率よく端面に導くためには、外部光の透明基材への入射時または入射後に光線の向きを変える必要がある。光線の向きを変える簡単なアプローチとしては、何らかの光散乱体を透明基材表面または内部に配置する方法が挙げられる。光散乱体を設けることにより、入射光の一部は透明基材内で臨界角以下となり端面に導光されやすくなる。しかしながら、光散乱体自体が全反射の妨げとなり、また透明基材内を端面に導光する際の損失となるため、光散乱体を用いて高い端面集光効率を有する集光光学素子とすることは困難である。 For example, in a transparent substrate having a refractive index higher than that of the surroundings and a main surface on which external light is incident is parallel and flat, light propagating at a critical angle or more is efficiently guided to the end face by total reflection. The However, since light incident from the outside of the transparent base material is always below the critical angle inside the transparent base material, it is not possible to guide the light to the end face by repeating total reflection inside the transparent base material. Therefore, in order to propagate the light incident from the main surface of the transparent base material to the end face efficiently through the inside of the transparent base material, it is necessary to change the direction of the light beam when incident on the transparent base material or after the incident. There is. As a simple approach for changing the direction of the light beam, there is a method in which some kind of light scatterer is disposed on or inside the transparent substrate. By providing the light scatterer, a part of the incident light becomes less than the critical angle in the transparent base material and is easily guided to the end face. However, since the light scatterer itself hinders total reflection and becomes a loss when light is guided to the end surface within the transparent base material, the light scatterer is used as a condensing optical element having high end surface condensing efficiency. It is difficult.
 これに対して、本発明の集光光学素子1においは、例えば図1及び図3に示されるように、集光光学素子1の最表面側に位置する導光体2の入射光側の主面2aから、外部光が種々の入射角で入射して様々な光路Aで進行する。入射した光は、導光体2に形成されたプリズム構造2gや、当該プリズム構造2gが形成された主面とは反対側の主面の平坦面による反射及び屈折を繰り返して、端面2c,2d方向へ導かれ、当該端面2c,2dから光が出射される。本発明においては、導光体に形成された連続するプリズム構造により入射光の一部は屈折し、臨界角以上で導光体の平坦面に到達した光は、全反射により100%の効率で反射される。その後、光は再びプリズム構造を持つ表面へと到達し、透過または反射を生じるが、一定割合の光は再び平坦面に対して臨界角以上の角度で平坦面に向かって進む。導光体内においてこのような屈折、反射、透過を繰り返すことにより、光は導光体の端面に到達する。臨界角未満の角度となった光も、全反射に比べて反射率は落ちるものの、反射され、再びプリズム構造によって進行方向を様々に変えられ、その一部は反射や全反射を繰り返して、端面に到達する。本発明の集光光学素子においては、このような特定構造の導光体が複数積層されているため、外部光が導光体内で反射、屈折、透過を繰り返して、集光効率よく端面から出射されるものと考えられる。 On the other hand, in the condensing optical element 1 of the present invention, as shown in FIGS. 1 and 3, for example, the main part on the incident light side of the light guide 2 located on the outermost surface side of the condensing optical element 1 is used. From the surface 2a, external light enters at various incident angles and travels along various optical paths A. The incident light is repeatedly reflected and refracted by the prism structure 2g formed on the light guide 2 and the flat surface of the main surface opposite to the main surface on which the prism structure 2g is formed, so that the end surfaces 2c, 2d The light is guided in the direction, and light is emitted from the end faces 2c and 2d. In the present invention, a part of incident light is refracted by the continuous prism structure formed in the light guide, and light reaching the flat surface of the light guide at a critical angle or more is 100% efficient by total reflection. Reflected. Thereafter, the light reaches the surface having the prism structure again and is transmitted or reflected, but a certain percentage of the light again travels toward the flat surface at an angle greater than the critical angle with respect to the flat surface. By repeating such refraction, reflection and transmission in the light guide, light reaches the end face of the light guide. Light with an angle less than the critical angle is also reflected, although the reflectance is lower than that of total reflection, and is reflected again, and the traveling direction can be changed again by the prism structure. To reach. In the condensing optical element of the present invention, since a plurality of light guides having such a specific structure are laminated, external light is repeatedly reflected, refracted, and transmitted within the light guide, and is emitted from the end face with high light collection efficiency. It is considered to be done.
 また、一般には透明基板に入射した入射光の多くは全ての導光体を透過して、集光光学素子の裏面側から外部に出ていくため、集光ロスに繋がる。このような集光ロスを抑制し、集光効率をより向上させる観点からは、本発明の集光光学素子においては、導光体の裏面側にプリズム構造が形成されたものとすることがより好ましい。その場合、外部からの光の入射が垂直入射(積層方向、入射角0°)またはそれに近い場合などは、入射光の一部は図3の左端に示される光路Aのようにコーナーキューブとして知られる反射構造と同様に入射側に戻る。残りの光は図3の中央の光路Aのように次の導光体に入射するか、図3の右端の光路Aのように導光体内を進んでいく。次の導光体に入射した光は同じ作用を繰り返す。この様に端面へと進んでいく光の量は導光体の積層数を増やすと最初は増加するが、さらに導光体の積層数を増加することによって、集光光学素子の裏面から外部に出ていく光量は減少するため、導光体の積層数の増加に伴う集光効率の向上効果は次第に限定的となる。全ての導光体を裏面側がプリズム構造となるように配置した場合には、外部からの光の入射が垂直入射(積層方向、入射角0°)またはそれに近い場合などは、入射側への戻り光が増加し、その入射角での端面集光効率が低下する。 In general, most of the incident light incident on the transparent substrate passes through all the light guides and exits to the outside from the back side of the condensing optical element, leading to a condensing loss. From the viewpoint of suppressing such light condensing loss and further improving light condensing efficiency, in the condensing optical element of the present invention, it is more preferable that a prism structure is formed on the back side of the light guide. preferable. In that case, when the incident light from the outside is normal incidence (stacking direction, incident angle 0 °) or close to it, a part of the incident light is known as a corner cube as in the optical path A shown at the left end of FIG. It returns to the incident side in the same manner as the reflection structure. The remaining light enters the next light guide as in the central optical path A in FIG. 3, or travels through the light guide in the right optical path A in FIG. The light incident on the next light guide repeats the same action. In this way, the amount of light traveling to the end face increases when the number of light guides stacked is increased, but by further increasing the number of light guides stacked, the amount of light is increased from the back surface of the condensing optical element to the outside. Since the amount of emitted light decreases, the effect of improving the light collection efficiency accompanying the increase in the number of stacked light guides becomes gradually limited. When all the light guides are arranged so that the back side has a prism structure, when the incident light from the outside is perpendicularly incident (stacking direction, incident angle 0 °) or close to it, it returns to the incident side. The light increases, and the end face condensing efficiency at the incident angle decreases.
 このような場合の端面集光効率の低下を抑制するためには、最表面側に位置する導光体のプリズム構造が形成されている主面の向きと、他の導光体のプリズム構造が形成されている主面の向きとを、逆向きにすることが好ましく、入射光側にプリズム構造が形成された導光体を最表面側に積層し、その他の導光体は裏面側にプリズム構造が形成されたものとすることがより好ましい。例えば、図2に示されるように、最表面側に位置する導光体21(1層目の導光体21)の入射光側の主面2aにプリズム構造が形成されており裏面側の主面2bが平坦面であり、その直下に位置する導光体22(2層目の導光体22)の入射光側の主面が平坦面であり裏面側の主面にプリズム構造が形成されている集光光学素子1においては、1層目の導光体21に垂直入射して透過した光は、1層目の導光体21のプリズム構造2gによって進行方向を曲げられ、2層目の導光体22に入射する際には垂直入射ではなくなる。このことにより2層目の導光体22入射した光は、導光体22の端面に導光される。さらに、3層目、4層目の導光体23,24を2層目の導光体22と同様に配置することにより、3層目、4層目の導光体23,24についても2層目の導光体22と同様の効果を発揮し、また、最裏面により近い側の導光体から戻ってきた光の一定量も端面へと導かれることになり、結果として端面に導光される光束の総量は増加し、再表面からの入射光方向への戻り光を抑えることができる。 In order to suppress a decrease in the end face light collection efficiency in such a case, the orientation of the main surface on which the prism structure of the light guide located on the outermost surface side is formed and the prism structure of other light guides It is preferable to reverse the direction of the formed main surface, a light guide having a prism structure formed on the incident light side is laminated on the outermost surface side, and the other light guides are prisms on the back surface side. More preferably, a structure is formed. For example, as shown in FIG. 2, a prism structure is formed on the main surface 2a on the incident light side of the light guide 21 (first light guide 21) located on the outermost surface side, and the main surface on the back surface side. The surface 2b is a flat surface, and the main surface on the incident light side of the light guide 22 (second-layer light guide 22) positioned immediately below is a flat surface, and a prism structure is formed on the main surface on the back surface side. In the condensing optical element 1, the light vertically incident on and transmitted through the first light guide 21 is bent in the traveling direction by the prism structure 2 g of the first light guide 21. When the light enters the light guide 22, it is not perpendicular incidence. As a result, the light incident on the second-layer light guide 22 is guided to the end face of the light guide 22. Further, by arranging the third and fourth light guides 23 and 24 in the same manner as the second light guide 22, the third and fourth light guides 23 and 24 are also two. The same effect as that of the light guide 22 of the layer is exhibited, and a certain amount of light returned from the light guide closer to the rearmost surface is also guided to the end surface, and as a result, the light is guided to the end surface. The total amount of light flux to be increased increases, and the return light from the resurface to the incident light direction can be suppressed.
 本発明の光学素子においては、導光体2の積層数が多くなるほど、集光効率が高められるが、例えば積層数が6を超えても、集光効率の向上効果は小さくなる一方、厚みが大きくなるというデメリットが大きくなる。導光体の積層数は、2以上であれば特に制限されないが、集光光学素子の高い端面集光効率と小型化とを両立する観点からは、好ましくは2~6、より好ましくは2~5、さらに好ましくは3~5、特に好ましくは4~5が挙げられる。 In the optical element of the present invention, as the number of stacked light guides 2 increases, the light collection efficiency increases. For example, even if the number of stacked layers exceeds 6, the effect of improving the light collection efficiency is reduced, but the thickness is reduced. The disadvantage of becoming larger becomes larger. The number of laminated light guides is not particularly limited as long as it is 2 or more, but is preferably 2 to 6 and more preferably 2 to 2 from the viewpoint of achieving both high end face condensing efficiency and downsizing of the condensing optical element. 5, more preferably 3 to 5, particularly preferably 4 to 5.
 なお、本発明の集光光学素子は、上記のプリズム構造が形成された導光体に加えて、プリズム構造が形成されていない導光体が積層されていてもよいが、集光光学素子の高い端面集光効率と小型化とを両立する観点からは、導光体としてはプリズム構造が形成されたもののみが積層されていることが好ましい。 The condensing optical element of the present invention may be laminated with a light guide without a prism structure in addition to the light guide with the prism structure described above. From the viewpoint of achieving both high end surface light collection efficiency and miniaturization, it is preferable that only light guides having a prism structure are stacked.
 なお、集光光学素子の一方側の端面から光を出射させたい場合には、他方側の端面に光反射板を設ければよい。さらに、集光光学素子の集光効率をより高めるためには、裏面側と、側面側にも光反射板を設けることが好ましい。 In addition, what is necessary is just to provide a light reflection board in the end surface of the other side, when light is emitted from the end surface of the one side of a condensing optical element. Furthermore, in order to further improve the light collection efficiency of the light collecting optical element, it is preferable to provide light reflecting plates on the back surface side and the side surface side.
 本発明の集光装置は、上記の集光光学素子を備えることを特徴とする。具体的には、例えば図6に示されるように、集光装置10は、集光光学素子1と、集光光学素子1の端面から出射された光を集光するレンズまたはこれと同等の機能を備えた集光構造4と、当該レンズ等を透過した光を導く光ファイバ5とを備えている。集光光学素子1には、外部光が入射する側の主面と、光が出射する端面以外の面には、光反射板3が配置されている。 The light collecting device of the present invention includes the above-described light collecting optical element. Specifically, as shown in FIG. 6, for example, the condensing device 10 includes a condensing optical element 1, a lens that condenses light emitted from the end face of the condensing optical element 1, or a function equivalent to this. And the optical fiber 5 that guides the light transmitted through the lens and the like. In the condensing optical element 1, a light reflection plate 3 is disposed on a main surface on the side where external light is incident and on a surface other than an end surface from which the light is emitted.
 本発明の集光装置を例えば太陽光照明などに用いる場合には、光ファイバ5によって、室内などに太陽光を導くことができる。また、本発明の集光装置を例えば太陽電池などに用いる場合には、光ファイバ5の代わりに光電変換素子を配置することができる。また、本発明の集光装置を例えば太陽熱温水器などに用いる場合には、光ファイバ5によって、太陽光を貯水槽に導き、貯水槽内の水を加熱することができる。 When the light collecting device of the present invention is used for, for example, sunlight illumination, the sunlight can be guided into the room by the optical fiber 5. Moreover, when using the condensing apparatus of this invention for a solar cell etc., a photoelectric conversion element can be arrange | positioned instead of the optical fiber 5, for example. Moreover, when using the condensing apparatus of this invention for a solar water heater etc., sunlight can be guide | induced to a water storage tank with the optical fiber 5, and the water in a water storage tank can be heated.
 本発明の集光装置によれば、高い端面集光効率と小型化とを両立した上記の集光光学素子を備えているため、さまざまな入射角で入射する光を集光光学素子の内部で反射させて光を所望の位置に効率よく導くことができる。このため、当太陽追尾機構を用いる必要が無く、設置場所の制限が小さくなり、例えば建物の壁面などへ設置するパネル型の集光装置として、太陽光エネルギーを有効利用できる。 According to the condensing device of the present invention, since the above-described condensing optical element having both high end-face condensing efficiency and downsizing is provided, light incident at various incident angles is contained inside the condensing optical element. The light can be reflected and efficiently guided to a desired position. For this reason, it is not necessary to use this solar tracking mechanism, the restriction of the installation location is reduced, and solar energy can be effectively used as a panel-type light collecting device that is installed on the wall surface of a building, for example.
 以下に、実施例及び比較例を示して本発明を詳細に説明する。ただし、本発明は、実施例に限定されない。 Hereinafter, the present invention will be described in detail with reference to Examples and Comparative Examples. However, the present invention is not limited to the examples.
[シミュレーション1]
 まず、上記のようにして複数の導光体を積層した集光光学素子について、様々な入射角で主面側から入射する光を端面に導く場合の集光効率をシミュレーションした。シミュレーションは、光線追跡法によるコンピュータ-シミュレーションとした(使用ソフト:米国Synopsys社製LightTool)。シミュレーションの条件は、次の通りである。導光体としては、図4に示されるように、一方側の主面の全面において、プリズム構造の断面形状が積層方向に対して線対称となるようにV字状の溝が設けられた透明基材とした。集光光学素子は、図2に示されるように、光の入射方向から順に、1層目の導光体は、入射面に対してプリズム構造を向けた配置(Fと表記)とし、2~5層目の導光体は同じプリズム構造を入射面とは反対側(裏面側)に向けた配置(Bと表記)し、最裏面には光反射板を備えた5層構造の積層体(裏面側からBBBBFの積層構造)とした。このような集光光学素子に対して、入射角を変化させて外部光を入射させた場合について、積層体の一方側の端面から出射される光の効率(端面集光効率)をシミュレーションした。なお、積層体の積層方向が入射角0°である。各層のプリズム構造体は、頂角a=90°、ピッチp=0.1mmとし、各導光体の厚みL=2.0mm、導光体の屈折率1.49(アクリル樹脂)、入射光の波長λ=632nm、入射光の発散角1°とした(図7~12において、「Aim1°」と表記する)。また、外部光の光線が端面から、それぞれ、5mm、10mm、20mmの位置に入射する場合について、シミュレーションを行った。結果を図7のグラフに示す。図7に示されるグラフから明らかなように、入射角-40°~+40°に亘って、低い角度依存性で数%を越える高い端面集光効率が得られる結果となった。
[Simulation 1]
First, with respect to the condensing optical element in which a plurality of light guides are stacked as described above, the light condensing efficiency in the case where light incident from the main surface side at various incident angles is guided to the end surface was simulated. The simulation was a computer-simulation by the ray tracing method (Software used: LightTool manufactured by Synopsys, USA). The simulation conditions are as follows. As shown in FIG. 4, the light guide is transparent in which a V-shaped groove is provided on the entire main surface on one side so that the cross-sectional shape of the prism structure is axisymmetric with respect to the stacking direction. A substrate was used. In the condensing optical element, as shown in FIG. 2, the light guide in the first layer is arranged with the prism structure facing the incident surface in order from the light incident direction (denoted as F). The light guide of the 5th layer arranges the same prism structure on the opposite side (back side) from the entrance surface (represented as B), and is a laminate of 5 layers (with a light reflector on the back side) BBBBF laminated structure from the back side). With respect to such a condensing optical element, the efficiency of light emitted from one end face of the laminated body (end face condensing efficiency) was simulated in the case where external light was incident with the incident angle changed. The stacking direction of the stacked body is an incident angle of 0 °. The prism structure of each layer has apex angle a = 90 °, pitch p = 0.1 mm, thickness L = 2.0 mm of each light guide, refractive index 1.49 (acrylic resin) of the light guide, incident light The wavelength λ is 632 nm, and the divergence angle of incident light is 1 ° (in FIG. 7 to FIG. 12, expressed as “Aim1 °”). In addition, a simulation was performed in the case where light rays of external light were incident from the end face at positions of 5 mm, 10 mm, and 20 mm, respectively. The results are shown in the graph of FIG. As is apparent from the graph shown in FIG. 7, a high end face condensing efficiency exceeding several percent is obtained with a low angle dependency over an incident angle of −40 ° to + 40 °.
[シミュレーション2]
 最裏面側の導光体を1層取り除き、4層構造の積層体(裏面側からBBBFの積層構造、屈折率1.52(BK7))としたこと以外は、シミュレーション1と同様にしてシミュレーションした。結果を図8のグラフに示す。図8に示されるグラフから明らかなように、4層構造とした場合にも、入射角-40°~+40°に亘って、低い角度依存性で数%を越える高い端面集光効率が得られ、入射角依存性は、5層構造とほとんど変わらなかった。
[Simulation 2]
A simulation was performed in the same manner as in Simulation 1 except that one layer of the light guide on the back surface side was removed and a four-layer structure (BBBF structure from the back side, refractive index 1.52 (BK7)) was used. . The results are shown in the graph of FIG. As is apparent from the graph shown in FIG. 8, even in the case of a four-layer structure, a high end face condensing efficiency exceeding several percent is obtained with a low angle dependency over an incident angle of −40 ° to + 40 °. The incident angle dependency was almost the same as that of the five-layer structure.
[シミュレーション3]
 1層目の導光体と2層目の導光体の向かい合う平面を光学的に接触させたことと導光体の屈折率を1.49(アクリル樹脂)としたこと以外は、シミュレーション2と同様にしてシミュレーションした。結果を図9のグラフに示す。シミュレーション3では、1層目と2層目を合わせて、両主面にプリズム構造を形成した2倍の厚みの導光体を1層用いた場合に相当する。シミュレーション3では、入射角-45°付近の端面集光効率が改善した。他の入射角における端面集光効率は、シミュレーション1,2と大きくは変わらなかった。
[Simulation 3]
Simulation 2 except that the first and second light guides are in optical contact with each other and that the refractive index of the light guide is 1.49 (acrylic resin). A similar simulation was performed. The results are shown in the graph of FIG. The simulation 3 corresponds to the case where one layer of a double-thickness light guide body in which the first layer and the second layer are combined and prism structures are formed on both main surfaces is used. In simulation 3, the end face light collection efficiency near an incident angle of −45 ° was improved. The end face condensing efficiency at other incident angles was not significantly different from those of simulations 1 and 2.
[シミュレーション4]
 導光体として、図5に示されるように、プリズム構造の断面形状が積層方向に対して非線対称となるようにV字状の溝が設けられた透明基材としたこと以外は、シミュレーション1と同様にシミュレーションした。図5の頂角において、b=0°、c=60°とし、ピッチp=0.3mmとした。また、光が出射される端面は、図5の頂角のb側として計算した。結果を図10のグラフに示す。シミュレーション4では、入射角-40°~+40°の広い範囲において、高い端面集光効率が得られる結果となった。
[Simulation 4]
As the light guide, as shown in FIG. 5, a simulation is performed except that a transparent base material provided with a V-shaped groove so that the cross-sectional shape of the prism structure is axisymmetric with respect to the stacking direction is used. The simulation was performed in the same manner as in 1. In the apex angle of FIG. 5, b = 0 °, c = 60 °, and the pitch p = 0.3 mm. In addition, the end face from which the light is emitted was calculated as the b side of the apex angle in FIG. The results are shown in the graph of FIG. In the simulation 4, a high end face condensing efficiency was obtained in a wide range of incident angles from −40 ° to + 40 °.
[実施例1]
 幅1cm、頂角90°のV字状の溝(プリズム構造)が一方側の主面の全面に設けられた板状のアクリル樹脂(屈折率1.49、寸法は幅4cm×奥行1cm×厚み2mm)を導光体とし、当該導光体を入射光側にプリズム構造を向けた配置(Fと表記)で5段重ねにした積層体(裏面側からFFFFFの積層構造)を作製し、集光光学素子とした。なお、集光光学素子において、積層体の裏面(入射側とは反対側の面)には、光拡散反射版を設けた。次に、632nmのリボン状(幅1mm、高さ1cm、高さは積層体の奥行方向に平行)の光ビームを入射した。光ビームの入射位置は、それぞれ、出射する端面からの距離d’=5mm、10mm、20mmとした。それぞれの場合について、端面からの出射光パワーを端面に配置した検出器で測定して、端面集光効率を算出した。ただし、d’=5mmの+20°を超える角度では、検出器自体が入射光を遮るため、測定を除外した。結果を図11のグラフに示す。図11のグラフに示される通り、d’=5mm、10mm、20mmのいずれの場合においても、入射角-40°~+40°の広い範囲において、高い端面集光効率が得られた。なお、光の入射角は、集光光学素子の入射面と入射光とのなす角が90°未満となる側をマイナスに取り、垂直入射を0°とした。
[Example 1]
Plate-shaped acrylic resin with a V-shaped groove (prism structure) with a width of 1 cm and apex angle of 90 ° provided on the entire main surface on one side (refractive index of 1.49, dimensions are 4 cm width x depth 1 cm x thickness 2 mm) is used as a light guide, and a laminate (stacked structure of FFFFF from the back side) is produced by stacking the light guides in a five-tiered manner with the prism structure facing the incident light side (denoted as F). An optical optical element was obtained. In the condensing optical element, a light diffuse reflection plate was provided on the back surface (surface opposite to the incident side) of the laminate. Next, a light beam having a ribbon shape of 632 nm (width 1 mm, height 1 cm, height parallel to the depth direction of the laminate) was incident. The incident positions of the light beams were distances d ′ from the outgoing end face = 5 mm, 10 mm, and 20 mm, respectively. In each case, the output light power from the end face was measured with a detector arranged on the end face, and the end face condensing efficiency was calculated. However, at an angle exceeding d20 = + 20 ° of d ′ = 5 mm, measurement was excluded because the detector itself shielded incident light. The results are shown in the graph of FIG. As shown in the graph of FIG. 11, high end face light collection efficiency was obtained in a wide range of incident angles of −40 ° to + 40 ° in any case where d ′ = 5 mm, 10 mm, and 20 mm. The incident angle of light was set to minus on the side where the angle formed by the incident surface of the condensing optical element and the incident light was less than 90 °, and vertical incidence was set to 0 °.
[実施例2]
 図2に示されるように、光の入射方向から順に、1層目の導光体は入射面に対してプリズム構造を向けた配置(F)とし、2~5層目の導光体は同じプリズム構造を入射面と反対側に向けた配置(B)し、最裏面には光反射板を備えた5層構造の積層体(裏面側からBBBBFの積層構造)を集光光学素子としたこと以外は、実施例1と同様にして、端面からの出射光パワーを端面に配置した検出器で測定し、端面集光効率を算出した。結果を図12のグラフに示す。図12のグラフに示される通り、d’=5mm、10mm、20mmのいずれの場合においても、入射角-40°~+40°の広い範囲において、高い端面集光効率が得られた。
[Example 2]
As shown in FIG. 2, in order from the incident direction of light, the first-layer light guide is arranged with the prism structure facing the incident surface (F), and the second to fifth-layer light guides are the same. The concentrating optical element is a five-layered laminate (laminated structure of BBBBF from the back side) with the prism structure arranged on the opposite side of the incident surface (B) and a light reflector on the back side. Except for the above, in the same manner as in Example 1, the output light power from the end face was measured with a detector arranged on the end face, and the end face condensing efficiency was calculated. The results are shown in the graph of FIG. As shown in the graph of FIG. 12, high end face light condensing efficiency was obtained in a wide range of incident angles of −40 ° to + 40 ° in any case of d ′ = 5 mm, 10 mm, and 20 mm.
[実施例3]
 導光体を入射光側とは反対側にプリズム構造を向けた配置(B)とし、最裏面には光反射板を備えた5層構造の積層体(裏面側からBBBBBの積層構造)を集光光学素子としたこと以外は、実施例1と同様にして、端面からの出射光パワーを端面に配置した検出器で測定し、端面集光効率を算出した。結果を図12のグラフに示す。図13のグラフに示される通り、d’=5mm、10mm、20mmのいずれの場合においても、入射角-40°~+40°の広い範囲において、高い端面集光効率が得られた。但し、全てがBの積層構造であるため、入射角0°付近の端面集光効率は低下した。
[Example 3]
The light guide is arranged with the prism structure facing the side opposite to the incident light side (B), and a five-layered structure (stacked structure of BBBBB from the back side) with a light reflector on the backside is collected. Except for the optical optical element, the output light power from the end face was measured with a detector arranged on the end face in the same manner as in Example 1, and the end face condensing efficiency was calculated. The results are shown in the graph of FIG. As shown in the graph of FIG. 13, in any case where d ′ = 5 mm, 10 mm, or 20 mm, high end face light collection efficiency was obtained in a wide range of incident angles from −40 ° to + 40 °. However, since all of them have a B laminated structure, the end face light condensing efficiency near an incident angle of 0 ° was lowered.
[実施例4]
 実施例2の集光光学素子において、導光体の寸法を幅9.8cm×奥行9.5cm×厚み8mmとし、裏面に位置する導光体を1つ取り除き、4層構造の積層体(裏面側からBBBFの積層構造)を集光光学素子とし、この集光光学素子のF側の表面に擬似太陽光(AM1.5)を図6に示されるようなxy平面内で-60~+60°の範囲において入射角度を変化させて入射させたこと以外は、実施例1と同様にして、端面からの出射光パワーを端面に配置した検出器で測定し、端面集光効率を算出した。その結果、図14に示されるように、入射角-40~+20°の範囲で端面集光効率が平均4.4%であり、入射角-10°において最大5.3%という高い端面集光効率を示した。
[Example 4]
In the condensing optical element of Example 2, the size of the light guide is 9.8 cm wide × 9.5 cm deep × 8 mm thick, and one light guide located on the back surface is removed, and a four-layer structure (back surface) BBBF from the side) is used as a condensing optical element, and pseudo sunlight (AM1.5) is applied to the F-side surface of this condensing optical element in the xy plane as shown in FIG. Except that the incident angle was changed and the incident angle was changed, the output light power from the end face was measured with a detector disposed on the end face, and the end face condensing efficiency was calculated in the same manner as in Example 1. As a result, as shown in FIG. 14, the end face condensing efficiency is an average of 4.4% in the range of the incident angle of −40 to + 20 °, and the end face condensing is as high as 5.3% at the incident angle of −10 °. Showed efficiency.
[比較例1]
 プリズム構造が形成されていない板状のアクリル樹脂(屈折率1.49、寸法は幅9.5cm×奥行9.5cm×厚み2mm)を導光体として用いたこと以外は、実施例4と同様にして、端面からの出射光パワーを端面に配置した検出器で測定し、端面集光効率を算出した。その結果、図15に示されるように、入射角-40~+20°の範囲で端面集光効率が平均0.9%であった。
[Comparative Example 1]
Except that a plate-like acrylic resin (refractive index 1.49, width 9.5 cm × depth 9.5 cm × thickness 2 mm) having no prism structure was used as the light guide, the same as in Example 4. Then, the output light power from the end face was measured with a detector arranged on the end face, and the end face condensing efficiency was calculated. As a result, as shown in FIG. 15, the end face light collection efficiency was an average of 0.9% in the range of the incident angle of −40 to + 20 °.
[実施例5]
 図5に示されるように、プリズム構造の断面形状が積層方向に対して非線対称となるようにV字状の溝が設けられ、図5の頂角において、b=0°、c=60°かつピッチp=0.3mmである5層構造の積層体(裏面側からBBBBBの積層構造)を集光光学素子とし、その積層体の寸法を幅9.4cm×奥行9.4cm×厚み10mmとし、また、光が出射される端面は、図5の頂角のb側としたこと以外は、実施例4と同様にして、端面からの出射光パワーを端面に配置した検出器で測定し、端面集光効率を算出した。その結果、図16に示されるように入射角-40~+20°の範囲で端面集光効率が平均11.6%であり、入射角-11°において最大13.8%という高い端面集光効率を示した。
[Example 5]
As shown in FIG. 5, a V-shaped groove is provided so that the cross-sectional shape of the prism structure is axisymmetric with respect to the stacking direction, and b = 0 ° and c = 60 at the apex angle of FIG. A laminated body having a five-layer structure (a laminated structure of BBBBB from the back side) with a pitch p = 0.3 mm is used as a condensing optical element, and the dimensions of the laminated body are 9.4 cm wide × 9.4 cm deep × 10 mm thick Further, except that the end surface from which light is emitted is on the b side of the apex angle in FIG. 5, the output light power from the end surface is measured with a detector arranged on the end surface in the same manner as in Example 4. The end face light collection efficiency was calculated. As a result, as shown in FIG. 16, the end face condensing efficiency is an average of 11.6% in an incident angle range of −40 to + 20 °, and the end face condensing efficiency is a maximum of 13.8% at an incident angle of −11 °. showed that.
[シミュレーション5]
 1層目の導光体と2層目の導光体の向かい合う平面間に空気層を導入し光学的に分離させたこと、及び導光体の寸法を幅10cm×奥行10cm、積層体の厚みを8mmとし(各層2mm厚)、その全面に色温度5770Kの白色光を光入射させたこと以外は、シミュレーション3と同様にしてシミュレーションした。結果を図17のグラフに示す。これは実施例4に対応した条件のシミュレーションとなり、入射角-40~+20°の範囲において端面集光効率が平均7.5%と高い効率を示した。
[Simulation 5]
An air layer was introduced between the planes of the first light guide and the second light guide that were optically separated, and the dimensions of the light guide were 10 cm wide × 10 cm deep, and the thickness of the laminate. The simulation was performed in the same manner as in the simulation 3 except that white light having a color temperature of 5770 K was incident on the entire surface. The results are shown in the graph of FIG. This was a simulation of the conditions corresponding to Example 4, and the end face condensing efficiency was as high as an average of 7.5% in the incident angle range of −40 to + 20 °.
[シミュレーション6]
 図5に示されるように、プリズム構造の断面形状が積層方向に対して非線対称となるようにV字状の溝が設けられ、図5の頂角において、b=0°、c=60°かつピッチp=0.3mmである5層構造の積層体(裏面側からBBBBBの積層構造)を集光光学素子とし、その積層体の厚みを10mmとし(各層2mm厚)、また、光が出射される端面は、図5の頂角のb側としたこと以外は、シミュレーション5と同様にしてシミュレーションした。結果を図18のグラフに示す。これは実施例5に対応した条件のシミュレーションとなり、入射角-40~+20°の範囲において端面集光効率が平均で11.1%という、実施例5に近い結果を得た。
[Simulation 6]
As shown in FIG. 5, a V-shaped groove is provided so that the cross-sectional shape of the prism structure is axisymmetric with respect to the stacking direction, and b = 0 ° and c = 60 at the apex angle of FIG. A 5-layer structure (stacked structure of BBBBB from the back side) with a pitch p = 0.3 mm is used as a condensing optical element, and the thickness of the stack is 10 mm (each layer is 2 mm thick). The simulation was performed in the same manner as in the simulation 5 except that the exit end face was on the b side of the apex angle in FIG. The results are shown in the graph of FIG. This was a simulation of the conditions corresponding to Example 5, and obtained a result close to Example 5 with an end surface light collection efficiency of 11.1% on average in the incident angle range of −40 to + 20 °.
1 集光光学素子
2 導光体
2a,2b 主面
2c,2d 端面
2e,2f 側面
2g プリズム構造
21 1層目の導光体
22 2層目の導光体
23 3層目の導光体
24 4層目の導光体
3 光反射板
4 集光構造
5 光ファイバ
A 光路
DESCRIPTION OF SYMBOLS 1 Condensing optical element 2 Light guide 2a, 2b Main surface 2c, 2d End surface 2e, 2f Side surface 2g Prism structure 21 1st layer light guide 22 2nd layer light guide 23 3rd layer light guide 24 Fourth-layer light guide 3 Light reflector 4 Light condensing structure 5 Optical fiber A Optical path

Claims (13)

  1.  複数の導光体が主面側において積層された積層体を備える集光光学素子であって、
     前記導光体は、前記主面の少なくとも一方に連続する複数のプリズム構造を有し、
     前記導光体の主面側から入射された外部光が、前記プリズム構造により屈折または反射し、前記複数の導光体内を伝播して、前記導光体の少なくとも一方の端面から出射される、集光光学素子。
    A condensing optical element comprising a laminate in which a plurality of light guides are laminated on the main surface side,
    The light guide has a plurality of prism structures continuous to at least one of the main surfaces,
    External light incident from the main surface side of the light guide is refracted or reflected by the prism structure, propagates through the plurality of light guides, and is emitted from at least one end surface of the light guide. Condensing optical element.
  2.  前記プリズム構造の積層方向における断面形状が三角形状であり、
     前記プリズム構造の断面形状において、前記導光体から突出している頂角が、45°~120°の範囲にある、請求項1に記載の集光光学素子。
    The cross-sectional shape in the stacking direction of the prism structure is triangular.
    The condensing optical element according to claim 1, wherein in the cross-sectional shape of the prism structure, an apex angle protruding from the light guide is in a range of 45 ° to 120 °.
  3.  前記プリズム構造の積層方向における断面形状が三角形状であり、
     前記プリズム構造の断面形状が、積層方向に対して線対称である、請求項1または2に記載の集光光学素子。
    The cross-sectional shape in the stacking direction of the prism structure is triangular.
    The condensing optical element according to claim 1, wherein a cross-sectional shape of the prism structure is axisymmetric with respect to a stacking direction.
  4.  前記プリズム構造の積層方向における断面形状が三角形状であり、
     前記プリズム構造の断面形状が、積層方向に対して非線対称である、請求項1または2に記載の集光光学素子。
    The cross-sectional shape in the stacking direction of the prism structure is triangular.
    The condensing optical element according to claim 1, wherein a cross-sectional shape of the prism structure is non-axisymmetric with respect to a stacking direction.
  5.  前記プリズム構造が、前記導光体の主面に形成された連続する複数のV字状の溝により形成されている、請求項1~4のいずれかに記載の集光光学素子。 5. The condensing optical element according to claim 1, wherein the prism structure is formed by a plurality of continuous V-shaped grooves formed on a main surface of the light guide.
  6.  前記複数のプリズム構造のピッチが、0.01~1mmの範囲にある、請求項1~5のいずれかに記載の集光光学素子。 The condensing optical element according to any one of claims 1 to 5, wherein a pitch of the plurality of prism structures is in a range of 0.01 to 1 mm.
  7.  前記各導光体の厚みが、それぞれ、0.1~10mmの範囲にある、請求項1~6のいずれかに記載の集光光学素子。 The condensing optical element according to any one of claims 1 to 6, wherein the thickness of each light guide is in the range of 0.1 to 10 mm.
  8.  前記導光体の積層数が2~6の範囲にある、請求項1~7のいずれかに記載の集光光学素子。 The condensing optical element according to any one of claims 1 to 7, wherein the number of laminated light guides is in the range of 2 to 6.
  9.  前記複数の導光体の屈折率が、実質的に同一である、請求項1~8のいずれかに記載の集光光学素子。 The condensing optical element according to any one of claims 1 to 8, wherein the plurality of light guides have substantially the same refractive index.
  10.  前記プリズム構造が、前記導光体の少なくとも一方側の主面の略全面に形成されている、請求項1~9のいずれかに記載の集光光学素子。 The condensing optical element according to any one of claims 1 to 9, wherein the prism structure is formed on substantially the entire main surface on at least one side of the light guide.
  11.  前記集光光学素子において外部光が入射する最表面側に位置する導光体が、前記最表面側の主面に前記プリズム構造を有し、
     他の導光体は、前記最表面側の主面とは反対側の主面に前記プリズム構造を有する、請求項1~10のいずれかに記載の集光光学素子。
    The light guide located on the outermost surface side where external light enters in the condensing optical element has the prism structure on the main surface on the outermost surface side,
    The condensing optical element according to claim 1, wherein the other light guide has the prism structure on a main surface opposite to the main surface on the outermost surface side.
  12.  前記導光体は、積層方向からみた場合の形状が、矩形状または扇形である、請求項1~11のいずれかに記載の集光光学素子。 The condensing optical element according to any one of claims 1 to 11, wherein the light guide has a rectangular shape or a sector shape when viewed from the stacking direction.
  13.  請求項1~12のいずれかに記載の集光光学素子を備える、集光装置。 A condensing device comprising the condensing optical element according to any one of claims 1 to 12.
PCT/JP2014/074828 2013-12-25 2014-09-19 Light condensing optical element and light condensing device provided with same WO2015098209A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015554605A JP6385959B2 (en) 2013-12-25 2014-09-19 Condensing optical element and condensing device provided with the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013267053 2013-12-25
JP2013-267053 2013-12-25

Publications (1)

Publication Number Publication Date
WO2015098209A1 true WO2015098209A1 (en) 2015-07-02

Family

ID=53478091

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/074828 WO2015098209A1 (en) 2013-12-25 2014-09-19 Light condensing optical element and light condensing device provided with same

Country Status (2)

Country Link
JP (1) JP6385959B2 (en)
WO (1) WO2015098209A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190084572A (en) * 2018-01-08 2019-07-17 김현 Transmission Apparatus Of Solar Light
US10718479B2 (en) 2016-11-03 2020-07-21 Basf Se Daylighting illumination system

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011503902A (en) * 2007-11-16 2011-01-27 クォルコム・メムズ・テクノロジーズ・インコーポレーテッド Thin film solar concentrator / collector
JP2012156445A (en) * 2011-01-28 2012-08-16 Sharp Corp Solar cell module and photovoltaic power generation device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012070533A1 (en) * 2010-11-24 2012-05-31 シャープ株式会社 Solar cell module and photovolatic power generation device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011503902A (en) * 2007-11-16 2011-01-27 クォルコム・メムズ・テクノロジーズ・インコーポレーテッド Thin film solar concentrator / collector
JP2012156445A (en) * 2011-01-28 2012-08-16 Sharp Corp Solar cell module and photovoltaic power generation device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10718479B2 (en) 2016-11-03 2020-07-21 Basf Se Daylighting illumination system
US10794557B2 (en) 2016-11-03 2020-10-06 Basf Se Daylighting panel
US11209142B2 (en) 2016-11-03 2021-12-28 Skynative UG Daylighting illumination system
KR20190084572A (en) * 2018-01-08 2019-07-17 김현 Transmission Apparatus Of Solar Light
KR102030654B1 (en) 2018-01-08 2019-10-10 김현 Transmission Apparatus Of Solar Light

Also Published As

Publication number Publication date
JPWO2015098209A1 (en) 2017-03-23
JP6385959B2 (en) 2018-09-05

Similar Documents

Publication Publication Date Title
WO2011129069A1 (en) Optical element and illuminating apparatus
JP6304768B2 (en) Condensing mechanism, solar power generation device and window structure
EP2061093A1 (en) Planar thin film solar concentrator/collector
KR101021587B1 (en) building intergrated photovoltaic modules
JP5825582B2 (en) Light-emitting solar condensing system
WO2010151253A1 (en) Dimpled light collection and concentration system, components thereof, and methods
JP2010525582A5 (en)
KR20120106747A (en) Reflective device for photovoltaic module with bifacial cells
US20160377798A1 (en) Light guide apparatus and fabrication method thereof
US11209142B2 (en) Daylighting illumination system
JP6146627B2 (en) Solar cell module
JP6385959B2 (en) Condensing optical element and condensing device provided with the same
US20120182615A1 (en) Optical cover employing microstructured surfaces
KR101007649B1 (en) Light guider having multiple channels
WO2013058381A1 (en) Optical condenser device, optical power generation device and photothermal conversion device
JP6699250B2 (en) Light control sheet
JP2017188984A (en) Light shielding wall for photovoltaic power generation panel
JP2014013306A (en) Light condensing element and solar battery system
KR100590577B1 (en) Multilayer photovoltaic cell
CN103765123A (en) Thermal device with light guide
CN115654418B (en) Sunlight redirecting system of light-guiding heat-insulating prism
WO2024070910A1 (en) Optical member and illumination device
KR101059761B1 (en) Prism Solar Concentrator
KR20230047684A (en) Power generation enhanced solar panel with a light source total reflection mirror structure
JP6112382B2 (en) Solar cell module

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14873940

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015554605

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14873940

Country of ref document: EP

Kind code of ref document: A1