JP2007026748A - Manganese battery - Google Patents

Manganese battery Download PDF

Info

Publication number
JP2007026748A
JP2007026748A JP2005204067A JP2005204067A JP2007026748A JP 2007026748 A JP2007026748 A JP 2007026748A JP 2005204067 A JP2005204067 A JP 2005204067A JP 2005204067 A JP2005204067 A JP 2005204067A JP 2007026748 A JP2007026748 A JP 2007026748A
Authority
JP
Japan
Prior art keywords
negative electrode
positive electrode
manganese battery
sealing body
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005204067A
Other languages
Japanese (ja)
Inventor
Hajime Murakami
村上  元
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2005204067A priority Critical patent/JP2007026748A/en
Publication of JP2007026748A publication Critical patent/JP2007026748A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

<P>PROBLEM TO BE SOLVED: To provide a manganese battery which has a high anti-leakage property, high preservation property during high temperature storage, and in which internal gas can be exhausted surely before the battery internal pressure reaches a sealing withstand pressure. <P>SOLUTION: This is the manganese battery 1 provided with a negative electrode zinc can 2, a positive electrode mixture 3, a carbon rod 8 as a positive electrode current collector, a sealed body 11 that seals the aperture of the negative electrode zinc can 2, and a positive electrode terminal plate 9 that is made to be fitted to the top part of the carbon rod 8, wherein the sealed body 11 is composed of a synthetic resin molded article in which an inner cylindrical part 12 that makes the carbon rod 8 penetrate through and an outer cylindrical part 13 that is fitted into the inner-circumference of the aperture of the negative electrode zinc can 2 are integrally coupled by the coupling part 14, and in which the outer cylindrical part 13 of the sealed body 11 is tightened and sealed between the outer peripheral part of the positive electrode terminal plate 9 and the caulking part 2a of the aperture end of the negative electrode zinc can 2. A gas discharge hole 16 is installed which has a thin-walled part and has a thick-walled part in which wall thickness gradually increases toward outside in the radial direction of its surrounding at the coupling part 14. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明はマンガン電池に関し、特に外装缶を使用せず、負極亜鉛缶で封口するとともに封口体に破裂防止機構を設けたマンガン電池に関するものである。   The present invention relates to a manganese battery, and more particularly to a manganese battery that is sealed with a negative electrode zinc can without using an outer can and has a sealing body provided with a burst prevention mechanism.

外装缶を使用しない円筒形マンガン電池は、負極亜鉛缶と、正極合剤と、正極集電体としての炭素棒と、炭素棒を貫通させる内筒部と負極亜鉛缶の開口部内周に嵌合する外筒部とを連結部により一体的に連結した合成樹脂成形品からなる封口体と、炭素棒の頂部に嵌合させた正極端子板とを備え、封口体の外筒部を正極端子板の外周部と負極亜鉛缶の開口端のかしめ部との間で締め付けて電池を密封した構成とされている。   Cylindrical manganese batteries that do not use an outer can are fitted to the negative electrode zinc can, the positive electrode mixture, the carbon rod as the positive electrode current collector, the inner cylinder that penetrates the carbon rod, and the inner periphery of the opening of the negative electrode zinc can A sealing body made of a synthetic resin molded product integrally connected to the outer cylinder portion by the connecting portion, and a positive terminal plate fitted to the top of the carbon rod, and the outer cylindrical portion of the sealing body is connected to the positive terminal plate The battery is hermetically sealed by tightening between the outer peripheral portion of the electrode and the crimping portion of the open end of the negative electrode zinc can.

そのため、前記封口体に破裂防止機構が設けられていないと、誤って電池を充電した場合などに電池内部で水素ガスが発生し、その結果電池内部の圧力が急激に上昇し、電池の内部圧力が電池の封口耐圧よりも大きくなり、電池の封口部を破損させて電池の破裂を招く恐れがある。   For this reason, if the sealing body is not provided with a rupture prevention mechanism, hydrogen gas is generated inside the battery when the battery is accidentally charged, and as a result, the internal pressure of the battery rapidly increases, and the internal pressure of the battery However, there is a possibility that the sealing pressure resistance of the battery becomes larger and the sealing part of the battery is damaged and the battery is ruptured.

そこで、図6に示すように、封口体21の炭素棒22が貫通する内筒部23の内周面24に上下に延びる溝25を形成するとともに、溝25の途中に薄肉の弁部26を形成したものが提案されている(例えば、特許文献1参照。)。   Therefore, as shown in FIG. 6, a groove 25 extending vertically is formed on the inner peripheral surface 24 of the inner cylinder portion 23 through which the carbon rod 22 of the sealing body 21 passes, and a thin valve portion 26 is provided in the middle of the groove 25. What was formed is proposed (for example, refer patent document 1).

また、アルカリ電池において、ポリアミドなどから成る封口体の内筒部と外筒部の接合部に0.03〜0.2mm厚の破裂可能膜を設けたものが提案されている(例えば、特許文献2参照。)。
実開平7−32854号公報 特表2002−516462号公報
In addition, an alkaline battery in which a rupturable film having a thickness of 0.03 to 0.2 mm is provided at a joint between an inner cylinder portion and an outer cylinder portion of a sealing body made of polyamide or the like has been proposed (for example, Patent Documents). 2).
Japanese Utility Model Publication No. 7-32854 JP-T-2002-516462

ところが、特許文献1に記載の破裂防止弁を設けた構成では、破裂を防止する効果は得られるが、高温で保存した場合に、弁部26が容易に動作して電解液中の水分が電池外部に漏れ出し、電解液が枯渇して乾燥してしまい、耐漏液性や高温保存時の保存特性が悪いという問題がある。   However, in the configuration provided with the explosion prevention valve described in Patent Document 1, the effect of preventing the explosion can be obtained. However, when stored at a high temperature, the valve portion 26 easily operates and moisture in the electrolyte is discharged from the battery. There is a problem that the liquid leaks outside and the electrolyte is depleted and dried, resulting in poor liquid leakage resistance and storage characteristics during high temperature storage.

一方、特許文献2に記載の構成では、封口体に破裂可能膜を設けた構成であるので耐漏液性や高温保存時の保存特性は高いが、0.03〜0.2mm厚の破裂可能膜の周縁が封口体に形成した穴の周壁に結合されている構成であるので、電池内圧が作用した時にそのコーナー部に応力集中が生じるなどの要因で破断場所がばらつく等、破裂時の挙動に対する撹乱要因が大きく、所望の電池内圧で確実に破裂させるのが困難で、作動が不安定であるという問題があり、さらにマンガン電池の封口体に使用されるポリエチレンやポリプロピレン製の封口体では、0.2mm以下の厚さの破裂可能膜を特許文献2に記載のような構成で安定的に精度良く成形するのは困難であり、また精度良く成形できるような材料は高価で、安価なマンガン電池に適用することはコスト高になるため実質的に不可能であるという問題がある。   On the other hand, in the configuration described in Patent Document 2, since the sealable body is provided with a ruptureable film, the liquid leakage resistance and the storage characteristics at high temperature storage are high, but the ruptureable film having a thickness of 0.03 to 0.2 mm. Since the peripheral edge of the battery is connected to the peripheral wall of the hole formed in the sealing body, when the internal pressure of the battery is applied, the fracture location varies due to factors such as stress concentration at the corners. There is a problem that the disturbance factor is large, it is difficult to reliably rupture at a desired internal pressure of the battery, and the operation is unstable. Further, the sealing body made of polyethylene or polypropylene used for the sealing body of the manganese battery is 0. It is difficult to stably and accurately mold a rupturable film having a thickness of 2 mm or less with the configuration described in Patent Document 2, and a material that can be accurately shaped is expensive and inexpensive. In To use there is a problem that it is virtually impossible to become costly.

本発明は、上記従来の問題点に鑑み、耐漏液性や高温保存時の保存特性が高くかつ電池内圧が封口耐圧に到達する前に確実に内部のガスを放出できるマンガン電池を提供することを課題とする。   In view of the above-mentioned conventional problems, the present invention provides a manganese battery that has high leakage resistance and high storage characteristics during high-temperature storage and can reliably release internal gas before the battery internal pressure reaches the sealing pressure resistance. Let it be an issue.

本発明のマンガン電池は、負極亜鉛缶と正極合剤と正極集電体としての炭素棒と負極亜鉛缶の開口部を封口する封口体と炭素棒の頂部に嵌合させた正極端子板とを備え、封口体は炭素棒を貫通させる内筒部と負極亜鉛缶の開口部内周に嵌合する外筒部とを連結部により一体的に連結した合成樹脂成形品からなり、封口体の外筒部を正極端子板の外周部と負極亜鉛缶の開口端のかしめ部との間で締め付けて封口したマンガン電池であって、連結部に薄肉部とその周囲の径方向外方に向けて漸次肉厚が増大する漸次肥厚部とを設けたものである。   The manganese battery of the present invention comprises a negative electrode zinc can, a positive electrode mixture, a carbon rod as a positive electrode current collector, a sealing body for sealing the opening of the negative electrode zinc can, and a positive electrode terminal plate fitted to the top of the carbon rod. The sealing body is made of a synthetic resin molded product in which an inner cylinder portion that penetrates the carbon rod and an outer cylinder portion that fits in the inner periphery of the opening of the negative electrode zinc can are integrally connected by a connecting portion, and the outer cylinder of the sealing body Is a manganese battery in which the portion is clamped between the outer peripheral portion of the positive electrode terminal plate and the crimped portion of the open end of the negative electrode zinc can and sealed, with the thinned portion at the connecting portion and the outer wall in the radial direction A gradually thickening portion in which the thickness increases is provided.

この構成によると、封口体の連結部に薄肉部を設けているので、薄肉部が破断しない限り漏液することはなく、高い耐漏液性や高温保存時の保存特性が得られる。しかも、薄肉部の周囲に漸次肥厚部が設けられているので、破断箇所は薄肉部の略中央部となり、電池内圧が所定の圧力以上になったときに薄肉部が確実に破断し、電池の破裂防止機構として安定した作動が期待できるという効果が得られる。また、薄肉部の周囲に漸次肥厚部が設けられていることで、薄肉部の成形性が格段に向上し、マンガン電池の封口体に一般的に用いられている安価な材質の合成樹脂で成形しても、薄肉部を精度良く成形でき、低コストを維持しながら高い作動圧精度を確保することができる。   According to this structure, since the thin part is provided in the connection part of the sealing body, liquid leakage does not occur unless the thin part is broken, and high leakage resistance and storage characteristics during high temperature storage are obtained. In addition, since the gradually thickened portion is provided around the thin-walled portion, the rupture point is the substantially central portion of the thin-walled portion, and the thin-walled portion reliably breaks when the battery internal pressure exceeds a predetermined pressure, and the battery As a rupture prevention mechanism, an effect that a stable operation can be expected is obtained. In addition, the gradually thickened part is provided around the thin part, so that the formability of the thin part is greatly improved, and it is molded with a synthetic resin of an inexpensive material generally used for a sealing body of a manganese battery. Even so, the thin-walled portion can be accurately molded, and high operating pressure accuracy can be ensured while maintaining low cost.

また、前記薄肉部の破断圧力が、1MPa以上、封口部の耐圧力の80%以下であると、高温保存時の液漏れを確実に防止できて高い保存特性を確保できるとともに、封口部が破損する前に確実に薄肉部が破断してガスを安全に放出することができる。   In addition, when the breaking pressure of the thin-walled portion is 1 MPa or more and 80% or less of the pressure resistance of the sealing portion, liquid leakage during high-temperature storage can be surely prevented and high storage characteristics can be secured, and the sealing portion is damaged. The thin-walled portion is surely broken before the gas can be released safely.

また、前記正極端子板にガス排気口を設けることで、ガスを正極端子板から外部に円滑に放出することができる。   Further, by providing a gas exhaust port in the positive terminal plate, gas can be smoothly discharged from the positive terminal plate to the outside.

また、前記封口体を、低密度ポリエチレン又はポリプロピレンにて構成すると、安価でかつ成形性が良いので好適である。   Further, it is preferable that the sealing body is made of low-density polyethylene or polypropylene because it is inexpensive and has good moldability.

本発明のマンガン電池によれば、封口体の連結部に薄肉部を設けているので、薄肉部が破断しない限り漏液することはなく、良好な耐漏液性や高温保存時の保存特性が得られ、しかもその薄肉部の周囲に漸次肥厚部が設けられているので、電池内圧が所定の圧力以上になったときに薄肉部の略中央部で確実に破断し、安定した破裂防止機能が期待でき、さらに漸次肥厚部が設けられていることで薄肉部の成形性が格段に向上して安価な樹脂材料でも薄肉部を精度良く成形でき、低コストを維持しながら高い作動圧精度を確保することができる。   According to the manganese battery of the present invention, since the thin portion is provided in the connecting portion of the sealing body, no leakage occurs unless the thin portion is broken, and good leakage resistance and storage characteristics during high temperature storage are obtained. In addition, since a gradually thickened portion is provided around the thin-walled portion, when the internal pressure of the battery exceeds a predetermined pressure, the thin-walled portion is surely broken at the center, and a stable burst prevention function is expected. In addition, the progressively thickened part is provided, so that the moldability of the thin part is greatly improved, and the thin part can be accurately molded even with inexpensive resin materials, ensuring high operating pressure accuracy while maintaining low cost. be able to.

以下、本発明の一実施形態の円筒形のマンガン電池について、図1〜図4を参照して説明する。   Hereinafter, a cylindrical manganese battery according to an embodiment of the present invention will be described with reference to FIGS.

図1において、1は円筒形のマンガン電池で、有底円筒状の負極亜鉛缶2内に正極合剤3が収容されている。なお、正極合剤3と負極亜鉛缶2の内周面との間にはセパレータ4が介装され、負極亜鉛缶2の内底面には下部絶縁板5が、上部には上部絶縁板6が配置されており、これらセパレータ4と上部と下部の絶縁板5、6で囲まれた空間内に正極合剤3が収容されている。7は、上部絶縁板6上に塗布されたシール用のピッチである。   In FIG. 1, reference numeral 1 denotes a cylindrical manganese battery, in which a positive electrode mixture 3 is accommodated in a bottomed cylindrical negative electrode zinc can 2. A separator 4 is interposed between the positive electrode mixture 3 and the inner peripheral surface of the negative electrode zinc can 2, a lower insulating plate 5 is provided on the inner bottom surface of the negative electrode zinc can 2, and an upper insulating plate 6 is provided on the upper portion. The positive electrode mixture 3 is accommodated in a space surrounded by the separator 4 and the upper and lower insulating plates 5 and 6. Reference numeral 7 denotes a sealing pitch applied on the upper insulating plate 6.

負極亜鉛缶2の中芯部には正極集電体としての炭素棒8が配設され、その下端は下部絶縁板5の近傍まで貫入され、上端は負極亜鉛缶2の上縁部より突出されている。炭素棒8の頂部には正極端子板9が接続固定されている。具体的には、正極端子板9の中央部に突出形成された端子突部9aが炭素棒8の頂部に嵌合されている。正極端子板9の外周部は断面L字状に屈曲形成され、立ち下り部9bを介して封止フランジ部9cが形成されている。なお、負極亜鉛缶2の底部には、負極端子板10が嵌合して固着されている。   A carbon rod 8 serving as a positive electrode current collector is disposed at the center of the negative electrode zinc can 2, its lower end penetrates to the vicinity of the lower insulating plate 5, and its upper end projects from the upper edge of the negative electrode zinc can 2. ing. A positive terminal plate 9 is connected and fixed to the top of the carbon rod 8. Specifically, a terminal protrusion 9 a that protrudes from the center of the positive electrode terminal plate 9 is fitted to the top of the carbon rod 8. The outer peripheral portion of the positive terminal plate 9 is bent to have an L-shaped cross section, and a sealing flange portion 9c is formed via a falling portion 9b. A negative electrode terminal plate 10 is fitted and fixed to the bottom of the negative electrode zinc can 2.

負極亜鉛缶2の開口部内周と炭素棒8の上端部外周との間には、低密度ポリエチレンの成形品からなる封口体11が配設されている。この封口体11は、図2に詳細構成を示すように、炭素棒8が密封貫通する内筒部12と、負極亜鉛缶2の開口部内周に嵌合する外筒部13と、これら内筒部12と外筒部13の下部同士を一体的に連結する連結部14にて構成されている。外筒部13の内周上部には、連結部14上に当接配置された正極端子板9の封止フランジ部9cの上面上に圧縮状態で圧接されるシール突部15が設けられ、このシール突部15を正極端子板9の封止フランジ部9cと負極亜鉛缶2の開口端のかしめ部2aとの間で締め付けることで封口されている。   Between the inner periphery of the opening of the negative electrode zinc can 2 and the outer periphery of the upper end of the carbon rod 8, a sealing body 11 made of a molded product of low density polyethylene is disposed. As shown in FIG. 2, the sealing body 11 includes an inner cylinder part 12 through which the carbon rod 8 seals and penetrates, an outer cylinder part 13 fitted to the inner periphery of the opening of the negative electrode zinc can 2, and these inner cylinders. It is comprised by the connection part 14 which connects the lower parts of the part 12 and the outer cylinder part 13 integrally. On the inner peripheral upper part of the outer cylinder part 13, there is provided a seal protrusion 15 that is pressed in a compressed state on the upper surface of the sealing flange part 9 c of the positive terminal plate 9 disposed in contact with the connecting part 14. The sealing protrusion 15 is sealed by tightening between the sealing flange portion 9 c of the positive electrode terminal plate 9 and the caulking portion 2 a at the opening end of the negative electrode zinc can 2.

この封口体11の連結部14における内筒部12と封止フランジ部9cが当接する部位との間の領域には、1又は複数の有底のガス放出穴16が凹入成形されている。また、正極端子板9には、ガス放出穴16から放出されたガスを外部に円滑に放出するガス排気口(図示せず)が設けられている。   One or a plurality of bottomed gas discharge holes 16 are recessed and formed in a region between the inner cylinder portion 12 and the sealing flange portion 9c in the connecting portion 14 of the sealing body 11. Further, the positive terminal plate 9 is provided with a gas exhaust port (not shown) through which the gas discharged from the gas discharge hole 16 is smoothly discharged to the outside.

ガス放出穴16の底壁は中央部の薄肉部17とその周囲の径方向外方に向けて漸次肉厚が増大する漸次肥厚部18にて構成されている。漸次肥厚部18は、図3(a)に示すようなC面取りや、図3(b)に示すようなR面取りや、その他の適当な傾斜面や曲面にて構成される。薄肉部17の寸法は、その破断圧力が1MPa以上、封口部の耐圧力の80%以下となるように設定される。具体的な寸法は電池の仕様によって異なるために一概に規定できないが、例えばR6(単3形)電池やR06(単4形)電池においては、厚さtが0.04〜0.10mm、面積S1が0.3〜0.6mm2 程度に設定される。また、漸次肥厚部18の面取り寸法CやRは、0.2〜0.4mm程度に設定される。なお、図3(c)には、従来例の特許文献2に相当する比較例として、ガス放出穴16の底面全面を薄肉部17にて構成した例を示している。 The bottom wall of the gas discharge hole 16 is composed of a thin portion 17 at the center and a gradually thickened portion 18 in which the thickness gradually increases toward the outer periphery in the radial direction. The gradually thickening portion 18 is configured by C chamfering as shown in FIG. 3A, R chamfering as shown in FIG. 3B, and other appropriate inclined surfaces and curved surfaces. The dimensions of the thin portion 17 are set so that the breaking pressure is 1 MPa or more and 80% or less of the pressure resistance of the sealing portion. Although the specific dimensions differ depending on the battery specifications, they cannot be defined unconditionally. For example, in the case of R6 (AA) batteries and R06 (AA) batteries, the thickness t is 0.04 to 0.10 mm, the area. S1 is set to about 0.3 to 0.6 mm 2 . Further, the chamfered dimensions C and R of the gradually thickened portion 18 are set to about 0.2 to 0.4 mm. FIG. 3C shows an example in which the entire bottom surface of the gas discharge hole 16 is formed by a thin portion 17 as a comparative example corresponding to Patent Document 2 of the conventional example.

以上の構成によれば、封口体11の連結部14に設けられた薄肉部17が破断しない限り漏液することはなく、高い耐漏液性や高温保存時の保存特性が得られ、しかもその薄肉部17は、電池内圧が1MPa以上、封口部の耐圧力の80%以下に設定された所定圧力で破断するようにその厚さと面積が設定されかつその周囲に漸次肥厚部18が設けられているので、破断箇所が薄肉部17の略中央部となり、電池内圧が上記設定圧力以上になったときに薄肉部17が確実に破断し、封口部が破損する前に確実にガスを安全に放出することができ、マンガン電池1の破裂防止機構として安定した作動が期待できる。   According to the above configuration, liquid leakage does not occur unless the thin-walled portion 17 provided in the connecting portion 14 of the sealing body 11 is broken, and high leakage resistance and storage characteristics during high-temperature storage can be obtained. The thickness and area of the portion 17 are set so as to break at a predetermined pressure set to a battery internal pressure of 1 MPa or more and 80% or less of the pressure resistance of the sealing portion, and a gradually thickening portion 18 is provided around the portion. Therefore, the broken portion becomes the substantially central portion of the thin-walled portion 17, and when the battery internal pressure becomes equal to or higher than the set pressure, the thin-walled portion 17 is surely broken, and the gas is surely released safely before the sealing portion is broken. Therefore, a stable operation can be expected as a mechanism for preventing explosion of the manganese battery 1.

さらに、薄肉部17の周囲に漸次肥厚部18が設けられていることで、薄肉部17の成形性が格段に向上し、マンガン電池1の封口体11に一般的に用いられている安価な低密度ポリエチレンで構成しても、薄肉部17を精度良く成形でき、低コストを維持しながら高い作動圧精度を確保することができる。なお、封口体11の成形樹脂としては、上記低密度ポリエチレンに代えて、ポリプロピレンを用いても安価でかつ成形性が良く、同様の作用効果を奏することができる。   Furthermore, since the gradually thickened portion 18 is provided around the thin-walled portion 17, the moldability of the thin-walled portion 17 is remarkably improved, and an inexpensive low cost generally used for the sealing body 11 of the manganese battery 1. Even if it comprises density polyethylene, the thin part 17 can be shape | molded accurately, and high operating pressure precision can be ensured, maintaining low cost. In addition, as a molding resin of the sealing body 11, even if it uses polypropylene instead of the said low density polyethylene, it is cheap, its moldability is good, and there can exist the same effect.

以上の実施形態では、薄肉部17を所定の面積S1を有する平坦面にて構成した例を示したが、薄肉部17の面積を小さくし、漸次肥厚部18との組合せにてガス放出穴16の底壁を、図4(a)に示すような円錐形としても同様な効果を得ることができる。また、図4(b)、図4(c)に示すように、円錐形の頂点がガス放出穴16の中心から外れた形状とすることもできる。また、以上の実施形態の説明では、ガス放出穴16を上向きに開口するU字断面形状に形成した例を示したが、ガス放出穴16を下向きに開口する倒立U字断面形状に形成しても同様の効果を得ることができる。   In the above embodiment, an example in which the thin portion 17 is configured by a flat surface having a predetermined area S1 is shown. However, the area of the thin portion 17 is reduced, and the gas discharge hole 16 is gradually combined with the thickened portion 18. A similar effect can be obtained by forming the bottom wall of the cone into a conical shape as shown in FIG. Further, as shown in FIGS. 4B and 4C, a conical apex may be formed so as to deviate from the center of the gas discharge hole 16. In the above description of the embodiment, an example in which the gas discharge hole 16 is formed in a U-shaped cross section that opens upward has been shown. However, the gas discharge hole 16 is formed in an inverted U-shaped cross section that opens downward. The same effect can be obtained.

次に、本発明の実施例と比較例について説明する。   Next, examples and comparative examples of the present invention will be described.

(実験例1)
R6(単3形)マンガン電池において、低密度ポリエチレンを用いて圧縮工法を使用しないで射出成形した封口体11を用いて封口し、封口部耐圧力を3.92MPaに設定し、封口体11の薄肉部17の面積を0.40mm2 (直径略0.71mmの円形)に固定し、漸次肥厚部18を0.25mmのR面取りにて構成した。そして、薄肉部17の厚みを、0.04mm(比較例1)、0.05mm(実施例1)、0.10mm(実施例2)、0.12mm(比較例2)にそれぞれ設定した電池を複数作製した。また、各例について、図5に示すように、正極合剤3を充填していない電池を複数作製し、その負極亜鉛缶2の側部にガス充填用の穴を明け、その電池の内部にガスを充填して、封口体11の薄肉部17が破断する作動圧力を測定した。
(Experimental example 1)
In an R6 (AA) manganese battery, sealing is performed using a sealing body 11 injection-molded using low-density polyethylene without using a compression method, and the sealing portion pressure resistance is set to 3.92 MPa. The area of the thin portion 17 was fixed to 0.40 mm 2 (circular shape with a diameter of approximately 0.71 mm), and the gradually thickened portion 18 was configured by R chamfering of 0.25 mm. And the battery which set the thickness of the thin part 17 to 0.04 mm (comparative example 1), 0.05 mm (example 1), 0.10 mm (example 2), and 0.12 mm (comparative example 2), respectively. Several were produced. For each example, as shown in FIG. 5, a plurality of batteries not filled with the positive electrode mixture 3 were prepared, and a gas filling hole was made in the side portion of the negative electrode zinc can 2, and the inside of the battery was The working pressure at which the thin-walled portion 17 of the sealing body 11 was broken was filled with gas.

そして、各例について以下の測定及び試験、
作動圧力測定:10個の電池について上記のように作動圧力を測定し、その平均値を求 めた
安全性試験 :4個の電池を直列接続するとともに、その内の1個を逆に接続してショ ートさせたものを10セット準備し、薄肉部17が破断し、電池内部の ガスを逃がした場合を作動とし、その数をカウントした
保存特性試験:10個の電池を45℃恒温槽に1ケ月保存し、その後開路電圧を測定し 、保存前の電圧との差が50mV以上下がったものを保存特性NGとし てその数をカウントした
を行った。
And the following measurements and tests for each example,
Working pressure measurement: Working pressure was measured for 10 batteries as described above, and the average value was obtained. Safety test: 4 batteries were connected in series, and one of them was connected in reverse. 10 sets were prepared, and the case where the thin-walled portion 17 was broken and the gas inside the battery was released was activated, and the number was counted. Storage characteristics test: 10 batteries at 45 ° C in a constant temperature bath The open circuit voltage was then measured, and the number of the open circuit voltage was counted as the storage characteristic NG when the difference from the voltage before storage decreased by 50 mV or more.

Figure 2007026748
上記測定及び試験の結果を表1に示した。なお、表1中の圧力比は、(作動圧力)/(封口部耐圧力)を%表示している。表1から、薄肉部17の作動圧力が0.82MPaでは保存特性が悪く、1.18MPaでは保存特性が良好であることから、ほぼ1MPa以上あれば良好な保存特性が得られる事がわかる。また、上記圧力比が80.0%以上あれば安全性試験で安定した作動が得られるが、それ以上になると作動が安定しないことが分かる。
Figure 2007026748
The results of the above measurements and tests are shown in Table 1. In addition, the pressure ratio in Table 1 indicates (operating pressure) / (sealing pressure resistance) in%. From Table 1, it can be seen that the storage characteristics are poor when the operating pressure of the thin-walled portion 17 is 0.82 MPa, and the storage characteristics are good when the pressure is 1.18 MPa. Further, if the pressure ratio is 80.0% or more, a stable operation can be obtained in the safety test, but if the pressure ratio is more than that, it is understood that the operation is not stable.

(実験例2)
R03(単4形)マンガン電池において、封口部耐圧力を5.90MPaに設定し、封口体11の薄肉部17の面積を0.30mm2 (直径略0.62mmの円形)に固定し、漸次肥厚部18を0.25mmのR面取りにて構成した。そして、薄肉部17の厚みを、0.03mm(比較例3)、0.04mm(実施例3)、0.10mm(実施例4)、0.12mm(比較例4)にそれぞれ設定した電池を複数作製した。また、各例について、実験例1と同様に正極合剤3を充填していない電池を複数作製し、その負極亜鉛缶2の側部にガス充填用の穴を明け、その電池の内部にガスを充填して、封口体11の薄肉部17が破断する作動圧力を測定した。そして、各例について実験例1と同様に作動圧力の測定と安全性試験及び保存特性試験を行った。
(Experimental example 2)
In the R03 (AAA) manganese battery, the sealing portion pressure resistance is set to 5.90 MPa, the area of the thin portion 17 of the sealing body 11 is fixed to 0.30 mm 2 (circular with a diameter of approximately 0.62 mm), and gradually The thickened portion 18 was constituted by R chamfering of 0.25 mm. And the battery which set the thickness of the thin part 17 to 0.03 mm (comparative example 3), 0.04 mm (example 3), 0.10 mm (example 4), and 0.12 mm (comparative example 4), respectively. Several were produced. Further, for each example, a plurality of batteries not filled with the positive electrode mixture 3 were prepared in the same manner as in Experimental Example 1, a gas filling hole was made in the side portion of the negative electrode zinc can 2, and the gas was put inside the battery. The working pressure at which the thin portion 17 of the sealing body 11 breaks was measured. Then, for each example, the measurement of the operating pressure, the safety test, and the storage characteristic test were performed in the same manner as in Experimental Example 1.

Figure 2007026748
上記測定及び試験の結果を表2に示した。表2から、表1と同様に、薄肉部17の作動圧力がほぼ1MPa以上あれば良好な保存特性が得られ、また上記圧力比が80.0%以上あれば安全性試験で安定した作動が得られるが、それ以上になると作動が安定しないことが分かる。
Figure 2007026748
The results of the above measurements and tests are shown in Table 2. From Table 2, as in Table 1, good storage characteristics can be obtained if the operating pressure of the thin portion 17 is approximately 1 MPa or more, and stable operation in the safety test is achieved if the pressure ratio is 80.0% or more. Although it is obtained, it is understood that the operation is not stable beyond this.

(実験例3)
R6(単3形)マンガン電池において、実施例2に対応する電池(薄肉部17の厚みが0.10mm、面積が0.4mm2 )を基本構成とし、その漸次肥厚部18を0.25mmのR面取りから0.25mmのC面取りに変更した電池(実施例5)と、漸次肥厚部18を形成せずに薄肉部17のみとした電池(比較例5)とを各10ケ作製し、それらの作動圧力を測定し、その平均値とばらつきを求め、また薄肉部の破断状態を確認した。
(Experimental example 3)
In the R6 (AA) manganese battery, a battery corresponding to Example 2 (thickness of the thin portion 17 is 0.10 mm, area is 0.4 mm 2 ) is a basic configuration, and the gradually thickened portion 18 is 0.25 mm. 10 batteries were prepared for each battery (Example 5) in which the chamfering was changed from R-chamfering to C-chamfering of 0.25 mm, and only the thin-walled part 17 without forming the gradually thickened part 18 (Comparative Example 5). The working pressure was measured, the average value and variation were determined, and the fracture state of the thin wall portion was confirmed.

Figure 2007026748
上記測定結果を表3に示した。表3からR面取りやC面取りによる漸次肥厚部18を設けた実施例2、5では、作動圧力の標準偏差σが0.25以下で、作動圧力が安定しているのに対して、漸次肥厚部18を設けない比較例5では、作動圧力の標準偏差σが0.43と大きくなり、破断圧力の平均値も低くなっていることが分かる。また、破断状態も、実施例のものはすべて薄肉部17の中央部で破断していたが、比較例のものは中央部で破断しているものと周縁部で破断しているものとがあった。
Figure 2007026748
The measurement results are shown in Table 3. In Examples 2 and 5 in which the gradually thickening portion 18 by R chamfering or C chamfering is provided from Table 3, the standard deviation σ of the operating pressure is 0.25 or less and the operating pressure is stable, whereas the gradually thickening is performed. In Comparative Example 5 in which the portion 18 is not provided, it can be seen that the standard deviation σ of the operating pressure is as large as 0.43 and the average value of the breaking pressure is also low. In addition, all the examples were broken at the central portion of the thin-walled portion 17, but the comparative example was broken at the central portion and at the peripheral portion. It was.

本発明は、耐漏液性や高温保存時の保存特性が高く、かつ電池破裂防止機能に対する信頼性の高いマンガン電池を低コストで得ることができるので、マンガン電池に有用である。   INDUSTRIAL APPLICABILITY The present invention is useful for a manganese battery because it can provide a manganese battery with high leakage resistance and high storage characteristics during high-temperature storage and high reliability with respect to the battery burst prevention function at low cost.

本発明のマンガン電池の一実施形態の縦断面図。The longitudinal cross-sectional view of one Embodiment of the manganese battery of this invention. 同実施形態の封口体の断面図。Sectional drawing of the sealing body of the embodiment. 図1及び図2のA部の詳細構成を示し、(a)は同実施形態の構成例、(b)は同変形構成例、(c)は従来例に対応する構成例をそれぞれ示す断面図。1 and FIG. 2 show a detailed configuration of part A, (a) is a configuration example of the embodiment, (b) is a modified configuration example, and (c) is a sectional view showing a configuration example corresponding to the conventional example. . 同実施形態における薄肉部のさらに別の各種構成例を示す断面図。Sectional drawing which shows another various various structural example of the thin part in the embodiment. 作動圧力測定に供した電池構成を示す縦断面図。The longitudinal cross-sectional view which shows the battery structure used for the working pressure measurement. 従来例の封口体の構成を示す縦断面図。The longitudinal cross-sectional view which shows the structure of the sealing body of a prior art example.

符号の説明Explanation of symbols

1 マンガン電池
2 負極亜鉛缶
2a かしめ部
3 正極合剤
8 炭素棒
11 封口体
12 内筒部
13 外筒部
14 連結部
16 ガス放出穴
17 薄肉部
18 漸次肥厚部
DESCRIPTION OF SYMBOLS 1 Manganese battery 2 Negative electrode zinc can 2a Caulking part 3 Positive electrode mixture 8 Carbon rod 11 Sealing body 12 Inner cylinder part 13 Outer cylinder part 14 Connection part 16 Gas discharge hole 17 Thin part 18 Gradually thickening part

Claims (5)

負極亜鉛缶と正極合剤と正極集電体としての炭素棒と負極亜鉛缶の開口部を封口する封口体と炭素棒の頂部に嵌合させた正極端子板とを備え、封口体は炭素棒を貫通させる内筒部と負極亜鉛缶の開口部内周に嵌合する外筒部とを連結部により一体的に連結した合成樹脂成形品からなり、封口体の外筒部を正極端子板の外周部と負極亜鉛缶の開口端のかしめ部との間で締め付けて封口したマンガン電池であって、連結部に薄肉部とその周囲の径方向外方に向けて漸次肉厚が増大する漸次肥厚部とを設けたことを特徴とするマンガン電池。   A negative electrode zinc can, a positive electrode mixture, a carbon rod as a positive electrode current collector, a sealing body for sealing the opening of the negative electrode zinc can, and a positive electrode terminal plate fitted to the top of the carbon rod, the sealing body being a carbon rod A synthetic resin molded product in which an inner cylinder part that penetrates the outer cylinder part and an outer cylinder part fitted to the inner periphery of the opening of the negative electrode zinc can are integrally connected by a connecting part, and the outer cylinder part of the sealing body is connected to the outer periphery of the positive electrode terminal plate A manganese battery that is tightened and sealed between the squeezing part and the crimped part of the open end of the negative electrode zinc can, wherein the connecting part is a thin part and the gradually thickening part is gradually increased outward in the radial direction. And a manganese battery. 前記薄肉部の破断圧力が、1MPa以上、封口部の耐圧力の80%以下であることを特徴とする請求項1記載のマンガン電池。   The manganese battery according to claim 1, wherein the breaking pressure of the thin wall portion is 1 MPa or more and 80% or less of the pressure resistance of the sealing portion. 前記正極端子板にガス排気口を設けたことを特徴とする請求項1又は2記載のマンガン電池。   The manganese battery according to claim 1 or 2, wherein a gas exhaust port is provided in the positive electrode terminal plate. 前記封口体は、低密度ポリエチレンから成ることを特徴とする請求項1又は2記載のマンガン電池。   3. The manganese battery according to claim 1, wherein the sealing body is made of low density polyethylene. 前記封口体は、ポリプロピレンから成ることを特徴とする請求項1又は2記載のマンガン電池。
The manganese battery according to claim 1, wherein the sealing body is made of polypropylene.
JP2005204067A 2005-07-13 2005-07-13 Manganese battery Pending JP2007026748A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005204067A JP2007026748A (en) 2005-07-13 2005-07-13 Manganese battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005204067A JP2007026748A (en) 2005-07-13 2005-07-13 Manganese battery

Publications (1)

Publication Number Publication Date
JP2007026748A true JP2007026748A (en) 2007-02-01

Family

ID=37787284

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005204067A Pending JP2007026748A (en) 2005-07-13 2005-07-13 Manganese battery

Country Status (1)

Country Link
JP (1) JP2007026748A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008251438A (en) * 2007-03-30 2008-10-16 Sanyo Electric Co Ltd Battery

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008251438A (en) * 2007-03-30 2008-10-16 Sanyo Electric Co Ltd Battery

Similar Documents

Publication Publication Date Title
KR101111073B1 (en) Cap Assembly for Secondary Battery
JPH05501633A (en) High pressure seal for alkaline batteries
KR20080023372A (en) Cylindrical secondary battery of improved safety
JP2005079021A (en) Alkaline dry cell and its sealing gasket
US6025090A (en) End cap assembly for an alkaline cell
JP4507159B2 (en) Sealed battery
JP4357839B2 (en) End seal assembly for alkaline batteries
US6206938B1 (en) Snap-through gasket for galvanic cells
JP4080131B2 (en) Manganese battery
KR101464964B1 (en) Cylindrical Battery
JP2007026748A (en) Manganese battery
JP2006221909A (en) Cylindrical sealed battery
JP2008108603A (en) Cylindrical alkaline battery
JP2005332613A (en) Alkaline primary battery
EP0322872B1 (en) Dry cell
US7442467B2 (en) Sealed battery
JP2002373711A (en) Button type air-zinc battery and its method of manufacture
JPWO2004077592A1 (en) Sealing gasket for alkaline battery and sealed alkaline battery
JP3380693B2 (en) Method of manufacturing explosion-proof sealing plate for battery
JP2005129309A (en) Positive electrode mixture of alkaline battery, and alkaline battery
WO2002084762A1 (en) Manganese dry battery
JP2009212051A (en) Bobbin type lithium bettry
JPS6224903B2 (en)
JP2008140609A (en) Gasket for cylindrical battery and alkaline battery
KR810000307Y1 (en) Means of providing pressure relief to sealed galvanic cell