JP2007024785A - Optical interference type phase sensing device - Google Patents

Optical interference type phase sensing device Download PDF

Info

Publication number
JP2007024785A
JP2007024785A JP2005210393A JP2005210393A JP2007024785A JP 2007024785 A JP2007024785 A JP 2007024785A JP 2005210393 A JP2005210393 A JP 2005210393A JP 2005210393 A JP2005210393 A JP 2005210393A JP 2007024785 A JP2007024785 A JP 2007024785A
Authority
JP
Japan
Prior art keywords
light
phase
optical
measurement
optical path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005210393A
Other languages
Japanese (ja)
Other versions
JP4613110B2 (en
Inventor
Koji Kawakita
浩二 川北
Takao Tanimoto
隆生 谷本
Takahito Igawa
考人 井川
Shigeo Arai
茂雄 新井
Kensuke Ogawa
憲介 小川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Anritsu Corp
Bussan Nanotech Research Institute Inc
Original Assignee
Anritsu Corp
Bussan Nanotech Research Institute Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Anritsu Corp, Bussan Nanotech Research Institute Inc filed Critical Anritsu Corp
Priority to JP2005210393A priority Critical patent/JP4613110B2/en
Publication of JP2007024785A publication Critical patent/JP2007024785A/en
Application granted granted Critical
Publication of JP4613110B2 publication Critical patent/JP4613110B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Instruments For Measurement Of Length By Optical Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an optical interference type phase sensing device capable of detecting a phase with high-stability and high-precision, by using two reference light in addition to measurement light and then detecting variation in a phase caused from relative variations in an optical path length between two interferometers to eliminate the variations in the phase. <P>SOLUTION: The sensing device includes a phase detecting means 21 that receives a measurement interference signal from a photoreceiver 8 and a first reference interference signal from a photoreceiver 9 and detects a phase of the measurement interference signal to the first interference signal to output the phase as a measurement phase, a phase detecting means 22 that receives the first reference interference signal from the phtoreceiver 9 and a second reference interference signal from the phtoreceiver 8 and detects a phase generated between the two reference interference signals to output the phase as a reference phase, and a signal processing means 23 that inputs the measurement phase and the reference phase and determines a phase correction value by associating the wavelength of the measurement light in order to correct the phase of the measurement phase based on variations in a phase of the reference phase; and corrects the phase of the measurement phase by the phase correction value. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、干渉計から出力される干渉光の位相から例えば被測定物の位相特性を測定する光干渉型位相検出装置に関し、特に測定光とは別に2つの参照光を用いて、干渉計の2つの光路間(被測定物が接続されている光路と接続されていない光路)の相対的な光路長変動に起因して生じる位相変動を検出し、その位相変動を除去することによって、高安定・高精度の位相検出を可能にした光干渉型位相検出装置に関する。   The present invention relates to an optical interference type phase detection apparatus that measures, for example, phase characteristics of an object to be measured from the phase of interference light output from an interferometer, and in particular, using two reference lights separately from measurement light, High stability by detecting phase fluctuation caused by relative optical path length fluctuation between two optical paths (optical path where the device under test is connected and optical path not connected) and removing the phase fluctuation The present invention relates to an optical interference type phase detection device that enables highly accurate phase detection.

従来、測定光と1つの参照光を用いることによって、マッハツェンダ型干渉計の2つの光路間(被測定物が接続されている光路と接続されていない光路)の相対的な光路長変動に起因して生じる位相変動による測定誤差を少なくした光干渉型位相検出装置があった。(例えば、非特許文献1参照)   Conventionally, by using the measurement light and one reference light, the relative optical path length variation between the two optical paths of the Mach-Zehnder interferometer (the optical path to which the object to be measured is connected and the optical path that is not connected) is caused. There has been an optical interference type phase detection device in which measurement errors due to phase fluctuations are reduced. (For example, see Non-Patent Document 1)

この種の光干渉型位相検出装置の概略構成を図13に示す。波長可変光源1は、所定の波長範囲の測定光を光カプラ3に出力する。光源2は、波長可変光源1の波長とは異なる固定波長の参照光を光カプラ3に出力する。光カプラ3は、測定光及び参照光を合波し、それによって得られた波長多重光を音響光学周波数シフタ(AOFS)4aに出力する。   A schematic configuration of this type of optical interference type phase detector is shown in FIG. The wavelength variable light source 1 outputs measurement light in a predetermined wavelength range to the optical coupler 3. The light source 2 outputs reference light having a fixed wavelength different from the wavelength of the wavelength tunable light source 1 to the optical coupler 3. The optical coupler 3 combines the measurement light and the reference light, and outputs the wavelength multiplexed light obtained thereby to an acousto-optic frequency shifter (AOFS) 4a.

AOFS4aは、超音波発生器4bから入力される周波数fの超音波によって駆動され、光カプラ3からの波長多重光を2つの光に分波して、一方の光を被測定物10が接続されている第1の光路に、また他方の光を遅延器5が接続されている第2の光路にそれぞれ出力する。このとき、第2の光路に出力される光、すなわち測定光及び参照光のそれぞれの波長(周波数)は超音波の周波数f分シフトされる。そして、光カプラ6は、被測定物10を通った第1の光路の光と、遅延器5を通った第2の光路の光とを合波し、それによって得られた干渉光、すなわちそれぞれ2つの光路を通った、測定光同士の干渉光(測定干渉光という)及び参照光同士の干渉光(参照干渉光という)を波長分波器7に出力する。なお、上記AOFS4a、超音波発生器4b、被測定物10、遅延器5及び光カプラ6はマッハツェンダ型干渉計20を構成している。遅延器5は、このマッハツェンダ型干渉計20の2つの光路の光路長を合わせている。 AOFS4a is driven by the ultrasonic frequency f 1 input from the ultrasonic generator 4b, and demultiplexes the wavelength-multiplexed light from the optical coupler 3 into two light, the object to be measured 10 is connected to one light And the other light is output to the second optical path to which the delay device 5 is connected. At this time, the light output to the second optical path, i.e. each wavelength of the measurement light and the reference light (frequency) is the frequency f 1 minute shift of the ultrasonic wave. Then, the optical coupler 6 multiplexes the light in the first optical path that has passed through the device under test 10 and the light in the second optical path that has passed through the delay device 5, and the interference light obtained thereby, that is, The interference light between the measurement lights (referred to as measurement interference light) and the interference light between the reference lights (referred to as reference interference light) that have passed through the two optical paths are output to the wavelength demultiplexer 7. The AOFS 4 a, the ultrasonic generator 4 b, the DUT 10, the delay device 5, and the optical coupler 6 constitute a Mach-Zehnder interferometer 20. The delay unit 5 matches the optical path lengths of the two optical paths of the Mach-Zehnder interferometer 20.

波長分波器7は、光カプラ6から出力される干渉光(測定干渉光及び参照干渉光)を受けて、測定光及び参照光の各波長成分に分波しそれぞれ受光器(PD)8及び受光器(PD)9に出力する。受光器8は、波長分波器7からの測定干渉光を受けて光電変換(ヘテロダイン検波)し、ビート周波数fの測定干渉信号を出力する。また、受光器9も、同様に、波長分波器7からの参照干渉光を受けて光電変換(ヘテロダイン検波)し、ビート周波数fの参照干渉信号を出力する。位相検出器11は、参照干渉信号に対する測定干渉信号の位相を検出する。 The wavelength demultiplexer 7 receives the interference light (measurement interference light and reference interference light) output from the optical coupler 6, demultiplexes it into each wavelength component of the measurement light and reference light, and receives the light receiver (PD) 8 and Output to a light receiver (PD) 9. The light receiver 8 receives the measurement interference light from the wavelength demultiplexer 7, performs photoelectric conversion (heterodyne detection), and outputs a measurement interference signal having a beat frequency f 1 . Similarly, the light receiver 9 receives the reference interference light from the wavelength demultiplexer 7 and photoelectrically converts (heterodyne detection), and outputs a reference interference signal having a beat frequency f 1 . The phase detector 11 detects the phase of the measurement interference signal with respect to the reference interference signal.

第51回応物連合会「二波長ヘテロダインファイバー干渉計による波長分散評価」28p-R-12(2004.3):小川憲介、ティ ティ レイ(DNRI)51th Japan Federation of Reciprocal Products “Evaluation of Chromatic Dispersion Using a Two-Wavelength Heterodyne Fiber Interferometer” 28p-R-12 (2004.3): Kensuke Ogawa, Titi Ray (DNRI)

このような従来の光干渉型位相検出装置においては、測定光と1つの参照光を同時にマッハツェンダ型干渉計に入力し、それぞれがマッハツェンダ型干渉計の2つの同じ光路を通るようにして、参照干渉光(参照干渉信号)に対する測定干渉光(測定干渉信号)の位相を検出するようにしたので、マッハツェンダ型干渉計の2つの光路間(被測定物を含む光路と含まない光路)の相対的な光路長変動に起因して生じる位相変動による測定誤差を少なくすることができる。しかしながら、依然として次のような問題があった。   In such a conventional optical interference type phase detector, the measurement light and one reference light are simultaneously input to the Mach-Zehnder interferometer so that each passes through the same two optical paths of the Mach-Zehnder interferometer. Since the phase of the measurement interference light (measurement interference signal) relative to the light (reference interference signal) is detected, the relative distance between the two optical paths of the Mach-Zehnder interferometer (the optical path including the measured object and the optical path not including it) Measurement errors due to phase fluctuations caused by optical path length fluctuations can be reduced. However, there were still the following problems.

すなわち、マッハツェンダ型干渉計の2つの光路間に相対的な光路長の変化があった場合、参照干渉信号に対する測定干渉信号の位相変化Δθは(1)式で与えられる。
Δθ=ΔL・(ν−νr1)・2・π/c (1)
ここで、ΔLはマッハツェンダ型干渉計の2つの光路間の相対的な光路長の変化、νは測定光の周波数、νr1は参照光の周波数、cは光速である。なお、ΔLの光路長は光学的距離であり、光路の屈折率nを含んだ量である。上記(1)式から分かるように、光路長の変化ΔLに対する位相変化Δθは、測定光の周波数(波長)が参照光の周波数(波長)に近接するほど小さく、離れるほど大きくなる。したがって、測定光の波長が参照光の波長に近接している場合には、マッハツェンダ型干渉計の2つの光路間の相対的な光路長変動に起因して生じる位相変動(位相変化Δθ)による測定誤差はほとんど無視することができるが、測定光の波長が参照光の波長から離れた場合には無視できなくなるという問題があった。
That is, when there is a change in the relative optical path length between the two optical paths of the Mach-Zehnder interferometer, the phase change Δθ of the measurement interference signal with respect to the reference interference signal is given by equation (1).
Δθ = ΔL · (ν s −ν r1 ) · 2 · π / c (1)
Here, ΔL is a change in the relative optical path length between the two optical paths of the Mach-Zehnder interferometer, ν s is the frequency of the measurement light, ν r1 is the frequency of the reference light, and c is the speed of light. The optical path length of ΔL is an optical distance, and is an amount including the refractive index n of the optical path. As can be seen from the above equation (1), the phase change Δθ with respect to the optical path length change ΔL decreases as the frequency (wavelength) of the measurement light approaches the frequency (wavelength) of the reference light, and increases as the distance increases. Therefore, when the wavelength of the measurement light is close to the wavelength of the reference light, measurement is performed based on the phase fluctuation (phase change Δθ) caused by the relative optical path length fluctuation between the two optical paths of the Mach-Zehnder interferometer. Although the error can be almost ignored, there is a problem that the error cannot be ignored when the wavelength of the measurement light is away from the wavelength of the reference light.

実際の測定においては、被測定物がマッハツェンダ型干渉計の2つの光路の一方の光路に配置されるため、特に干渉計が光ファイバを用いて構成された場合、その一方の光路には被測定物を接続するための光ファイバ、また他方の光路には光路長調整用遅延光ファイバ等が接続される。そのため、温度等の外的要因によりそれぞれの光路の光路長が容易に変化し、2つの光路間の相対的な光路長を一定に保つことは一般に困難であり、位相変化に与える影響は大きくなる。なお、上述した従来の光干渉型位相検出装置は、光ヘテロダイン干渉方式の場合であったが、光ホモダイン干渉方式の場合にも同様の問題を生じる。   In actual measurement, since the object to be measured is arranged in one of the two optical paths of the Mach-Zehnder interferometer, especially when the interferometer is configured using an optical fiber, the measured object is in one of the optical paths. An optical fiber for connecting an object, and an optical path length adjusting delay optical fiber or the like are connected to the other optical path. Therefore, the optical path length of each optical path easily changes due to external factors such as temperature, and it is generally difficult to keep the relative optical path length between the two optical paths constant, and the influence on the phase change becomes large. . Note that the conventional optical interference type phase detector described above was in the case of the optical heterodyne interference method, but the same problem occurs in the case of the optical homodyne interference method.

本発明は、測定光とは別に2つの参照光を用いて、干渉計の2つの光路間(被測定物が接続されている光路と接続されていない光路)の相対的な光路長変動に起因して生じる位相変動を検出し、その位相変動を除去することによって、これらの課題を解決し、高安定・高精度の位相検出を可能にした光干渉型位相検出装置を提供することを目的としている。   The present invention uses two reference lights separately from the measurement light, and is caused by the relative optical path length fluctuation between the two optical paths of the interferometer (the optical path where the object to be measured is connected and the optical path which is not connected). The objective is to provide an optical interference type phase detection device that solves these problems and detects highly stable and highly accurate phase detection by detecting phase fluctuations that occur as a result, and eliminating the phase fluctuations. Yes.

上記課題を解決するために、本発明の請求項1の光干渉型位相検出装置では、所定の波長範囲の測定光を出力する波長可変光源(1)と、前記測定光の波長とは異なる固定波長の第1の参照光を出力する第1の光源(2)と、前記測定光の波長及び前記第1の参照光の波長とは異なる固定波長の第2の参照光を出力する第2の光源(12)と、前記測定光、前記第1の参照光及び前記第2の参照光を受けて合波し、それによって得られた波長多重光を出力する光合波手段(13)と、被測定物が接続されている第1の光路と被測定物が接続されていない第2の光路を含んで構成され、前記波長多重光を受けて前記第1の光路を通る第1の光と前記第2の光路を通る第2の光に分波するとともに該第1の光路を通った前記第1の光と該第2の光路を通った前記第2の光とを合波し、それによって得られた干渉光を出力する干渉計(30、40)と、前記干渉光を受けて前記測定光、前記第1の参照光及び前記第2の参照光の各波長成分に分波する波長分波手段(17)と、該波長分波手段から出力される前記測定光の波長成分に係わる測定干渉光を受けて光電変換し測定干渉信号を出力する第1の受光器(8)と、前記波長分波手段から出力される前記第1の参照光の波長成分に係わる第1の参照干渉光を受けて光電変換し第1の参照干渉信号を出力する第2の受光器(9)と、前記波長分波手段から出力される前記第2の参照光の波長成分に係わる第2の参照干渉光を受けて光電変換し第2の参照干渉信号を出力する第3の受光器(18)と、前記測定干渉信号と、前記第1の参照干渉信号及び前記第2の参照干渉信号のいずれか一方の参照干渉信号とを受けて、当該参照干渉信号に対する前記測定干渉信号の位相を検出し測定位相として出力する第1の位相検出手段(21)と、前記第1の参照干渉信号と前記第2の参照干渉信号とを受けて、これら2つの参照干渉信号間に生じる位相を検出し参照位相として出力する第2の位相検出手段(22)とを備え、前記参照位相の位相変化を利用することによって、前記被測定物の波長−位相特性を前記測定位相に基づいて求めるようにした。   In order to solve the above-mentioned problems, in the optical interference type phase detection device according to claim 1 of the present invention, the wavelength variable light source (1) for outputting the measurement light in a predetermined wavelength range and the wavelength different from the wavelength of the measurement light are fixed. A first light source (2) for outputting a first reference light having a wavelength, and a second light source for outputting a second reference light having a fixed wavelength different from the wavelength of the measurement light and the wavelength of the first reference light. A light source (12), optical multiplexing means (13) for receiving and multiplexing the measurement light, the first reference light, and the second reference light, and outputting the wavelength multiplexed light obtained thereby; A first optical path to which the object to be measured is connected and a second optical path to which the object to be measured is not connected; the first light that receives the wavelength-multiplexed light and passes through the first optical path; The first light and the second light which are demultiplexed into the second light passing through the second optical path and passed through the first optical path. Interferometers (30, 40) for combining the second light that has passed through and outputting the interference light obtained thereby, the measurement light, the first reference light, Wavelength demultiplexing means (17) for demultiplexing each wavelength component of the second reference light, and measuring and measuring by receiving measurement interference light related to the wavelength component of the measurement light output from the wavelength demultiplexing means A first light receiver (8) that outputs an interference signal and a first reference interference light related to a wavelength component of the first reference light output from the wavelength demultiplexing means are received and photoelectrically converted to receive a first signal. A second light receiver (9) for outputting a reference interference signal and a second reference interference light related to the wavelength component of the second reference light output from the wavelength demultiplexing means are received and photoelectrically converted to a second one. A third light receiver (18) for outputting the reference interference signal, the measurement interference signal, and the first reference First phase detecting means (21) which receives the interference signal and the reference interference signal of one of the second reference interference signals, detects the phase of the measurement interference signal with respect to the reference interference signal, and outputs it as a measurement phase ) And the first reference interference signal and the second reference interference signal, and detects a phase generated between these two reference interference signals and outputs it as a reference phase (22) And using the phase change of the reference phase, the wavelength-phase characteristics of the object to be measured are obtained based on the measurement phase.

また、本発明の請求項2の光干渉型位相検出装置では、上述した請求項1の光干渉型位相検出装置において、前記測定位相及び前記参照位相を入力するとともに、該参照位相の位相変化に基づいて前記測定位相の位相補正を行うための位相補正値を前記測定光の波長に対応付けて求め、求めた該位相補正値によって当該測定位相の位相補正を行う信号処理手段(23)を備えた。   According to a second aspect of the optical interference type phase detection device of the present invention, in the optical interference type phase detection device of the first aspect described above, the measurement phase and the reference phase are inputted, and a phase change of the reference phase is detected. And a signal processing unit (23) for obtaining a phase correction value for performing phase correction of the measurement phase in association with the wavelength of the measurement light, and performing phase correction of the measurement phase based on the obtained phase correction value. It was.

また、本発明の請求項3の光干渉型位相検出装置では、上述した請求項1の光干渉型位相検出装置において、前記干渉計の2つの前記光路のいずれか一方の光路に設けられ、2つの当該光路間の相対的な光路長を変化させる光路長可変手段(15)と、前記参照位相を入力し、当該参照位相が所定の値で一定となるように前記光路長可変手段を制御するための制御信号を該参照位相に基づいて発生し出力する光路長補正手段(24)とを備えた。   According to a third aspect of the present invention, there is provided the optical interference type phase detection apparatus according to the first aspect, wherein the optical interference type phase detection apparatus is provided in one of the two optical paths of the interferometer. The optical path length varying means (15) for changing the relative optical path length between the two optical paths, and the reference phase are inputted, and the optical path length varying means is controlled so that the reference phase becomes constant at a predetermined value. And an optical path length correcting means (24) for generating and outputting a control signal based on the reference phase.

また、本発明の請求項4の光干渉型位相検出装置では、上述した請求項1〜3のいずれかの光干渉型位相検出装置において、前記干渉計は、前記第1の光路及び前記第2の光路の少なくとも一方の光路に少なくとも1つの周波数シフタ(14a〜14f、27a、27b)を有して、該第1の光路を通った前記第1の光に含まれている前記測定光、前記第1の参照光及び前記第2の参照光のそれぞれの周波数と、該第2の光路を通った前記第2の光に含まれている前記測定光、前記第1の参照光及び前記第2の参照光のそれぞれの周波数とにおいて、前記測定光同士、前記第1の参照光同士及び前記第2の参照光同士のそれぞれの周波数差が所定のビート周波数となるようにされた光ヘテロダイン干渉計であり、前記第1の受光器は前記所定のビート周波数の前記測定干渉信号を出力し、前記第2の受光器は前記所定のビート周波数の前記第1の参照干渉信号を出力し、前記第3の受光器は前記所定のビート周波数の前記第2の参照干渉信号を出力するようにした。   Further, in the optical interference type phase detection device according to claim 4 of the present invention, in the optical interference type phase detection device according to any one of claims 1 to 3, the interferometer includes the first optical path and the second optical path. The measurement light included in the first light having at least one frequency shifter (14a to 14f, 27a, 27b) in at least one of the optical paths, and passing through the first optical path, Respective frequencies of the first reference light and the second reference light, and the measurement light, the first reference light, and the second included in the second light passing through the second optical path The optical heterodyne interferometer is configured such that the frequency difference between the measurement light, the first reference light, and the second reference light becomes a predetermined beat frequency with respect to each frequency of the reference light. And the first light receiver is the predetermined The measurement interference signal of beat frequency is output, the second light receiver outputs the first reference interference signal of the predetermined beat frequency, and the third light receiver outputs the first interference signal of the predetermined beat frequency. 2 reference interference signals are output.

また、本発明の請求項5の光干渉型位相検出装置では、上述した請求項1〜3のいずれかの光干渉型位相検出装置において、前記干渉計は光ホモダイン干渉計であるようにした。   In the optical interference type phase detection apparatus according to claim 5 of the present invention, in the optical interference type phase detection apparatus according to any one of claims 1 to 3, the interferometer is an optical homodyne interferometer.

また、本発明の請求項6の光干渉型位相検出装置では、上述した請求項1〜5のいずれかの光干渉型位相検出装置において、前記干渉計は、前記波長多重光を受けて前記第1の光路を通る前記第1の光と前記第2の光路を通る前記第2の光に分波する光分波手段(16、14a、14b)と、前記被測定物を通って入力される前記第1の光と前記被測定物を通らないで入力される前記第2の光とを合波して前記干渉光を出力する第1の光カプラ(6)とを含んで構成されるマッハツェンダ型干渉計であるようにした。   Further, in the optical interference type phase detection device according to claim 6 of the present invention, in the optical interference type phase detection device according to any one of claims 1 to 5, the interferometer receives the wavelength multiplexed light and receives the wavelength-multiplexed light. An optical demultiplexing means (16, 14a, 14b) for demultiplexing the first light that passes through one optical path and the second light that passes through the second optical path, and the measured object. A Mach-Zehnder including a first optical coupler (6) that combines the first light and the second light input without passing through the device under test to output the interference light. Type interferometer.

また、本発明の請求項7の光干渉型位相検出装置では、上述した請求項1〜5のいずれかの光干渉型位相検出装置において、前記干渉計は、前記波長多重光を受けて前記第1の光路を通る前記第1の光と前記第2の光路を通る前記第2の光に分波するとともに、前記被測定物によって反射されて戻ってくる前記第1の光と前記被測定物を通らないで反射手段(26)によって反射されて戻ってくる前記第2の光とを合波して前記干渉光を出力する第2の光カプラ(25)を含んで構成されるマイケルソン型干渉計であるようにした。   Further, in the optical interference type phase detection device according to claim 7 of the present invention, in the optical interference type phase detection device according to any one of claims 1 to 5, the interferometer receives the wavelength multiplexed light and receives the wavelength-multiplexed light. The first light and the device under test are demultiplexed into the first light passing through the optical path 1 and the second light through the second optical path, and reflected back by the device under test. Michelson type comprising a second optical coupler (25) that combines the second light reflected and returned by the reflecting means (26) without passing through and outputs the interference light It was made to be an interferometer.

本発明の光干渉型位相検出装置では、2つの参照干渉信号間に生じる位相(参照位相)を検出し、その参照位相の位相変化を利用することによって、被測定物の波長−位相特性を測定位相に基づいて求めるようにした。したがって、参照位相の位相変化に基づいて、測定位相の位相補正を行い、あるいは干渉計の2つの光路間の相対的な光路長が変化しないように制御することによって、被測定物の波長−位相特性に、干渉計の2つの光路間の相対的な光路長変動に起因して生じる位相変動が含まれないようにすることができる。その結果、位相測定において、環境変化等に伴う干渉計の光路長変動の影響を無視することができ、長期的に高安定・高精度の測定ができる。また、高精度の位相測定ができるので、被測定物の光学長を求める場合にも有効である。なお、被測定物の光学長Lは、干渉計の2つの光路のそれぞれの光路長を予め等しく調整し、(2)式で求めることができる。
L=c・θ/{(νmax−νmin)・2・π} (2)
ここで、cは光速、θは測定光の周波数を最小周波数νminから最大周波数νmaxまで可変したときの全体の位相変化量である。
In the optical interference type phase detector of the present invention, the phase (reference phase) generated between two reference interference signals is detected, and the wavelength-phase characteristic of the object to be measured is measured by utilizing the phase change of the reference phase. It was determined based on the phase. Therefore, based on the phase change of the reference phase, the phase of the measurement phase is corrected, or the relative optical path length between the two optical paths of the interferometer is controlled so as not to change, so that the wavelength-phase of the device under test is measured. The characteristic may be such that it does not include phase fluctuations caused by relative optical path length fluctuations between the two optical paths of the interferometer. As a result, in the phase measurement, the influence of the optical path length variation of the interferometer accompanying the environmental change or the like can be ignored, and highly stable and highly accurate measurement can be performed in the long term. Further, since the phase can be measured with high accuracy, it is also effective for obtaining the optical length of the object to be measured. The optical length L of the object to be measured can be obtained by the equation (2) by adjusting the optical path lengths of the two optical paths of the interferometer equally in advance.
L = c · θ / {(ν max −ν min ) · 2 · π} (2)
Here, c is the speed of light, and θ is the total amount of phase change when the frequency of the measurement light is varied from the minimum frequency ν min to the maximum frequency ν max .

以下に本発明の実施形態を記載する。   Embodiments of the present invention will be described below.

[第1実施形態]
本発明の第1実施形態の光干渉型位相検出装置の構成を図1に示す。従来の光干渉型位相検出装置と同一要素には同一符号を付し詳細説明は省略する。波長可変光源1は、例えば波長可変レーザであり、所定の波長範囲(例えば1530〜1560nm)の測定光を光カプラ13aに出力する。光源2は、例えばレーザであり、測定光の波長とは異なる固定波長(例えば1565nm)の第1の参照光を光カプラ13bに出力する。また、光源12も同様、測定光の波長及び第1の参照光の波長とは異なる固定波長(例えば1525nm)の第2の参照光を光カプラ13bに出力する。光カプラ13bは、これら第1及び第2の参照光を合波して光カプラ13aに出力する。光カプラ13aは、光カプラ13bからの合波光と上記測定光とを合波し、それによって得られた波長多重光をマッハツェンダ型干渉計30の光カプラ16に出力する。なお、光カプラ13a及び光カプラ13bは光合波手段13を構成している。
[First Embodiment]
The configuration of the optical interference type phase detector of the first embodiment of the present invention is shown in FIG. The same elements as those of the conventional optical interference type phase detector are denoted by the same reference numerals, and detailed description thereof is omitted. The wavelength variable light source 1 is, for example, a wavelength variable laser, and outputs measurement light in a predetermined wavelength range (for example, 1530 to 1560 nm) to the optical coupler 13a. The light source 2 is a laser, for example, and outputs a first reference light having a fixed wavelength (for example, 1565 nm) different from the wavelength of the measurement light to the optical coupler 13b. Similarly, the light source 12 outputs the second reference light having a fixed wavelength (for example, 1525 nm) different from the wavelength of the measurement light and the wavelength of the first reference light to the optical coupler 13b. The optical coupler 13b combines the first and second reference lights and outputs them to the optical coupler 13a. The optical coupler 13 a combines the combined light from the optical coupler 13 b and the measurement light, and outputs the wavelength multiplexed light obtained thereby to the optical coupler 16 of the Mach-Zehnder interferometer 30. The optical coupler 13a and the optical coupler 13b constitute an optical multiplexing means 13.

光カプラ16は、光カプラ13aからの波長多重光を2つの光に分波して、一方の光を被測定物10が接続されている第1の光路に、また他方の光をAOFS14eが接続されている第2の光路にそれぞれ出力する。AOFS14eは、超音波発生器14fから入力される周波数fの超音波によって駆動されており、光カプラ16からの光、すなわち測定光、第1の参照光及び第2の参照光のそれぞれの波長(周波数)を超音波の周波数f分シフトして出力する。なお、第2の光路を通る光の代わりに第1の光路を通る光を周波数シフトするようにしてもよい。そして、光カプラ6は、被測定物10を通った第1の光路の光と、AOFS14eを通った第2の光路の光とを合波し、それによって得られた干渉光、すなわちそれぞれ2つの光路を通った、測定光同士の干渉光(測定干渉光という)、第1の参照光同士の干渉光(第1の参照干渉光という)及び第2の参照光同士の干渉光(第2の参照干渉光という)を波長分波手段17に出力する。なお、上記光カプラ16、被測定物10、AOFS14e、超音波発生器14f及び光カプラ6は、光ヘテロダイン干渉方式のマッハツェンダ型干渉計30を構成している。 The optical coupler 16 demultiplexes the wavelength multiplexed light from the optical coupler 13a into two lights, one of the lights is connected to the first optical path to which the device under test 10 is connected, and the other light is connected to the AOFS 14e. Output to the second optical path. AOFS14e is driven by the ultrasonic frequency f 1 input from the ultrasonic generator 14f, the light from the optical coupler 16, i.e. the measurement light, each wavelength of the first reference light and second reference light (Frequency) is output by shifting the ultrasonic frequency f by one minute. The light passing through the first optical path may be frequency shifted instead of the light passing through the second optical path. Then, the optical coupler 6 multiplexes the light in the first optical path that has passed through the device under test 10 and the light in the second optical path that has passed through the AOFS 14e. Interference light between the measurement lights (referred to as measurement interference light), interference light between the first reference lights (referred to as first reference interference light), and interference light between the second reference lights (referred to as the second reference light) that have passed through the optical path (Referred to as reference interference light) is output to the wavelength demultiplexing means 17. The optical coupler 16, the device under test 10, the AOFS 14e, the ultrasonic generator 14f, and the optical coupler 6 constitute a Mach-Zehnder interferometer 30 of an optical heterodyne interference system.

波長分波手段17は、例えば誘電体多層膜フィルタであり、光カプラ6から出力される干渉光(測定干渉光、第1の参照干渉光及び第2の参照干渉光)を受けて、測定光、第1の参照光及び第2の参照光の各波長成分に分波しそれぞれ受光器(PD)8、受光器(PD)9及び受光器(PD)18に出力する。受光器8は、波長分波手段17からの測定干渉光を受けて光電変換(ヘテロダイン検波)し、ビート周波数fの測定干渉信号を出力する。また、受光器9及び受光器18も、同様に、波長分波手段17からの第1の参照干渉光及び第2の参照干渉光をそれぞれ受けて光電変換(ヘテロダイン検波)し、ビート周波数fの第1の参照干渉信号及び第2の参照干渉信号をそれぞれ出力する。 The wavelength demultiplexing means 17 is, for example, a dielectric multilayer filter, and receives interference light (measurement interference light, first reference interference light, and second reference interference light) output from the optical coupler 6, and receives measurement light. The first reference light and the second reference light are demultiplexed into wavelength components and output to the light receiver (PD) 8, the light receiver (PD) 9, and the light receiver (PD) 18, respectively. The light receiver 8 receives the measurement interference light from the wavelength demultiplexing means 17 and photoelectrically converts it (heterodyne detection), and outputs a measurement interference signal having the beat frequency f 1 . Similarly, the light receiver 9 and the light receiver 18 receive the first reference interference light and the second reference interference light from the wavelength demultiplexing means 17, respectively, perform photoelectric conversion (heterodyne detection), and beat frequency f 1. The first reference interference signal and the second reference interference signal are respectively output.

第1の位相検出手段21は、受光器8から出力される測定干渉信号及び受光器9から出力される第1の参照干渉信号を受けて、第1の参照干渉信号に対する測定干渉信号の位相を検出し測定位相として出力する。なお、第1の参照干渉信号の代わりに、第2の参照干渉信号に対する測定干渉信号の位相を検出し測定位相として出力するようにしてもよい。そして、第2の位相検出手段22は、受光器9から出力される第1の参照干渉信号及び受光器18から出力される第2の参照干渉信号を受けて、これら2つの参照干渉信号間に生じる位相を検出し参照位相として出力する。   The first phase detection means 21 receives the measurement interference signal output from the light receiver 8 and the first reference interference signal output from the light receiver 9, and determines the phase of the measurement interference signal with respect to the first reference interference signal. Detect and output as measurement phase. Instead of the first reference interference signal, the phase of the measurement interference signal with respect to the second reference interference signal may be detected and output as the measurement phase. The second phase detection means 22 receives the first reference interference signal output from the light receiver 9 and the second reference interference signal output from the light receiver 18, and between these two reference interference signals. The generated phase is detected and output as a reference phase.

信号処理手段23は、第1の位相検出手段21からの測定位相及び第2の位相検出手段22からの参照位相を入力するとともに、この参照位相の位相変化に基づいて測定位相の位相補正を行うための位相補正値を測定光の波長に対応付けて求め、求めたこの位相補正値によって測定位相の位相補正を行う。それによって、マッハツェンダ型干渉計30の2つの第1及び第2の光路間(以下単に2つの光路間という)の相対的な光路長変動に起因して生じる位相変動が含まれない、被測定物10の波長−位相特性を求めることができる。   The signal processing unit 23 inputs the measurement phase from the first phase detection unit 21 and the reference phase from the second phase detection unit 22 and performs phase correction of the measurement phase based on the phase change of the reference phase. Therefore, a phase correction value for the measurement phase is obtained in association with the wavelength of the measurement light, and the phase of the measurement phase is corrected by the obtained phase correction value. As a result, the device under test does not include phase fluctuations caused by relative optical path length fluctuations between the two first and second optical paths of the Mach-Zehnder interferometer 30 (hereinafter simply referred to as “between two optical paths”). Ten wavelength-phase characteristics can be obtained.

ここで、上記位相補正値の求め方を説明する。すなわち、マッハツェンダ型干渉計30の2つの光路間の相対的な光路長の変化によって生じる、2つの第1及び第2の参照干渉信号間の位相変化Δθは、(3)式で与えられる。位相変化Δθは、第2の位相検出手段22で検出される参照位相の、測定光の波長に対応した位相変化として求められるので、(4)式より、マッハツェンダ型干渉計30の2つの光路間の相対的な光路長の変化ΔLが求められる。
Δθ=ΔL・(νr2−νr1)・2・π/c (3)
ΔL=c・Δθ/{(νr2−νr1)・2・π} (4)
ここで、νr1は第1の参照光の周波数、νr2は第2の参照光の周波数、cは光速である。
Here, how to obtain the phase correction value will be described. That is, the phase change Δθ r between the two first and second reference interference signals caused by the change in the relative optical path length between the two optical paths of the Mach-Zehnder interferometer 30 is given by equation (3). Since the phase change Δθ r is obtained as a phase change corresponding to the wavelength of the measurement light of the reference phase detected by the second phase detector 22, the two optical paths of the Mach-Zehnder interferometer 30 are obtained from the equation (4). A relative optical path length change ΔL is obtained.
Δθ r = ΔL · (ν r2 −ν r1 ) · 2 · π / c (3)
ΔL = c · Δθ r / {(ν r2 −ν r1 ) · 2 · π} (4)
Here, ν r1 is the frequency of the first reference light, ν r2 is the frequency of the second reference light, and c is the speed of light.

そして、マッハツェンダ型干渉計30の2つの光路間に相対的な光路長の変化があった場合、第1の参照干渉信号に対する測定干渉信号の位相変化Δθは、測定光の周波数をν、第1の参照光の周波数をνr1とすると、(5)式(上述の(1)と同一)で与えられる。その結果、参照位相の位相変化(上記Δθ)に基づいて測定位相の位相補正を行うための位相補正値Δθは、(4)式のΔLを(5)式に代入することにより、(6)式のように求めることができる。
Δθ=ΔL・(ν−νr1)・2・π/c (5)
Δθ={Δθ/(νr2−νr1)}・(ν−νr1
(6)
したがって、この位相補正値Δθを測定光の波長に対応付けて求め、求めたこの位相補正値Δθを用いて、第1の位相検出手段21からの測定位相の補正を行うことによって、マッハツェンダ型干渉計30の2つの光路間の相対的な光路長変動に起因して生じる位相変動が含まれない、被測定物10の波長−位相特性を求めることができる。
When there is a change in the relative optical path length between the two optical paths of the Mach-Zehnder interferometer 30, the phase change Δθ of the measurement interference signal with respect to the first reference interference signal is the frequency of the measurement light ν s , When the frequency of the reference light 1 is ν r1 , it is given by equation (5) (same as (1) above). As a result, the phase correction value Δθ c for performing the phase correction of the measurement phase based on the phase change of the reference phase (above Δθ r ) is obtained by substituting ΔL of the equation (4) into the equation (5) ( 6) It can obtain | require like Formula.
Δθ = ΔL · (ν s −ν r1 ) · 2 · π / c (5)
Δθ c = {Δθ r / (ν r2 −ν r1 )} · (ν s −ν r1 )
(6)
Therefore, calculated in association with the phase correction value [Delta] [theta] c on the wavelength of the measuring light, by using the phase correction value [Delta] [theta] c obtained by correcting the measured phase from the first phase detecting means 21, a Mach-Zehnder The wavelength-phase characteristic of the DUT 10 that does not include the phase fluctuation caused by the relative optical path length fluctuation between the two optical paths of the interferometer 30 can be obtained.

[第2実施形態]
本発明の第2実施形態の光干渉型位相検出装置の構成を図2に示す。図1に示した第1実施形態では、干渉計として、光ヘテロダイン干渉方式のマッハツェンダ型干渉計30を用いたが、第2実施形態では、光ホモダイン干渉方式のマッハツェンダ型干渉計30を用いている。第1実施形態の図1とは、下記の(1)、(2)のみ異なり他は同一である。したがって詳細説明は省略する。(1)マッハツェンダ型干渉計30の第2の光路に、周波数シフタ(AOFS14e及び超音波発生器14f)を備えていない。(2)受光器8、受光器9及び受光器18は、波長分波手段17からの測定干渉光、第1の参照干渉光及び第2の参照干渉光をそれぞれ受けて光電変換(ホモダイン検波)し、測定干渉信号、第1の参照干渉信号及び第2の参照干渉信号をそれぞれ出力する。
[Second Embodiment]
The configuration of the optical interference type phase detector of the second embodiment of the present invention is shown in FIG. In the first embodiment shown in FIG. 1, the optical heterodyne interferometer type Mach-Zehnder interferometer 30 is used as the interferometer. In the second embodiment, the optical homodyne interferometer type Mach-Zehnder interferometer 30 is used. . It differs from FIG. 1 of 1st Embodiment only in following (1) and (2), and others are the same. Therefore, detailed description is omitted. (1) The second optical path of the Mach-Zehnder interferometer 30 is not provided with a frequency shifter (AOFS 14e and ultrasonic generator 14f). (2) The light receiver 8, the light receiver 9, and the light receiver 18 receive the measurement interference light, the first reference interference light, and the second reference interference light from the wavelength demultiplexing means 17, respectively, and perform photoelectric conversion (homodyne detection). The measurement interference signal, the first reference interference signal, and the second reference interference signal are output.

[第3実施形態]
本発明の第3実施形態の光干渉型位相検出装置の構成を図3に示す。図1に示した第1実施形態では、被測定物10の波長−位相特性に、マッハツェンダ型干渉計30の2つの光路間の相対的な光路長変動に起因して生じる位相変動が含まれないようにするために、上述のように参照位相に基づいて測定位相の位相補正を行うようにしたが、第3実施形態では、参照位相に基づいて、マッハツェンダ型干渉計30の2つの光路間の相対的な光路長が変化しないように制御している。第1実施形態の図1とは、下記の(1)、(2)のみ異なり他は同一である。(1)マッハツェンダ型干渉計30の第2の光路に光路長可変手段15を備え、またこの光路長可変手段15を制御する光路長補正手段22も備えた。なお、光路長可変手段15は第1の光路に備えてもよい。(2)信号処理手段23を備えていない。したがって、図1と同一部分の説明は省略して、主に光路長可変手段15及び光路長補正手段22について説明する。
[Third Embodiment]
FIG. 3 shows the configuration of the optical interference type phase detector of the third embodiment of the present invention. In the first embodiment shown in FIG. 1, the wavelength-phase characteristics of the DUT 10 do not include phase fluctuations caused by relative optical path length fluctuations between the two optical paths of the Mach-Zehnder interferometer 30. Therefore, the phase of the measurement phase is corrected based on the reference phase as described above. However, in the third embodiment, between the two optical paths of the Mach-Zehnder interferometer 30 based on the reference phase. Control is performed so that the relative optical path length does not change. It differs from FIG. 1 of 1st Embodiment only in following (1) and (2), and others are the same. (1) The second optical path of the Mach-Zehnder interferometer 30 is provided with an optical path length varying means 15 and an optical path length correcting means 22 for controlling the optical path length varying means 15. The optical path length varying means 15 may be provided in the first optical path. (2) The signal processing means 23 is not provided. Therefore, the description of the same part as FIG. 1 is omitted, and the optical path length varying unit 15 and the optical path length correcting unit 22 will be mainly described.

光路長可変手段15は、例えば光遅延器であり、光路長補正手段22からの制御信号に基づいて、AOFS14eからの光を遅延させて光カプラ6に出力する。すなわち、光路長可変手段15は等価的にマッハツェンダ型干渉計30の2つの光路間の相対的な光路長を変化させている。光路長補正手段24は、第2の位相検出手段22からの参照位相を入力して、この参照位相が測定光の所定の波長範囲にわたって所定の値で一定となるように光路長可変手段15を制御するための制御信号を、この参照位相に基づいて発生し光路長可変手段15に出力する。つまり、上記(3)式の位相変化Δθが限りなくゼロに近づくように制御して、2つの光路間の相対的な光路長の変化ΔLを限りなくゼロに近づけている。その結果、上記(5)式の位相変化Δθが限りなくゼロに近づく。したがって、第1の位相検出手段21で検出した測定位相を、マッハツェンダ型干渉計30の2つの光路間の相対的な光路長変動に起因して生じる位相変動が含まれない、被測定物10の波長−位相特性とすることができる。 The optical path length varying means 15 is, for example, an optical delay device, and delays the light from the AOFS 14 e based on the control signal from the optical path length correction means 22 and outputs it to the optical coupler 6. That is, the optical path length varying means 15 equivalently changes the relative optical path length between the two optical paths of the Mach-Zehnder interferometer 30. The optical path length correction unit 24 receives the reference phase from the second phase detection unit 22 and sets the optical path length variable unit 15 so that the reference phase is constant at a predetermined value over a predetermined wavelength range of the measurement light. A control signal for control is generated based on this reference phase and output to the optical path length varying means 15. That is, the phase change Δθ r in the above equation (3) is controlled so as to approach zero as much as possible, so that the relative optical path length change ΔL between the two optical paths approaches zero as much as possible. As a result, the phase change Δθ in the above equation (5) approaches zero as much as possible. Therefore, the measurement phase detected by the first phase detection means 21 does not include the phase fluctuation caused by the relative optical path length fluctuation between the two optical paths of the Mach-Zehnder interferometer 30. Wavelength-phase characteristics can be obtained.

[第4実施形態]
本発明の第4実施形態の光干渉型位相検出装置の構成を図4に示す。図3に示した第3実施形態では、干渉計として、光ヘテロダイン干渉方式のマッハツェンダ型干渉計30を用いたが、第4実施形態では、光ホモダイン干渉方式のマッハツェンダ型干渉計30を用いている。第3実施形態の図3とは、下記の(1)、(2)のみ異なり他は同一である。したがって詳細説明は省略する。(1)マッハツェンダ型干渉計30の第2の光路に、周波数シフタ(AOFS14e及び超音波発生器14f)を備えていない。(2)受光器8、受光器9及び受光器18は、波長分波手段17からの測定干渉光、第1の参照干渉光及び第2の参照干渉光をそれぞれ受けて光電変換(ホモダイン検波)し、測定干渉信号、第1の参照干渉信号及び第2の参照干渉信号をそれぞれ出力する。
[Fourth Embodiment]
FIG. 4 shows the configuration of the optical interference type phase detector of the fourth embodiment of the present invention. In the third embodiment shown in FIG. 3, the optical heterodyne interferometer type Mach-Zehnder interferometer 30 is used as the interferometer. In the fourth embodiment, the optical homodyne interferometer type Mach-Zehnder interferometer 30 is used. . It differs from FIG. 3 of 3rd Embodiment only in following (1) and (2), and others are the same. Therefore, detailed description is omitted. (1) The second optical path of the Mach-Zehnder interferometer 30 is not provided with a frequency shifter (AOFS 14e and ultrasonic generator 14f). (2) The light receiver 8, the light receiver 9, and the light receiver 18 receive the measurement interference light, the first reference interference light, and the second reference interference light from the wavelength demultiplexing means 17, respectively, and perform photoelectric conversion (homodyne detection). The measurement interference signal, the first reference interference signal, and the second reference interference signal are output.

[第5実施形態]
本発明の第5実施形態の光干渉型位相検出装置の構成を図5に示す。図1に示した第1実施形態とは、光ヘテロダイン干渉方式のマッハツェンダ型干渉計30の代わりに、光ヘテロダイン干渉方式のマイケルソン型干渉計40を用いた点のみ異なる。したがって、図1と同一部分の説明は省略して、主にマイケルソン型干渉計40について説明する。マイケルソン型干渉計40は、光カプラ25、被測定物10、AOFS27a、超音波発生器27b及び例えばミラーでなる反射手段26で構成されている。
[Fifth Embodiment]
FIG. 5 shows the configuration of an optical interference type phase detector according to the fifth embodiment of the present invention. This embodiment differs from the first embodiment shown in FIG. 1 only in that an optical heterodyne interferometer Michelson interferometer 40 is used instead of the optical heterodyne interferometer Mach-Zehnder interferometer 30. Therefore, the description of the same part as FIG. 1 is omitted, and the Michelson interferometer 40 will be mainly described. The Michelson interferometer 40 includes an optical coupler 25, an object to be measured 10, an AOFS 27a, an ultrasonic generator 27b, and reflecting means 26 made of, for example, a mirror.

光カプラ25は、光カプラ13aから入力される波長多重光を2つの光に分波して、一方の光を被測定物10が接続されている第1の光路に、また他方の光をAOFS27a及び反射手段26が接続されている第2の光路にそれぞれ出力する。AOFS27aは、超音波発生器27bから入力される周波数f/2の超音波によって駆動されており、光カプラ25からの光、すなわち測定光、第1の参照光及び第2の参照光のそれぞれの波長(周波数)を超音波の周波数f/2分シフトして反射手段26に出力するとともに、反射手段26で反射されて戻ってきた光を再び周波数f/2分シフト(往復で周波数f分シフト)して光カプラ25に出力する。なお、第2の光路を通る光の代わりに第1の光路を通る光を周波数シフトするようにしてもよい。そして、光カプラ25は、被測定物10で反射されて戻ってきた第1の光路の光と、反射手段26で反射されかつAOFS27aで周波数f分シフトされて戻ってきた第2の光路の光とを合波し、それによって得られた干渉光、すなわちそれぞれ2つの光路を通った、測定光同士の干渉光(測定干渉光という)、第1の参照光同士の干渉光(第1の参照干渉光という)及び第2の参照光同士の干渉光(第2の参照干渉光という)を波長分波手段17に出力する。 The optical coupler 25 demultiplexes the wavelength multiplexed light input from the optical coupler 13a into two lights, one of the lights is sent to the first optical path to which the device under test 10 is connected, and the other light is sent to the AOFS 27a. And the second optical path to which the reflecting means 26 is connected. The AOFS 27a is driven by ultrasonic waves having a frequency f 1/2 input from the ultrasonic generator 27b, and each of the light from the optical coupler 25, that is, the measurement light, the first reference light, and the second reference light. The wavelength (frequency) of the laser beam is shifted by the ultrasonic frequency f 1/2 and output to the reflecting means 26, and the light reflected and returned by the reflecting means 26 is shifted again by the frequency f 1/2 (frequency in the round trip). f 1 shift) and output to the optical coupler 25. The light passing through the first optical path may be frequency shifted instead of the light passing through the second optical path. The optical coupler 25 reflects the light of the first optical path reflected and returned by the DUT 10 and the second optical path of the second optical path reflected by the reflecting means 26 and shifted by the frequency f 1 by the AOFS 27a. The interference light obtained by combining the light, that is, the interference light between the measurement lights (referred to as measurement interference light) and the interference light between the first reference lights (the first interference light) respectively passing through two optical paths. (Referred to as reference interference light) and interference light between the second reference lights (referred to as second reference interference light) are output to the wavelength demultiplexing means 17.

[第6実施形態]
本発明の第6実施形態の光干渉型位相検出装置の構成を図6に示す。図5に示した第5実施形態では、干渉計として、光ヘテロダイン干渉方式のマイケルソン型干渉計40を用いたが、第6実施形態では、光ホモダイン干渉方式のマイケルソン型干渉計40を用いている。第5実施形態の図5とは、下記の(1)、(2)のみ異なり他は同一である。したがって詳細説明は省略する。(1)マイケルソン型干渉計40の第2の光路に、周波数シフタ(AOFS27a及び超音波発生器27b)を備えていない。(2)受光器8、受光器9及び受光器18は、波長分波手段17からの測定干渉光、第1の参照干渉光及び第2の参照干渉光をそれぞれ受けて光電変換(ホモダイン検波)し、測定干渉信号、第1の参照干渉信号及び第2の参照干渉信号をそれぞれ出力する。
[Sixth Embodiment]
FIG. 6 shows the configuration of an optical interference type phase detector according to the sixth embodiment of the present invention. In the fifth embodiment shown in FIG. 5, the optical heterodyne interferometer Michelson interferometer 40 is used as the interferometer. In the sixth embodiment, the optical homodyne interferometer Michelson interferometer 40 is used. ing. This embodiment is different from FIG. 5 of the fifth embodiment except for the following (1) and (2). Therefore, detailed description is omitted. (1) A frequency shifter (AOFS 27a and ultrasonic generator 27b) is not provided in the second optical path of the Michelson interferometer 40. (2) The light receiver 8, the light receiver 9, and the light receiver 18 receive the measurement interference light, the first reference interference light, and the second reference interference light from the wavelength demultiplexing means 17, respectively, and perform photoelectric conversion (homodyne detection). The measurement interference signal, the first reference interference signal, and the second reference interference signal are output.

[第7実施形態]
本発明の第7実施形態の光干渉型位相検出装置の構成を図7に示す。図5に示した第5実施形態では、被測定物10の波長−位相特性に、マイケルソン型干渉計40の2つの光路間の相対的な光路長変動に起因して生じる位相変動が含まれないようにするために、上述のように参照位相に基づいて測定位相の位相補正を行うようにしたが、第7実施形態では、参照位相に基づいて、マイケルソン型干渉計40の2つの光路間の相対的な光路長が変化しないように制御している。第5実施形態の図5とは、下記の(1)、(2)のみ異なり他は同一である。(1)マイケルソン型干渉計40の第2の光路に光路長可変手段15を備え、またこの光路長可変手段15を制御する光路長補正手段22も備えた。なお、光路長可変手段15は第1の光路に備えてもよい。(2)信号処理手段23を備えていない。したがって、図5と同一部分の説明は省略して、主に光路長可変手段15及び光路長補正手段22について説明する。
[Seventh Embodiment]
FIG. 7 shows the configuration of the optical interference type phase detector of the seventh embodiment of the present invention. In the fifth embodiment shown in FIG. 5, the wavelength-phase characteristic of the DUT 10 includes phase fluctuations caused by relative optical path length fluctuations between the two optical paths of the Michelson interferometer 40. In order to avoid this, the phase of the measurement phase is corrected based on the reference phase as described above, but in the seventh embodiment, the two optical paths of the Michelson interferometer 40 are based on the reference phase. The relative optical path length is controlled so as not to change. This embodiment is different from FIG. 5 of the fifth embodiment except for the following (1) and (2). (1) The optical path length varying means 15 is provided in the second optical path of the Michelson interferometer 40, and the optical path length correcting means 22 for controlling the optical path length varying means 15 is also provided. The optical path length varying means 15 may be provided in the first optical path. (2) The signal processing means 23 is not provided. Therefore, the description of the same part as FIG. 5 is omitted, and the optical path length varying means 15 and the optical path length correcting means 22 will be mainly described.

光路長可変手段15は、例えば光遅延器であり、光路長補正手段22からの制御信号に基づいて、光カプラ25から出力されて反射手段26で反射され再び光カプラ25に戻る第2光路の光を遅延させる。すなわち、光路長可変手段15は等価的にマイケルソン型干渉計40の2つの光路間の相対的な光路長を変化させている。光路長補正手段24は、第2の位相検出手段22からの参照位相を入力して、この参照位相が測定光の所定の波長範囲にわたって所定の値で一定となるように光路長可変手段15を制御するための制御信号を、この参照位相に基づいて発生し光路長可変手段15に出力する。つまり、上記(3)式の位相変化Δθが限りなくゼロに近づくように制御して、2つの光路間の相対的な光路長の変化ΔLを限りなくゼロに近づけている。その結果、上記(5)式の位相変化Δθが限りなくゼロに近づく。したがって、第1の位相検出手段21で検出した測定位相を、マイケルソン型干渉計40の2つの光路間の相対的な光路長変動に起因して生じる位相変動が含まれない、被測定物10の波長−位相特性とすることができる。 The optical path length varying means 15 is, for example, an optical delay device. Based on a control signal from the optical path length correcting means 22, the optical path length varying means 15 is output from the optical coupler 25, reflected by the reflecting means 26, and returned to the optical coupler 25 again. Delay the light. In other words, the optical path length varying means 15 equivalently changes the relative optical path length between the two optical paths of the Michelson interferometer 40. The optical path length correction unit 24 receives the reference phase from the second phase detection unit 22 and sets the optical path length variable unit 15 so that the reference phase is constant at a predetermined value over a predetermined wavelength range of the measurement light. A control signal for control is generated based on this reference phase and output to the optical path length varying means 15. That is, the phase change Δθ r in the above equation (3) is controlled so as to approach zero as much as possible, so that the relative optical path length change ΔL between the two optical paths approaches zero as much as possible. As a result, the phase change Δθ in the above equation (5) approaches zero as much as possible. Accordingly, the measured object 10 detected by the first phase detection means 21 does not include the phase fluctuation caused by the relative optical path length fluctuation between the two optical paths of the Michelson interferometer 40. The wavelength-phase characteristics can be obtained.

[第8実施形態]
本発明の第8実施形態の光干渉型位相検出装置の構成を図8に示す。図7に示した第7実施形態では、干渉計として、光ヘテロダイン干渉方式のマイケルソン型干渉計40を用いたが、第8実施形態では、光ホモダイン干渉方式のマイケルソン型干渉計40を用いている。第7実施形態の図7とは、下記の(1)、(2)のみ異なり他は同一である。したがって詳細説明は省略する。(1)マイケルソン型干渉計40の第2の光路に、周波数シフタ(AOFS27a及び超音波発生器27b)を備えていない。(2)受光器8、受光器9及び受光器18は、波長分波手段17からの測定干渉光、第1の参照干渉光及び第2の参照干渉光をそれぞれ受けて光電変換(ホモダイン検波)し、測定干渉信号、第1の参照干渉信号及び第2の参照干渉信号をそれぞれ出力する。
[Eighth Embodiment]
FIG. 8 shows the configuration of an optical interference type phase detector according to the eighth embodiment of the present invention. In the seventh embodiment shown in FIG. 7, an optical heterodyne interferometer Michelson interferometer 40 is used as an interferometer. In the eighth embodiment, an optical homodyne interferometer Michelson interferometer 40 is used. ing. This embodiment is different from FIG. 7 of the seventh embodiment except for the following (1) and (2). Therefore, detailed description is omitted. (1) A frequency shifter (AOFS 27a and ultrasonic generator 27b) is not provided in the second optical path of the Michelson interferometer 40. (2) The light receiver 8, the light receiver 9, and the light receiver 18 receive the measurement interference light, the first reference interference light, and the second reference interference light from the wavelength demultiplexing means 17, respectively, and perform photoelectric conversion (homodyne detection). The measurement interference signal, the first reference interference signal, and the second reference interference signal are output.

なお、上述の第1〜第4実施形態の図1〜図4においては、光カプラ13bから出力される合波光と波長可変光源1から出力される測定光とを合波して波長多重する光カプラ13aと、この光カプラ13aから入力される波長多重光を2つの光に分波する光カプラ16とを、機能的に区別してそれぞれを別の光カプラで構成しているが、1つの光カプラでも構成できることは自明である。   1 to 4 of the first to fourth embodiments described above, the light that is multiplexed by combining the combined light output from the optical coupler 13b and the measurement light output from the wavelength tunable light source 1 is wavelength-multiplexed. The coupler 13a and the optical coupler 16 that demultiplexes the wavelength multiplexed light input from the optical coupler 13a into two lights are functionally distinguished from each other, and each is constituted by another optical coupler. It is obvious that a coupler can also be used.

また、上述の第1及び第3実施形態の光ヘテロダイン干渉方式のマッハツェンダ型干渉計30としては、図1、図3に示したものの他に、図9〜図12に示すものでもよい。なお、図9〜図12には、第3実施形態に対応したマッハツェンダ型干渉計30を示す。したがって、第1実施形態に対応させるためには、第2の光路の光路長可変手段15を備えないようにすればよい。また、図9〜図12に示す周波数は、波長多重光に含まれている測定光の周波数νについて示している。 The optical heterodyne interferometer type Mach-Zehnder interferometer 30 of the first and third embodiments described above may be one shown in FIGS. 9 to 12 in addition to those shown in FIGS. 9 to 12 show a Mach-Zehnder interferometer 30 corresponding to the third embodiment. Therefore, in order to correspond to the first embodiment, the optical path length varying means 15 for the second optical path may be omitted. Further, the frequencies shown in FIGS. 9 to 12 indicate the frequency ν s of the measurement light included in the wavelength multiplexed light.

すなわち、図9においては、AOFS14aは、入力された波長多重光を2つの光に分波して、一方の光を被測定物10が接続されている第1の光路に、また他方の光を超音波発生器14bから入力される超音波の周波数f分シフトして光路長可変手段15が接続されている第2の光路にそれぞれ出力する。そして、光カプラ6は、被測定物10を通った第1の光路の光と、光路長可変手段15を通った第2の光路の光とを合波して干渉光を出力する。この場合、ビート周波数はfとなる。なお、この構成において、AOFS14a及び超音波発生器14bは光分波手段と周波数シフタを兼ねている。 In other words, in FIG. 9, the AOFS 14a demultiplexes the input wavelength multiplexed light into two lights, one of the lights into the first optical path to which the DUT 10 is connected, and the other light. The frequency of the ultrasonic wave input from the ultrasonic generator 14b is shifted by 1 and output to the second optical path to which the optical path length varying means 15 is connected. Then, the optical coupler 6 combines the light of the first optical path that has passed through the DUT 10 and the light of the second optical path that has passed through the optical path length varying unit 15 to output interference light. In this case, the beat frequency is f 1. In this configuration, the AOFS 14a and the ultrasonic generator 14b serve as an optical demultiplexing unit and a frequency shifter.

図10においては、光カプラ16は、入力された波長多重光を2つの光に分波して、一方の光をAOFS14eに、また他方の光をAOFS14cにそれぞれ出力する。AOFS14eは上記一方の光を超音波発生器14fから入力される超音波の周波数f分シフトして被測定物10が接続されている第1の光路に出力し、またAOFS14cは上記他方の光を超音波発生器14dから入力される超音波の周波数f分シフトして光路長可変手段15が接続されている第2の光路に出力する。そして、光カプラ6は、被測定物10を通った第1の光路の光と、光路長可変手段15を通った第2の光路の光とを合波して干渉光を出力する。この場合、ビート周波数はf−fとなる。なお、この構成の場合、AOFS14c及びAOFS14eを並列に配列しているので、この2つのAOFSで生じる位相特性(波長分散)をキャンセルすることができる。 In FIG. 10, the optical coupler 16 demultiplexes the input wavelength multiplexed light into two lights, and outputs one light to the AOFS 14e and the other light to the AOFS 14c. AOFS14e is output to the first optical path measurement object 10 with the frequency f 1 minute shift of the ultrasonic wave entered one of the light above the ultrasonic generator 14f is connected, also AOFS14c above other optical Is shifted by the frequency f2 of the ultrasonic wave input from the ultrasonic generator 14d and output to the second optical path to which the optical path length varying means 15 is connected. Then, the optical coupler 6 combines the light of the first optical path that has passed through the DUT 10 and the light of the second optical path that has passed through the optical path length varying unit 15 to output interference light. In this case, the beat frequency is f 1 −f 2 . In this configuration, since the AOFS 14c and the AOFS 14e are arranged in parallel, the phase characteristics (wavelength dispersion) generated by the two AOFSs can be canceled.

図11においては、AOFS14a及びAOFS14cが直列に配列されている。まず、AOFS14aは、入力された波長多重光を2つの光に分波して、一方の光を被測定物10が接続されている第1の光路に、また他方の光を超音波発生器14bから入力される超音波の周波数f分シフト(+1次の回折を与える)してAOFS14cに出力する。次に、AOFS14cは、AOFS14aからの光を超音波発生器14dから入力される超音波の周波数f分シフト(−1次の回折を与える)して光路長可変手段15が接続されている第2の光路に出力する。そして、光カプラ6は、被測定物10を通った第1の光路の光と、光路長可変手段15を通った第2の光路の光とを合波して干渉光を出力する。この場合、ビート周波数はf−fとなる。なお、この構成において、AOFS14a及び超音波発生器14bは光分波手段と周波数シフタを兼ねている。 In FIG. 11, the AOFS 14a and the AOFS 14c are arranged in series. First, the AOFS 14a demultiplexes the input wavelength multiplexed light into two lights, one of the lights into the first optical path to which the device under test 10 is connected, and the other light into the ultrasonic generator 14b. The frequency of the ultrasonic wave input from 1 is shifted by 1 (giving + 1st order diffraction) and output to the AOFS 14c. Then, AOFS14c is the optical path length changing means 15 light (giving -1 order diffraction) ultrasound frequency f 2 min shift inputted from the ultrasonic generator 14d to from AOFS14a is connected 2 to the optical path. Then, the optical coupler 6 combines the light of the first optical path that has passed through the DUT 10 and the light of the second optical path that has passed through the optical path length varying unit 15 to output interference light. In this case, the beat frequency is f 1 −f 2 . In this configuration, the AOFS 14a and the ultrasonic generator 14b serve as an optical demultiplexing unit and a frequency shifter.

図12においては、図11と同様、AOFS14a及びAOFS14cが直列に配列されている。まず、AOFS14aは、入力された波長多重光を2つの光に分波して、一方の光をAOFS14cに、また他方の光を超音波発生器14bから入力される超音波の周波数f分シフトして被測定物10が接続されている第1の光路に出力する。次に、AOFS14cは、AOFS14aからの光を超音波発生器14dから入力される超音波の周波数f分シフトして光路長可変手段15が接続されている第2の光路に出力する。そして、光カプラ6は、被測定物10を通った第1の光路の光と、光路長可変手段15を通った第2の光路の光とを合波して干渉光を出力する。この場合、ビート周波数はf−fとなる。なお、この構成において、AOFS14a及び超音波発生器14bは光分波手段と周波数シフタを兼ねている。 In FIG. 12, similarly to FIG. 11, the AOFS 14a and the AOFS 14c are arranged in series. First, the AOFS 14a demultiplexes the input wavelength multiplexed light into two lights, and shifts one light to the AOFS 14c and the other light to the frequency f 1 of the ultrasonic wave input from the ultrasonic generator 14b. And output to the first optical path to which the DUT 10 is connected. Next, the AOFS 14c shifts the light from the AOFS 14a by the frequency f2 of the ultrasonic wave input from the ultrasonic generator 14d, and outputs it to the second optical path to which the optical path length varying means 15 is connected. Then, the optical coupler 6 combines the light of the first optical path that has passed through the DUT 10 and the light of the second optical path that has passed through the optical path length varying unit 15 to output interference light. In this case, the beat frequency is f 1 −f 2 . In this configuration, the AOFS 14a and the ultrasonic generator 14b serve as an optical demultiplexing unit and a frequency shifter.

[第9実施形態]
本発明の第9実施形態の光干渉型位相検出装置の構成を図14に示す。上述の第1実施形態の図1とは、マッハツェンダ型干渉計30の第2の光路におけるAOFS14eと光カプラ6との間に、このマッハツェンダ型干渉計30の2つの光路(第1及び第2の光路)の光路長を合わせるための遅延器5を備えた点のみ異なり他は同一である。したがって詳細説明は省略する。なお、遅延器5は、第2の光路の代わりに被測定物10が接続されている第1の光路に備えるようにしてもよい。
[Ninth Embodiment]
FIG. 14 shows the configuration of an optical interference type phase detector according to the ninth embodiment of the present invention. FIG. 1 of the first embodiment described above differs from the two optical paths (first and second) of the Mach-Zehnder interferometer 30 between the AOFS 14 e and the optical coupler 6 in the second optical path of the Mach-Zehnder interferometer 30. The only difference is that a delay device 5 for adjusting the optical path length of the optical path) is provided. Therefore, detailed description is omitted. The delay device 5 may be provided in the first optical path to which the device under test 10 is connected instead of the second optical path.

[第10実施形態]
本発明の第10実施形態の光干渉型位相検出装置の構成を図15に示す。上述の第1実施形態の図1とは、マッハツェンダ型干渉計30の第1の光路における光カプラ16と光カプラ6との間に光サーキュレータ28を備え、この光サーキュレータ28を介して、光カプラ16からの光を被測定物10に入力するとともに被測定物10で反射されて戻ってくる光を光カプラ6に出力するようにした点のみ異なり他は同一である。したがって詳細説明は省略する。
[Tenth embodiment]
FIG. 15 shows the configuration of the optical interference type phase detector of the tenth embodiment of the present invention. The optical circulator 28 is provided between the optical coupler 16 and the optical coupler 6 in the first optical path of the Mach-Zehnder interferometer 30, and the optical coupler is interposed via the optical circulator 28. The only difference is that light from 16 is input to the object to be measured 10 and light reflected and returned by the object to be measured 10 is output to the optical coupler 6. Therefore, detailed description is omitted.

本発明の第1実施形態の構成を示す図The figure which shows the structure of 1st Embodiment of this invention. 本発明の第2実施形態の構成を示す図The figure which shows the structure of 2nd Embodiment of this invention. 本発明の第3実施形態の構成を示す図The figure which shows the structure of 3rd Embodiment of this invention. 本発明の第4実施形態の構成を示す図The figure which shows the structure of 4th Embodiment of this invention. 本発明の第5実施形態の構成を示す図The figure which shows the structure of 5th Embodiment of this invention. 本発明の第6実施形態の構成を示す図The figure which shows the structure of 6th Embodiment of this invention. 本発明の第7実施形態の構成を示す図The figure which shows the structure of 7th Embodiment of this invention. 本発明の第8実施形態の構成を示す図The figure which shows the structure of 8th Embodiment of this invention. マッハツェンダ型干渉計の別の構成を示す図Diagram showing another configuration of Mach-Zehnder interferometer マッハツェンダ型干渉計の別の構成を示す図Diagram showing another configuration of Mach-Zehnder interferometer マッハツェンダ型干渉計の別の構成を示す図Diagram showing another configuration of Mach-Zehnder interferometer マッハツェンダ型干渉計の別の構成を示す図Diagram showing another configuration of Mach-Zehnder interferometer 従来例の概略構成を示す図The figure which shows schematic structure of a prior art example 本発明の第9実施形態の構成を示す図The figure which shows the structure of 9th Embodiment of this invention. 本発明の第10実施形態の構成を示す図The figure which shows the structure of 10th Embodiment of this invention.

符号の説明Explanation of symbols

1・・・波長可変光源、2,12・・・光源、3,6,13a,13b,16,25・・・光カプラ、4a,14a,14c,14e,27a・・・音響光学周波数シフタ(AOFS)、4b,14b,14d,14f,27b・・・超音波発生器、5・・・遅延器、7・・・波長分波器、8,9,18・・・受光器(PD)、10・・・被測定物、11・・・位相検出器、13・・・光合波手段、15・・・光路長可変手段、17・・・波長分波手段、20,30・・・マッハツェンダ型干渉計、21,22・・・位相検出手段、23・・・信号処理手段、24・・・光路長補正手段、26・・・反射手段、28・・・光サーキュレータ、40・・・マイケルソン型干渉計。 DESCRIPTION OF SYMBOLS 1 ... Wavelength variable light source, 2, 12 ... Light source, 3, 6, 13a, 13b, 16, 25 ... Optical coupler, 4a, 14a, 14c, 14e, 27a ... Acousto-optic frequency shifter ( AOFS), 4b, 14b, 14d, 14f, 27b ... ultrasonic wave generator, 5 ... delay device, 7 ... wavelength demultiplexer, 8, 9, 18 ... light receiver (PD), DESCRIPTION OF SYMBOLS 10 ... Measured object, 11 ... Phase detector, 13 ... Optical multiplexing means, 15 ... Optical path length variable means, 17 ... Wavelength demultiplexing means, 20, 30 ... Mach-Zehnder type Interferometer, 21, 22 ... Phase detecting means, 23 ... Signal processing means, 24 ... Optical path length correcting means, 26 ... Reflecting means, 28 ... Optical circulator, 40 ... Michelson Type interferometer.

Claims (7)

所定の波長範囲の測定光を出力する波長可変光源(1)と、
前記測定光の波長とは異なる固定波長の第1の参照光を出力する第1の光源(2)と、
前記測定光の波長及び前記第1の参照光の波長とは異なる固定波長の第2の参照光を出力する第2の光源(12)と、
前記測定光、前記第1の参照光及び前記第2の参照光を受けて合波し、それによって得られた波長多重光を出力する光合波手段(13)と、
被測定物が接続されている第1の光路と被測定物が接続されていない第2の光路を含んで構成され、前記波長多重光を受けて前記第1の光路を通る第1の光と前記第2の光路を通る第2の光に分波するとともに該第1の光路を通った前記第1の光と該第2の光路を通った前記第2の光とを合波し、それによって得られた干渉光を出力する干渉計(30、40)と、
前記干渉光を受けて前記測定光、前記第1の参照光及び前記第2の参照光の各波長成分に分波する波長分波手段(17)と、
該波長分波手段から出力される前記測定光の波長成分に係わる測定干渉光を受けて光電変換し測定干渉信号を出力する第1の受光器(8)と、
前記波長分波手段から出力される前記第1の参照光の波長成分に係わる第1の参照干渉光を受けて光電変換し第1の参照干渉信号を出力する第2の受光器(9)と、
前記波長分波手段から出力される前記第2の参照光の波長成分に係わる第2の参照干渉光を受けて光電変換し第2の参照干渉信号を出力する第3の受光器(18)と、
前記測定干渉信号と、前記第1の参照干渉信号及び前記第2の参照干渉信号のいずれか一方の参照干渉信号とを受けて、当該参照干渉信号に対する前記測定干渉信号の位相を検出し測定位相として出力する第1の位相検出手段(21)と、
前記第1の参照干渉信号と前記第2の参照干渉信号とを受けて、これら2つの参照干渉信号間に生じる位相を検出し参照位相として出力する第2の位相検出手段(22)とを備え、前記参照位相の位相変化を利用することによって、前記被測定物の波長−位相特性を前記測定位相に基づいて求めることを特徴とする光干渉型位相検出装置。
A wavelength tunable light source (1) that outputs measurement light in a predetermined wavelength range;
A first light source (2) for outputting a first reference light having a fixed wavelength different from the wavelength of the measurement light;
A second light source (12) for outputting a second reference light having a fixed wavelength different from the wavelength of the measurement light and the wavelength of the first reference light;
Optical multiplexing means (13) for receiving and multiplexing the measurement light, the first reference light, and the second reference light, and outputting the wavelength multiplexed light obtained thereby;
A first optical path to which the object to be measured is connected and a second optical path to which the object to be measured is not connected; the first light that receives the wavelength multiplexed light and passes through the first optical path; Demultiplexing into the second light passing through the second optical path and combining the first light passing through the first optical path and the second light passing through the second optical path; An interferometer (30, 40) for outputting the interference light obtained by
Wavelength demultiplexing means (17) that receives the interference light and demultiplexes the measurement light, the first reference light, and the second reference light into wavelength components;
A first light receiver (8) that receives measurement interference light related to the wavelength component of the measurement light output from the wavelength demultiplexing means, photoelectrically converts the measurement interference light, and outputs a measurement interference signal;
A second light receiver (9) that receives and photoelectrically converts the first reference interference light related to the wavelength component of the first reference light output from the wavelength demultiplexing means, and outputs a first reference interference signal; ,
A third light receiver (18) that receives and photoelectrically converts the second reference interference light related to the wavelength component of the second reference light output from the wavelength demultiplexing means and outputs a second reference interference signal; ,
Receiving the measurement interference signal and the reference interference signal of one of the first reference interference signal and the second reference interference signal, the phase of the measurement interference signal with respect to the reference interference signal is detected and the measurement phase First phase detection means (21) for outputting as
Second phase detection means (22) for receiving the first reference interference signal and the second reference interference signal, detecting a phase generated between the two reference interference signals, and outputting the detected phase as a reference phase; A wavelength-phase characteristic of the object to be measured is obtained based on the measurement phase by using a phase change of the reference phase.
前記測定位相及び前記参照位相を入力するとともに、該参照位相の位相変化に基づいて前記測定位相の位相補正を行うための位相補正値を前記測定光の波長に対応付けて求め、求めた該位相補正値によって当該測定位相の位相補正を行う信号処理手段(23)を備えたことを特徴とする請求項1に記載の光干渉型位相検出装置。   While inputting the measurement phase and the reference phase, a phase correction value for performing phase correction of the measurement phase based on a phase change of the reference phase is obtained in association with the wavelength of the measurement light, and the obtained phase 2. The optical interference type phase detection device according to claim 1, further comprising signal processing means (23) for performing phase correction of the measurement phase based on a correction value. 前記干渉計の2つの前記光路のいずれか一方の光路に設けられ、2つの当該光路間の相対的な光路長を変化させる光路長可変手段(15)と、
前記参照位相を入力し、当該参照位相が所定の値で一定となるように前記光路長可変手段を制御するための制御信号を該参照位相に基づいて発生し出力する光路長補正手段(24)とを備えたことを特徴とする請求項1に記載の光干渉型位相検出装置。
An optical path length varying means (15) that is provided on one of the two optical paths of the interferometer and changes a relative optical path length between the two optical paths;
Optical path length correction means (24) for inputting the reference phase and generating and outputting a control signal for controlling the optical path length variable means based on the reference phase so that the reference phase becomes constant at a predetermined value. The optical interference type phase detection device according to claim 1, comprising:
前記干渉計は、前記第1の光路及び前記第2の光路の少なくとも一方の光路に少なくとも1つの周波数シフタ(14a〜14f、27a、27b)を有して、該第1の光路を通った前記第1の光に含まれている前記測定光、前記第1の参照光及び前記第2の参照光のそれぞれの周波数と、該第2の光路を通った前記第2の光に含まれている前記測定光、前記第1の参照光及び前記第2の参照光のそれぞれの周波数とにおいて、前記測定光同士、前記第1の参照光同士及び前記第2の参照光同士のそれぞれの周波数差が所定のビート周波数となるようにされた光ヘテロダイン干渉計であり、
前記第1の受光器は前記所定のビート周波数の前記測定干渉信号を出力し、
前記第2の受光器は前記所定のビート周波数の前記第1の参照干渉信号を出力し、
前記第3の受光器は前記所定のビート周波数の前記第2の参照干渉信号を出力することを特徴とする請求項1〜3のいずれかに記載の光干渉型位相検出装置。
The interferometer includes at least one frequency shifter (14a to 14f, 27a, 27b) in at least one of the first optical path and the second optical path, and passes through the first optical path. Each frequency of the measurement light, the first reference light, and the second reference light included in the first light, and the second light that has passed through the second optical path are included in the second light. With respect to the respective frequencies of the measurement light, the first reference light, and the second reference light, there are respective frequency differences between the measurement light, the first reference light, and the second reference light. An optical heterodyne interferometer configured to have a predetermined beat frequency;
The first receiver outputs the measurement interference signal of the predetermined beat frequency;
The second optical receiver outputs the first reference interference signal having the predetermined beat frequency;
The optical interference type phase detector according to any one of claims 1 to 3, wherein the third light receiver outputs the second reference interference signal having the predetermined beat frequency.
前記干渉計は光ホモダイン干渉計であることを特徴とする請求項1〜3のいずれかに記載の光干渉型位相検出装置。   4. The optical interference type phase detector according to claim 1, wherein the interferometer is an optical homodyne interferometer. 前記干渉計は、
前記波長多重光を受けて前記第1の光路を通る前記第1の光と前記第2の光路を通る前記第2の光に分波する光分波手段(16、14a、14b)と、
前記被測定物を通って入力される前記第1の光と前記被測定物を通らないで入力される前記第2の光とを合波して前記干渉光を出力する第1の光カプラ(6)とを含んで構成されるマッハツェンダ型干渉計であることを特徴とする請求項1〜5のいずれかに記載の光干渉型位相検出装置。
The interferometer is
Optical demultiplexing means (16, 14a, 14b) for receiving the wavelength-multiplexed light and demultiplexing the first light passing through the first optical path and the second light passing through the second optical path;
A first optical coupler that outputs the interference light by combining the first light input through the device under test and the second light input without passing through the device under test; 6) A Mach-Zehnder interferometer including the optical interference type phase detection device according to any one of claims 1 to 5.
前記干渉計は、
前記波長多重光を受けて前記第1の光路を通る前記第1の光と前記第2の光路を通る前記第2の光に分波するとともに、前記被測定物によって反射されて戻ってくる前記第1の光と前記被測定物を通らないで反射手段(26)によって反射されて戻ってくる前記第2の光とを合波して前記干渉光を出力する第2の光カプラ(25)を含んで構成されるマイケルソン型干渉計であることを特徴とする請求項1〜5のいずれかに記載の光干渉型位相検出装置。
The interferometer is
The wavelength multiplexed light is received and demultiplexed into the first light passing through the first optical path and the second light passing through the second optical path, and returned by being reflected by the object to be measured. A second optical coupler (25) that combines the first light and the second light reflected by the reflecting means (26) without passing through the object to be measured and outputs the interference light. The optical interference type phase detection device according to claim 1, wherein the optical interference type phase detection device is a Michelson interferometer configured to include:
JP2005210393A 2005-07-20 2005-07-20 Optical interference type phase detector Expired - Fee Related JP4613110B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005210393A JP4613110B2 (en) 2005-07-20 2005-07-20 Optical interference type phase detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005210393A JP4613110B2 (en) 2005-07-20 2005-07-20 Optical interference type phase detector

Publications (2)

Publication Number Publication Date
JP2007024785A true JP2007024785A (en) 2007-02-01
JP4613110B2 JP4613110B2 (en) 2011-01-12

Family

ID=37785732

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005210393A Expired - Fee Related JP4613110B2 (en) 2005-07-20 2005-07-20 Optical interference type phase detector

Country Status (1)

Country Link
JP (1) JP4613110B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103439010A (en) * 2013-08-29 2013-12-11 浙江理工大学 Wavelength measurement method and device based on laser synthesized wavelength interference principle
CN103712569A (en) * 2013-12-31 2014-04-09 合肥工业大学 Single image rapid phase displacement system and phase detection method based on deflection angles

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09113368A (en) * 1995-10-13 1997-05-02 Hoya Corp Amount of phase-shift detection apparatus
JPH10213485A (en) * 1997-01-29 1998-08-11 Seitai Hikarijoho Kenkyusho:Kk Light measuring apparatus
JPH11211572A (en) * 1998-01-20 1999-08-06 Japan Science & Technology Corp Optical amplitude phase characteristics measuring apparatus and measuring method therefor
JPH11264765A (en) * 1998-01-16 1999-09-28 Thilo Weitzel Optical signal processor
JP2002543373A (en) * 1999-04-28 2002-12-17 ザイゴ コーポレイション Gas insensitive interferometer apparatus and method
JP2003294411A (en) * 2002-03-14 2003-10-15 Agilent Technol Inc Reduction method for vibration noise in interference system

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09113368A (en) * 1995-10-13 1997-05-02 Hoya Corp Amount of phase-shift detection apparatus
JPH10213485A (en) * 1997-01-29 1998-08-11 Seitai Hikarijoho Kenkyusho:Kk Light measuring apparatus
JPH11264765A (en) * 1998-01-16 1999-09-28 Thilo Weitzel Optical signal processor
JPH11211572A (en) * 1998-01-20 1999-08-06 Japan Science & Technology Corp Optical amplitude phase characteristics measuring apparatus and measuring method therefor
JP2002543373A (en) * 1999-04-28 2002-12-17 ザイゴ コーポレイション Gas insensitive interferometer apparatus and method
JP2003294411A (en) * 2002-03-14 2003-10-15 Agilent Technol Inc Reduction method for vibration noise in interference system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103439010A (en) * 2013-08-29 2013-12-11 浙江理工大学 Wavelength measurement method and device based on laser synthesized wavelength interference principle
CN103712569A (en) * 2013-12-31 2014-04-09 合肥工业大学 Single image rapid phase displacement system and phase detection method based on deflection angles

Also Published As

Publication number Publication date
JP4613110B2 (en) 2011-01-12

Similar Documents

Publication Publication Date Title
JP2006266797A (en) Apparatus for optical heterodyne interference
JP6486971B2 (en) Dual laser frequency swept interferometry system and method
KR101645274B1 (en) Interferometric distance measuring method for measuring surfaces, and such a measuring arrangement
JP2017523403A5 (en)
JP2010230653A (en) Optical interference measuring apparatus
JP3631025B2 (en) Chromatic dispersion measurement apparatus and polarization dispersion measurement apparatus
US9212896B2 (en) Optical interferometer and vibrometer comprising such an optical interferometer
JP4586033B2 (en) Optical heterodyne interferometer and optical path length difference measuring method thereof
CN108873007A (en) A kind of FM-CW laser ranging device inhibiting dither effect
JP2010261890A (en) Light wave interference measuring device
JP4613110B2 (en) Optical interference type phase detector
JP2007057251A (en) Optical interferometer type phase detection apparatus
JP6763567B2 (en) Fiber optic sensor
JP5557513B2 (en) Chromatic dispersion measuring apparatus and chromatic dispersion measuring method using the same
JP2006266796A (en) Apparatus for optical heterodyne interference
JP2002350236A (en) Light spectrum analysis system and light spectrum analysis method
JP2006308531A (en) Wavelength dispersion measuring method and device
JP5235189B2 (en) Optical fiber refractive index measuring device and optical fiber refractive index measuring method
US7518729B2 (en) Interferometric measuring device
JP5124223B2 (en) Optical chirp characteristic measuring device
JP2002071518A (en) Wavelength dispersion measuring device
JP7284741B2 (en) Interferometers and optics
JP3701457B2 (en) Optical amplitude phase characteristic measuring apparatus and measuring method thereof
WO2024075266A1 (en) Optical measurement device
JP6775024B2 (en) Optical wavelength measuring device

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20061027

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061106

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071025

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100419

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100518

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100716

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101012

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101018

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131022

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees