JP2007024768A - Incinerator tritium sampler - Google Patents

Incinerator tritium sampler Download PDF

Info

Publication number
JP2007024768A
JP2007024768A JP2005210072A JP2005210072A JP2007024768A JP 2007024768 A JP2007024768 A JP 2007024768A JP 2005210072 A JP2005210072 A JP 2005210072A JP 2005210072 A JP2005210072 A JP 2005210072A JP 2007024768 A JP2007024768 A JP 2007024768A
Authority
JP
Japan
Prior art keywords
moisture
exhaust
incinerator
amount
tritium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005210072A
Other languages
Japanese (ja)
Other versions
JP4682728B2 (en
Inventor
Keisuke Koga
啓介 古賀
Zenjiro Suzuki
善二郎 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Systems Co Ltd filed Critical Fuji Electric Systems Co Ltd
Priority to JP2005210072A priority Critical patent/JP4682728B2/en
Publication of JP2007024768A publication Critical patent/JP2007024768A/en
Application granted granted Critical
Publication of JP4682728B2 publication Critical patent/JP4682728B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Measurement Of Radiation (AREA)
  • Sampling And Sample Adjustment (AREA)
  • Monitoring And Testing Of Nuclear Reactors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an incinerator tritium sampler having excellent long period stability dispensing with frequent calibration of a moisture amount measuring means and exchange of a detection element of the moisture amount measuring means accompanying it. <P>SOLUTION: The incinerator tritium sampler arranges a cooling device 14 and a specimen water collecting weighing vessel 15a for collecting to dew-condense moisture in an exhaust at a suction side of a monitoring object exhaust, and arranges a moisture measuring part 12 and a flowmeter 18 for incorporating hygrometers or dew points afterward thereof. The incinerator tritium sampler calculates a collection moisture amount in the exhaust of a prescribed volume from moisture amount data collected in the specimen water collecting weighing vessel 15a and flow rate data of the flowmeter 18, calculates a residual moisture amount in the exhaust of the prescribed volume from the residual moisture amount data in the exhaust passing the cooling device 14 obtained with the moisture amount measuring part 12, and calculates an entire moisture amount in the exhaust of the prescribed volume by adding both. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

この発明は、原子力発電所等の原子力施設から放出される排気中に含まれるトリチウムの濃度を監視してその値が基準値以下であることを確認するために、排気中に含まれる水分を試料水として採取するトリチウムサンプラに関するものであって、特に水分濃度の高い焼却炉施設用のトリチウムサンプラ(焼却炉トリチウムサンプラ)に関する。   In order to monitor the concentration of tritium contained in exhaust discharged from a nuclear facility such as a nuclear power plant and confirm that the value is below a reference value, the present invention samples moisture contained in the exhaust. The present invention relates to a tritium sampler collected as water, and particularly to a tritium sampler (incinerator tritium sampler) for an incinerator facility having a high water concentration.

トリチウムサンプラは、排気中に含まれるトリチウムの濃度を監視するために排気中に含まれる水分を試料水として採取する装置である。そのため、トリチウムサンプラでは所定量(例えば1m)の排気中に含まれる水分量を所定の精度で取得することが求められている。排気中に含まれるトリチウム濃度は、この水分量と試料水中のトリチウム濃度とを掛け合わせることによって得られる。試料水中のトリチウム濃度は、液体シンチレータを使う方法等で測定される。
図4は、従来技術によるトリチウムサンプラの一例の構成を示す配管系統図である。
トリチウムサンプラ1は、フィルタ11、水分量測定部12、コンプレッサ13、冷却装置14、試料水捕集容器15、圧力計16および圧力調節弁17で構成されている。
排気筒2からコンプレッサ13の吸気側に吸入された排気は、フィルタ11で塵埃を除去され、湿度計または露点計などから構成される水分量測定部12で水分濃度が測定され、コンプレッサ13で加圧された状態で冷却装置14に送り込まれて冷却され、含有水分の一部または大部分を結露させ、最後に圧力調節弁17を通過して再び排気筒2に戻される。コンプレッサ13による加圧状態は、圧力計16で監視され、圧力調節弁17で調節される。冷却装置14で結露した水分は、試料水捕集容器15に集められ試料水となる。
A tritium sampler is a device that collects moisture contained in exhaust gas as sample water in order to monitor the concentration of tritium contained in the exhaust gas. Therefore, the tritium sampler is required to acquire the moisture content contained in a predetermined amount (for example, 1 m 3 ) of exhaust gas with a predetermined accuracy. The tritium concentration contained in the exhaust gas is obtained by multiplying the water content by the tritium concentration in the sample water. The tritium concentration in the sample water is measured by a method using a liquid scintillator.
FIG. 4 is a piping system diagram showing a configuration of an example of a tritium sampler according to the prior art.
The tritium sampler 1 includes a filter 11, a moisture measurement unit 12, a compressor 13, a cooling device 14, a sample water collection container 15, a pressure gauge 16, and a pressure control valve 17.
Dust is removed from the exhaust pipe 2 to the intake side of the compressor 13 by the filter 11, and the moisture concentration is measured by the moisture measuring unit 12 configured by a hygrometer or a dew point meter. In a pressurized state, it is sent to the cooling device 14 to be cooled, and a part or most of the contained moisture is condensed, and finally passes through the pressure control valve 17 and is returned to the exhaust pipe 2 again. The pressurization state by the compressor 13 is monitored by the pressure gauge 16 and adjusted by the pressure control valve 17. The moisture condensed by the cooling device 14 is collected in the sample water collecting container 15 and becomes sample water.

ところで、原子力発電所等の焼却炉から放出される排気中には、焼却によって生成される水分も含まれるので、その水分量は大気より多くなり、更には塩酸や硫酸、硝酸等の酸分も含まれる。このような酸分を含む高湿状態の排気のために、焼却炉トリチウムサンプラはその部品が腐食されやすく、とりわけ、高濃度の水分を含んでいる領域、すなわち、冷却装置14の前段までは腐食されやすい。トリチウムサンプラの部品の中では、特に、水分量測定部12の湿度計または露点計の検出素子が腐食されやすい。それは、湿度計または露点計の検出素子が対象ガスに直接に接することを必要とするからである。
このようなトリチウムサンプラは、特許文献1や特許文献2、特許文献3に開示されている。
特開昭51−138490号公報 特開平4−24583号公報 特開平11−64532号公報
By the way, the exhaust gas emitted from incinerators such as nuclear power plants also contains moisture generated by incineration, so that the amount of moisture is greater than that of the atmosphere, and also contains acid content such as hydrochloric acid, sulfuric acid, and nitric acid. included. Due to such high-humidity exhaust containing acid content, incinerator tritium samplers are prone to corrosion, especially in areas containing high concentrations of moisture, i.e. up to the front of the cooling device 14. Easy to be. Among the components of the tritium sampler, in particular, the detection element of the hygrometer or dew point meter of the water content measuring unit 12 is easily corroded. This is because the detection element of the hygrometer or dew point meter needs to be in direct contact with the target gas.
Such tritium samplers are disclosed in Patent Document 1, Patent Document 2, and Patent Document 3.
JP-A-51-138490 JP-A-4-24583 JP-A-11-64532

上述したように、従来技術によるトリチウムサンプラを原子力発電所等の焼却炉から放出される排気に適用しようとすると、酸分を含む高湿の排気に水分量測定部12の検出素子(湿度計または露点計)が曝される。一方、トリチウムサンプラでは、所定量の排気中に含まれる水分量を正確に把握することが必要であるので、直接に排気に接する検出素子の特性変化に伴う測定精度の低下は問題であり、この問題を避けるために水分量測定部12は頻繁に校正され、精度を確保できなくなれば検出素子が交換される。この校正および検出素子の交換がトリチウムサンプラの維持コストを高くしている。
この発明の課題は、上記のような問題点を解消して、水分量測定手段の頻繁な校正やそれに伴う水分量測定手段の検出素子の交換を必要としない長期安定性の優れた焼却炉トリチウムサンプラを提供することである。
As described above, when the tritium sampler according to the prior art is applied to the exhaust discharged from an incinerator such as a nuclear power plant, the detection element (hygrometer or Dew point meter) is exposed. On the other hand, with a tritium sampler, it is necessary to accurately grasp the amount of moisture contained in a predetermined amount of exhaust gas, so a decrease in measurement accuracy due to a change in the characteristics of the detection element that directly contacts the exhaust gas is a problem. In order to avoid problems, the moisture content measuring unit 12 is frequently calibrated, and the detection element is replaced when accuracy cannot be ensured. This calibration and replacement of the detection element increases the maintenance cost of the tritium sampler.
An object of the present invention is to eliminate the above-mentioned problems, and to incinerate tritium with excellent long-term stability that does not require frequent calibration of the moisture content measuring means and replacement of the detection element of the moisture content measuring means associated therewith. To provide a sampler.

請求項1の発明は、原子力発電所等の焼却炉施設から放出される排気中に含まれるトリチウムの濃度を監視するために、排気中に含まれる水分の一部を冷却手段で結露させて試料水として採取する焼却炉トリチウムサンプラであって、前記冷却手段が結露させた水分を捕集してその量を測定するための試料水捕集計量手段と、前記冷却手段の後方に配置されて冷却手段を通過した排気中の水分量を測定するための水分量測定手段と、前記冷却手段の後方に配置されて排気の流量を測定するための流量計と、を備えている。
排気中の酸分を含む水分の影響を最も受け易い水分量測定手段が、冷却手段の後方に配置されるので、水分量測定手段に対する排気の影響が大幅に緩和される。なお、所定量の排気中に含まれる水分量は、流量計の設置で算出可能となる。すなわち、冷却手段によって結露した排気中の水分量は試料水捕集計量手段で取得され、冷却手段を通過した排気中の水分量は水分量測定手段で取得され、試料水捕集計量手段で取得された水分量に対応する排気量は流量計によって取得されるので、これらの数値から所定量の排気中に含まれる水分量を算出することができる。
In order to monitor the concentration of tritium contained in the exhaust discharged from an incinerator facility such as a nuclear power plant, the invention of claim 1 condenses a part of the moisture contained in the exhaust with a cooling means. An incinerator tritium sampler that collects water as a sample, and collects moisture condensed by the cooling means and measures the amount of sample water collected and is disposed behind the cooling means for cooling. A moisture amount measuring means for measuring the amount of moisture in the exhaust gas that has passed through the means, and a flow meter disposed behind the cooling means for measuring the flow rate of the exhaust gas.
Since the moisture amount measuring means that is most susceptible to the influence of moisture containing acid content in the exhaust gas is disposed behind the cooling means, the influence of the exhaust gas on the moisture amount measuring means is greatly reduced. Note that the amount of water contained in a predetermined amount of exhaust gas can be calculated by installing a flow meter. That is, the amount of water in the exhaust gas condensed by the cooling means is acquired by the sample water collecting amount means, and the amount of water in the exhaust gas passing through the cooling means is acquired by the moisture amount measuring means and acquired by the sample water collecting amount means. Since the displacement corresponding to the moisture content is acquired by the flow meter, the moisture content contained in the predetermined amount of exhaust gas can be calculated from these numerical values.

請求項1の発明においては、前記冷却手段が結露させた水分を捕集してその量を測定するための試料水捕集計量手段と、前記冷却手段を通過した排気中の水分量を測定するための水分量測定手段と、前記冷却手段の後方に配置されて排気の流量を測定するための流量計と、を備えているので、排気中の酸分を含む水分に対して最も影響を受け易い水分量測定手段が冷却手段の後方に配置され、水分量測定手段に対する排気の影響が大幅に緩和される。なお、所定量の排気中に含まれる水分量は、流量計の設置で算出可能となる。
したがって、この発明によれば、水分量測定手段の頻繁な校正やそれに伴う水分量測定手段の検出素子の交換を必要としない長期安定性の優れた焼却炉トリチウムサンプラを提供することができる。
In the first aspect of the invention, the sample water collection amount means for collecting the moisture condensed by the cooling means and measuring the amount thereof, and the moisture content in the exhaust gas passing through the cooling means are measured. And a flow meter disposed behind the cooling means for measuring the flow rate of the exhaust gas, so that it is most affected by moisture including acid content in the exhaust gas. The easy moisture content measuring means is arranged behind the cooling means, and the influence of exhaust on the moisture content measuring means is greatly reduced. Note that the amount of water contained in a predetermined amount of exhaust gas can be calculated by installing a flow meter.
Therefore, according to the present invention, it is possible to provide an incinerator tritium sampler with excellent long-term stability that does not require frequent calibration of the moisture content measurement means and replacement of the detection element of the moisture content measurement means.

この発明による焼却炉トリチウムサンプラを実施するための最良の形態について実施例を用いて説明する。
なお、従来技術と同じ機能の部分には同じ符号を付ける。
The best mode for carrying out the incinerator tritium sampler according to the present invention will be described with reference to examples.
In addition, the same code | symbol is attached | subjected to the part of the same function as a prior art.

図1は、この発明による焼却炉トリチウムサンプラの実施例1の構成を示す配管系統図であり、図3は、この実施例の機能を説明するためのフローチャートである。
焼却炉トリチウムサンプラ1aは、フィルタ11、冷却装置14、試料水捕集計量容器15a、水分量測定部12、流量計18およびポンプ19で構成されている。この実施例と図4に示したトリチウムサンプラの従来例との主な相違点は、水分量測定部12が冷却装置14の後方に配置されている点、流量計18が追加されている点、および排気の吸入のためには最後部に配置されたポンプ19が用いられている点である。
監視対象となる排気は、最後部に配置されたポンプ19によって排気筒2から吸入され、フィルタ11で塵埃を除去され、冷却装置14に送り込まれて冷却され、含有水分の一部または大部分を結露させる。冷却装置14で結露した水分は、試料水捕集計量容器15aに集められて、その量および単位時間当たりの液化量を計測され、試料水捕集計量容器15aから取り出されて試料水となる。冷却装置14を通過した排気は、湿度計または露点計などから構成される水分量測定部12で、冷却装置14では除去されずに残留した水分の量を測定され、流量計18で流量を計測される。この流量から、冷却装置14で結露させた水分量に対応する排気量が算出される。すなわち、冷却装置14で水分を結露させた時間に相当する流量が時間積分されて前記排気量が算出される。ポンプ19を通過した排気は再び排気筒2に戻される。
FIG. 1 is a piping system diagram showing the configuration of Embodiment 1 of an incinerator tritium sampler according to the present invention, and FIG. 3 is a flowchart for explaining the function of this embodiment.
The incinerator tritium sampler 1a includes a filter 11, a cooling device 14, a sample water collection total amount container 15a, a water content measuring unit 12, a flow meter 18, and a pump 19. The main difference between this embodiment and the conventional example of the tritium sampler shown in FIG. 4 is that the water content measuring unit 12 is arranged behind the cooling device 14, and the flow meter 18 is added. Also, the pump 19 disposed at the rear end is used for intake of exhaust gas.
Exhaust gas to be monitored is sucked from the exhaust pipe 2 by a pump 19 disposed at the end, dust is removed by a filter 11, sent to a cooling device 14 and cooled, and part or most of the contained moisture is Allow condensation. The moisture condensed in the cooling device 14 is collected in the sample water collection total amount container 15a, the amount and the liquefaction amount per unit time are measured, and taken out from the sample water collection total amount container 15a to become sample water. Exhaust gas that has passed through the cooling device 14 is measured by the moisture content measurement unit 12 composed of a hygrometer or dew point meter, and the amount of water remaining without being removed by the cooling device 14 is measured. Is done. From this flow rate, the exhaust amount corresponding to the amount of water condensed by the cooling device 14 is calculated. That is, the exhaust amount is calculated by integrating the flow rate corresponding to the time when moisture is condensed in the cooling device 14 over time. The exhaust gas that has passed through the pump 19 is returned to the exhaust pipe 2 again.

ここで、トリチウムサンプラの必要とする2つの機能である、試料水の抽出および所定体積の排気中の水分量の算出、の内の後者について図3にしたがって詳細に説明する。なお、ここでは説明を簡単にするために所定体積を1mとする。
先ず、冷却装置14で結露して試料水捕集計量容器15aに捕集(排気中の水分の捕集)された水分量の測定(捕集水分量の測定)データから単位時間当たりの捕集水分量a(g)が算出され、且つその際の単位時間当たりの吸入排気量b(m)が、流量計18によって測定(水分捕集排気量の測定)され、その結果として、排気1m当たりの捕集水分量が、「a/b(g/m)」として算出(所定体積の排気中捕集水分量の算出)される。一方、冷却装置14で捕集されなかった排気中の水分は、水分量測定部12で湿度または露点として測定され、同時に排気の温度および圧力も測定(残存水分量の測定)される。すなわち、これらのデータから残存水分(水蒸気)の分圧値が求められ、この分圧値から排気1m当たりの残存水分量が算出(所定体積の排気中残存水分量の算出)される。全水分量は、算出された両水分量の合算で得られる(所定体積の排気中全水分量の算出)。
Here, the latter of the two functions required by the tritium sampler, that is, the extraction of the sample water and the calculation of the moisture content in the exhaust of a predetermined volume will be described in detail with reference to FIG. Here, in order to simplify the explanation, the predetermined volume is 1 m 3 .
First, collection per unit time from the measurement (measurement of collected water amount) data of the amount of moisture collected (condensation of moisture in the exhaust) by condensation in the cooling device 14 and collected in the sample water collection amount container 15a The amount of moisture a (g) is calculated, and the amount of intake exhaust b (m 3 ) per unit time at that time is measured by the flow meter 18 (measurement of the amount of water collected and exhausted). The amount of water collected per 3 is calculated as “a / b (g / m 3 )” (calculation of the amount of water collected in exhaust gas of a predetermined volume). On the other hand, the moisture in the exhaust gas that has not been collected by the cooling device 14 is measured as humidity or dew point by the moisture content measuring unit 12, and at the same time, the temperature and pressure of the exhaust gas are measured (measurement of residual moisture content). That is, the partial pressure value of residual moisture (water vapor) is obtained from these data, and the residual moisture amount per 1 m 3 of exhaust gas is calculated from this partial pressure value (calculation of the residual moisture amount in the exhaust of a predetermined volume). The total water content is obtained by adding both the calculated water amounts (calculation of the total water content in the exhaust of a predetermined volume).

この実施例では、排気がポンプ19で吸入され、従来例のように加圧されていないが、その理由は、焼却炉の排気には多くの水分が含まれているので、加圧冷却でない方法でも必要な量の試料水を得ることできるからである。その上、ポンプ吸入によればポンプ19以降の配管を除いて装置内を負圧に保つので、この実施例の構成は、排気の外部漏出の心配が非常に少ないという利点を有している。
なお、酸分を含む高湿状態の部分である冷却装置14までの配管には、耐食性に優れた樹脂管やテフロン(登録商標)ライニング管が使用されている。
また、水分量測定部12を通過する排気は前段の冷却装置14で冷却されてその湿度が高くなっているので、水分量測定部12を加熱することによって排気の湿度を下げ、検出素子等の腐食を軽減することもある。
In this embodiment, the exhaust gas is sucked by the pump 19 and is not pressurized as in the conventional example. The reason is that the exhaust gas from the incinerator contains a lot of moisture, so that the method is not pressurized cooling. However, the necessary amount of sample water can be obtained. In addition, according to the pump suction, the inside of the apparatus is kept at a negative pressure except for the pipes after the pump 19, and therefore the configuration of this embodiment has an advantage that there is very little concern about the external leakage of the exhaust gas.
In addition, a resin pipe or a Teflon (registered trademark) lining pipe having excellent corrosion resistance is used for the pipe to the cooling device 14 that is a high-humidity part containing an acid content.
Further, since the exhaust gas passing through the moisture content measuring unit 12 is cooled by the cooling device 14 in the previous stage and its humidity is high, the moisture content measurement unit 12 is heated to lower the humidity of the exhaust, May reduce corrosion.

以上の説明から明らかなように、この実施例によれば、排気中の酸分を含んだ水分による腐食の影響を特に強く受ける水分量測定部12が、冷却装置14の後方に配置されているので、酸分を含んだ水分のかなりの部分が冷却装置14で結露・捕集され、水分量測定部12に到達する排気中には酸分を含んだ水分が冷却装置14の露点に近い量しか含まれなくなる。この結果として、水分量測定部12では結露するような状態になることはなく、水分量測定部12が加熱されると、より乾燥した状態となり、水分量測定部12に対する排気中の酸分を含んだ水分による腐食の影響が大幅に軽減される。したがって、この実施例によれば、水分量測定部12の頻繁な校正やそれに伴う水分量測定部12の検出素子の交換を必要としない長期安定性の優れた焼却炉トリチウムサンプラを提供することができる。   As is clear from the above description, according to this embodiment, the moisture amount measuring unit 12 that is particularly strongly affected by corrosion due to moisture containing acid content in the exhaust gas is disposed behind the cooling device 14. Therefore, a considerable part of the moisture containing acid content is condensed and collected by the cooling device 14, and the amount of moisture containing acid content is close to the dew point of the cooling device 14 in the exhaust gas reaching the moisture measuring unit 12. Only included. As a result, the moisture content measurement unit 12 does not enter a state of condensation, and when the moisture content measurement unit 12 is heated, the moisture content measurement unit 12 becomes more dry, and the acid content in the exhaust with respect to the moisture content measurement unit 12 is reduced. The effect of corrosion due to the contained moisture is greatly reduced. Therefore, according to this embodiment, it is possible to provide an incinerator tritium sampler with excellent long-term stability that does not require frequent calibration of the moisture content measurement unit 12 and replacement of the detection element of the moisture content measurement unit 12 associated therewith. it can.

図2は、この発明による焼却炉トリチウムサンプラの実施例2の構成を示す配管系統図である。
焼却炉トリチウムサンプラ1bは、フィルタ11、コンプレッサ13、冷却装置14、試料水捕集計量容器15a、圧力計16、圧力調節弁17、水分量測定部12および流量計18で構成されていて、図4に示したトリチウムサンプラの従来例に近い構成である。この実施例と従来例との主な相違点は、水分量測定部12が冷却装置14の後方に配置されている点および流量計18が追加されている点である。
監視対象となる排気は、コンプレッサ13によって排気筒2から吸入され、フィルタ11で塵埃を除去され、加圧された状態で冷却装置14に送り込まれて加圧冷却され、含有水分の一部または大部分を結露させる。冷却装置14で結露した水分は、試料水捕集計量容器15aに集められ、その量および単位時間当たりの液化量を計測され、試料水捕集計量容器15aから取り出されて試料水となる。冷却装置14を通過した排気は、圧力調節弁17を通過した後、湿度計または露点計などから構成される水分量測定部12で、冷却装置14では除去されずに残留した水分量を測定され、流量計18で流量を計測される。この流量から、冷却装置14で結露させた水分量に対応する排気量が算出される。すなわち、冷却装置14で水分を結露させた時間に相当する流量が時間積分されて前記排気量が算出される。流量計18を通過した排気は再び排気筒2に戻される。コンプレッサ13による加圧状態は、圧力計16で監視され、圧力調節弁17で調節される。
FIG. 2 is a piping diagram showing the configuration of Embodiment 2 of the incinerator tritium sampler according to the present invention.
The incinerator tritium sampler 1b is composed of a filter 11, a compressor 13, a cooling device 14, a sample water collection total amount container 15a, a pressure gauge 16, a pressure control valve 17, a water content measuring unit 12, and a flow meter 18. The configuration is similar to the conventional example of the tritium sampler shown in Fig. 4. The main difference between this embodiment and the conventional example is that the moisture measuring unit 12 is disposed behind the cooling device 14 and a flow meter 18 is added.
Exhaust gas to be monitored is sucked from the exhaust pipe 2 by the compressor 13, dust is removed by the filter 11, and is sent to the cooling device 14 in a pressurized state to be pressurized and cooled, and a part or a large amount of moisture contained therein Condensate part. The water condensed in the cooling device 14 is collected in the sample water collection amount container 15a, the amount and the amount of liquefaction per unit time are measured, and taken out from the sample water collection amount container 15a to become sample water. Exhaust gas that has passed through the cooling device 14 passes through the pressure control valve 17, and is then measured by the moisture content measurement unit 12 that includes a hygrometer or a dew point meter. The flow rate is measured by the flow meter 18. From this flow rate, the exhaust amount corresponding to the amount of water condensed by the cooling device 14 is calculated. That is, the exhaust amount is calculated by integrating the flow rate corresponding to the time when moisture is condensed in the cooling device 14 over time. The exhaust gas that has passed through the flow meter 18 is returned to the exhaust pipe 2 again. The pressurization state by the compressor 13 is monitored by the pressure gauge 16 and adjusted by the pressure control valve 17.

この実施例の場合も、実施例1と同様に、図3のフローにしたがって、試料水の抽出および所定体積の排気中の水分量の算出が実行され、水分量測定部12が冷却装置14の後に配置されているので、水分量測定部12の頻繁な校正やそれに伴う水分量測定部12の検出素子の交換を必要としない長期安定性の優れた焼却炉トリチウムサンプラを提供することができる。   Also in this embodiment, extraction of the sample water and calculation of the moisture content in the exhaust of a predetermined volume are executed according to the flow of FIG. Since it is arranged later, it is possible to provide an incinerator tritium sampler with excellent long-term stability that does not require frequent calibration of the moisture content measurement unit 12 and replacement of the detection element of the moisture content measurement unit 12 associated therewith.

この発明による焼却炉トリチウムサンプラの実施例1の構成を示す配管系統図Piping system diagram showing configuration of embodiment 1 of incinerator tritium sampler according to the present invention この発明による焼却炉トリチウムサンプラの実施例2の構成を示す配管系統図Piping system diagram showing configuration of embodiment 2 of incinerator tritium sampler according to the present invention この発明による焼却炉トリチウムサンプラの機能を説明するためのフローチャートFlowchart for explaining the function of the incinerator tritium sampler according to the present invention トリチウムサンプラの従来例の構成を示す配管系統図Piping system diagram showing configuration of conventional tritium sampler

符号の説明Explanation of symbols

1 トリチウムサンプラ
1a、1b 焼却炉トリチウムサンプラ
11 フィルタ 12 水分量測定部
13 コンプレッサ 14 冷却装置
15 試料水捕集容器 15a 試料水捕集計量容器
16 圧力計 17 圧力調節弁
18 流量計 19 ポンプ
2 排気筒
1 Tritium sampler
1a, 1b Incinerator Tritium Sampler
11 Filter 12 Moisture content measuring unit
13 Compressor 14 Cooling device
15 Sample water collection container 15a Sample water collection volume container
16 Pressure gauge 17 Pressure control valve
18 Flow meter 19 Pump 2 Exhaust tube

Claims (1)

原子力発電所等の焼却炉施設から放出される排気中に含まれるトリチウム濃度を監視するために、排気中に含まれる水分の一部を冷却手段で結露させて試料水として採取する焼却炉トリチウムサンプラであって、
前記冷却手段が結露させた水分を捕集してその量を測定するための試料水捕集計量手段と、
前記冷却手段の後方に配置されて冷却手段を通過した排気中に含まれる水分量を測定するための水分量測定手段と、
前記冷却手段の後方に配置されて排気の流量を測定するための流量計と、
を備えている
ことを特徴とする焼却炉トリチウムサンプラ。
An incinerator tritium sampler that collects some of the moisture contained in the exhaust as a sample water by condensation using cooling means to monitor the concentration of tritium contained in the exhaust discharged from an incinerator facility such as a nuclear power plant Because
Sample water collection amount means for collecting the moisture condensed by the cooling means and measuring the amount thereof,
A moisture content measuring means for measuring the moisture content contained in the exhaust gas disposed behind the cooling means and passed through the cooling means;
A flow meter disposed behind the cooling means for measuring the flow rate of the exhaust;
An incinerator tritium sampler characterized by comprising:
JP2005210072A 2005-07-20 2005-07-20 Incinerator tritium sampler Expired - Fee Related JP4682728B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005210072A JP4682728B2 (en) 2005-07-20 2005-07-20 Incinerator tritium sampler

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005210072A JP4682728B2 (en) 2005-07-20 2005-07-20 Incinerator tritium sampler

Publications (2)

Publication Number Publication Date
JP2007024768A true JP2007024768A (en) 2007-02-01
JP4682728B2 JP4682728B2 (en) 2011-05-11

Family

ID=37785719

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005210072A Expired - Fee Related JP4682728B2 (en) 2005-07-20 2005-07-20 Incinerator tritium sampler

Country Status (1)

Country Link
JP (1) JP4682728B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100900355B1 (en) 2009-02-20 2009-06-02 황창성 Tritium sample collector
JP2010048766A (en) * 2008-08-25 2010-03-04 Mitsubishi Electric Corp Tritium sampler
JP2010048764A (en) * 2008-08-25 2010-03-04 Mitsubishi Electric Corp Tritium sampler
JP2011220923A (en) * 2010-04-13 2011-11-04 Mitsubishi Electric Corp Radioactive substance monitor system

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108982643A (en) * 2018-06-27 2018-12-11 拓世氢源(深圳)科技有限公司 A kind of the tritium on-line monitoring system and its monitoring method of closed cycle

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57182675A (en) * 1981-05-06 1982-11-10 Toshiba Corp Moisture removing apparatus having performance evaluation function
JPS60225626A (en) * 1984-04-24 1985-11-09 Fuji Electric Corp Res & Dev Ltd Acidic gas removing apparatus
JPS6257195U (en) * 1985-09-28 1987-04-09
JPH0373884A (en) * 1989-08-16 1991-03-28 Toshiba Corp Tritium capturing device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57182675A (en) * 1981-05-06 1982-11-10 Toshiba Corp Moisture removing apparatus having performance evaluation function
JPS60225626A (en) * 1984-04-24 1985-11-09 Fuji Electric Corp Res & Dev Ltd Acidic gas removing apparatus
JPS6257195U (en) * 1985-09-28 1987-04-09
JPH0373884A (en) * 1989-08-16 1991-03-28 Toshiba Corp Tritium capturing device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010048766A (en) * 2008-08-25 2010-03-04 Mitsubishi Electric Corp Tritium sampler
JP2010048764A (en) * 2008-08-25 2010-03-04 Mitsubishi Electric Corp Tritium sampler
KR100900355B1 (en) 2009-02-20 2009-06-02 황창성 Tritium sample collector
JP2011220923A (en) * 2010-04-13 2011-11-04 Mitsubishi Electric Corp Radioactive substance monitor system

Also Published As

Publication number Publication date
JP4682728B2 (en) 2011-05-11

Similar Documents

Publication Publication Date Title
JP5372924B2 (en) β-ray dust concentration measuring apparatus and method for confirming validity of sample used therein
CN101561426B (en) Humidity measuring method and measuring device used for CEMS system
US7771654B1 (en) Apparatus for monitoring gaseous components of a flue gas
JP4682728B2 (en) Incinerator tritium sampler
CN103728163B (en) Full tritium Quick sampling system in a kind of gas
CA2635004C (en) Controlled humidification calibration checking of continuous emissions monitoring system
CN105842725B (en) The assay method of the specific activity of tritiated water vapour in a kind of air
JP2016525681A (en) How to check the normal functioning of sampling equipment
US20080282764A1 (en) Calibration checking for continuous emissions monitoring system
JPH07318555A (en) Total organic carbon meter
CN102721791A (en) Verifying method and verifying device for flue gas emission continuous monitoring system
CN210322525U (en) VOC gas on-line detection preprocessing device
JP5069642B2 (en) Tritium sampler
US20080283382A1 (en) Device and method for measuring elemental sulfur in gas in gas lines
RU2589726C2 (en) System for monitoring leaks of cooling pond of nuclear power plant
KR101275882B1 (en) Continuous water vapor content measurement system of stack gas emissions
CN104406932A (en) Ultraviolet absorption measurement method for waste gas sulfur dioxide of stationary pollution source
CN202720218U (en) Verification device of flue gas emission continuous monitoring system
JP4376590B2 (en) Tritium sampler
US6148659A (en) Gas concentration monitor having a bridge configured flow system
CN206787871U (en) Rapid replacement gas sample collector
JPS6042690A (en) Gas analyzer in container for nuclear reactor
JP2002181801A (en) Salinometer
JP2005091226A (en) Method and apparatus for measuring amount of moisture in high-temperature gas
CN117686653A (en) Method for continuously measuring moisture content of high-temperature flue gas

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080515

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20081215

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20090219

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100830

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110111

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110124

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140218

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4682728

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140218

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140218

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees