JPS60225626A - Acidic gas removing apparatus - Google Patents
Acidic gas removing apparatusInfo
- Publication number
- JPS60225626A JPS60225626A JP59082685A JP8268584A JPS60225626A JP S60225626 A JPS60225626 A JP S60225626A JP 59082685 A JP59082685 A JP 59082685A JP 8268584 A JP8268584 A JP 8268584A JP S60225626 A JPS60225626 A JP S60225626A
- Authority
- JP
- Japan
- Prior art keywords
- absorbent
- gas
- detector
- acidic gas
- acidic
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Measurement Of Radiation (AREA)
- Treating Waste Gases (AREA)
- Gas Separation By Absorption (AREA)
Abstract
Description
【発明の詳細な説明】
〔発明の属する技術分野〕
この発明は酸性ガス除去装置に係り、特に塩化水素ガス
、硫黄酸化物(SOx)等の酸性ガスとトリチウム水蒸
気等とが共存するガス組成のガスから酸性ガスを選択的
に除去する装置であって、原子力発電所の焼却炉から排
出される排ガス中に含捷れるトリチウム濃度を測定する
トリチウムモニタに利用できるものである。[Detailed description of the invention] [Technical field to which the invention pertains] The present invention relates to an acid gas removal device, and in particular to a device for removing acid gases, and in particular, a device for removing acid gases in which acid gases such as hydrogen chloride gas and sulfur oxides (SOx) coexist with tritium water vapor. This is a device that selectively removes acid gas from gas, and can be used as a tritium monitor to measure the concentration of tritium contained in the exhaust gas discharged from the incinerator of a nuclear power plant.
原子力発電所内の焼却炉等から大気中に排出される排ガ
ス中のトリチウム等の放射性物質の排出レベルは厳しく
規制されている。通常、排ガス中に含まれるトリチウム
のほとんどはHT OあるいはT20等水型トリチウム
の化学形態で存在するため、加熱したサンプリング配管
中を気体状態で導かれたトリチウムを凝縮器を使って凝
縮凍結採取し、融解後液体ミンチレータを用いてトリチ
ウム濃度を検出する。しかしながら、焼却炉排ガス中に
は塩化水素ガスや硫黄酸化物等の酸性ガスが微量共存し
ているから、これらが凝縮時に水蒸気(1−■20 )
および水型トリチウム蒸気(HTO、H2O)と共に凝
縮したときには、凝縮器を腐食したり、あるいは検出器
を腐食させ、さらには凝縮水中への汚物が混入すること
となり ) 1,1チウムの測定精度を低下させていた
。このようなトラブルの原因に対する対策として、従来
は配管材料をステンレス鋼材料またはチタン材料等に変
更したり、あるいは表面に耐食材料をライニングしたり
あるいはコーティングすることが行われていた。しかし
ながら、材料を変更したりあるいはライニングまたはコ
ーティングすることは装置のガス捕集性能に大きい影響
を与えたり、あるいは材料を変更することが原子力機器
の場合に不適当なこともあり、有効な解決手段ではなか
った。The emission level of radioactive substances such as tritium in exhaust gas discharged into the atmosphere from incinerators and the like in nuclear power plants is strictly regulated. Normally, most of the tritium contained in exhaust gas exists in the chemical form of aqueous tritium such as HTO or T20, so the tritium that is guided in a gaseous state through a heated sampling pipe is condensed and frozen using a condenser. , detect the tritium concentration using a liquid mintilator after melting. However, since trace amounts of acidic gases such as hydrogen chloride gas and sulfur oxides coexist in the incinerator exhaust gas, when these gases condense, water vapor (1-■20)
When it condenses with water-type tritium vapor (HTO, H2O), it may corrode the condenser or the detector, and even contaminate the condensed water.) It was lowering it. Conventionally, as a countermeasure against the causes of such troubles, the piping material has been changed to stainless steel material, titanium material, etc., or the surface has been lined or coated with a corrosion-resistant material. However, changing the material or lining or coating can have a significant impact on the gas collection performance of the device, or changing the material may be inappropriate in the case of nuclear equipment, so there are no effective solutions. It wasn't.
この問題を解決する有効な対策として、凝縮器に酸性ガ
スが到達する前に酸性ガス吸収剤を使って酸性ガスのみ
を選択的に除去することが考えられる。そのためには、
いかなる化学形態のトリチウムをも捕集せずに、酸性ガ
スのみを確実に除去することが望まれる。One possible effective measure to solve this problem is to selectively remove only the acid gas using an acid gas absorbent before it reaches the condenser. for that purpose,
It is desirable to reliably remove only acidic gas without collecting any chemical form of tritium.
これらの問題を解決するために、本発明者らは、炭酸カ
リウムを主成分とする吸収剤に高温の排ガスを接触させ
、酸性ガス成分を吸収剤にカリウム塩として分離蓄積す
る酸性ガスの除去方法を発明し提案した(特願昭58−
186127号明細書参照)。In order to solve these problems, the present inventors have developed an acid gas removal method in which high-temperature exhaust gas is brought into contact with an absorbent whose main component is potassium carbonate, and the acid gas components are separated and accumulated in the absorbent as potassium salts. invented and proposed (patent application 1982-
186127).
さらに本発明者らは前記吸収剤の長寿命化をはかるため
、炭酸カリウムを主成分とする吸収剤を複数個の貫通気
孔を有する耐熱性一体骨路の表面に付着させた酸性ガス
除去装置を発明した。Furthermore, in order to extend the life of the absorbent, the present inventors developed an acid gas removal device in which an absorbent mainly composed of potassium carbonate was attached to the surface of a heat-resistant integral bone channel having a plurality of through holes. Invented it.
ところが、排ガス中の酸性ガスの濃度は変動するために
、吸収剤充填量から吸収剤の寿命を推定することは難し
く、安全を見て実際の寿命期間の1//2〜1/3の期
間で定期的に吸収剤の交換を行なわなければならなかっ
た。そのために、吸収剤の保守管理が面倒であってメン
テナンス上問題があり、また、低レベル放射性廃棄物と
なる劣化吸収剤の処理量が増大しランニングコストが増
加する結果となった。However, because the concentration of acid gas in exhaust gas fluctuates, it is difficult to estimate the life of the absorbent from the amount of absorbent filled. The absorbent had to be replaced periodically. Therefore, the maintenance of the absorbent is troublesome and there are maintenance problems, and the amount of degraded absorbent that becomes low-level radioactive waste increases, resulting in an increase in running costs.
そこで、この発明の目的は従来技術が有する問題点を角
了決し、吸収剤の寿命、すなわち酸性ガスの吸収効率が
所定の限度に達したことを検出できるようにした酸性ガ
ス除去装置を提供することにある。SUMMARY OF THE INVENTION An object of the present invention is to overcome the problems of the prior art and provide an acidic gas removal device that can detect when the life of the absorbent, that is, when the acidic gas absorption efficiency has reached a predetermined limit. There is a particular thing.
上記目的を達成するため、この発明は、炭酸カリウムを
主成分とする吸収剤に排ガスを高温で接触させ、排ガス
中の酸性ガスのみを選択的にカリウム塩として吸収剤に
分離蓄積せしめるようにした酸性ガス除去装置において
、吸収剤の酸性ガス吸収効率が所定の限度に達したこと
を検出する酸性ガス検出器を吸収剤の後段に設置したも
のである。酸性ガス検出器は耐熱性の絶縁基板の一部に
銀を主成分とする導電性金属を付着形成したものであっ
て、この酸性ガス検出器と排ガスとを200℃〜900
℃の温度で接触させ、導電性金属と酸性ガスの反応によ
る導電性金属層の抵抗値の上昇を検知するようにしたも
のである。In order to achieve the above object, this invention brings exhaust gas into contact with an absorbent containing potassium carbonate as a main component at high temperature, and selectively separates and accumulates only the acidic gas in the exhaust gas as potassium salt in the absorbent. In an acidic gas removal device, an acidic gas detector is installed downstream of the absorbent to detect when the acidic gas absorption efficiency of the absorbent has reached a predetermined limit. The acid gas detector is made by adhering a conductive metal mainly composed of silver to a part of a heat-resistant insulating substrate.
It is designed to detect an increase in the resistance value of the conductive metal layer due to the reaction between the conductive metal and the acidic gas by contacting the conductive metal layer at a temperature of .degree.
ガス中の酸性ガスを炭酸カリウムを主成分とするアルカ
リ性吸収剤を用いて中和除去する方法は、酸性ガス成分
が塩化水素および硫酸ミストなどの場合を例にとると、
次に示すような反応を利用している。The method of neutralizing and removing acidic gas in gas using an alkaline absorbent containing potassium carbonate as its main component is, for example, when the acidic gas components are hydrogen chloride and sulfuric acid mist.
It uses the following reactions.
K2 Co3+ 2 HC1→2 K C1十H20+
C02・・・(1)K2 Co3+ H2804→に
2 S 04 +H20+ C02・・・(2)排ガス
中の酸性ガスの大部分は塩化水素であり、その結果、上
記反応式(1)よりに2CO3の大部分が消費される。K2 Co3+ 2 HC1→2 K C1+H20+
C02... (1) K2 Co3+ H2804 → 2 S 04 + H20+ C02... (2) Most of the acidic gas in the exhaust gas is hydrogen chloride, and as a result, according to the above reaction formula (1), the amount of 2CO3 Most of it is consumed.
また、本発明者らの実験によれば、反応温度を200℃
以上に設定することによって酸性ガスとの高い反応効率
すなわち除去効率が得られる0
前述したように導電性金属と酸性ガスとの反応によって
導電性金属層の抵抗値が上昇するのは、電気の良導体で
ある銀が次の反応式(3)により徐々に絶縁物である塩
化銀に変化し導電層が減少するためと考えられる。Furthermore, according to the experiments conducted by the present inventors, the reaction temperature was set at 200°C.
By setting the above value, a high reaction efficiency with acidic gas, that is, removal efficiency can be obtained. This is thought to be because silver, which is an insulator, gradually changes to silver chloride, which is an insulator, according to the following reaction formula (3), and the conductive layer decreases.
2Ag +2HCt→2 Ag C1+ H2・・・・
・・・・・・・・(3)検出器が高温に加熱されている
ため反応は迅速であシ、検出器における導電性金属の体
積が小さいため塩化水素ガスに対して極めて鋭敏な抵抗
変化を示す。2Ag +2HCt→2Ag C1+ H2...
・・・・・・・・・(3) Because the detector is heated to a high temperature, the reaction is rapid, and because the volume of the conductive metal in the detector is small, the resistance changes extremely sensitively to hydrogen chloride gas. shows.
また反応温度を200℃〜900℃に設定したのは、2
00℃以下で検出器を使用した場合には水型トリチウム
の吸着および酸化銀あるいは炭酸銀の生成による検出器
の抵抗値の上昇等の問題があシ、一方、900℃以上で
検出器を使用した場合、銀の融点(978℃)直下のた
め銀よりなる導電性金属の不純物との反応性が高まって
長期にわたる安定性の点で問題が生じるからである。In addition, the reaction temperature was set at 200°C to 900°C.
When the detector is used at temperatures below 00°C, there are problems such as adsorption of water-type tritium and an increase in the resistance of the detector due to the formation of silver oxide or silver carbonate.On the other hand, when the detector is used at temperatures above 900°C In this case, since the temperature is just below the melting point of silver (978° C.), the reactivity of the conductive metal made of silver with impurities increases, causing problems in terms of long-term stability.
以下この発明による酸性ガス除去装置の実施例を図面を
参照して説明する。Embodiments of the acid gas removal apparatus according to the present invention will be described below with reference to the drawings.
第1図は排ガス中に含″!tたトリチウムを除去するだ
めのサンプリング系統を示しており、サンプリング管路
1上には酸性ガス吸収剤2、酸性ガス検出器3および凝
縮器4が図示の順序で配置されている。次に上記吸収剤
2の調製について述べる。Figure 1 shows a sampling system for removing tritium contained in exhaust gas. On the sampling pipe 1, an acid gas absorbent 2, an acid gas detector 3 and a condenser 4 are installed. Next, the preparation of the absorbent 2 will be described.
吸収剤は材質がコープイライトからなるセラミックフオ
ームの骨格の表面に炭酸カリウムを付着させることによ
って調製したものであって具体的な調製法は次のとおり
である。The absorbent was prepared by attaching potassium carbonate to the surface of the skeleton of a ceramic foam made of copillite, and the specific preparation method was as follows.
300℃で10時間乾燥した特急炭酸カリウム粉末70
y 、!: 試薬−Rエチルアルコール150 ii
i+およびコロイド状シリカ1.Ofをボールミル中で
約5時間混合し、微細な炭酸カリウムが分散したスラリ
ーを調製する。混合後スラリーをビー力へ取り出し攪拌
し、次いであらかじめ大気中で3時間乾燥した13メツ
シユの穴径を有するセラミックフオームラスラリ−中に
浸漬したのち、引き上げ、余剰のスラリーを圧縮空気で
分離し、ついで150 ℃で1時間乾燥することにより
、セラミックフオームの骨格表面に炭酸カリウムの層を
付着させる。との含浸乾燥操作を反復して炭酸カリウム
の付着量をセラミックフオームの重量の約50%とした
のち、炭酸カリウムの付着強度を高めるため、コロイド
状シリカ2Orとエチルアルコール802の混合液中に
前記フオームを浸漬し、余剰の液を分離する。次いでこ
れを150℃で1時間乾燥後5oo℃で1時間乾燥後5
00℃で1時間熱処理する。Express potassium carbonate powder 70 dried at 300℃ for 10 hours
Y,! : Reagent-R ethyl alcohol 150 ii
i+ and colloidal silica1. Of is mixed in a ball mill for about 5 hours to prepare a slurry in which fine potassium carbonate is dispersed. After mixing, the slurry was taken out to a beaker and stirred, then immersed in a ceramic foam slurry with a hole diameter of 13 mesh that had been previously dried in the atmosphere for 3 hours, pulled up, and the excess slurry was separated with compressed air. A layer of potassium carbonate is then deposited on the skeletal surface of the ceramic foam by drying at 150° C. for 1 hour. After repeating the impregnating and drying operation to make the adhesion amount of potassium carbonate about 50% of the weight of the ceramic foam, in order to increase the adhesion strength of potassium carbonate, the above-mentioned potassium carbonate was added to the mixed solution of colloidal silica 2Or and ethyl alcohol 802. Soak the foam and separate excess liquid. Next, this was dried at 150°C for 1 hour and then at 50°C for 1 hour.
Heat treatment at 00°C for 1 hour.
次に酸性ガス検出器の構造を第2図および第3図を参照
して説明する。Next, the structure of the acidic gas detector will be explained with reference to FIGS. 2 and 3.
第2図において、符号5はアルミナ製の絶縁基板を示し
、この絶縁基板5の内部にはW金属薄膜よりなるヒータ
が印刷され埋込まれ、その端子6の表面にはAuメッキ
が施されている。また、上記絶縁基板5上には、ハツチ
ングを付して示した銀導体層7が形成され、その検出部
8はW字状に形成されている。この銀導体層7を形成す
るには、絶縁基板5上に厚さ1μmの銀の薄膜を蒸着後
、フォトエツチングにより幅1閣の帯状の銀導体層を形
成すればよい。In FIG. 2, reference numeral 5 denotes an insulating substrate made of alumina. Inside this insulating substrate 5, a heater made of a W metal thin film is printed and embedded, and the surface of the terminal 6 is plated with Au. There is. Further, a silver conductor layer 7 shown with hatching is formed on the insulating substrate 5, and its detection portion 8 is formed in a W-shape. In order to form this silver conductor layer 7, a silver thin film having a thickness of 1 μm is deposited on the insulating substrate 5, and then a strip-shaped silver conductor layer having a width of 1 mm is formed by photo-etching.
上記銀導体層7の端には抵抗測定用端子9,9が設けら
れ、銀導体層7の加熱はWヒータに電流を流すことによ
り行われる。Terminals 9, 9 for resistance measurement are provided at the ends of the silver conductor layer 7, and the silver conductor layer 7 is heated by passing a current through a W heater.
第3図は極細の銀線の抵抗変化を利用する方式のセンサ
の構成を示したものであり、極細の鎖線を使用し、加熱
を銀線の直接通電により行なうようにした例である。図
において、符号11は絶縁管を示し、この絶縁管]1は
2本の貫通孔を備え、この貫通孔を通して極細の銀線1
2が挿通され、絶縁管11の先端部に突出して検出部1
3が形成される一方、後端からはリード端子1.4 、
14が導出される。FIG. 3 shows the configuration of a sensor that utilizes the resistance change of an extremely thin silver wire, and is an example in which an extremely thin chain line is used and heating is performed by direct energization of the silver wire. In the figure, reference numeral 11 indicates an insulating tube, and this insulating tube 1 has two through holes, through which an ultrafine silver wire 1 is passed.
2 is inserted through the insulating tube 11 and protrudes from the tip of the insulating tube 11.
3 is formed, while lead terminals 1.4 and 4 are formed from the rear end.
14 is derived.
また、銀線12が絶縁管11から突出する部分には、耐
熱性を有する無機系接着剤+5 、 i5が付着され、
銀線の固定とガスシールとを図っている。この実施例に
おける検出部の加熱は銀線13に直接通電し、ジュール
発熱を利用して行なうようになっている。In addition, a heat-resistant inorganic adhesive +5, i5 is attached to the part where the silver wire 12 protrudes from the insulating tube 11.
The silver wire is fixed and the gas is sealed. In this embodiment, the detection section is heated by directly applying electricity to the silver wire 13 and utilizing Joule heat generation.
このように構成された酸性ガス検出器における吸収剤の
酸性ガス吸収効率と検出器の抵抗値との関係は第4図に
示した試験装置を用いて測定することができる。The relationship between the acidic gas absorption efficiency of the absorbent and the resistance value of the detector in the acidic gas detector configured as described above can be measured using the test apparatus shown in FIG. 4.
第4図に示した試験装置において、吸収剤20は石英製
反応管21内に充填され、電気炉22の中心部に固定さ
れたハニカム状目皿%の上にセットされている。酸性ガ
ス検出器24は、吸収剤20の後段に設けられている。In the test apparatus shown in FIG. 4, an absorbent 20 is filled into a quartz reaction tube 21 and set on a honeycomb-shaped perforated plate fixed at the center of an electric furnace 22. The acid gas detector 24 is provided downstream of the absorbent 20.
吸収剤20の上部には、ハニカム状目皿5が固定され、
さらにその上にはガラスピーズ26を充填した気化器が
設けられている。この気化器は電気炉nによって加熱さ
れ、吸収剤20、ガラスピーズ26および検出器囚の温
度はそれぞれ熱電対27 、28および′29によって
測温される。試験ガスは所定濃度の希塩酸水溶液30を
液体定量ポンプ31により気化器へ通して気化させ、こ
れを乾燥空気ボンベ:32の空気で希釈して塩化水素ガ
スおよび水蒸気を含む試験ガスを得た。A honeycomb-shaped perforated plate 5 is fixed to the upper part of the absorbent 20,
Furthermore, a vaporizer filled with glass beads 26 is provided above it. This vaporizer is heated by an electric furnace n, and the temperatures of the absorbent 20, the glass beads 26 and the detector are measured by thermocouples 27, 28 and '29, respectively. As a test gas, a dilute aqueous hydrochloric acid solution 30 of a predetermined concentration was passed through a vaporizer using a liquid metering pump 31 to vaporize it, and this was diluted with air from a dry air cylinder 32 to obtain a test gas containing hydrogen chloride gas and water vapor.
次に性能試験条件を次表に示す。The performance test conditions are shown in the table below.
試験ガスは吸収剤Δノを通過したのち、酸性ガス検出器
24を通り冷却器33で冷却され、試験ガスに含まれる
塩化水素ガスが水蒸気と共に凝縮され試験管34に貯水
されるようになっている。また、冷却器33には冷凍器
35で冷却された冷却水が循環しており、また試験ガス
出口側の反応管はマントルヒータ36により一100℃
以上に加熱され、水蒸気の凝縮が防止されて込る。After the test gas passes through the absorbent Δ, it passes through the acid gas detector 24 and is cooled by the cooler 33, and the hydrogen chloride gas contained in the test gas is condensed together with water vapor and stored in the test tube 34. There is. In addition, cooling water cooled by a refrigerator 35 is circulated in the cooler 33, and the reaction tube on the test gas outlet side is heated to -100°C by a mantle heater 36.
The water vapor is heated to an even higher temperature, preventing condensation of water vapor.
吸収剤層に試験ガスを通過させ、1時間毎に試験管34
の中に生成した凝縮水を採取し、この中の塩素イオン濃
度をイオンクロマトグラフにより定量し、次式によシ吸
収剤の塩化水素除去効率をめることができる。Pass the test gas through the absorbent layer and test tube 34 every hour.
The condensed water produced in the water is collected, the chloride ion concentration therein is determined by ion chromatography, and the hydrogen chloride removal efficiency of the absorbent can be calculated using the following formula.
また、酸性ガス検出器Uの抵抗値は随時、デジタルマル
チメータ37を用いて測定することができる。Further, the resistance value of the acidic gas detector U can be measured using the digital multimeter 37 at any time.
このような試験装置を用いて吸収剤の酸性ガス吸収効率
と検出器の抵抗値の経時変化の関係を調べると第5図に
示したような結果となる。この第5図において曲線(イ
)は吸収剤の吸収効率の経時変化を示し、曲線(ロ)は
第2図に示した検出器の銀薄膜の抵抗値の経時変化を示
し、また曲線(・→は第3図に示した検知器の銀線の抵
抗値の経時変化を示している。When the relationship between the acid gas absorption efficiency of the absorbent and the change in the resistance value of the detector over time is investigated using such a test device, the results shown in FIG. 5 are obtained. In FIG. 5, the curve (a) shows the change over time in the absorption efficiency of the absorbent, the curve (b) shows the change over time in the resistance value of the silver thin film of the detector shown in FIG. → indicates the change over time in the resistance value of the silver wire of the detector shown in FIG.
この図から明らかなように、試験開始後約250時間せ
では、吸収剤は999%以上の一定の吸収効率を示して
いるが、250時間経過後は急激に吸収効率が低下する
。この吸収剤の吸収効率の経時変化に対応して、約25
0時間まではソ初期値と同等の一定値を示していた検出
器の抵抗値(曲線口、・・)は、吸収剤の吸収効率が低
下するにつれて急激に上昇し、吸収剤の寿命と考えられ
る吸収効率が90%に達する時点で数桁の抵抗変化があ
る。As is clear from this figure, about 250 hours after the start of the test, the absorbent exhibits a constant absorption efficiency of 999% or more, but after 250 hours, the absorption efficiency decreases rapidly. Corresponding to the change in absorption efficiency of this absorbent over time, approximately 25
The resistance value of the detector (curve end, ...), which showed a constant value equivalent to the initial value until 0 hours, suddenly increased as the absorption efficiency of the absorbent decreased, and it was considered that the absorbent was reaching its end of life. When the absorption efficiency reached 90%, there is a resistance change of several orders of magnitude.
次に第2図に示した検111器を用いて検出器の温度を
100℃〜900℃に変え、吸収剤の吸収効率と検出器
の抵抗値の経時変化の関係を調べると第6図に示したと
おりとなる。第6図において曲線(イ)は吸収剤の吸収
効率の経時変化、曲線(0)(ニ)(ホ)(へ)(ト)
は検出器の温度がそれぞれ300℃、200℃、450
℃、900℃、100℃の試験条件例おける検出器の抵
抗値の経時変化を示している。第6図から分かるように
、検出器の温度が200℃〜900℃の条件(曲m(口
1 (=) (ホ)(へ))においては検出器の抵抗値
の経時変化は吸収剤の吸収効率の経時変化と良く対応し
ている。しかしながら、検出器の温度が100tll:
(曲線(L))の場合、塩化水素が破過していないにも
か\わらず、検出器の抵抗値が徐々に増加し吸収効率の
経時変化とうまく対応していない。Next, using the detector shown in Figure 2, the temperature of the detector was changed from 100℃ to 900℃, and the relationship between the absorption efficiency of the absorbent and the change in resistance value of the detector over time was investigated, as shown in Figure 6. It will be as shown. In Figure 6, curve (a) shows the change in absorption efficiency of the absorbent over time, and curves (0) (d) (e) (he) (g)
The detector temperatures are 300℃, 200℃, and 450℃, respectively.
It shows the change in resistance value of the detector over time under example test conditions of 100°C, 900°C, and 100°C. As can be seen from Figure 6, under the condition that the detector temperature is between 200°C and 900°C (curve m (mouth 1 (=) (e) (he)), the change in the resistance value of the detector over time is It corresponds well to the change in absorption efficiency over time. However, when the detector temperature is 100 tll:
In the case of (curve (L)), even though hydrogen chloride has not broken through, the resistance value of the detector gradually increases and does not correspond well to the change in absorption efficiency over time.
この原因を考察すると、200℃以下では排ガス中に共
存する炭酸ガスおよび酸素ガスにより炭酸銀、酸化銀等
が生成し電気伝導度の良好な釦用が減少するためと分っ
た。また、900℃を越え銀の融点(978℃)に近く
なると銀の軟化あるいは排ガス中に含まれる各種の不純
物との反応が考えられ、長期安定性の点で好ましくない
。When the cause of this was considered, it was found that at temperatures below 200°C, carbon dioxide and oxygen gas coexisting in the exhaust gas produce silver carbonate, silver oxide, etc., and the use of buttons with good electrical conductivity decreases. Furthermore, if the temperature exceeds 900° C. and approaches the melting point of silver (978° C.), silver may soften or react with various impurities contained in exhaust gas, which is undesirable from the viewpoint of long-term stability.
以上述べたように、この発明によれば、銀を主成分とす
る導電性金属よりなる酸性ガス検出器を吸収剤の後段に
設置し、200℃〜900℃の温度で吸収剤を通過した
ガスと接触させ、吸収剤の寿命を検出器の電気抵抗値の
変化で検知し吸収剤の寿命を知ることを可能にしたから
、吸収剤の長期使用が可能となり、酸性ガス除去装置の
信頼性の向上を図ることができ、放射性廃棄物として使
用済み吸収剤処理量の減少等の効果が得られる。As described above, according to the present invention, an acid gas detector made of a conductive metal containing silver as a main component is installed downstream of the absorbent, and the gas that has passed through the absorbent at a temperature of 200°C to 900°C is It is now possible to determine the lifespan of the absorbent by contacting it with the absorbent and detecting the change in the electrical resistance value of the detector, which enables long-term use of the absorbent and improves the reliability of the acid gas removal equipment. It is possible to achieve improvements such as reducing the amount of used absorbent to be disposed of as radioactive waste.
第1図は吸収剤、酸性ガス検出器および凝縮器の配置関
係を示した系統図、第2図は薄膜型の酸性ガス検出器を
示した縦断面図、第3図は極細線型酸性ガス検出器を示
した側面図、第4図は酸性ガス検出器の性能試験装置を
示した概略図、第5図は酸性ガス検出器の温度を300
℃に加熱した場合の吸収剤の吸収効率と酸性ガス検出器
の抵抗値の関係を表わした線図、第6図は酸性ガス検出
器の動作温度を変えた場合の吸収剤の吸収効率と酸性ガ
ス検出器の抵抗値の関係を表わした線図である0
1・・・サンプリング管路、2・・・酸性ガス吸収剤、
3・・・酸性ガス検出器、4・・・凝縮器、5・・・絶
縁基板、7・・・銀導体層
特許出願人 株式会社富士電機総合研究所回 富士電機
製造株式会社
写1之
滲2胎
算3図Figure 1 is a system diagram showing the arrangement of the absorbent, acid gas detector, and condenser. Figure 2 is a vertical cross-sectional view of a thin film type acid gas detector. Figure 3 is an ultra-fine wire type acid gas detector. Figure 4 is a schematic diagram showing the acid gas detector performance test equipment, Figure 5 is a side view showing the acid gas detector temperature.
A diagram showing the relationship between the absorption efficiency of the absorbent and the resistance value of the acidic gas detector when heated to ℃. Figure 6 shows the relationship between the absorption efficiency of the absorbent and the acidity when the operating temperature of the acidic gas detector is changed. 0 is a diagram showing the relationship between resistance values of gas detectors. 1... Sampling pipe line, 2... Acidic gas absorbent,
3...Acidic gas detector, 4...Condenser, 5...Insulating substrate, 7...Silver conductor layer Patent applicant Fuji Electric Research Institute Co., Ltd. Fuji Electric Manufacturing Co., Ltd. 2 fetus count 3 figures
Claims (1)
で接触させ、排ガス中の酸性ガスをカリウム塩として吸
収剤に分離蓄積せしめるようにした酸性ガス除去装置に
おいて、吸収剤の酸性ガス吸収効率が所定の限度に達し
たことを検出する酸性ガス検出器を吸収剤の後段に設置
したことを特徴とする酸性ガス除去装置。 2、特許請求の範囲第1項に記載の酸性ガス除去装置に
おいて、;上記酸性ガス検出器は耐熱性の絶縁基板の一
部に銀を主成分とする導電性金属を付着形成したもので
あることを特徴とする酸性ガス除去装置。 3 特許請求の範圃第2項に記載の酸性ガス除去装置に
おいて;上記酸性ガス検出器を200℃〜900℃の温
度で排ガスと接触させるようにしたことを特徴とする酸
性ガス除去装置。[Scope of Claims] 1. In an acid gas removal device that brings exhaust gas into contact with an absorbent containing potassium carbonate as a main component at high temperature, the acid gas in the exhaust gas is separated and accumulated in the absorbent as potassium salt. An acid gas removal device characterized in that an acid gas detector is installed downstream of the absorbent to detect when the acid gas absorption efficiency of the absorbent reaches a predetermined limit. 2. In the acidic gas removal device according to claim 1, the acidic gas detector is formed by adhering a conductive metal mainly composed of silver to a part of a heat-resistant insulating substrate. An acid gas removal device characterized by: 3. The acidic gas removal device according to claim 2, wherein the acidic gas detector is brought into contact with exhaust gas at a temperature of 200°C to 900°C.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59082685A JPS60225626A (en) | 1984-04-24 | 1984-04-24 | Acidic gas removing apparatus |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59082685A JPS60225626A (en) | 1984-04-24 | 1984-04-24 | Acidic gas removing apparatus |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS60225626A true JPS60225626A (en) | 1985-11-09 |
JPH0225651B2 JPH0225651B2 (en) | 1990-06-05 |
Family
ID=13781271
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP59082685A Granted JPS60225626A (en) | 1984-04-24 | 1984-04-24 | Acidic gas removing apparatus |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS60225626A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007024768A (en) * | 2005-07-20 | 2007-02-01 | Fuji Electric Systems Co Ltd | Incinerator tritium sampler |
JP2010048765A (en) * | 2008-08-25 | 2010-03-04 | Mitsubishi Electric Corp | Iodine sampler |
-
1984
- 1984-04-24 JP JP59082685A patent/JPS60225626A/en active Granted
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007024768A (en) * | 2005-07-20 | 2007-02-01 | Fuji Electric Systems Co Ltd | Incinerator tritium sampler |
JP4682728B2 (en) * | 2005-07-20 | 2011-05-11 | 富士電機システムズ株式会社 | Incinerator tritium sampler |
JP2010048765A (en) * | 2008-08-25 | 2010-03-04 | Mitsubishi Electric Corp | Iodine sampler |
Also Published As
Publication number | Publication date |
---|---|
JPH0225651B2 (en) | 1990-06-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5192652B2 (en) | Mercury reduction catalyst, mercury conversion unit, and total mercury measurement device in exhaust gas using the same | |
US20080274559A1 (en) | Gas Sensor for Determining Ammonia | |
Jain et al. | Ultra-low NO2 detection by gamma WO3 synthesized by Reactive Spray Deposition Technology | |
JP4201709B2 (en) | Sulfur content detection sensor and sulfur content detection device | |
CN105181614B (en) | Sulfur trioxide analytical instrument and method | |
KR101488438B1 (en) | Electrochemical gas sensor | |
JP5012036B2 (en) | Sulfur component detector | |
JP2008190950A (en) | Removing method and removing device for selenium oxide in sample, and measuring method and measuring device for mercury in coal combustion exhaust gas using them | |
JPS60225626A (en) | Acidic gas removing apparatus | |
Kim et al. | Highly Selective and Reversible Detection of Simulated Breath Hydrogen Sulfide Using Fe‐Doped CuO Hollow Spheres: Enhanced Surface Redox Reaction by Multi‐Valent Catalysts | |
GB2085584A (en) | Monitoring so3 h2so4 in gas samples also containing so2 and h2o | |
EP0096417B1 (en) | Apparatus for measuring dissolved hydrogen concentration | |
JP6733463B2 (en) | Bromine recovery device and bromine recovery method | |
Nordlander | Selenium Sulfide–A New Detector for Mercury Vapor1 | |
JP2599979B2 (en) | Iodine measuring device | |
JP5466870B2 (en) | Method and apparatus for measuring mercury concentration | |
JP4532671B2 (en) | Hydrogen gas detector | |
CN114956010A (en) | SnO 2 -MoSe 2 Preparation method of composite material, MEMS sulfur dioxide sensor and application thereof | |
McNamara et al. | Process effects on activated carbon performance and analytical methods used for low level mercury removal in natural gas applications | |
CN111505086A (en) | Gd2Zr2O7Solid electrolyte type isopropanol sensor, preparation method and application thereof | |
JPH026018B2 (en) | ||
JPH0347124B2 (en) | ||
JP3613146B2 (en) | Method and apparatus for analyzing trace components in gas | |
JPS6078625A (en) | Removal of acidic gas | |
CN111569599B (en) | Composite fiber type mercury capturing device and preparation method of mercury capturing composite fiber |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
EXPY | Cancellation because of completion of term |