JP2005091226A - Method and apparatus for measuring amount of moisture in high-temperature gas - Google Patents

Method and apparatus for measuring amount of moisture in high-temperature gas Download PDF

Info

Publication number
JP2005091226A
JP2005091226A JP2003326623A JP2003326623A JP2005091226A JP 2005091226 A JP2005091226 A JP 2005091226A JP 2003326623 A JP2003326623 A JP 2003326623A JP 2003326623 A JP2003326623 A JP 2003326623A JP 2005091226 A JP2005091226 A JP 2005091226A
Authority
JP
Japan
Prior art keywords
gas
outside air
temperature
moisture
flow rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003326623A
Other languages
Japanese (ja)
Inventor
Mizuo Muramatsu
瑞夫 村松
Yoshiki Muramatsu
良樹 村松
Noriyuki Abe
範之 阿部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MURAMATSU FUUSOU SETSUBI KOGYO
MURAMATSU FUUSOU SETSUBI KOGYO KK
Original Assignee
MURAMATSU FUUSOU SETSUBI KOGYO
MURAMATSU FUUSOU SETSUBI KOGYO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MURAMATSU FUUSOU SETSUBI KOGYO, MURAMATSU FUUSOU SETSUBI KOGYO KK filed Critical MURAMATSU FUUSOU SETSUBI KOGYO
Priority to JP2003326623A priority Critical patent/JP2005091226A/en
Publication of JP2005091226A publication Critical patent/JP2005091226A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analyzing Materials Using Thermal Means (AREA)
  • Sampling And Sample Adjustment (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an amount-of-moisture measurement method and an amount-of-moisture measuring apparatus of high-temperature gas that can continuously measure the amount of moisture in high-temperature corrosive gas. <P>SOLUTION: The amount-of-moisture measuring apparatus comprises an exhaust gas extraction tube 3 for extracting partial exhaust gas from an exhaust duct 2 of high-temperature corrosive gas; a fresh air introduction flow rate control valve 9 for performing mixing with the extraction exhaust gas, and controlling at least one of the extraction flow rate of gas to be measured and the introduction flow rate of the fresh air so that the temperature of the mixed gas decreases to a required moisture measurable temperature or smaller; an extraction flowmeter for measuring the extraction flow rate of the exhaust gases and the fresh air introduction flow rate; and a control computing unit 16 for measuring the temperature of the exhaust gas by a wet-bulb thermometer 15 and a dry-bulb thermometer 13, calculates amount of moisture Xwa in the mixed gas by using the humidity calculation expression of dry and wet bulbs, on the basis of the dry-bulb temperature and wet-bulb temperature, and calculates amount of moisture Xwb of the fresh air, Xwc of extraction gas to be measured, and an amount of moisture Xw of gas to be measured flowing through an exhaust duct. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は産業廃棄物の焼却炉等から排出される塩素ガス等を含む100℃以上の高温腐食性排ガス中の水分量を連続的に測定し求める高温ガスの水分量測定方法および高温ガスの水分量測定装置に関する。   The present invention relates to a method for measuring the moisture content of a high-temperature gas, which is obtained by continuously measuring the moisture content in a high-temperature corrosive exhaust gas at 100 ° C. or higher, including chlorine gas discharged from an incinerator for industrial waste, etc. The present invention relates to a quantity measuring device.

一般に、産業廃棄物の焼却炉等からは塩素ガス等を含む100℃以上の高温腐食性の排ガスが排出される。   In general, an industrial waste incinerator or the like discharges high temperature corrosive exhaust gas containing chlorine gas or the like at 100 ° C. or higher.

このような高温腐食性排ガスでは、これに含まれる水分量が多いと、その水分と塩素が結合してなる塩酸の生成量を増加させるので、この高温腐食性排ガスを通す配管、この配管に装着された流量制御弁等の各種弁や温度計等各種測定器等が塩酸により腐食され易くなり、寿命が短かくなり易い。   In such high-temperature corrosive exhaust gas, if the amount of water contained in the exhaust gas increases, the amount of hydrochloric acid produced by combining the water and chlorine increases. Various valves such as flow rate control valves and various measuring instruments such as thermometers are easily corroded by hydrochloric acid, and the life is likely to be shortened.

また、この種の産業廃棄物等の焼却装置では、高温腐食性排ガス中のダイオキシン類の原料となる塩素を中和するために排ガス中に消石灰を投入しているが、この排ガス中の水分量が多い場合には、その水分により消石灰が排気ダクト内等で凝固し易くなるので、排気ダクト等の目詰まりが発生し易くなるという課題も発生する。   In this type of incinerator for industrial waste, slaked lime is introduced into the exhaust gas to neutralize chlorine, which is the raw material of dioxins in the high temperature corrosive exhaust gas. When there is a large amount of slaked lime, the slaked lime is easily solidified in the exhaust duct or the like due to the moisture, which causes a problem that the exhaust duct or the like is easily clogged.

そこで、従来より高温腐食性排ガスの湿度(水分量)を湿度計により適宜検出し、焼却炉の特性として水分発生量を把握している。この高温腐食性排ガスの湿度測定は産業廃棄物の焼却装置において事実上実施されている作業であって、文献に記載されているものではない。したがって、この排ガスの湿度測定は文献に記載されていない。   Therefore, conventionally, the humidity (water content) of the hot corrosive exhaust gas is appropriately detected by a hygrometer, and the moisture generation amount is grasped as a characteristic of the incinerator. The humidity measurement of the high temperature corrosive exhaust gas is an operation that is practically performed in an industrial waste incinerator and is not described in the literature. Therefore, the humidity measurement of this exhaust gas is not described in the literature.

しかしながら、現在、温度計については、耐高温,耐腐食性の高いものがあるが、湿度計については高温に耐えるものが少なく、腐食性ガスに対し長時間耐性を具備したものは殆ど無い。   At present, however, some thermometers are resistant to high temperatures and corrosion, but few hygrometers are resistant to high temperatures, and few have long-term resistance to corrosive gases.

このために、従来では高温腐食性ガスの湿度(水分)を湿度計により短時間しか測定できず、連続的に測定することができなかった。   For this reason, conventionally, the humidity (moisture) of the hot corrosive gas can be measured only for a short time with a hygrometer and cannot be continuously measured.

本発明はこのような事情を考慮してなされたもので、その目的は、高温腐食性ガス中の水分量を連続的に測定することができる高温ガスの水分量測定方法および高温ガスの水分量測定装置を提供することにある。   The present invention has been made in view of such circumstances, and its purpose is to provide a method for measuring the amount of water in a high temperature gas capable of continuously measuring the amount of water in the high temperature corrosive gas and the amount of water in the high temperature gas. It is to provide a measuring device.

本願請求項1に係る発明は、高温腐食性の被測定ガスの流路から所要量の被測定ガスを抽出路に抽出するステップと、この抽出路に外気を導入して上記抽出被測定ガスに混合させ、この混合ガスの温度が所要の水分測定可能温度以下に降温するように上記被測定ガスの抽出流量と外気の導入流量の少なくとも一方を制御するステップと、上記抽出被測定ガスの抽出流量と外気導入流量とをそれぞれ測定するステップと、上記混合ガスの温度を湿球温度計と乾球温度計とによりそれぞれ測定し、これら乾球温度と湿球温度とに基づいて乾湿球の湿度計算式を用いて上記混合ガス中の水分量Xwaを算出するステップと、上記抽出路に導入された外気中の水分量Xwbをその導入外気温度と湿度から算出するステップと、上記導入外気の水分量Xwbと上記混合ガスの水分量Xwaとの差から上記抽出被測定ガス中の水分量Xwcを算出するステップと、この抽出被測定ガス中の水分量Xwcを上記被測定ガス流路を流れる被測定ガスの流量換算によりこの流路を流れる被測定ガス中の水分量Xwを算出するステップと、を具備していることを特徴とする高温ガスの水分量測定方法である。   In the invention according to claim 1 of the present application, a step of extracting a required amount of gas to be measured from the flow path of the high-temperature corrosive gas to be measured to the extraction path, and introducing the outside air into the extraction path to the extracted gas to be measured Mixing and controlling at least one of the extraction flow rate of the gas to be measured and the introduction flow rate of outside air so that the temperature of the mixed gas falls below a required water measurable temperature, and the extraction flow rate of the extraction gas to be measured And the outside air introduction flow rate respectively, and the temperature of the mixed gas is measured with a wet bulb thermometer and a dry bulb thermometer, respectively, and the humidity calculation of the dry and wet bulb is performed based on the dry bulb temperature and the wet bulb temperature. A step of calculating a moisture amount Xwa in the mixed gas using an equation, a step of calculating a moisture amount Xwb in the outside air introduced into the extraction path from the introduced outside air temperature and humidity, and a moisture amount of the introduced outside air X a step of calculating a moisture amount Xwc in the extracted measured gas from a difference between b and a moisture amount Xwa of the mixed gas, and a measured amount of moisture Xwc in the extracted measured gas flowing through the measured gas channel And a step of calculating a moisture content Xw in the gas to be measured flowing through the flow path by gas flow rate conversion.

本願請求項2に係る発明は、上記混合ガス中の水分量Xwaは、次の演算ステップにより算出されることを特徴とする請求項1記載の高温ガスの水分量測定方法である。
・次のSonntag(ゾンターク)式(1)を用いて、上記混合ガスの飽和水蒸気圧ew(Pa)を求めるステップ。

Figure 2005091226
・次のSprung(スプルング)式(2)を用いて、上記混合ガスの水蒸気圧ea(Pa)を求めるステップ。
Figure 2005091226
・次の式(3)により上記水蒸気圧ea(Pa)から外気と混合ガスとの混合比ra(kg/kg)を求めるステップ。
Figure 2005091226
・次の式(4)により上記混合ガスの流量Rをm/hからl/minに換算した値に上記混合比raを乗算して、混合ガス中の水分量Xwa(l/min)を求めるステップ。
Figure 2005091226
The invention according to claim 2 of the present application is the method of measuring the moisture content of the high temperature gas according to claim 1, wherein the moisture content Xwa in the mixed gas is calculated by the following calculation step.
The step of obtaining the saturated water vapor pressure ew (Pa) of the mixed gas using the following Sonntag equation (1).
Figure 2005091226
A step of obtaining the water vapor pressure ea (Pa) of the mixed gas using the following Sprung equation (2).
Figure 2005091226
A step of obtaining a mixing ratio ra (kg / kg) between the outside air and the mixed gas from the water vapor pressure ea (Pa) by the following equation (3).
Figure 2005091226
The amount of water Xwa (l / min) in the mixed gas is obtained by multiplying the value obtained by converting the flow rate R 2 of the mixed gas from m 3 / h to 1 / min by the following mixing ratio ra according to the following equation (4). Step to ask for.
Figure 2005091226

本願請求項3に係る発明は、上記導入外気中の水分量Xwbは、次の演算ステップにより算出されることを特徴とする請求項1または2記載の高温ガスの水分量測定方法である。
・上記Sonntag式(1)を用いて、導入外気の飽和水蒸気圧ew(Pa)を求めるステップ。
・上記導入外気のew(Pa)と外気の湿度Hとの相対湿度データから導入外気の水蒸気圧eb(Pa)を次の式(5)により求めるステップ。

Figure 2005091226
・上記水蒸気圧eb(Pa)から大気と混合ガスとの混合比rb(kg/kg)を次の式(6)により求めるステップ。
Figure 2005091226
・上記導入外気の流量Rをm/hからl/minに換算した値に、次の式(7)に示すように上記混合比rbを乗算して、導入外気の水分量Xwb(l/min)を求めるステップ。
Figure 2005091226
The invention according to claim 3 of the present application is the method of measuring the moisture content of the high-temperature gas according to claim 1 or 2, wherein the moisture content Xwb in the introduced outside air is calculated by the following calculation step.
A step of obtaining the saturated water vapor pressure ew (Pa) of the introduced outside air using the Sonntag equation (1).
The step of obtaining the water vapor pressure eb (Pa) of the introduced outside air from the relative humidity data of the introduced outside air ew (Pa) and the outside air humidity H 1 by the following equation (5).
Figure 2005091226
A step of obtaining a mixing ratio rb (kg / kg) between the atmosphere and the mixed gas from the water vapor pressure eb (Pa) by the following equation (6).
Figure 2005091226
The value obtained by converting the flow rate R 1 of the introduced outside air from m 3 / h to l / min is multiplied by the mixing ratio rb as shown in the following equation (7) to obtain the moisture content Xwb (l / Min).
Figure 2005091226

本願請求項4に係る発明は、上記抽出被測定ガス中の水分量Xwcは、次の演算ステップにより算出されることを特徴とする請求項1〜3のいずれか1項に記載の高温ガスの水分量測定方法である。
・上記混合ガス中の水分量Xwaと上記導入外気中の水分量Xwbとの差を求める下記式(8)により上記抽出被測定ガス中の水分量Xwc(l/min)を求めるステップ。

Figure 2005091226
・この抽出被測定ガス中の水分量Xwcを上記被測定ガスの流路における流量に換算して被測定ガス中の水分量Xw(%)を下記式(9),(10)により求めるステップ。
Figure 2005091226
The invention according to claim 4 of the present application is characterized in that the moisture amount Xwc in the extracted measurement gas is calculated by the following calculation step. It is a moisture content measuring method.
The step of obtaining the moisture amount Xwc (l / min) in the extracted measurement gas by the following equation (8) for obtaining the difference between the moisture amount Xwa in the mixed gas and the moisture amount Xwb in the introduced outside air.
Figure 2005091226
The step of obtaining the moisture content Xw (%) in the measured gas by the following equations (9) and (10) by converting the moisture content Xwc in the extracted measured gas into the flow rate in the flow path of the measured gas.
Figure 2005091226

本願請求項5に係る発明は、高温腐食性の被測定ガスの流路から所要量の被測定ガスを抽出する抽出路と、この被測定ガスの抽出流量を制御する抽出流量制御弁と、この抽出路の途中に接続され外気を導入して上記抽出被測定ガスに混合させる外気導入路と、この外気導入流量を制御する外気導入流量制御弁と、上記混合ガスの温度が所定の水分測定可能温度以下に降温するように上記抽出流量制御弁と外気導入流量制御弁の開度をそれぞれ制御する制御手段と、上記抽出被測定ガスの抽出流量と外気導入流量とをそれぞれ測定する流量計と、上記混合ガスの温度を湿球温度計と乾球温度計とによりそれぞれ測定し、これら乾球温度と湿球温度とに基づいて乾湿球の湿度計算式を用いて上記混合ガス中の水分量Xwaを算出する演算手段と、上記抽出路に導入した外気中の水分量Xwbをその導入外気の温度と湿度とから算出する演算手段と、上記導入外気の水分量Xwbと上記混合ガスの水分量Xwaとの差から上記抽出被測定ガス中の水分量Xwcを算出する演算手段と、この抽出被測定ガス中の水分量Xwcを上記被測定ガス流路を流れる被測定ガスの流量換算によりこの流路を流れる被測定ガス中の水分量Xwを算出する演算手段と、を具備していることを特徴とする高温ガスの水分量測定装置である。   The invention according to claim 5 of the present application includes an extraction path for extracting a required amount of gas to be measured from the flow path of the high-temperature corrosive gas to be measured, an extraction flow rate control valve for controlling the extraction flow rate of the gas to be measured, Connected in the middle of the extraction path to introduce the outside air and mix it with the extracted gas to be extracted, the outside air introduction flow rate control valve for controlling the outside air introduction flow rate, and the temperature of the mixed gas allows a predetermined moisture measurement Control means for controlling the degree of opening of the extraction flow rate control valve and the outside air introduction flow rate control valve so that the temperature falls below the temperature, a flow meter for measuring the extraction flow rate of the extraction gas to be measured and the outside air introduction flow rate, respectively; The temperature of the mixed gas is measured with a wet bulb thermometer and a dry bulb thermometer, respectively, and based on the dry bulb temperature and wet bulb temperature, a moisture calculation formula of the dry and wet bulb is used to determine the amount of water Xwa in the mixed gas. Computing means for calculating The calculation means for calculating the moisture amount Xwb in the outside air introduced into the extraction path from the temperature and humidity of the introduced outside air, and the extraction target from the difference between the moisture amount Xwb of the introduced outside air and the moisture amount Xwa of the mixed gas. Calculation means for calculating the amount of moisture Xwc in the measurement gas, and the amount of moisture Xwc in the extracted measurement gas in the measurement gas flowing through this flow path by converting the flow rate of the measurement gas flowing through the measurement gas flow path. An apparatus for measuring the moisture content of a high-temperature gas, comprising: an arithmetic means for calculating a moisture content Xw.

本発明によれば、高温腐食性排ガス中の水分量を連続的に測定し求めることができる。   According to the present invention, the amount of water in the hot corrosive exhaust gas can be continuously measured and determined.

以下、本発明の最良の実施形態を図1に基づいて説明する。   Hereinafter, the best embodiment of the present invention will be described with reference to FIG.

図1は高温ガス水分量測定装置1の系統構成図である。この図1に示すように高温ガス水分量測定装置1は、図示しない焼却炉から排出される塩素ガスを含む100℃以上の高温腐食性の被測定排ガスである排ガスを通す排気ダクト2の途中に、排ガス抽出管3を接続し、この排ガス抽出管3には吸引ブロア4を設け、この吸引ブロア4の吸引力により排気ダクト2を流れる排ガスの一部を排ガス抽出管3内へ吸引して抽出し、所要の排気処理後、外気へ放出するようになっている。   FIG. 1 is a system configuration diagram of the hot gas moisture content measuring apparatus 1. As shown in FIG. 1, a high-temperature gas moisture content measuring apparatus 1 is provided in the middle of an exhaust duct 2 through which exhaust gas which is high-temperature corrosive exhaust gas to be measured at 100 ° C. or higher containing chlorine gas discharged from an incinerator (not shown). The exhaust gas extraction pipe 3 is connected, and the exhaust gas extraction pipe 3 is provided with a suction blower 4, and a part of the exhaust gas flowing through the exhaust duct 2 is sucked into the exhaust gas extraction pipe 3 by the suction force of the suction blower 4 and extracted. And after the required exhaust treatment, it is discharged to the outside air.

排ガス抽出管3は、その途中にて外気導入管5の一端を接続している。外気導入管5は、その他端の外端を外気導入口5aとして開口させる一方、その途中には、外気導入流量を測定する外気導入流量計6、導入外気温度を検出する導入外気用温度計7、導入外気の湿度を検出する導入外気用湿度計8、外気導入量を制御する電動弁よりなる外気導入流量制御弁9をそれぞれ設けている。   The exhaust gas extraction pipe 3 is connected to one end of the outside air introduction pipe 5 in the middle thereof. The outside air introduction pipe 5 is opened at the other end as the outside air introduction port 5a, and in the middle, the outside air introduction flow meter 6 for measuring the outside air introduction flow rate, and the introduction outside air thermometer 7 for detecting the introduction outside air temperature. In addition, a hygrometer for introducing outside air 8 for detecting the humidity of the introduced outside air and an outside air introduction flow rate control valve 9 including an electric valve for controlling the amount of outside air introduced are provided.

この排ガス抽出管3は、外気導入管5との接続部10の上流側に、排気ダクト2から排ガス抽出管3へ抽出した排気ガスの一部である抽出排ガスの温度を検出する高温用温度計11、この抽出排ガスの抽出流量を制御する電動弁よりなる抽出流量制御弁12をそれぞれ配設している。   The exhaust gas extraction pipe 3 is a high-temperature thermometer that detects the temperature of the extracted exhaust gas that is part of the exhaust gas extracted from the exhaust duct 2 to the exhaust gas extraction pipe 3 on the upstream side of the connection portion 10 with the outside air introduction pipe 5. 11. An extraction flow rate control valve 12 comprising an electric valve that controls the extraction flow rate of the extracted exhaust gas is provided.

また、排ガス抽出管3は、外気導入管接続部10と吸引ブロア4との間において、抽出排ガスと外気との混合ガスの温度をそれぞれ検出する乾球温度計13および湿球温度計14、混合ガスの流量を検出する混合ガス流量計15をそれぞれ配設している。   Further, the exhaust gas extraction pipe 3 includes a dry bulb thermometer 13 and a wet bulb thermometer 14 for detecting the temperature of the mixed gas of the extracted exhaust gas and the outside air between the outside air introduction pipe connecting portion 10 and the suction blower 4. A mixed gas flow meter 15 for detecting the gas flow rate is provided.

そして、これら外気導入流量計6、外気用温度計7、外気用湿度計8、高温用温度計11、乾球温度計13、湿球温度計14および混合ガス流量計15の各検出信号出力端子を、マイクロプロセッサー等からなる制御演算器16の検出信号入力端に、図中一点鎖線で示す信号線を介して電気的に接続し、これら流量計6,15や温度計7,11,13,14、湿度計8によりそれぞれ検出された検出値を示す検出値信号を制御演算器16に与えるようになっている。   The detection signal output terminals of the outside air introduction flow meter 6, the outside air thermometer 7, the outside air hygrometer 8, the high temperature thermometer 11, the dry bulb thermometer 13, the wet bulb thermometer 14, and the mixed gas flow meter 15. Is electrically connected to the detection signal input terminal of the control arithmetic unit 16 composed of a microprocessor or the like via a signal line indicated by a one-dot chain line in the figure, and the flow meters 6, 15 and the thermometers 7, 11, 13, 14, a detection value signal indicating a detection value detected by the hygrometer 8 is supplied to the control calculator 16.

さらに、制御演算器16は図示しない操作盤における吸引ブロア4のオン/オフ操作に応じて吸引ブロア4の運転をオン/オフ制御する機能を有する。   Further, the control arithmetic unit 16 has a function of performing on / off control of the operation of the suction blower 4 in accordance with an on / off operation of the suction blower 4 on an operation panel (not shown).

また、制御演算器16は、電動弁よりなる外気導入流量制御弁9および抽出流量制御弁12に、図中一点鎖線で示す信号線を介して電気的に接続され、これら流量制御弁9,12の弁開度検出信号を受信してその弁開度を検出する一方、これら流量制御弁9,12を遠隔運転してその弁開度を制御するように構成されている。   Further, the control arithmetic unit 16 is electrically connected to an outside air introduction flow rate control valve 9 and an extraction flow rate control valve 12 which are motor-operated valves via a signal line indicated by a one-dot chain line in the figure, and these flow rate control valves 9, 12. The valve opening degree detection signal is received and the valve opening degree is detected, while the flow rate control valves 9 and 12 are remotely operated to control the valve opening degree.

すなわち、制御演算器16は、乾球温度計13により検出された抽出排ガスと外気との混合ガスの温度が水分測定可能温度の100℃以下の所定温度、例えば50℃〜60℃になるように、抽出流量制御弁12と外気導入流量制御弁9を遠隔操作してこれらの弁開度を制御する流量制御弁制御手段を有する。   That is, the control arithmetic unit 16 adjusts the temperature of the mixed gas of the extracted exhaust gas and the outside air detected by the dry bulb thermometer 13 to a predetermined temperature that is 100 ° C. or less of the water measurable temperature, for example, 50 ° C. to 60 ° C. The extraction flow control valve 12 and the outside air introduction flow control valve 9 are remotely operated to have flow control valve control means for controlling the valve opening degree.

そして、制御演算器16は、混合ガス中の水分量Xwa、導入外気中の水分量Xwb、抽出排ガス中の水分量Xwcおよび排気ダクト2内を流れる排ガス中の水分量Xwをそれぞれ算出する演算手段を有する。   Then, the control calculator 16 calculates the moisture amount Xwa in the mixed gas, the moisture amount Xwb in the introduced outside air, the moisture amount Xwc in the extracted exhaust gas, and the moisture amount Xw in the exhaust gas flowing in the exhaust duct 2 respectively. Have

すなわち、混合ガス中の水分量演算手段は、湿球温度計14と乾球温度計13からの温度検出信号とを受けて、抽出排ガスと導入外気との混合ガス中の水分量Xwaを、次の演算ステップの実行により算出する。   That is, the moisture amount calculation means in the mixed gas receives the temperature detection signals from the wet bulb thermometer 14 and the dry bulb thermometer 13 and then calculates the moisture amount Xwa in the mixed gas of the extracted exhaust gas and the introduced outside air. It is calculated by executing the calculation step.

・次のSonntag(ゾンターク)式(1)を用いて、上記混合ガスの飽和水蒸気圧ew(Pa)を求めるステップ。

Figure 2005091226
The step of obtaining the saturated water vapor pressure ew (Pa) of the mixed gas using the following Sonntag equation (1).
Figure 2005091226

・次のSprung(スプルング)式(2)を用いて、上記混合ガスの水蒸気圧ea(Pa)を求めるステップ。

Figure 2005091226
A step of obtaining the water vapor pressure ea (Pa) of the mixed gas using the following Sprung equation (2).
Figure 2005091226

・次の式(3)により上記水蒸気圧ea(Pa)から外気と混合ガスとの混合比ra(kg/kg)を求めるステップ。

Figure 2005091226
A step of obtaining a mixing ratio ra (kg / kg) between the outside air and the mixed gas from the water vapor pressure ea (Pa) by the following equation (3).
Figure 2005091226

・次の式(4)により上記混合ガスの流量Rをm/hからl/minに換算した値に上記混合比raを乗算して、混合ガス中の水分量Xwa(l/min)を求めるステップ。

Figure 2005091226
The amount of water Xwa (l / min) in the mixed gas is obtained by multiplying the value obtained by converting the flow rate R 2 of the mixed gas from m 3 / h to 1 / min by the following mixing ratio ra according to the following equation (4). Step to ask for.
Figure 2005091226

また、制御演算器16は、導入外気中の水分量Xwbを、次の演算ステップの実行により算出する。   Further, the control calculator 16 calculates the moisture amount Xwb in the introduced outside air by executing the next calculation step.

・上記Sonntag式(1)を用いて、導入外気の飽和水蒸気圧ew(Pa)を求めるステップ。
・上記導入外気のew(Pa)と外気の湿度Hとの相対湿度データから導入外気の水蒸気圧eb(Pa)を次の式(5)により求めるステップ。

Figure 2005091226
A step of obtaining the saturated water vapor pressure ew (Pa) of the introduced outside air using the Sonntag equation (1).
The step of obtaining the water vapor pressure eb (Pa) of the introduced outside air from the relative humidity data of the introduced outside air ew (Pa) and the outside air humidity H 1 by the following equation (5).
Figure 2005091226

・上記水蒸気圧eb(Pa)から大気と混合ガスとの混合比rb(kg/kg)を次の式(6)により求めるステップ。

Figure 2005091226
A step of obtaining a mixing ratio rb (kg / kg) between the atmosphere and the mixed gas from the water vapor pressure eb (Pa) by the following equation (6).
Figure 2005091226

・上記導入外気の流量Rをm/hからl/minに換算した値に、次の式(7)に示すように上記混合比rbを乗算して、導入外気の水分量Xwb(l/min)を求めるステップ。

Figure 2005091226
The value obtained by converting the flow rate R 1 of the introduced outside air from m 3 / h to l / min is multiplied by the mixing ratio rb as shown in the following equation (7) to obtain the moisture content Xwb (l / Min).
Figure 2005091226

さらに、制御演算器16は、導入外気中の水分量Xwcを、次の演算ステップの実行により算出する。   Further, the control calculator 16 calculates the moisture amount Xwc in the introduced outside air by executing the next calculation step.

・上記混合ガス中の水分量Xwaと上記導入外気中の水分量Xwbとの差を求める下記式(8)により上記抽出排ガス中の水分量Xwc(l/min)を求めるステップ。

Figure 2005091226
The step of obtaining the moisture amount Xwc (l / min) in the extracted exhaust gas by the following equation (8) for obtaining the difference between the moisture amount Xwa in the mixed gas and the moisture amount Xwb in the introduced outside air.
Figure 2005091226

・この抽出排ガス中の水分量Xwcを上記排ガスの流路における流量に換算して排ガス中の水分量Xw(%)を下記式(9),(10)により求めるステップ。

Figure 2005091226
The step of obtaining the moisture content Xw (%) in the exhaust gas by the following formulas (9) and (10) by converting the moisture content Xwc in the extracted exhaust gas into the flow rate in the exhaust gas flow path.
Figure 2005091226

次に、このように構成された高温ガス水分量測定装置1の作用を説明する。   Next, the operation of the high temperature gas moisture content measuring apparatus 1 configured as described above will be described.

まず、図示しない焼却炉の運転中に、操作盤にて吸引ブロア4の運転オン操作をすると、吸引ブロア4が運転され、排気抽出管3内が排気されて負圧になるので、排気ダクト2内を流れている高温腐食性排ガスの一部が抽出排ガスとして排気抽出管3内へ吸引されて抽出される。このとき、外気の一部が外気導入口5aから外気導入管5を介して排ガス抽出管3内へ吸引される。   First, when the suction blower 4 is turned on with the operation panel during the operation of the incinerator (not shown), the suction blower 4 is operated and the exhaust extraction pipe 3 is exhausted to become negative pressure. A part of the high temperature corrosive exhaust gas flowing inside is sucked into the exhaust extraction pipe 3 and extracted as an extracted exhaust gas. At this time, part of the outside air is sucked into the exhaust gas extraction pipe 3 through the outside air introduction pipe 5 from the outside air introduction port 5a.

このために、排ガス抽出管3内で抽出排ガスに導入外気が混合され、混合ガスとして例えば図示しない排ガス処理系により冷却ないし除塵等所要の浄化処理を経てから再び外気へ放出される。   For this purpose, the introduced outside air is mixed with the extracted exhaust gas in the exhaust gas extraction pipe 3, and after being subjected to a required purification process such as cooling or dust removal by an exhaust gas treatment system (not shown) as a mixed gas, it is discharged again to the outside air.

ところで、この混合ガスの温度は乾球温度計13と湿球温度計14とにより検出され、その検出温度信号は図中一点鎖線で示す信号線を介して制御演算器16に与えられる。   By the way, the temperature of the mixed gas is detected by the dry bulb thermometer 13 and the wet bulb thermometer 14, and the detected temperature signal is given to the control arithmetic unit 16 via a signal line indicated by a one-dot chain line in the figure.

そこで、制御演算器16はこの乾球温度計13の温度検出値が湿球温度計14により、混合ガス中の湿度、つまり水分量を測定できる、例えば100℃以下の水分測定可能温度、例えば50℃〜60℃になるように抽出排ガス流量制御弁12と外気導入流量制御弁9の遠隔運転により、これらの弁開度をそれぞれ制御する。   Therefore, the control computing unit 16 can measure the humidity in the mixed gas, that is, the amount of moisture by using the wet bulb thermometer 14 as the temperature detection value of the dry bulb thermometer 13, for example, a water measurable temperature of 100 ° C. or less, for example 50 These valve openings are controlled by remote operation of the extracted exhaust gas flow rate control valve 12 and the outside air introduction flow rate control valve 9 so as to be in the range of 60 ° C to 60 ° C.

このとき、高温用温度計11、導入外気温度計7、乾球温度計13および湿球温度計14によりそれぞれ検出された各温度検出値信号が図中一点鎖線で示す信号線を介して制御演算器16へ与えられる。   At this time, each temperature detection value signal detected by the high temperature thermometer 11, the introduced outside air thermometer 7, the dry bulb thermometer 13 and the wet bulb thermometer 14 is controlled through a signal line indicated by a one-dot chain line in the figure. Is provided to the container 16.

また、制御演算器16には、導入外気用湿度計8の湿度検出値信号、外気導入流量計6および混合ガス流量計15によりそれぞれ検出された外気導入流量検出値信号および混合ガス流量検出信号が図中一点鎖線で示す信号線を介して入力される。   In addition, the control computing unit 16 includes a humidity detection value signal of the introduced outside air hygrometer 8, an outside air introduction flow rate detection value signal and a mixed gas flow rate detection signal detected by the outside air introduction flow meter 6 and the mixed gas flow meter 15, respectively. It is input via a signal line indicated by a one-dot chain line in the figure.

そこで、制御演算器16は上述した各演算手段により抽出排ガス、導入外気およびこれらの混合ガスにそれぞれ含まれている水分量Xwa,Xwb,Xwcをそれぞれ算出し、さらに、これら水分量Xwa,Xwb,Xwcに基づいて排気ダクト2内を流れている高温腐食性排ガス中に含まれている水分量Xwを算出する。   Therefore, the control calculator 16 calculates the moisture amounts Xwa, Xwb, and Xwc respectively contained in the extracted exhaust gas, the introduced outside air, and the mixed gas thereof by the above-described calculating means, and further, the moisture amounts Xwa, Xwb, Based on Xwc, the amount of water Xw contained in the hot corrosive exhaust gas flowing in the exhaust duct 2 is calculated.

したがって、この高温ガスの水分量測定装置1によれば、抽出排気管3へ抽出した高温腐食性排ガスの一部(抽出排ガス)に、外気を混合させるので、この抽出排ガス中の水分を外気により希釈しつつ降温させることができる。このために、抽出排ガス中の水分を結露させずに乾球温度計13と湿球温度計14とによる水分測定が可能な温度(例えば100℃以下の所定温度)まで降温させることができるので、その水分量を連続的に測定することができる。   Therefore, according to the moisture content measuring apparatus 1 of this high-temperature gas, the outside air is mixed with a part of the high-temperature corrosive exhaust gas extracted into the extraction exhaust pipe 3 (extracted exhaust gas). The temperature can be lowered while diluting. For this reason, it is possible to lower the temperature to a temperature at which moisture measurement by the dry bulb thermometer 13 and the wet bulb thermometer 14 is possible (for example, a predetermined temperature of 100 ° C. or less) without causing condensation in the extracted exhaust gas. The water content can be measured continuously.

また、高温腐食性排ガスが流れる排気ダクト2内に湿度計を直接配設してこの高温腐食性排ガス中の水分量(湿度)を直接測定するのではなく、この高温腐食性排ガスの一部を排ガス抽出管3へ抽出し、外気により希釈してから乾球温度計13と湿球温度計14との両温度検出値等に基づいて高温腐食性排ガス全体の水分量を演算により求めるので、この乾球温度計13や湿球温度計14として耐食性や耐熱性の高い高価なものを使用する必要がないので、コスト低減を図ることができるうえに、これら乾,湿球温度計14,13の寿命を延ばすことができる。   Also, instead of directly measuring the moisture content (humidity) in the high temperature corrosive exhaust gas in the exhaust duct 2 through which the high temperature corrosive exhaust gas flows, a part of the high temperature corrosive exhaust gas is measured. Since it is extracted into the exhaust gas extraction pipe 3 and diluted with outside air, the moisture content of the entire hot corrosive exhaust gas is obtained by calculation based on both the temperature detection values of the dry bulb thermometer 13 and the wet bulb thermometer 14. The dry bulb thermometer 13 and the wet bulb thermometer 14 do not need to be expensive and have high corrosion resistance and heat resistance, so that the cost can be reduced and the dry and wet bulb thermometers 14 and 13 Life can be extended.

図2は上記高温ガスの水分量測定装置1が適用される燃焼装置20の一例を示す系統構成である。この燃焼装置20は例えば廃棄物等を焼却する焼却炉21の排ガス出口から塩素ガスを含む100℃以上の高温腐食性排ガスが排出され、この排ガス出口には排気ダクト22により煙突23を接続している。   FIG. 2 is a system configuration showing an example of a combustion apparatus 20 to which the high-temperature gas moisture content measuring apparatus 1 is applied. In this combustion apparatus 20, for example, a high-temperature corrosive exhaust gas containing chlorine gas at 100 ° C. or higher is discharged from an exhaust gas outlet of an incinerator 21 that incinerates waste, and a chimney 23 is connected to the exhaust gas outlet by an exhaust duct 22. Yes.

この排気ダクト22は、その途中に、焼却炉21側からその下流側に向けて温水冷却塔24、空冷塔25、消石灰投入機26、バグフィルタ等を備えた除塵装置27、吸引ファン28をこの順に順次介装している。   In the middle of the exhaust duct 22, a dust removing device 27 including a hot water cooling tower 24, an air cooling tower 25, a slaked lime feeder 26, a bag filter, and a suction fan 28 are provided from the incinerator 21 side toward the downstream side. They are inserted sequentially.

したがって、焼却炉21から排気ダクト22に排出された高温腐食性排ガスは吸引ファン28により吸引されて排気ダクト22により案内され、温水冷却塔24および空冷塔25内を通って順次冷却されてから除塵装置27にて消石灰が投入され、排ガス中のダイオキシン類の原料となる塩素ガスが中和されてからバグフィルタ等の除塵エレメントにより除塵され、煙突23から外気へ放出される。   Therefore, the high temperature corrosive exhaust gas discharged from the incinerator 21 to the exhaust duct 22 is sucked by the suction fan 28 and guided by the exhaust duct 22 and is sequentially cooled through the hot water cooling tower 24 and the air cooling tower 25 before dust removal. Slaked lime is introduced by the device 27, and chlorine gas which is a raw material of dioxins in the exhaust gas is neutralized, and then dust is removed by a dust removing element such as a bag filter and discharged from the chimney 23 to the outside air.

そして、この除塵装置27と吸引ファン28とを接続する排気ダクト22の一部の途中には、上記高温ガス水分量測定装置1の排ガス抽出管3を接続することにより、この高温ガス水分量測定装置1を使用することができる。   The exhaust gas extraction pipe 3 of the hot gas moisture content measuring device 1 is connected to a part of the exhaust duct 22 connecting the dust removing device 27 and the suction fan 28 to measure the hot gas moisture content. The device 1 can be used.

これにより、この燃焼装置20によっても焼却炉21から排出される高温腐食性排ガス中の水分量を高温ガス水分量測定装置1により低コストかつ高精度で連続的に測定することができる。   Thereby, the moisture content in the high temperature corrosive exhaust gas discharged from the incinerator 21 can be continuously measured by the high temperature gas moisture content measuring device 1 at low cost and with high accuracy.

また、この高温腐食性排ガス中の水分量を連続測定することにより、その水分量が所定値以上に増加しないように燃焼装置20を運転することにより、この排ガス中に投入される消石灰が排ガス中の水分により凝固して排気ダクト22内に目詰りが発生するのを防止することができる。   Further, by continuously measuring the amount of water in the high temperature corrosive exhaust gas, by operating the combustion device 20 so that the amount of water does not increase beyond a predetermined value, slaked lime introduced into the exhaust gas is contained in the exhaust gas. It is possible to prevent clogging from occurring in the exhaust duct 22 due to solidification by the moisture.

また、排ガス中の水分量を抑制することにより、排ガス中の塩素ガスと水分との結合により生成する塩酸の生成量を抑制することができるので、燃焼装置20の排気ダクト22等の配管類や弁類、温水冷却塔24、空冷塔25、除塵装置27、煙突23等の腐食を低減し、これら機器類の寿命を延ばすことができる。   Moreover, since the amount of hydrochloric acid produced by the combination of chlorine gas and moisture in the exhaust gas can be suppressed by suppressing the amount of moisture in the exhaust gas, piping such as the exhaust duct 22 of the combustion device 20 Corrosion of the valves, the hot water cooling tower 24, the air cooling tower 25, the dust removing device 27, the chimney 23, etc. can be reduced, and the life of these devices can be extended.

なお、上記図1で示す高温ガス水分量測定装置1では、外気導入流量計6、混合ガス流量計15、外気導入用湿度計8等の各種測定器および各種流量制御弁9,12と、制御演算器16とを信号線により接続しているが、これらを無線で接続するように構成してもよい。   In the high-temperature gas moisture content measuring apparatus 1 shown in FIG. 1, various measuring devices such as an outside air introduction flow meter 6, a mixed gas flow meter 15, an outside air introduction hygrometer 8, and various flow rate control valves 9 and 12 are controlled. Although the arithmetic unit 16 is connected with the signal line, these may be configured to be connected wirelessly.

また、制御演算器16にそれぞれ入力される上記各種測定器6〜8,11,13,147からの各種検出信号や各種流量制御弁9,12、吸引ブロア4からの各種信号を、制御演算器16の上記各種演算結果と共に、図示しない送信装置により監視センターの管理サーバー等のコンピュータに送信させることにより、複数の燃焼装置20,20…を監視センターにより一元的に集中管理するように構成してもよい。   In addition, various detection signals from the various measuring devices 6 to 8, 11, 13, 147 and various signals from the various flow control valves 9, 12 and the suction blower 4 respectively input to the control arithmetic unit 16 are supplied to the control arithmetic unit. Along with the above 16 calculation results, a transmission device (not shown) is transmitted to a computer such as a management server of the monitoring center so that a plurality of combustion devices 20, 20. Also good.

これによれば、監視センターのコンピュータにより複数の燃焼装置20の運転を遠隔監視することができる。   According to this, the operation of the plurality of combustion devices 20 can be remotely monitored by the computer of the monitoring center.

本発明の一実施形態に係る高温ガスの水分量測定装置の系統構成図。The line | wire system block diagram of the moisture content measuring apparatus of the hot gas which concerns on one Embodiment of this invention. 図1で示す高温ガスの水分量測定装置が適用される燃焼装置の一例の系統構成図。The line | wire system block diagram of an example of the combustion apparatus with which the moisture content measuring apparatus of the hot gas shown in FIG. 1 is applied.

符号の説明Explanation of symbols

1 高温ガス水分量測定装置
2 排気ダクト
3 排ガス抽出管
4 吸引ブロア
5 外気導入管
6 外気導入流量計
7 外気導入温度計
8 外気導入湿度計
9 外気導入流量制御弁
11 高温用温度計
12 抽出流量制御弁
13 乾球温度計
14 湿球温度計
15 混合ガス流量制御弁
16 制御演算器
20 燃焼装置
21 焼却炉
22 排気ダクト
24 温水冷却塔
25 空冷塔
26 消石灰投入機
27 除塵装置
28 吸引ファン
DESCRIPTION OF SYMBOLS 1 High temperature gas moisture content measuring apparatus 2 Exhaust duct 3 Exhaust gas extraction pipe 4 Suction blower 5 Outside air introduction pipe 6 Outside air introduction flow meter 7 Outside air introduction thermometer 8 Outside air introduction hygrometer 9 Outside air introduction flow control valve 11 High temperature thermometer 12 Extraction flow rate Control valve 13 Dry bulb thermometer 14 Wet bulb thermometer 15 Mixed gas flow control valve 16 Control calculator 20 Combustion device 21 Incinerator 22 Exhaust duct 24 Hot water cooling tower 25 Air cooling tower 26 Slaked lime charging machine 27 Dust removal device 28 Suction fan

Claims (5)

高温腐食性の被測定ガスの流路から所要量の被測定ガスを抽出路に抽出するステップと、
この抽出路に外気を導入して上記抽出被測定ガスに混合させ、この混合ガスの温度が所要の水分測定可能温度以下に降温するように上記被測定ガスの抽出流量と外気の導入流量の少なくとも一方を制御するステップと、
上記抽出被測定ガスの抽出流量と外気導入流量とをそれぞれ測定するステップと、
上記混合ガスの温度を湿球温度計と乾球温度計とによりそれぞれ測定し、これら乾球温度と湿球温度とに基づいて乾湿球の湿度計算式を用いて上記混合ガス中の水分量Xwaを算出するステップと、
上記抽出路に導入された外気中の水分量Xwbをその導入外気温度と湿度から算出するステップと、
上記導入外気の水分量Xwbと上記混合ガスの水分量Xwaとの差から上記抽出被測定ガス中の水分量Xwcを算出するステップと、
この抽出被測定ガス中の水分量Xwcを上記被測定ガス流路を流れる被測定ガスの流量換算によりこの流路を流れる被測定ガス中の水分量Xwを算出するステップと、
を具備していることを特徴とする高温ガスの水分量測定方法。
Extracting a required amount of measured gas from the flow path of the hot corrosive measured gas into the extraction path;
Outside air is introduced into the extraction path and mixed with the extracted measurement gas, and at least the extraction flow of the measurement gas and the introduction flow of the outside air are reduced so that the temperature of the mixed gas falls below a required water measurable temperature. Controlling one, and
Measuring the extraction flow rate and the outside air introduction flow rate of the extraction measurement gas,
The temperature of the mixed gas is measured with a wet bulb thermometer and a dry bulb thermometer, respectively, and based on the dry bulb temperature and wet bulb temperature, a moisture calculation formula of the dry and wet bulb is used to determine the amount of water Xwa in the mixed gas. Calculating steps,
Calculating the moisture content Xwb in the outside air introduced into the extraction path from the introduced outside air temperature and humidity;
Calculating the moisture content Xwc in the extracted measurement gas from the difference between the moisture content Xwb of the introduced outside air and the moisture content Xwa of the mixed gas;
Calculating the moisture amount Xw in the measurement gas flowing through the flow path by converting the moisture amount Xwc in the extracted measurement gas into a flow rate of the measurement gas flowing through the measurement gas flow path;
A method for measuring the moisture content of a high-temperature gas, comprising:
上記混合ガス中の水分量Xwaは、次の演算ステップにより算出されることを特徴とする請求項1記載の高温ガスの水分量測定方法。
・次のSonntag(ゾンターク)式(1)を用いて、上記混合ガスの飽和水蒸気圧ew(Pa)を求めるステップ。
Figure 2005091226
・次のSprung(スプルング)式(2)を用いて、上記混合ガスの水蒸気圧ea(Pa)を求めるステップ。
Figure 2005091226
・次の式(3)により上記水蒸気圧ea(Pa)から外気と混合ガスとの混合比ra(kg/kg)を求めるステップ。
Figure 2005091226
・次の式(4)により上記混合ガスの流量Rをm/hからl/minに換算した値に上記混合比raを乗算して、混合ガス中の水分量Xwa(l/min)を求めるステップ。
Figure 2005091226
2. The method for measuring the moisture content of a high-temperature gas according to claim 1, wherein the moisture content Xwa in the mixed gas is calculated by the following calculation step.
The step of obtaining the saturated water vapor pressure ew (Pa) of the mixed gas using the following Sonntag equation (1).
Figure 2005091226
A step of obtaining the water vapor pressure ea (Pa) of the mixed gas using the following Sprung equation (2).
Figure 2005091226
A step of obtaining a mixing ratio ra (kg / kg) between the outside air and the mixed gas from the water vapor pressure ea (Pa) by the following equation (3).
Figure 2005091226
The amount of water Xwa (l / min) in the mixed gas is obtained by multiplying the value obtained by converting the flow rate R 2 of the mixed gas from m 3 / h to 1 / min by the following mixing ratio ra according to the following equation (4). Step to ask for.
Figure 2005091226
上記導入外気中の水分量Xwbは、次の演算ステップにより算出されることを特徴とする請求項1または2記載の高温ガスの水分量測定方法。
・上記Sonntag式(1)を用いて、導入外気の飽和水蒸気圧ew(Pa)を求めるステップ。
・上記導入外気のew(Pa)と外気の湿度Hとの相対湿度データから導入外気の水蒸気圧eb(Pa)を次の式(5)により求めるステップ。
Figure 2005091226
・上記水蒸気圧eb(Pa)から大気と混合ガスとの混合比rb(kg/kg)を次の式(6)により求めるステップ。
Figure 2005091226
・上記導入外気の流量Rをm/hからl/minに換算した値に、次の式(7)に示すように上記混合比rbを乗算して、導入外気の水分量Xwb(l/min)を求めるステップ。
Figure 2005091226
The method for measuring the moisture content of a high-temperature gas according to claim 1 or 2, wherein the moisture content Xwb in the introduced outside air is calculated by the following calculation step.
A step of obtaining the saturated water vapor pressure ew (Pa) of the introduced outside air using the Sonntag equation (1).
The step of obtaining the water vapor pressure eb (Pa) of the introduced outside air from the relative humidity data of the introduced outside air ew (Pa) and the outside air humidity H 1 by the following equation (5).
Figure 2005091226
A step of obtaining a mixing ratio rb (kg / kg) between the atmosphere and the mixed gas from the water vapor pressure eb (Pa) by the following equation (6).
Figure 2005091226
The value obtained by converting the flow rate R 1 of the introduced outside air from m 3 / h to l / min is multiplied by the mixing ratio rb as shown in the following equation (7) to obtain the moisture content Xwb (l / Min).
Figure 2005091226
上記抽出被測定ガス中の水分量Xwcは、次の演算ステップにより算出されることを特徴とする請求項1〜3のいずれか1項に記載の高温ガスの水分量測定方法。
・上記混合ガス中の水分量Xwaと上記導入外気中の水分量Xwbとの差を求める下記式(8)により上記抽出被測定ガス中の水分量Xwc(l/min)を求めるステップ。
Figure 2005091226
・この抽出被測定ガス中の水分量Xwcを上記被測定ガスの流路における流量に換算して被測定ガス中の水分量Xw(%)を下記式(9),(10)により求めるステップ。
Figure 2005091226
The method for measuring the moisture content of a high-temperature gas according to any one of claims 1 to 3, wherein the moisture content Xwc in the extracted gas to be measured is calculated by the following calculation step.
The step of obtaining the moisture amount Xwc (l / min) in the extracted measurement gas by the following equation (8) for obtaining the difference between the moisture amount Xwa in the mixed gas and the moisture amount Xwb in the introduced outside air.
Figure 2005091226
The step of obtaining the moisture content Xw (%) in the measured gas by the following equations (9) and (10) by converting the moisture content Xwc in the extracted measured gas into the flow rate in the flow path of the measured gas.
Figure 2005091226
高温腐食性の被測定ガスの流路から所要量の被測定ガスを抽出する抽出路と、
この被測定ガスの抽出流量を制御する抽出流量制御弁と、
この抽出路の途中に接続され外気を導入して上記抽出被測定ガスに混合させる外気導入路と、
この外気導入流量を制御する外気導入流量制御弁と、
上記混合ガスの温度が所定の水分測定可能温度以下に降温するように上記抽出流量制御弁と外気導入流量制御弁の開度をそれぞれ制御する制御手段と、
上記抽出被測定ガスの抽出流量と外気導入流量とをそれぞれ測定する流量計と、
上記混合ガスの温度を湿球温度計と乾球温度計とによりそれぞれ測定し、これら乾球温度と湿球温度とに基づいて乾湿球の湿度計算式を用いて上記混合ガス中の水分量Xwaを算出する演算手段と、
上記抽出路に導入した外気中の水分量Xwbをその導入外気の温度と湿度とから算出する演算手段と、
上記導入外気の水分量Xwbと上記混合ガスの水分量Xwaとの差から上記抽出被測定ガス中の水分量Xwcを算出する演算手段と、
この抽出被測定ガス中の水分量Xwcを上記被測定ガス流路を流れる被測定ガスの流量換算によりこの流路を流れる被測定ガス中の水分量Xwを算出する演算手段と、
を具備していることを特徴とする高温ガスの水分量測定装置。
An extraction path for extracting a required amount of gas to be measured from the flow path of the gas to be measured at high temperature corrosiveness,
An extraction flow rate control valve for controlling the extraction flow rate of the gas to be measured;
An outside air introduction path connected in the middle of this extraction path to introduce the outside air and mix it with the extracted measurement gas; and
An outside air introduction flow rate control valve for controlling the outside air introduction flow rate,
Control means for controlling the degree of opening of the extraction flow rate control valve and the outside air introduction flow rate control valve so that the temperature of the mixed gas falls below a predetermined water measurable temperature;
A flow meter for measuring the extraction flow rate and the outside air introduction flow rate of the extraction measurement gas,
The temperature of the mixed gas is measured with a wet bulb thermometer and a dry bulb thermometer, respectively, and based on the dry bulb temperature and wet bulb temperature, a moisture calculation formula of the dry and wet bulb is used to determine the amount of water Xwa in the mixed gas. Computing means for calculating
Computing means for calculating the amount of moisture Xwb in the outside air introduced into the extraction path from the temperature and humidity of the introduced outside air;
A calculation means for calculating a moisture amount Xwc in the extracted measurement gas from a difference between the moisture amount Xwb of the introduced outside air and the moisture amount Xwa of the mixed gas;
A calculation means for calculating the moisture amount Xw in the measurement gas flowing through the flow path by converting the moisture amount Xwc in the extracted measurement gas into a flow rate of the measurement gas flowing through the measurement gas flow path;
A device for measuring the moisture content of a high-temperature gas, comprising:
JP2003326623A 2003-09-18 2003-09-18 Method and apparatus for measuring amount of moisture in high-temperature gas Pending JP2005091226A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003326623A JP2005091226A (en) 2003-09-18 2003-09-18 Method and apparatus for measuring amount of moisture in high-temperature gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003326623A JP2005091226A (en) 2003-09-18 2003-09-18 Method and apparatus for measuring amount of moisture in high-temperature gas

Publications (1)

Publication Number Publication Date
JP2005091226A true JP2005091226A (en) 2005-04-07

Family

ID=34456750

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003326623A Pending JP2005091226A (en) 2003-09-18 2003-09-18 Method and apparatus for measuring amount of moisture in high-temperature gas

Country Status (1)

Country Link
JP (1) JP2005091226A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008241534A (en) * 2007-03-28 2008-10-09 Kurita Water Ind Ltd Air-cooling cooler for high-temperature water and analyzer for high-temperature water using the same
CN113109207A (en) * 2021-04-12 2021-07-13 中国矿业大学 Device and method for measuring water vapor supersaturation degree on line
CN113551401A (en) * 2021-07-19 2021-10-26 珠海格力电器股份有限公司 Temperature and humidity detection device and method and evaporative refrigeration equipment

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008241534A (en) * 2007-03-28 2008-10-09 Kurita Water Ind Ltd Air-cooling cooler for high-temperature water and analyzer for high-temperature water using the same
CN113109207A (en) * 2021-04-12 2021-07-13 中国矿业大学 Device and method for measuring water vapor supersaturation degree on line
CN113109207B (en) * 2021-04-12 2022-10-18 中国矿业大学 Device and method for measuring water vapor supersaturation degree on line
CN113551401A (en) * 2021-07-19 2021-10-26 珠海格力电器股份有限公司 Temperature and humidity detection device and method and evaporative refrigeration equipment
CN113551401B (en) * 2021-07-19 2022-06-14 珠海格力电器股份有限公司 Temperature and humidity detection device and method and evaporative refrigeration equipment

Similar Documents

Publication Publication Date Title
US7771654B1 (en) Apparatus for monitoring gaseous components of a flue gas
CN101561426B (en) Humidity measuring method and measuring device used for CEMS system
KR101978212B1 (en) The management system for self-measurement air pollutant
RU2009104915A (en) CARBON DIOXIDE COLLECTION SYSTEM FROM EXHAUST GAS
JP5260381B2 (en) Life Prediction System for Dust Collection Ceramic Filter
CN104297020A (en) Flue gas pollution collection device and method
KR20190088117A (en) Apparatus for measuring odor and evaluating efficiency of deodorization system in animal house
JP4942325B2 (en) Air purification device
JP2005091226A (en) Method and apparatus for measuring amount of moisture in high-temperature gas
JP4682728B2 (en) Incinerator tritium sampler
CN208818670U (en) A kind of portable dual oxide zirconium probe flue gas humidity monitoring device
CN111103401A (en) Continuous monitoring system for smoke emission
JP2008139053A (en) Method of inspecting pressure loss in honeycomb structure
CN207248580U (en) One kind is based on flue-gas temperature and thermostat water bath coolant controlled SO3Sampling system
JPS6059541B2 (en) Equipment for measuring the amount of water vapor in high-temperature gas
CN201653006U (en) Electronic temperature control condensation water removing device
CN212396328U (en) A flue gas dewatering system for flue gas detects
CN211317900U (en) Jet sampling and smoke heating method extraction type smoke detector
JPH112403A (en) Boiler apparatus
CN110124442B (en) Method and system for treating air leakage of rotary valve
CN110245323B (en) Calculation method for operating efficiency of air compressor system
CN209231041U (en) A kind of sampler of Multi-stage heating
CN207585975U (en) A kind of polluted gas continuous sampling device
CN219348802U (en) Flue gas on-line monitoring system humidity measuring device capable of being calibrated on line
CN116448963B (en) Exhaust gas concentration detection method and equipment based on multi-pipeline structure, device and medium

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060913

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080207

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080219

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080624