JP2007023422A - Method for producing liner - Google Patents

Method for producing liner Download PDF

Info

Publication number
JP2007023422A
JP2007023422A JP2005207052A JP2005207052A JP2007023422A JP 2007023422 A JP2007023422 A JP 2007023422A JP 2005207052 A JP2005207052 A JP 2005207052A JP 2005207052 A JP2005207052 A JP 2005207052A JP 2007023422 A JP2007023422 A JP 2007023422A
Authority
JP
Japan
Prior art keywords
parts
resin
liner
salt
coating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005207052A
Other languages
Japanese (ja)
Inventor
Takayuki Nishi
隆之 西
Koji Kono
宏治 河野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko PMC Corp
Original Assignee
Seiko PMC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko PMC Corp filed Critical Seiko PMC Corp
Priority to JP2005207052A priority Critical patent/JP2007023422A/en
Publication of JP2007023422A publication Critical patent/JP2007023422A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a liner excellent in burst strength and compressive strength, by coating a surface of the liner with a specified coating composition. <P>SOLUTION: A method for producing a multilayer liner which is compounded of not less than 50 wt.% of waste paper and has at least a front layer and a back layer given by making paper into two or more layers, wherein the liner is coated with the surface coating composition which contains at least an anionic acrylamide-based resin [A] obtained by together reacting acrylamides (a), unsaturated dicarboxylic acids (b), and (meth)allylsulfonic acid and/or its salt (c). <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、ライナーの製造方法に関し、詳しくは、紙の表面塗工に用いる表面塗工剤を塗工したライナーの製造方法に関する。   The present invention relates to a method for producing a liner, and more particularly to a method for producing a liner coated with a surface coating agent used for paper surface coating.

ライナーは、通常少なくとも表層及び裏層を含む2層以上を抄き合せた紙層から成り立っている。従来より、製紙工程において、抄紙機の高速化に伴う生産性の向上、あるいはライナーの品質向上を図る為に種々の製紙用添加剤が用いられてきた。とりわけ、ライナーの破裂強さや圧縮強さの向上及び生産性向上を図る手法としては、紙力増強剤を内添(パルプの水性スラリーに添加)する方法が用いられてきた。   The liner is usually composed of a paper layer obtained by combining two or more layers including at least a surface layer and a back layer. Conventionally, in the papermaking process, various papermaking additives have been used in order to improve productivity accompanying the increase in the speed of the paper machine or improve the quality of the liner. In particular, as a technique for improving the burst strength and compressive strength of the liner and improving the productivity, a method of internally adding a paper strength enhancer (added to an aqueous pulp slurry) has been used.

近年、環境問題から古紙の再利用が注目され、ライナーにおいても、これまでは化学パルプを100%使用していた表層に対しても古紙が配合されるようになった。古紙を配合した場合、ライナーの破裂強さや圧縮強さが低下するという欠点が生じ、破裂強さや圧縮強さの低下を補うために、内添する紙力増強剤の量を増やす手法が用いられてきた。
しかしながら、最近は古紙の配合量が50%を超えるケースも増えてきており、従来用いられてきた内添の紙力増強剤を増やす手法だけでは、満足できるレベルの破裂強さや圧縮強さを得ることが難しくなってきた。
In recent years, the reuse of waste paper has attracted attention due to environmental problems, and in the liner as well, waste paper has come to be blended with the surface layer that used 100% chemical pulp until now. When used paper is blended, there is a disadvantage that the burst strength and compressive strength of the liner decrease, and in order to compensate for the decrease in burst strength and compressive strength, a method of increasing the amount of paper strength enhancer added internally is used. I came.
Recently, however, the amount of used paper exceeds 50%, and a sufficient level of burst strength and compressive strength can be obtained only by using a conventional method for increasing the internal paper strength enhancer. It has become difficult.

また、従来より、ライナーの表面強度を改良する方法として、表面塗工剤を塗工する方法が用いられてきた。表面強度を向上させるために、アクリルアミド/アクリロニトリル/アクリル酸からなる低分子量のポリアクリルアミドと高分子量のポリアクリルアミドを併用する方法が提案されている(例えば、特許文献1参照)。しかし、この方法では、表面強度を向上させる方法としては有効であっても、破裂強さや圧縮強さを向上させる方法としては不十分であった。
特開平5−163697号公報
Conventionally, as a method for improving the surface strength of a liner, a method of applying a surface coating agent has been used. In order to improve the surface strength, a method has been proposed in which a low molecular weight polyacrylamide composed of acrylamide / acrylonitrile / acrylic acid and a high molecular weight polyacrylamide are used in combination (for example, see Patent Document 1). However, even if this method is effective as a method for improving the surface strength, it is insufficient as a method for improving the bursting strength and compressive strength.
Japanese Patent Laid-Open No. 5-163697

本発明は、特定の塗工用組成物をライナーに表面塗工することにより、破裂強さや圧縮強さに優れるライナーを提供することを課題とする。 This invention makes it a subject to provide the liner which is excellent in bursting strength or compressive strength by surface-coating a specific coating composition to a liner.

本発明者らは、上記課題を解決すべく鋭意研究を行った結果、少なくともアクリルアミド類(a)と、不飽和ジカルボン酸類(b)と、(メタ)アリルスルホン酸及び/又はその塩(c)とを反応して得られるアニオン性アクリルアミド系樹脂[A]を含有する表面塗工剤組成物」を塗工することにより、破裂強さ、圧縮強さに優れたライナーが得られることを見いだし、本発明を完成するに至った。   As a result of intensive studies to solve the above problems, the present inventors have found that at least acrylamides (a), unsaturated dicarboxylic acids (b), (meth) allylsulfonic acid and / or salts thereof (c). It was found that a liner excellent in bursting strength and compressive strength can be obtained by coating a surface coating agent composition containing an anionic acrylamide resin [A] obtained by reacting with The present invention has been completed.

すなわち、(1)少なくともアクリルアミド類(a)と不飽和ジカルボン酸類(b)と(メタ)アリルスルホン酸及び/またはその塩(c)とを反応して得られるアニオン性アクリルアミド系樹脂[A]を含有する表面塗工剤組成物を塗工してなることを特徴とする古紙が50重量%以上配合されている少なくとも表層及び裏層を有する2層以上を抄き合せた多層抄きライナーの製造方法、
(2)表面塗工剤組成物が無機塩類[B]を含有する前記(1)のライナーの製造方法、
(3)無機塩類[B]が、アルカリ金属及び/又はアンモニウム塩類である前記(2)のライナーの製造方法、
(4)無機塩類[B]が塩化ナトリウム、硫酸ナトリウム、硫酸アンモニウムから選ばれる少なくとも1種である前記(2)のライナーの製造方法、
(5)不飽和ジカルボン酸類(b)がイタコン酸及び/又はその塩である前記(1)〜(4)のいずれかのライナーの製造方法、
(6)アクリルアミド系樹脂[A]が少なくともアクリルアミド類(a)と不飽和ジカルボン酸類(b)と(メタ)アリルスルホン酸及び/又はその塩(c)と架橋剤(d)とを反応して得られる前記(1)〜(5)のいずれかのライナーの製造方法、
を提供するものである。
That is, (1) an anionic acrylamide resin [A] obtained by reacting at least acrylamides (a), unsaturated dicarboxylic acids (b), (meth) allylsulfonic acid and / or a salt thereof (c) Manufacture of a multi-layer papermaking liner in which two or more layers having at least a surface layer and a back layer containing at least 50% by weight of waste paper, wherein the used paper is coated with a surface coating agent composition, are combined. Method,
(2) The method for producing a liner according to (1), wherein the surface coating agent composition contains an inorganic salt [B],
(3) The method for producing a liner according to (2), wherein the inorganic salt [B] is an alkali metal and / or ammonium salt,
(4) The method for producing a liner according to (2), wherein the inorganic salt [B] is at least one selected from sodium chloride, sodium sulfate, and ammonium sulfate,
(5) The method for producing a liner according to any one of (1) to (4), wherein the unsaturated dicarboxylic acids (b) are itaconic acid and / or a salt thereof,
(6) The acrylamide resin [A] reacts at least the acrylamides (a), the unsaturated dicarboxylic acids (b), the (meth) allylsulfonic acid and / or its salt (c) and the crosslinking agent (d). The method for producing a liner according to any one of (1) to (5),
Is to provide.

従来と比較して破裂強さ、圧縮強さに優れたライナーを提供することができる。 A liner excellent in bursting strength and compressive strength as compared with conventional ones can be provided.

次に、本発明に使用するアニオン性アクリルアミド系樹脂[A]及び無機塩[B]について説明する。   Next, the anionic acrylamide resin [A] and the inorganic salt [B] used in the present invention will be described.

本発明における、アニオン性アクリルアミド系樹脂[A]は、少なくともアクリルアミド類(a)と不飽和ジカルボン酸類(b)と(メタ)アリルスルホン酸及び/またはその塩(c)と必要に応じて架橋剤(d)とを共重合して得ることができる。   In the present invention, the anionic acrylamide resin [A] contains at least acrylamides (a), unsaturated dicarboxylic acids (b), (meth) allylsulfonic acid and / or a salt thereof (c), and a crosslinking agent as necessary. It can be obtained by copolymerizing with (d).

アクリルアミド類(a)としては、アクリルアミド、メタクリルアミドが好ましく、またN−メチル(メタ)アクリルアミド、N−エチル(メタ)アクリルアミド、N,N−ジメチル(メタ)アクリルアミド、N−イソプロピル(メタ)アクリルアミド、N−t−オクチル(メタ)アクリルアミド等のN置換(メタ)アクリルアミドのいずれか一種以上をアクリルアミド、メタクリルアミドと併用して使用することもできる。   Acrylamides (a) are preferably acrylamide and methacrylamide, and N-methyl (meth) acrylamide, N-ethyl (meth) acrylamide, N, N-dimethyl (meth) acrylamide, N-isopropyl (meth) acrylamide, Any one or more of N-substituted (meth) acrylamides such as Nt-octyl (meth) acrylamide can be used in combination with acrylamide and methacrylamide.

不飽和ジカルボン酸類(b)としては、マレイン酸、フマル酸、イタコン酸、シトラコン酸およびそれらのナトリウム塩、カリウム塩等のアルカリ金属塩やアンモニウム塩、および無水マレイン酸の如きジカルボン酸無水物等が挙げられる。
中でもイタコン酸及びその塩類が好ましい。
Examples of the unsaturated dicarboxylic acids (b) include maleic acid, fumaric acid, itaconic acid, citraconic acid and alkali metal salts and ammonium salts such as sodium salt and potassium salt thereof, and dicarboxylic acid anhydrides such as maleic anhydride. Can be mentioned.
Of these, itaconic acid and its salts are preferred.

(メタ)アリルスルホン酸及び/またはその塩(c)としては、アリルスルホン酸、メタリルスルホン酸、及びそれらのナトリウム塩、カリウム塩等のアルカリ金属塩やアンモニウム塩等が挙げられる。メタリルスルホン酸及びそのアルカリ金属塩を使用することが好ましい。 Examples of (meth) allyl sulfonic acid and / or its salt (c) include allyl sulfonic acid, methallyl sulfonic acid, and alkali metal salts such as sodium salts and potassium salts, ammonium salts, and the like. It is preferred to use methallylsulfonic acid and its alkali metal salts.

架橋剤(d)としては、例えば、エチレングリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート等のジ(メタ)アクリレート類や、メチレンビス(メタ)アクリルアミド、N,N−ビスアクリルアミド酢酸等のビス(メタ)アクリルアミド類や、アジピン酸ジビニル、ジアリルマレート、N−メチロールアクリルアミド、ジアリルジメチルアンモニウム、グリシジル(メタ)アクリレート等の2官能性ビニルモノマー、1,3,5−トリアクリロイルヘキサヒドロ−S−トリアジン、トリアリルアミン、トリアリルイソシアヌレート、トリアリルトリメリテート等の3官能性ビニルモノマー、テトラメチロールメタンテトラアクリレート、テトラアリルピロメリレート、テトラアリルアミン塩、テトラアリルオキシエタン等の4官能性ビニルモノマー等が挙げられる。 Examples of the crosslinking agent (d) include di (meth) acrylates such as ethylene glycol di (meth) acrylate and diethylene glycol di (meth) acrylate, and bis such as methylene bis (meth) acrylamide and N, N-bisacrylamide acetic acid. (Meth) acrylamides, bifunctional vinyl monomers such as divinyl adipate, diallyl malate, N-methylolacrylamide, diallyldimethylammonium, glycidyl (meth) acrylate, 1,3,5-triacryloylhexahydro-S- Trifunctional vinyl monomers such as triazine, triallylamine, triallyl isocyanurate, triallyl trimellitate, tetramethylolmethane tetraacrylate, tetraallyl pyromellilate, tetraallylamine salt, tetraallylamine Tetrafunctional vinyl monomers such as Shietan like.

また、テトラメチロールメタン−トリ−β−アジリジニルプロピオネート、トリメチロールプロパン−トリ−β−アジリジニルプロピオンエート等の水溶性アジリジニル化合物や、(ポリ)エチレングリコールジグリシジルエーテル、(ポリ)グリセリンジグリシジルエーテル等の水溶性の多官能エポキシ化合物、3−(メタ)アクリロキシメチルトリメトキシシラン、2−(メタ)アクリルアミド−2−メチルプロピルトリメトキシシラン、ビニルジメチルメトキシシラン、ビニルトリクロロシラン、ビニルトリフェノキシシラン、2−(メタ)アクリルアミド−2−メチルプロピルトリアセトキシシラン、等のシリコン系化合物が例示でき、これらを1種または2種以上使用することができる。架橋剤(d)の使用量は、アクリルアミド類(a)と不飽和ジカルボン酸類(b)と(メタ)アリルスルホン酸及び/またはその塩(c)の合計量に対して0〜5重量%である。 In addition, water-soluble aziridinyl compounds such as tetramethylolmethane-tri-β-aziridinylpropionate, trimethylolpropane-tri-β-aziridinylpropionate, (poly) ethylene glycol diglycidyl ether, (poly) Water-soluble polyfunctional epoxy compounds such as glycerin diglycidyl ether, 3- (meth) acryloxymethyltrimethoxysilane, 2- (meth) acrylamide-2-methylpropyltrimethoxysilane, vinyldimethylmethoxysilane, vinyltrichlorosilane, Examples thereof include silicon compounds such as vinyltriphenoxysilane and 2- (meth) acrylamide-2-methylpropyltriacetoxysilane, and these can be used alone or in combination. The amount of the crosslinking agent (d) used is 0 to 5% by weight based on the total amount of acrylamides (a), unsaturated dicarboxylic acids (b), (meth) allylsulfonic acid and / or a salt thereof (c). is there.

アニオン性アクリルアミド系樹脂[A]に使用するアクリルアミド類(a)と不飽和ジカルボン酸類(b)と(メタ)アリルスルホン酸及び/またはその塩(c)以外にも、上記(a)、(b)、(c)と共重合可能なノニオン性ビニルモノマーを、性能を阻害しない範囲内で使用することができる。 In addition to the acrylamides (a), unsaturated dicarboxylic acids (b), (meth) allylsulfonic acid and / or salt (c) used in the anionic acrylamide resin [A], the above (a), (b ) And (c) can be used within the range of not impairing performance.

ノニオン性ビニルモノマーとしては、例えば、アルコールと(メタ)アクリル酸とのエステル、スチレン、スチレン誘導体、(メタ)アクリロニトリル、酢酸ビニル、プロピオン酸ビニル、メチルビニルエーテル等が例示でき、これらを1種または2種以上使用することができる。ノニオン性ビニルモノマーの使用量としては、アクリルアミド類(a)と不飽和ジカルボン酸類(b)と(メタ)アリルスルホン酸及び/またはその塩(c)の合計量に対して、0〜20重量%である。 Nonionic vinyl monomers include, for example, esters of alcohol and (meth) acrylic acid, styrene, styrene derivatives, (meth) acrylonitrile, vinyl acetate, vinyl propionate, methyl vinyl ether, and the like. More than seeds can be used. The nonionic vinyl monomer is used in an amount of 0 to 20% by weight based on the total amount of acrylamides (a), unsaturated dicarboxylic acids (b), (meth) allylsulfonic acid and / or a salt thereof (c). It is.

また、本発明で使用するアニオン性アクリルアミド系樹脂[A]得るために前記モノマー類を重合する前後で尿素類を加えることができ、特に、尿素類を反応前に加えることが好ましい。尿素類としては、尿素、チオ尿素、エチレン尿素、エチレンチオ尿素が挙げられ、これらを1種または2種以上使用することもできる。これらの中でも、尿素を単独で使用することが経済的に特に好ましい。尿素の使用量は、アクリルアミド類(a)と不飽和ジカルボン酸類(b)と(メタ)アリルスルホン酸及び/またはその塩(c)の合計量に対して、5〜30重量%が好ましい。 In order to obtain the anionic acrylamide resin [A] used in the present invention, ureas can be added before and after the monomers are polymerized, and it is particularly preferable to add ureas before the reaction. Examples of ureas include urea, thiourea, ethylene urea, and ethylene thiourea, and these can be used alone or in combination. Among these, it is particularly preferable economically to use urea alone. The amount of urea used is preferably 5 to 30% by weight based on the total amount of acrylamides (a), unsaturated dicarboxylic acids (b), (meth) allylsulfonic acid and / or salt (c) thereof.

アニオン性アクリルアミド系樹脂[A]に使用する(a)成分と(b)成分と(c)成分の重量比(a)/(b)/(c)は、99.4〜50%/0.5〜45%/0.1〜5%、好ましくは97.8〜77%/2〜20%/0.2〜3%である。
上記不飽和ジカルボン酸類(b)が0.5重量%未満では、破裂強さ、圧縮強さの強度向上効果が不十分なこともあり、また45重量%を越えて用いても、破裂強さ、圧縮強さのそれ以上の効果は期待できない。
The weight ratio (a) / (b) / (c) of the components (a), (b) and (c) used in the anionic acrylamide resin [A] is 99.4 to 50% / 0.00. It is 5-45% / 0.1-5%, Preferably it is 97.8-77% / 2-20% / 0.2-3%.
If the unsaturated dicarboxylic acid (b) is less than 0.5% by weight, the effect of improving the burst strength and compressive strength may be insufficient, and even if it exceeds 45% by weight, the burst strength is increased. No further effect of compressive strength can be expected.

上記(メタ)アリルスルホン酸及び/またはその塩(c)が0.1重量%未満では、分子量が高くなりすぎるために塗工適性に劣り、また5重量%を越えて用いると分子量が低くなりすぎるため、破裂強さ、圧縮強さ向上効果が不十分となる。 If the (meth) allylsulfonic acid and / or its salt (c) is less than 0.1% by weight, the molecular weight becomes too high, so that the coating suitability is inferior, and if it exceeds 5% by weight, the molecular weight becomes low. Therefore, the effect of improving the bursting strength and compressive strength is insufficient.

アニオン性アクリルアミド系樹脂[A]を得る反応は、所定の反応容器に、[A]の構成成分であるモノマーの合計濃度が5〜50重量%、好ましくは10〜40重量%となるように仕込み、公知慣用の重合開始剤を使用し、反応温度40〜100℃、1〜10時間の条件下で行う。もちろん、使用するモノマー成分の特徴に合わせて、モノマーを連続滴下する、あるいはモノマーを分割して添加する等により反応を行うこともできる。 In the reaction for obtaining the anionic acrylamide resin [A], a predetermined reaction vessel is charged so that the total concentration of the monomers as constituents of [A] is 5 to 50% by weight, preferably 10 to 40% by weight. The reaction is carried out under conditions of a reaction temperature of 40 to 100 ° C. and 1 to 10 hours using a known and usual polymerization initiator. Of course, according to the characteristics of the monomer component to be used, the reaction can be carried out by continuously dropping the monomer or adding the monomer in portions.

アニオン性アクリルアミド系樹脂[A]の反応に使用する重合開始剤は、特に限定されるものではなく、公知慣用のものが使用される。ラジカル重合開始剤としては、例えば過硫酸ナトリウム、過硫酸カリウム、過硫酸アンモニウム等の過硫酸塩、過酸化ベンゾイル、tert−ブチルハイドロパーオキサイド、ジ−tert−ブチルパーオキサイド等の過酸化物、臭素酸ナトリウム、臭素酸カリウム等の臭素酸塩、過ホウ素酸ナトリウム、過ホウ素酸カリウム、過ホウ素酸アンモニウム等の過ホウ素酸塩、過炭酸ナトリウム、過炭酸カリウム、過炭酸アンモニウム等の過炭酸塩、過リン酸ナトリウム、過リン酸カリウム、過リン酸アンモニウム等の過リン酸塩等が例示できる。 The polymerization initiator used for the reaction of the anionic acrylamide-based resin [A] is not particularly limited, and known and conventional ones are used. Examples of radical polymerization initiators include persulfates such as sodium persulfate, potassium persulfate, and ammonium persulfate, peroxides such as benzoyl peroxide, tert-butyl hydroperoxide, and di-tert-butyl peroxide, and bromic acid. Bromate such as sodium and potassium bromate, perborate such as sodium perborate, potassium perborate and ammonium perborate, percarbonate such as sodium percarbonate, potassium percarbonate and ammonium percarbonate, percarbonate Examples thereof include perphosphates such as sodium phosphate, potassium perphosphate, and ammonium perphosphate.

これらの重合開始剤は単独でも使用できるが、還元剤と組み合わせてレドックス系重合開始剤としても使用できる。還元剤としては、亜硫酸塩、亜硫酸水素塩あるいはN,N,N’,N’−テトラメチルエチレンジアミン等の有機アミン、2,2’−アゾビス−2−アミジノプロパン塩酸塩、アゾビスイソブチロニトリル、2,2’−アゾビス−2,4−ジメチルバレロニトリル、4,4’−アゾビス−4−シアノ吉草酸等のアゾ化合物、アルドース等の還元糖類が例示できる。これらの開始剤は、2種以上併用してもよい。重合開始剤の使用量は、アニオン性アクリルアミド系樹脂[A]に使用するモノマーの合計量に対して、通常0.01〜5重量%である。 These polymerization initiators can be used alone, but can also be used as a redox polymerization initiator in combination with a reducing agent. Examples of the reducing agent include sulfites, hydrogen sulfites, organic amines such as N, N, N ′, N′-tetramethylethylenediamine, 2,2′-azobis-2-amidinopropane hydrochloride, azobisisobutyronitrile. 2,2′-azobis-2,4-dimethylvaleronitrile, azo compounds such as 4,4′-azobis-4-cyanovaleric acid, and reducing sugars such as aldose. Two or more of these initiators may be used in combination. The usage-amount of a polymerization initiator is 0.01-5 weight% normally with respect to the total amount of the monomer used for anionic acrylamide resin [A].

アニオン性アクリルアミド系樹脂[A]は、固形分濃度が5〜50重量%、好ましくは10〜40重量%の水溶液であり、25℃における粘度(ブルックフィールド回転粘度計)が500〜15,000mPa・s、好ましくは1,000〜10,000mPa・sである。15,000mPa・sを越えると塗工作業性が悪くなることがあり、500mPa・s未満では破裂強さ、圧縮強さ向上効果に劣る場合がある。 The anionic acrylamide resin [A] is an aqueous solution having a solid concentration of 5 to 50% by weight, preferably 10 to 40% by weight, and a viscosity at 25 ° C. (Brookfield rotational viscometer) of 500 to 15,000 mPa · s. s, preferably 1,000 to 10,000 mPa · s. If it exceeds 15,000 mPa · s, the coating workability may be deteriorated, and if it is less than 500 mPa · s, the effect of improving burst strength and compressive strength may be inferior.

また、アニオン性アクリルアミド系樹脂[A]のpHは、反応終了後、酸やアルカリを用いて適宜調整することができる。酸およびアルカリとしては、硫酸、塩酸、硝酸、リン酸等の無機酸、蟻酸、酢酸、プロピオン酸等の有機酸、水酸化ナトリウム、水酸化カリウム等のアルカリ金属水酸化物、炭酸ナトリウム、炭酸カリウム等のアルカリ金属炭酸化物、アンモニア、メチルアミン、ジメチルアミン等のアミン塩基が使用可能である。 Further, the pH of the anionic acrylamide resin [A] can be appropriately adjusted using an acid or alkali after the reaction is completed. Acids and alkalis include inorganic acids such as sulfuric acid, hydrochloric acid, nitric acid and phosphoric acid, organic acids such as formic acid, acetic acid and propionic acid, alkali metal hydroxides such as sodium hydroxide and potassium hydroxide, sodium carbonate and potassium carbonate Alkali metal carbonates such as ammonia, amine bases such as ammonia, methylamine and dimethylamine can be used.

本発明のアニオン性アクリルアミド系樹脂[A]は、GPC−LALLS法により測定した重量平均分子量が20万〜100万の範囲にある場合に、破裂強さ及び圧縮強さの向上効果において特に好ましい。   The anionic acrylamide resin [A] of the present invention is particularly preferable in terms of improving burst strength and compressive strength when the weight average molecular weight measured by GPC-LALLS method is in the range of 200,000 to 1,000,000.

本発明で用いる無機塩[B]としては、例えば塩化ナトリウム、塩化カリウム、硫酸ナトリウム、硫酸カルシウム、硫酸マグネシウム、硫酸アンモニウム、硝酸ナトリウム、硝酸カリウム、硝酸アンモニウム等が挙げられるが、効果及びコストの面から、塩化ナトリウム、硫酸ナトリウム、硫酸アンモニウムから選ばれる少なくとも1つを使用することが好ましい。 Examples of the inorganic salt [B] used in the present invention include sodium chloride, potassium chloride, sodium sulfate, calcium sulfate, magnesium sulfate, ammonium sulfate, sodium nitrate, potassium nitrate, and ammonium nitrate. It is preferable to use at least one selected from sodium, sodium sulfate, and ammonium sulfate.

無機塩[B]の使用量としては、アニオン性アクリルアミド系樹脂[A]の固形分100重量部に対して0〜25重量%、好ましくは5〜20重量%であることが好ましい。無機塩[B]の使用量が25重量%を越えた場合には、破裂強さ、圧縮強さ向上効果が不十分となる場合がある。更に、多量の無機塩を使用すると、水に完全溶解していた上記アニオン性アクリルアミド系樹脂[A]が不溶化を起こしてしまうことがあり、塗工適性上好ましくない場合がある。   The amount of the inorganic salt [B] used is 0 to 25% by weight, preferably 5 to 20% by weight, based on 100 parts by weight of the solid content of the anionic acrylamide resin [A]. When the amount of the inorganic salt [B] used exceeds 25% by weight, the effect of improving burst strength and compressive strength may be insufficient. Furthermore, when a large amount of inorganic salt is used, the anionic acrylamide resin [A] that has been completely dissolved in water may cause insolubilization, which may be undesirable in terms of coating suitability.

アニオン性アクリルアミド系樹脂[A]と無機塩[B]は、アニオン性アクリルアミド系樹脂[A]を製造後、常法により無機塩[B]混合しても良いし、アニオン性アクリルアミド系樹脂[A]を製造する際に、予め無機塩[B]を反応前又は反応途中に混合しても良い。   The anionic acrylamide resin [A] and the inorganic salt [B] may be mixed with the inorganic salt [B] by an ordinary method after the anionic acrylamide resin [A] is produced, or the anionic acrylamide resin [A]. ] May be mixed in advance before or during the reaction.

次に、本発明の表面塗工剤組成物を含有してなる塗工液を紙に塗工する紙の製造方法について以下に示す。本発明の表面塗工剤組成物は、必要に応じて各種添加剤を使用することができる。各種添加剤としては、ポリビニルアルコール類及び澱粉類等の表面紙力剤、表面サイズ剤、防滑剤、離型剤、防腐剤、消泡剤、粘度調整剤、染料、撥水剤などを挙げることができる。また、本発明の表面塗工剤組成物の塗工時の濃度は、固形分として0.1〜15重量%、好ましくは1〜10重量%で行われる。また塗工温度は、20〜80℃で行われるのが好ましい。該表面塗工剤組成物の塗工量は、原紙のサイズ度、およびその他の要素を勘案して適宜設定することができるが、通常は固形分で0.05〜5g/m、好ましくは0.1〜2g/mである。 Next, a paper manufacturing method for coating a paper with a coating liquid containing the surface coating agent composition of the present invention will be described below. Various additives can be used for the surface coating agent composition of this invention as needed. Various additives include surface paper strength agents such as polyvinyl alcohols and starches, surface sizing agents, anti-slip agents, mold release agents, preservatives, antifoaming agents, viscosity modifiers, dyes, water repellents, and the like. Can do. Moreover, the density | concentration at the time of the coating of the surface coating agent composition of this invention is 0.1 to 15 weight% as solid content, Preferably it is 1 to 10 weight%. The coating temperature is preferably 20 to 80 ° C. The coating amount of the surface coating agent composition can be appropriately set in consideration of the sizing degree of the base paper and other factors, but is usually 0.05 to 5 g / m 2 in terms of solid content, preferably 0.1 to 2 g / m 2 .

また、本発明の表面塗工剤組成物を含有してなる塗工液は、公知の方法により紙に塗工することができ、例えば、サイズプレス、フィルムプレス、ゲートロールコーター、ブレードコーター、キャレンダー、バーコーター、ナイフコーター、エアーナイフコーターを用いて塗工することが可能である。また、スプレー塗工を行うこともできる。 Further, the coating liquid containing the surface coating composition of the present invention can be applied to paper by a known method, for example, size press, film press, gate roll coater, blade coater, Coating can be performed using a renderer, bar coater, knife coater, or air knife coater. Moreover, spray coating can also be performed.

原紙のサイズ度は任意であるが、サイズプレス等を用いて塗工する場合は、原紙の吸液量を調整する目的で内添サイズ剤を使用することが好ましい。   Although the sizing degree of the base paper is arbitrary, when coating is performed using a size press or the like, it is preferable to use an internal sizing agent for the purpose of adjusting the liquid absorption of the base paper.

古紙は、使用済みの紙又は紙の裁断くずなどをいい、具体的には、段ボール古紙、雑誌古紙、新聞古紙、茶模造紙古紙、地券古紙などを挙げることができる。 Waste paper refers to used paper or paper cutting waste, and specific examples include corrugated waste paper, magazine waste paper, newspaper waste paper, tea imitation paper waste paper, and land ticket waste paper.

以下、実施例及び比較例を挙げて本発明をより具体的に説明するが、本発明は下記の実施例に限定されるものでは無い。尚、%は特に表示がない限り、重量基準による。   EXAMPLES Hereinafter, although an Example and a comparative example are given and this invention is demonstrated more concretely, this invention is not limited to the following Example. % Is based on weight unless otherwise indicated.

(合成例1)
攪拌機、温度計、還流冷却管、及び窒素ガス導入管を付した1リットル四つ口フラスコに、水398部、50%アクリルアミド203部、フマル酸7.0部、メタリルスルホン酸ナトリウム1.7部を仕込んだ。次いで、窒素ガス雰囲気下、50℃に昇温させ、5%過硫酸アンモニウム水溶液6.9部、2%メタ重亜硫酸ナトリウム水溶液3.6部を添加して反応を開始させた後、30分間で85℃まで昇温した。次いで、50%アクリルアミド212部、メタリルスルホン酸ナトリウム1.7部の混合液を30分間かけて滴下し反応させ、滴下終了後に5%過硫酸アンモニウム水溶液6.9部を追加し、さらに1時間反応を行った。得られた生成物に水34部を加え、更に25%水酸化ナトリウム水溶液でpH7.0に調整し、固形分25.2%、粘度4,200mPa・s(25℃、ブルックフィールド回転粘度計使用)、重量平均分子量35万の樹脂a(アニオン性アクリルアミド系樹脂[A]の一例)得た。
(Synthesis Example 1)
In a 1 liter four-necked flask equipped with a stirrer, a thermometer, a reflux condenser, and a nitrogen gas inlet tube, 398 parts of water, 203 parts of 50% acrylamide, 7.0 parts of fumaric acid, 1.7 sodium methallylsulfonate Prepared the department. Next, the temperature was raised to 50 ° C. in a nitrogen gas atmosphere, and 6.9 parts of 5% ammonium persulfate aqueous solution and 3.6 parts of 2% sodium metabisulfite aqueous solution were added to start the reaction. The temperature was raised to ° C. Next, a mixed solution of 212 parts of 50% acrylamide and 1.7 parts of sodium methallylsulfonate was added dropwise over 30 minutes to react, and after completion of the addition, 6.9 parts of 5% aqueous ammonium persulfate solution was added, and the reaction was continued for 1 hour. Went. 34 parts of water was added to the obtained product, and the pH was adjusted to 7.0 with a 25% aqueous sodium hydroxide solution. The solid content was 25.2% and the viscosity was 4,200 mPa · s (25 ° C., using Brookfield rotary viscometer). ), A resin a (an example of an anionic acrylamide resin [A]) having a weight average molecular weight of 350,000 was obtained.

(合成例2)
合成例1と同様の装置に、水405部、50%アクリルアミド415部、イタコン酸7.8部、メタリルスルホン酸ナトリウム2.9部を仕込んだ。次いで、窒素ガス雰囲気下、50℃に昇温させ、5%過硫酸アンモニウム水溶液6.9部、2%メタ重亜硫酸ナトリウム水溶液3.6部を添加して反応を開始させた後、30分間で90℃まで昇温し、その後85℃を維持しながら2時間反応を行った。得られた生成物に水34部を加え、更に25%水酸化ナトリウム水溶液でpH7.0に調整し、固形分25.1%、粘度6,300mPa・s(25℃、ブルックフィールド回転粘度計使用)、重量平均分子量60万の樹脂b(アニオン性アクリルアミド系樹脂[A]の一例)得た。
(Synthesis Example 2)
In the same apparatus as in Synthesis Example 1, 405 parts of water, 415 parts of 50% acrylamide, 7.8 parts of itaconic acid, and 2.9 parts of sodium methallyl sulfonate were charged. Next, the temperature was raised to 50 ° C. in a nitrogen gas atmosphere, and 6.9 parts of 5% ammonium persulfate aqueous solution and 3.6 parts of 2% sodium metabisulfite aqueous solution were added to start the reaction, followed by 90 minutes in 30 minutes. The temperature was raised to 0 ° C., and then reacted for 2 hours while maintaining 85 ° C. 34 parts of water was added to the resulting product, and the pH was adjusted to 7.0 with a 25% aqueous sodium hydroxide solution. The solid content was 25.1% and the viscosity was 6,300 mPa · s (at 25 ° C. using a Brookfield rotary viscometer. ), A resin b (an example of an anionic acrylamide resin [A]) having a weight average molecular weight of 600,000 was obtained.

(合成例3)
合成例1と同様の装置に、水419部、50%アクリルアミド407部、イタコン酸15.6部、メタリルスルホン酸ナトリウム2.6部を仕込んだ。次いで、窒素ガス雰囲気下、50℃に昇温させ、5%過硫酸アンモニウム水溶液6.9部、2%メタ重亜硫酸ナトリウム水溶液3.6部を添加して反応を開始させた後、30分間で85℃まで昇温し、その後80℃を維持しながら2時間反応を行った。得られた生成物に水34部を加え、更に25%水酸化ナトリウム水溶液でpH7.0に調整し、固形分25.0%、粘度4,800mPa・s(25℃、ブルックフィールド回転粘度計使用)、重量平均分子量50万の樹脂c(アニオン性アクリルアミド系樹脂[A]の一例)得た。
(Synthesis Example 3)
In the same apparatus as in Synthesis Example 1, 419 parts of water, 407 parts of 50% acrylamide, 15.6 parts of itaconic acid, and 2.6 parts of sodium methallyl sulfonate were charged. Next, the temperature was raised to 50 ° C. in a nitrogen gas atmosphere, and 6.9 parts of 5% ammonium persulfate aqueous solution and 3.6 parts of 2% sodium metabisulfite aqueous solution were added to start the reaction. The temperature was raised to 0 ° C., and then the reaction was carried out for 2 hours while maintaining 80 ° C. 34 parts of water was added to the resulting product, and the pH was adjusted to 7.0 with a 25% aqueous sodium hydroxide solution. The solid content was 25.0% and the viscosity was 4,800 mPa · s (25 ° C., using Brookfield rotary viscometer). ), A resin c (an example of an anionic acrylamide resin [A]) having a weight average molecular weight of 500,000 was obtained.

(合成例4)
合成例1と同様の装置に、水407部、50%アクリルアミド390部、イタコン酸31.2部、メタリルスルホン酸ナトリウム2.4部、塩化ナトリウム46部を仕込んだ。次いで、窒素ガス雰囲気下、50℃に昇温させ、5%過硫酸アンモニウム水溶液6.9部、2%メタ重亜硫酸ナトリウム水溶液3.6部を添加して反応を開始させた後、30分間で90℃まで昇温し、その後85℃を維持しながら2時間反応を行った。得られた生成物に水30部を加え、更に30%水酸化ナトリウム水溶液でpH7.0に調整し、固形分30.1%、粘度4,400mPa・s(25℃、ブルックフィールド回転粘度計使用)、重量平均分子量40万の樹脂d(アニオン性アクリルアミド系樹脂[A]と無機塩[B] を含む表面塗工剤組成物の一例)得た。
(Synthesis Example 4)
In the same apparatus as in Synthesis Example 1, 407 parts of water, 390 parts of 50% acrylamide, 31.2 parts of itaconic acid, 2.4 parts of sodium methallyl sulfonate, and 46 parts of sodium chloride were charged. Next, the temperature was raised to 50 ° C. in a nitrogen gas atmosphere, and 6.9 parts of 5% ammonium persulfate aqueous solution and 3.6 parts of 2% sodium metabisulfite aqueous solution were added to start the reaction, followed by 90 minutes in 30 minutes. The temperature was raised to 0 ° C., and then reacted for 2 hours while maintaining 85 ° C. 30 parts of water was added to the resulting product, and the pH was adjusted to 7.0 with a 30% aqueous sodium hydroxide solution. The solid content was 30.1% and the viscosity was 4,400 mPa · s (25 ° C., using Brookfield rotary viscometer). ), A resin d (an example of a surface coating composition containing an anionic acrylamide resin [A] and an inorganic salt [B]) having a weight average molecular weight of 400,000 was obtained.

(合成例5)
合成例1と同様の装置に、水386部、50%アクリルアミド398部、イタコン酸23.4部、メタリルスルホン酸ナトリウム2.9部、0.5%1,3,5−トリアクリロイルヘキサヒドロ−S−トリアジン7.5部、尿素45部を仕込んだ。次いで、窒素ガス雰囲気下、50℃に昇温させ、5%過硫酸アンモニウム水溶液6.9部、2%メタ重亜硫酸ナトリウム水溶液3.6部を添加して反応を開始させた後、30分間で85℃まで昇温し、その後80℃を維持しながら2時間反応を行った。得られた生成物に水29部を加え、更に30%水酸化ナトリウム水溶液でpH7.0に調整し、固形分30.2%、粘度4,900mPa・s(25℃、ブルックフィールド回転粘度計使用)、重量平均分子量70万の樹脂e(アニオン性アクリルアミド系樹脂[A]の一例)得た。
(Synthesis Example 5)
In the same apparatus as in Synthesis Example 1, 386 parts of water, 398 parts of 50% acrylamide, 23.4 parts of itaconic acid, 2.9 parts of sodium methallylsulfonate, 0.5% 1,3,5-triacryloylhexahydro -7.5 parts of S-triazine and 45 parts of urea were charged. Next, the temperature was raised to 50 ° C. in a nitrogen gas atmosphere, and 6.9 parts of 5% ammonium persulfate aqueous solution and 3.6 parts of 2% sodium metabisulfite aqueous solution were added to start the reaction. The temperature was raised to 0 ° C., and then the reaction was carried out for 2 hours while maintaining 80 ° C. 29 parts of water was added to the obtained product, and the pH was adjusted to 7.0 with a 30% aqueous sodium hydroxide solution. The solid content was 30.2%, the viscosity was 4,900 mPa · s (25 ° C., using Brookfield rotary viscometer). ), A resin e (an example of an anionic acrylamide resin [A]) having a weight average molecular weight of 700,000 was obtained.

(合成例6)
合成例1と同様の装置に、水433部、50%アクリルアミド399部、イタコン酸23.4部、メタリルスルホン酸ナトリウム2.4部を仕込んだ。次いで、窒素ガス雰囲気下、50℃に昇温させ、5%過硫酸アンモニウム水溶液6.9部、2%メタ重亜硫酸ナトリウム水溶液3.6部を添加して反応を開始させた後、30分間で90℃まで昇温し、その後85℃を維持しながら2時間反応を行った。得られた生成物に水35部を加え、更に25%水酸化ナトリウム水溶液でpH7.0に調整し、25.0%、粘度3,600mPa・s(25℃、ブルックフィールド回転粘度計使用)、重量平均分子量45万の樹脂f(アニオン性アクリルアミド系樹脂[A]の一例)得た。
(Synthesis Example 6)
In the same apparatus as in Synthesis Example 1, 433 parts of water, 399 parts of 50% acrylamide, 23.4 parts of itaconic acid, and 2.4 parts of sodium methallylsulfonate were charged. Next, the temperature was raised to 50 ° C. in a nitrogen gas atmosphere, and 6.9 parts of 5% ammonium persulfate aqueous solution and 3.6 parts of 2% sodium metabisulfite aqueous solution were added to start the reaction, followed by 90 minutes in 30 minutes. The temperature was raised to 0 ° C., and then reacted for 2 hours while maintaining 85 ° C. 35 parts of water was added to the obtained product, and further adjusted to pH 7.0 with 25% aqueous sodium hydroxide solution, 25.0%, viscosity 3,600 mPa · s (25 ° C., using Brookfield rotary viscometer), A resin f (an example of an anionic acrylamide resin [A]) having a weight average molecular weight of 450,000 was obtained.

(合成例7)
合成例1と同様の装置に、水404部、50%アクリルアミド407部、イタコン酸15.6部、メタリルスルホン酸ナトリウム2.9部、0.5%トリアクリルホルマール15.0部を仕込んだ。次いで、窒素ガス雰囲気下、50℃に昇温させ、5%過硫酸アンモニウム水溶液6.9部、2%メタ重亜硫酸ナトリウム水溶液3.6部を添加して反応を開始させた後、30分間で90℃まで昇温し、その後85℃を維持しながら2時間反応を行った。得られた生成物に水34部を加え、更に25%水酸化ナトリウム水溶液でpH7.0に調整し、固形分25.0%、粘度4,600mPa・s(25℃、ブルックフィールド回転粘度計使用)、重量平均分子量90万の樹脂f(アニオン性アクリルアミド系樹脂[A]の一例)得た。
(Synthesis Example 7)
In the same apparatus as in Synthesis Example 1, 404 parts of water, 407 parts of 50% acrylamide, 15.6 parts of itaconic acid, 2.9 parts of sodium methallylsulfonate, and 15.0 parts of 0.5% triacryl formal were charged. . Next, the temperature was raised to 50 ° C. in a nitrogen gas atmosphere, and 6.9 parts of 5% ammonium persulfate aqueous solution and 3.6 parts of 2% sodium metabisulfite aqueous solution were added to start the reaction, followed by 90 minutes in 30 minutes. The temperature was raised to 0 ° C., and then the reaction was carried out for 2 hours while maintaining 85 ° C. 34 parts of water was added to the obtained product, and the pH was adjusted to 7.0 with a 25% aqueous sodium hydroxide solution. The solid content was 25.0% and the viscosity was 4,600 mPa · s (25 ° C., using Brookfield rotary viscometer). ), A resin f (an example of an anionic acrylamide resin [A]) having a weight average molecular weight of 900,000 was obtained.

(比較合成例1)
合成例1と同様の装置に、水559部、50%アクリルアミド343部、80%アクリル酸10.2部、アクリロニトリル14.9部を仕込んだ。次いで、窒素ガス雰囲気下、50℃に昇温させ、20%過硫酸アンモニウム水溶液9.0部、20%メタ重亜硫酸ナトリウム水溶液4.7部を添加して反応を開始させた後、30分間で90℃まで昇温し、その後85℃を維持しながら2時間反応を行った。得られた生成物に水37部を加え、更に20%水酸化ナトリウム水溶液でpH7.0に調整し、固形分20.3%、粘度600mPa・s(25℃、ブルックフィールド回転粘度計使用)、重量平均分子量10万の樹脂α得た。
(Comparative Synthesis Example 1)
In the same apparatus as in Synthesis Example 1, 559 parts of water, 343 parts of 50% acrylamide, 10.2 parts of 80% acrylic acid, and 14.9 parts of acrylonitrile were charged. Next, the temperature was raised to 50 ° C. in a nitrogen gas atmosphere, and 9.0 parts of a 20% ammonium persulfate aqueous solution and 4.7 parts of a 20% sodium metabisulfite aqueous solution were added to start the reaction, followed by 90 minutes in 30 minutes. The temperature was raised to 0 ° C., and then reacted for 2 hours while maintaining 85 ° C. 37 parts of water was added to the obtained product, and further adjusted to pH 7.0 with 20% aqueous sodium hydroxide solution, solid content 20.3%, viscosity 600 mPa · s (25 ° C., Brookfield rotary viscometer used), A resin α having a weight average molecular weight of 100,000 was obtained.

(比較合成例2)
合成例1と同様の装置に、水398部、50%アクリルアミド407部、80%アクリル酸10.8部、メタリルスルホン酸ナトリウム3.3部を仕込んだ。次いで、窒素ガス雰囲気下、50℃に昇温させ、5%過硫酸アンモニウム水溶液6.9部、2%メタ重亜硫酸ナトリウム水溶液3.6部を添加して反応を開始させた後、30分間で90℃まで昇温し、その後85℃を維持しながら2時間反応を行った。得られた生成物に水33部を加え、更に25%水酸化ナトリウム水溶液でpH7.0に調整し、固形分25.2%、粘度6,700mPa・s(25℃、ブルックフィールド回転粘度計使用)、重量平均分子量55万の樹脂β得た。
(Comparative Synthesis Example 2)
In the same apparatus as in Synthesis Example 1, 398 parts of water, 407 parts of 50% acrylamide, 10.8 parts of 80% acrylic acid, and 3.3 parts of sodium methallylsulfonate were charged. Next, the temperature was raised to 50 ° C. in a nitrogen gas atmosphere, and 6.9 parts of 5% ammonium persulfate aqueous solution and 3.6 parts of 2% sodium metabisulfite aqueous solution were added to start the reaction, followed by 90 minutes in 30 minutes. The temperature was raised to 0 ° C., and then reacted for 2 hours while maintaining 85 ° C. 33 parts of water was added to the obtained product, and the pH was adjusted to 7.0 with a 25% aqueous sodium hydroxide solution. The solid content was 25.2% and the viscosity was 6,700 mPa · s (25 ° C., using Brookfield rotary viscometer). ), A resin β having a weight average molecular weight of 550,000 was obtained.

(比較合成例3)
合成例1と同様の装置に、水560部、65%ジアリルジメチルアンモニウムクロライド水溶液50部を仕込んだ。次いで、窒素ガス雰囲気下、85℃に昇温させ、20%過硫酸アンモニウム水溶液1.4部を加えた後、50%アクリルアミド325部、メタリルスルホン酸ナトリウム2.0部、20%過硫酸アンモニウム水溶液2.8部からなる混合液の滴下を2時間かけて行った。滴下終了1時間後に20%過硫酸アンモニウム水溶液1.4部を加え、更に1時間反応を行った。得られた生成物に、水47部を加え、更に20%水酸化ナトリウムでpHを7.0に調整し、固形分20.4%、粘度が2,300mPa・s(25℃、ブルックフィールド回転粘度計使用)、重量平均分子量70万の樹脂γを得た。
(Comparative Synthesis Example 3)
In the same apparatus as in Synthesis Example 1, 560 parts of water and 50 parts of a 65% diallyldimethylammonium chloride aqueous solution were charged. Next, the temperature was raised to 85 ° C. under a nitrogen gas atmosphere, 1.4 parts of 20% aqueous ammonium persulfate solution was added, 325 parts of 50% acrylamide, 2.0 parts of sodium methallyl sulfonate, 2% aqueous 20% ammonium persulfate solution 2 The liquid mixture consisting of 8 parts was dropped over 2 hours. One hour after the completion of dropping, 1.4 parts of 20% aqueous ammonium persulfate solution was added, and the reaction was further continued for 1 hour. 47 parts of water was added to the obtained product, and the pH was adjusted to 7.0 with 20% sodium hydroxide. The solid content was 20.4% and the viscosity was 2,300 mPa · s (25 ° C., Brookfield rotation). Using a viscometer), a resin γ having a weight average molecular weight of 700,000 was obtained.

(比較合成例4)
合成例1と同様の装置に、水488部、50%アクリルアミド200部、イタコン酸11.7部を仕込んだ。次いで、窒素ガス雰囲気下、60℃に昇温させ、5%過硫酸アンモニウム水溶液3.4部、2%メタ重亜硫酸ナトリウム水溶液1.8部を添加して反応を開始させた後、30分間で85℃まで昇温し、その後85℃を維持しながら2時間反応を行った。得られた生成物に水47部を加え、更に15%水酸化ナトリウム水溶液でpH7.0に調整し、固形分15.1%、粘度52,000mPa・s(25℃、ブルックフィールド回転粘度計使用)、重量平均分子量80万の樹脂δを得た。
(Comparative Synthesis Example 4)
In the same apparatus as in Synthesis Example 1, 488 parts of water, 200 parts of 50% acrylamide, and 11.7 parts of itaconic acid were charged. Next, the temperature was raised to 60 ° C. in a nitrogen gas atmosphere, and 3.4 parts of 5% ammonium persulfate aqueous solution and 1.8 parts of 2% sodium metabisulfite aqueous solution were added to start the reaction. The temperature was raised to 0 ° C., and then the reaction was carried out for 2 hours while maintaining 85 ° C. 47 parts of water was added to the obtained product, and the pH was adjusted to 7.0 with a 15% aqueous sodium hydroxide solution. The solid content was 15.1% and the viscosity was 52,000 mPa · s (25 ° C., using Brookfield rotary viscometer). ), A resin δ having a weight average molecular weight of 800,000 was obtained.

(実施例1)
古紙が表層に50%、中層、裏層の各層に100%配合された4層抄きの未塗工のライナー(坪量180g/m)に対し、合成例1で得られた樹脂aを温水で希釈し、樹脂aの固形分濃度が5%、温度が50℃となるように調整した塗工液を、2ロールサイズプレスを用いて固形分塗工量が0.75g/mとなるように両面塗工し、ドラムドライヤー(80℃、60秒間)にて乾燥することで、塗工紙1を得た。乾燥後、23℃、50RH%の恒温恒湿室中で24時間調湿した後、塗工紙を各種評価試験に供した。塗工液の性状を表1、紙質評価結果を表2に示した。
Example 1
Resin a obtained in Synthesis Example 1 was applied to a four-layer uncoated liner (basis weight 180 g / m 2 ) in which waste paper was 50% in the front layer and 100% in each of the middle and back layers. A coating liquid diluted with warm water and adjusted so that the solid content concentration of the resin a is 5% and the temperature is 50 ° C. is 0.75 g / m 2 using a two-roll size press. The coated paper 1 was obtained by carrying out double-side coating as described above and drying with a drum dryer (80 ° C., 60 seconds). After drying, the humidity was adjusted for 24 hours in a constant temperature and humidity chamber at 23 ° C. and 50 RH%, and the coated paper was subjected to various evaluation tests. The properties of the coating liquid are shown in Table 1, and the paper quality evaluation results are shown in Table 2.

(実施例2)
合成例2で得られた樹脂bと硝酸アンモニウムを温水で希釈し、樹脂bの固形分濃度が5%、硝酸アンモニウムの固形分濃度が0.25%、温度が50℃となるように塗工液を調整した。この塗工液を、実施例1と同様な方法を用いて塗工、評価試験を行った。塗工液の性状を表1、紙質評価結果を表2に示した。
(Example 2)
The resin b and ammonium nitrate obtained in Synthesis Example 2 are diluted with warm water, and the coating liquid is prepared so that the solid content concentration of the resin b is 5%, the solid content concentration of ammonium nitrate is 0.25%, and the temperature is 50 ° C. It was adjusted. The coating solution was applied and evaluated using the same method as in Example 1. The properties of the coating solution are shown in Table 1, and the paper quality evaluation results are shown in Table 2.

(実施例3)
塗工液に樹脂aの代わりに樹脂cを用いた以外は、実施例1と同様にして塗工液を調整した。この塗工液を実施例1と同様の方法を用いて塗工、評価試験を行った。塗工液の性状を表1、紙質評価結果を表2に示した。
(Example 3)
A coating solution was prepared in the same manner as in Example 1 except that the resin c was used in place of the resin a. The coating solution was coated and evaluated using the same method as in Example 1. The properties of the coating solution are shown in Table 1, and the paper quality evaluation results are shown in Table 2.

(実施例4)
塗工液に樹脂bの代わりに樹脂cを用い、硝酸アンモニウムの代わりに硫酸ナトリウムを用い、その固形分濃度が0.5%になるように変更した以外は、実施例2と同様にして塗工液を調整した。この塗工液を実施例2と同様の方法を用いて塗工、評価試験を行った。塗工液の性状を表1、紙質評価結果を表2に示した。
Example 4
Coating was performed in the same manner as in Example 2 except that resin c was used instead of resin b, sodium sulfate was used instead of ammonium nitrate, and the solid content concentration was changed to 0.5%. The liquid was adjusted. The coating solution was coated and evaluated using the same method as in Example 2. The properties of the coating solution are shown in Table 1, and the paper quality evaluation results are shown in Table 2.

(実施例5)
塗工液に樹脂aの代わりに塩化ナトリウム存在下で重合した樹脂dを用い、その樹脂の固形分濃度が5.0%、塩化ナトリウムの固形分濃度が1.0%になるように変更した以外は、実施例1と同様にして塗工液を調整した。この塗工液を実施例1と同様の方法を用いて塗工、評価試験を行った。塗工液の性状を表1、紙質評価結果を表2に示した。
(Example 5)
Resin d polymerized in the presence of sodium chloride instead of resin a was used as the coating solution, and the solid content concentration of the resin was changed to 5.0% and the solid content concentration of sodium chloride was changed to 1.0%. Except for this, the coating solution was adjusted in the same manner as in Example 1. The coating solution was coated and evaluated using the same method as in Example 1. The properties of the coating solution are shown in Table 1, and the paper quality evaluation results are shown in Table 2.

(実施例6)
塗工液に樹脂aの代わりに樹脂eを用いた以外は、実施例1と同様にして塗工液を調整した。この塗工液を実施例1と同様の方法を用いて塗工、評価試験を行った。塗工液の性状を表1、紙質評価結果を表2に示した。
(Example 6)
A coating solution was prepared in the same manner as in Example 1 except that the resin e was used instead of the resin a. The coating solution was coated and evaluated using the same method as in Example 1. The properties of the coating solution are shown in Table 1, and the paper quality evaluation results are shown in Table 2.

(実施例7)
塗工液に樹脂bの代わりに樹脂fを用い、硝酸アンモニウムの代わりに硫酸アンモニウムを用いた以外は、実施例2と同様にして塗工液を調整した。この塗工液を実施例2と同様の方法を用いて塗工、評価試験を行った。塗工液の性状を表1、紙質評価結果を表2に示した。
(Example 7)
A coating solution was prepared in the same manner as in Example 2 except that the resin f was used instead of the resin b and ammonium sulfate was used instead of ammonium nitrate. The coating solution was coated and evaluated using the same method as in Example 2. The properties of the coating solution are shown in Table 1, and the paper quality evaluation results are shown in Table 2.

(実施例8)
塗工液に樹脂aの代わりに樹脂gを用いた以外は、実施例1と同様にして塗工液を調整した。この塗工液を実施例1と同様の方法を用いて塗工、評価試験を行った。塗工液の性状を表1、紙質評価結果を表2に示した。
(Example 8)
A coating solution was prepared in the same manner as in Example 1 except that the resin g was used instead of the resin a. The coating solution was coated and evaluated using the same method as in Example 1. The properties of the coating solution are shown in Table 1, and the paper quality evaluation results are shown in Table 2.

(実施例9)
塗工液に樹脂bの代わりに樹脂gを用い、硝酸アンモニウムの代わりに硫酸アンモニウムを用い、その固形分濃度が1.0%になるように変更した以外は、実施例2と同様にして塗工液を調整した。この塗工液を実施例2と同様の方法を用いて塗工、評価試験を行った。塗工液の性状を表1、紙質評価結果を表2に示した。
Example 9
The coating solution was the same as in Example 2 except that the resin g was used instead of the resin b, ammonium sulfate was used instead of ammonium nitrate, and the solid content concentration was changed to 1.0%. Adjusted. The coating solution was coated and evaluated using the same method as in Example 2. The properties of the coating solution are shown in Table 1, and the paper quality evaluation results are shown in Table 2.

(比較例1)
塗工液に樹脂aの代わりに樹脂αを用いた以外は、実施例1と同様にして塗工液を調整した。この塗工液を実施例1と同様の方法を用いて塗工、評価試験を行った。塗工液の性状を表1、紙質評価結果を表2に示した。
(Comparative Example 1)
A coating solution was prepared in the same manner as in Example 1 except that the resin α was used instead of the resin a. The coating solution was coated and evaluated using the same method as in Example 1. The properties of the coating solution are shown in Table 1, and the paper quality evaluation results are shown in Table 2.

(比較例2)
塗工液に樹脂aの代わりに樹脂βを用いた以外は、実施例1と同様にして塗工液を調整した。この塗工液を実施例1と同様の方法を用いて塗工、評価試験を行った。塗工液の性状を表1、紙質評価結果を表2に示した。
(Comparative Example 2)
A coating solution was prepared in the same manner as in Example 1 except that the resin β was used in place of the resin a. The coating solution was coated and evaluated using the same method as in Example 1. The properties of the coating solution are shown in Table 1, and the paper quality evaluation results are shown in Table 2.

(比較例3)
塗工液に樹脂aの代わりに樹脂γを用いた以外は、実施例1と同様にして塗工液を調整した。この塗工液を実施例1と同様の方法を用いて塗工、評価試験を行った。塗工液の性状を表1、紙質評価結果を表2に示した。
(Comparative Example 3)
A coating solution was prepared in the same manner as in Example 1 except that the resin γ was used in place of the resin a. The coating solution was coated and evaluated using the same method as in Example 1. The properties of the coating solution are shown in Table 1, and the paper quality evaluation results are shown in Table 2.

(比較例4)
塗工液に樹脂bの代わりに樹脂γを用い、硝酸アンモニウムの代わりに硫酸アンモニウムを用い、その固形分濃度が1.0%になるように変更した以外は、実施例2と同様にして塗工液を調整した。この塗工液を実施例2と同様の方法を用いて塗工、評価試験を行った。塗工液の性状を表1、紙質評価結果を表2に示した。
(Comparative Example 4)
The coating solution was the same as in Example 2 except that the resin γ was used in place of the resin b, the ammonium sulfate was used instead of the ammonium nitrate, and the solid content concentration was changed to 1.0%. Adjusted. The coating solution was coated and evaluated using the same method as in Example 2. The properties of the coating solution are shown in Table 1, and the paper quality evaluation results are shown in Table 2.

(比較例5)
塗工液に樹脂aの代わりに樹脂δを用いた以外は、実施例1と同様にして塗工液を調整した。この塗工液は塗工粘度が高かったため、塗工できなかった。塗工液の性状を表1に示した。
(Comparative Example 5)
A coating solution was prepared in the same manner as in Example 1 except that the resin δ was used in place of the resin a. Since this coating solution had a high coating viscosity, it could not be applied. The properties of the coating solution are shown in Table 1.

(比較例6)
塗工液に樹脂aを用いなかった以外は、実施例1と同様にして塗工液を調整した。この塗工液を実施例1と同様の方法を用いて塗工、評価試験を行った。塗工液の性状を表1、紙質評価結果を表2に示した。
(Comparative Example 6)
A coating solution was prepared in the same manner as in Example 1 except that the resin a was not used as the coating solution. The coating solution was coated and evaluated using the same method as in Example 1. The properties of the coating solution are shown in Table 1, and the paper quality evaluation results are shown in Table 2.

<評価方法>
塗工液粘度 :ブルックフィールド回転粘度計使用し50℃で測定した。
比破裂強さ :JIS P−8131に準拠した。
比圧縮強さ :JIS P−8126に準拠した。
表面強度 :
ドライ ピック :RI印刷試験機、ニップ幅10mm
インキ:FINE INK.(大日本インキ化学工業株式会社製、IGT印刷適性用)インキのT.V.=20
印刷後の紙むけ状態を肉眼で観察し、5を優とし、1を劣として評価を行った。
<Evaluation method>
Coating solution viscosity: measured at 50 ° C. using a Brookfield rotational viscometer.
Specific burst strength: Based on JIS P-8131.
Specific compressive strength: compliant with JIS P-8126.
Surface strength:
Dry pick: RI printing tester, nip width 10mm
Ink: FINE INK. (Dainippon Ink and Chemicals, IGT printing aptitude) V. = 20
The paper peeled state after printing was observed with the naked eye, and 5 was evaluated as excellent and 1 was evaluated as inferior.

Figure 2007023422
Figure 2007023422

Figure 2007023422
Figure 2007023422

Claims (6)

少なくともアクリルアミド類(a)と不飽和ジカルボン酸類(b)と(メタ)アリルスルホン酸及び/またはその塩(c)とを反応して得られるアニオン性アクリルアミド系樹脂[A]を含有する表面塗工剤組成物を塗工してなることを特徴とする古紙が50重量%以上配合されている少なくとも表層及び裏層を有する2層以上を抄き合せた多層抄きライナーの製造方法。 Surface coating containing an anionic acrylamide resin [A] obtained by reacting at least acrylamides (a), unsaturated dicarboxylic acids (b), (meth) allylsulfonic acid and / or a salt thereof (c) A method for producing a multi-layer papermaking liner comprising two or more layers having at least a surface layer and a back layer, in which at least 50% by weight of waste paper is blended. 表面塗工剤組成物が無機塩類[B]を含有することを特徴とする請求項1に記載のライナーの製造方法。 The method for producing a liner according to claim 1, wherein the surface coating agent composition contains an inorganic salt [B]. 無機塩類[B]が、アルカリ金属及び/又はアンモニウム塩類であることを特徴とする請求項2に記載のライナーの製造方法。 The method for producing a liner according to claim 2, wherein the inorganic salt [B] is an alkali metal and / or ammonium salt. 無機塩類[B]が塩化ナトリウム、硫酸ナトリウム、硫酸アンモニウムから選ばれる少なくとも1種であることを特徴とする請求項2に記載のライナーの製造方法。 The method for producing a liner according to claim 2, wherein the inorganic salt [B] is at least one selected from sodium chloride, sodium sulfate, and ammonium sulfate. 不飽和ジカルボン酸類(b)がイタコン酸及び/又はその塩であることを特徴とする請求項1〜4のいずれかに記載のライナーの製造方法。 The method for producing a liner according to any one of claims 1 to 4, wherein the unsaturated dicarboxylic acids (b) are itaconic acid and / or a salt thereof. アクリルアミド系樹脂[A]が少なくともアクリルアミド類(a)と不飽和ジカルボン酸類(b)と(メタ)アリルスルホン酸及び/またはその塩(c)と架橋剤(d)とを反応して得られることを特徴とする請求項1〜5のいずれかに記載のライナーの製造方法。 Acrylamide resin [A] is obtained by reacting at least acrylamides (a), unsaturated dicarboxylic acids (b), (meth) allylsulfonic acid and / or salt (c) and crosslinking agent (d). The method for producing a liner according to claim 1, wherein:
JP2005207052A 2005-07-15 2005-07-15 Method for producing liner Pending JP2007023422A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005207052A JP2007023422A (en) 2005-07-15 2005-07-15 Method for producing liner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005207052A JP2007023422A (en) 2005-07-15 2005-07-15 Method for producing liner

Publications (1)

Publication Number Publication Date
JP2007023422A true JP2007023422A (en) 2007-02-01

Family

ID=37784571

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005207052A Pending JP2007023422A (en) 2005-07-15 2005-07-15 Method for producing liner

Country Status (1)

Country Link
JP (1) JP2007023422A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009235636A (en) * 2008-03-28 2009-10-15 Daio Paper Corp Method for producing cardboad
JP2016003419A (en) * 2014-06-18 2016-01-12 大王製紙株式会社 Manufacturing method of center core for cardboard and center core for cardboard

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009235636A (en) * 2008-03-28 2009-10-15 Daio Paper Corp Method for producing cardboad
JP2016003419A (en) * 2014-06-18 2016-01-12 大王製紙株式会社 Manufacturing method of center core for cardboard and center core for cardboard

Similar Documents

Publication Publication Date Title
KR101836210B1 (en) Surface application of polymers to improve paper strength
JPWO2020045514A1 (en) Papermaking additives, paper and paper manufacturing methods
JP3358377B2 (en) Surface paper quality improver
JP2001525892A (en) Use of hydrolyzed N-vinylcarboxylic acid amide polymers as an agent to increase the dry strength of paper, paperboard and cardboard
JP2000273387A (en) Paper surface improver
JP2007023422A (en) Method for producing liner
JP2713021B2 (en) Surface paper quality improver
JP2005226200A (en) Paper making method
JP4058798B2 (en) Surface coating agent composition and method for producing coated paper
JP2794414B2 (en) Cationic polyacrylamide, Z-axis paper strength and interlayer paper strength Paper strength enhancer and drainage improver
JP4501386B2 (en) Antifouling agent and antifouling method
JP3221190B2 (en) Composition for improving surface paper quality
JP2007326952A (en) Papermaking additive and method for producing paper and paperboard
JP3503328B2 (en) Surface paper quality improver and method for producing coated paper
JPH0457991A (en) Additive for paper-making process
JPH10195115A (en) Emulsion composition, its production, paper making additive and paper containing the additive
JP3100443B2 (en) Paper surface strength improver
JP2001020198A (en) Papermaking additive
JPH10259590A (en) Improving agent for surface paper quality using modified starch
JP2000129590A (en) Anionic acrylamide polymer and its use
JP2005154966A (en) Paper making method
JPH1112984A (en) Surface paper quality-improving agent composition and production of coated paper
JP3156607B2 (en) Surface paper quality improver for neutral paper
JP3099147B2 (en) Processing agent for paper
JPH111889A (en) Improving agent composition for quality of paper surface and production of coated paper