JP2007023383A - Sintered valve seat and production method therefor - Google Patents

Sintered valve seat and production method therefor Download PDF

Info

Publication number
JP2007023383A
JP2007023383A JP2006162088A JP2006162088A JP2007023383A JP 2007023383 A JP2007023383 A JP 2007023383A JP 2006162088 A JP2006162088 A JP 2006162088A JP 2006162088 A JP2006162088 A JP 2006162088A JP 2007023383 A JP2007023383 A JP 2007023383A
Authority
JP
Japan
Prior art keywords
mass
powder
valve seat
sulfide
balance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006162088A
Other languages
Japanese (ja)
Other versions
JP4467013B2 (en
Inventor
Hideaki Kawada
英昭 河田
Hiroki Fujitsuka
裕樹 藤塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Hitachi Powdered Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Powdered Metals Co Ltd filed Critical Hitachi Powdered Metals Co Ltd
Priority to JP2006162088A priority Critical patent/JP4467013B2/en
Publication of JP2007023383A publication Critical patent/JP2007023383A/en
Application granted granted Critical
Publication of JP4467013B2 publication Critical patent/JP4467013B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a sintered valve seat which exhibits excellent high-temperature abrasion resistance in a high-load engine environment such as in a CNG engine or a heavy-duty diesel engine and to provide a method for producing the same. <P>SOLUTION: The sintered valve seat is composed of a Co-based alloy having a composition of 48 to 60 mass% Mo, 3 to 12 mass% Cr, 1 to 5 mass% Si, and the balance being Co and inevitable impurities, and having a structure comprising 5 to 40 mass% of hard phase mainly formed of molybdenum silicides and integrally precipitated and dispersed in the Co-based alloy matrix and a Cr sulfide dispersing around the hard phase. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、自動車エンジンの焼結バルブシートおよびその製造方法等に係り、特に、CNGエンジン、ヘビーデューティーディーゼルエンジン等の高負荷エンジンに用いて好適な焼結合金製のバルブシートの開発技術に関する。   The present invention relates to a sintered valve seat for an automobile engine, a manufacturing method thereof, and the like, and more particularly, to a technology for developing a sintered alloy valve seat suitable for use in a high load engine such as a CNG engine or a heavy duty diesel engine.

近年、自動車エンジンは高性能化により作動条件が一段と厳しくなっており、エンジンに用いられるバルブシートにおいても、従来に増して厳しい使用環境条件に耐えることが必要となってきている。たとえば、タクシー用の自動車に多く搭載されるLPGエンジンにおいては、バルブおよびバルブシートの摺接面が乾燥状態で使用されるため、ガソリンエンジンのバルブシートに比べ摩耗が早い。また、高有鉛ガソリンエンジンのようにスラッジが付着するような環境では、バルブシートに対する面圧が高い場合、あるいはディーゼルエンジンのように高温・高圧縮比の場合に、スラッジにより摩耗が促進される。このような厳しい環境で使用される場合には、耐摩耗性が良いことに併せ、へたり現象を生じないような高い強度が要求される。   In recent years, the operating conditions of automobile engines have become more severe due to higher performance, and the valve seats used in engines are also required to withstand more severe use environment conditions than ever before. For example, in an LPG engine that is often mounted in a taxi automobile, the sliding contact surfaces of the valve and the valve seat are used in a dry state, and therefore wear is faster than that of a gasoline engine valve seat. Also, in an environment where sludge adheres, such as a highly leaded gasoline engine, wear is promoted by sludge when the surface pressure against the valve seat is high, or when the temperature and compression ratio are high, such as a diesel engine. . When used in such a harsh environment, high wear resistance is required, and high strength that does not cause a sag phenomenon is required.

一方、バルブシートが摩耗してもバルブの位置とバルブ駆動タイミングとを自動調節できるラッシュアジャスタ装置を備えた動弁機構も実用化されているが、バルブシートの摩耗によるエンジン寿命の問題が解決されているとは言えず、耐摩耗性に優れたバルブシート用材料の開発が望まれている。また、近年では、高性能化を目指すだけではなく、経済性を重視した安価な自動車の開発も重要視されつつあり、したがってこれからのバルブシート用焼結合金としては、上記ラッシュアジャスタ装置のような付加的な機構を必要としない高温耐摩耗性、高強度を有するものであることが求められるようになってきている。   On the other hand, a valve mechanism equipped with a lash adjuster device that can automatically adjust the valve position and valve drive timing even when the valve seat is worn has been put into practical use, but the problem of engine life due to wear of the valve seat has been solved. However, development of a valve seat material having excellent wear resistance is desired. Also, in recent years, not only aiming at high performance, but also the development of inexpensive automobiles with an emphasis on economy has been emphasized. Therefore, as a sintered alloy for valve seats in the future, such as the above lash adjuster device There is a growing demand for high-temperature wear resistance and high strength that do not require additional mechanisms.

このようなバルブシート用焼結合金としては、Fe−Co系とFe−Cr系との斑状基地中にCo−Mo−Si系硬質粒子を分散させた技術が開示されている(特許文献1参照)。また、Fe−Co系基地中にCo−Mo−Si系硬質粒子を分散させた技術も開示されている(特許文献2参照)。そして、Fe−Co系にNiを添加した基地中にCo−Mo−Si系硬質粒子を分散させた技術も開示されている(特許文献3参照)。さらに、Co−Mo−Si系硬質粒子を分散させたFe基合金も開示されている(特許文献4参照)。   As such a sintered alloy for a valve seat, a technique in which Co—Mo—Si hard particles are dispersed in a patchy base of Fe—Co and Fe—Cr (see Patent Document 1) is disclosed. ). In addition, a technique in which Co—Mo—Si hard particles are dispersed in an Fe—Co base is also disclosed (see Patent Document 2). And the technique which disperse | distributed Co-Mo-Si type hard particles in the base which added Ni to Fe-Co type is also indicated (refer to patent documents 3). Furthermore, an Fe-based alloy in which Co—Mo—Si hard particles are dispersed is also disclosed (see Patent Document 4).

特公昭59−037343号公報Japanese Examined Patent Publication No. 59-037343 特公平05−055593号公報Japanese Patent Publication No. 05-055593 特公平07−098985号公報Japanese Patent Publication No. 07-098985 特開平02−163351号公報Japanese Patent Laid-Open No. 02-163351

これらの特許文献1〜4に記載されている合金中の硬質粒子は、Mo量が40質量%以下のものであるが、この硬質粒子を含む焼結合金は相当の高温耐摩耗性、高強度を有するものである。しかしながら、近年においては、さらに、高温耐摩耗性、高強度を有する焼結合金が望まれている。特に、近年実用化されてきているCNGエンジンや、高出力用のヘビーデューティーディーゼルエンジン等のエンジンにおいては、金属接触に伴うバルブシート材への負荷が一層高いため、そのような環境下でも高い耐摩耗性を発揮する材料の開発が望まれている。   The hard particles in the alloys described in these Patent Documents 1 to 4 have an Mo amount of 40% by mass or less, but the sintered alloy containing these hard particles has considerable high temperature wear resistance and high strength. It is what has. However, in recent years, a sintered alloy having high temperature wear resistance and high strength has been desired. In particular, in CNG engines that have been put into practical use in recent years and heavy-duty diesel engines for high output, the load on the valve seat material due to metal contact is even higher, so even in such an environment high resistance Development of a material that exhibits wear is desired.

よって本発明は、特に、CNGエンジンやヘビーデューティーディーゼルエンジン等の高負荷エンジン環境において、優れた高温耐摩耗性を発揮する焼結バルブシートおよびその製造方法を提供することを目的としている。   Accordingly, an object of the present invention is to provide a sintered valve seat that exhibits excellent high-temperature wear resistance and a method for manufacturing the same, particularly in a high-load engine environment such as a CNG engine or a heavy-duty diesel engine.

本発明の焼結バルブシートは、金属組織の状態から、第1〜第3発明の焼結バルブシートを備えている。以下、これらの焼結バルブシートと、その製造方法について説明する。   The sintered valve seat of the present invention includes the sintered valve seats of the first to third inventions from the state of the metal structure. Hereinafter, these sintered valve seats and their manufacturing methods will be described.

[1]第1発明の焼結バルブシート
第1発明の焼結バルブシートは本発明の基本構成と言えるもので、基地中に、組成が、Mo:48〜60質量%、Cr:3〜12質量%、Si:1〜5質量%、および残部:Coと不可避不純物からなりCo基合金基地中にモリブデン珪化物を主とする析出物が塊状に一体となって析出した硬質相が5〜40質量%分散するとともに、硬質相の周囲にCr硫化物が分散する組織を呈することを特徴としている。図1は、この第1発明の焼結バルブシートの金属組織を模式的に表している。以下、本発明のバルブシートの金属組織、含有元素等について、個々に説明する。
[1] Sintered valve seat of the first invention The sintered valve seat of the first invention can be said to be a basic structure of the present invention, and the composition is Mo: 48-60 mass%, Cr: 3-12 in the base. Mass%, Si: 1 to 5% by mass, and the balance: Co and inevitable impurities, and a hard phase in which precipitates mainly composed of molybdenum silicide precipitate in a lump in a Co base alloy matrix are 5 to 40 It is characterized by being dispersed by mass% and exhibiting a structure in which Cr sulfide is dispersed around the hard phase. FIG. 1 schematically shows the metal structure of the sintered valve seat of the first invention. Hereinafter, the metal structure and contained elements of the valve seat of the present invention will be described individually.

〈硬質相および硬質相の周囲に形成されるCr硫化物について〉
硬質相は、上記の如く、Mo:48〜60質量%、Cr:3〜12質量%、Si:1〜5質量%、および残部:Coと不可避不純物からなりCo基合金基地中にモリブデン珪化物を主とする析出物が塊状に一体となって析出した組織を呈している。そして、この硬質相の周囲に、図1に示すように、Cr硫化物が析出、分散している。
<Cr sulfide formed around hard phase and hard phase>
As described above, the hard phase is composed of Mo: 48 to 60% by mass, Cr: 3 to 12% by mass, Si: 1 to 5% by mass, and the balance: Co and inevitable impurities. This shows a structure in which precipitates mainly composed of are precipitated in a lump. As shown in FIG. 1, Cr sulfide is precipitated and dispersed around the hard phase.

本発明の硬質相は、Mo量が増加することによって析出するモリブデン珪化物を増加させ、かつ、一体化させて析出させたもので、併せて、Si量を、必要なモリブデン珪化物を生成する必要量に最適化して、Mo量の増加に伴う粉末の硬さの増加を最小限に止めたものである。   The hard phase of the present invention increases the molybdenum silicide precipitated as the amount of Mo increases and is integrated and precipitated, and at the same time, produces the necessary molybdenum silicide with the Si amount. Optimized to the required amount, the increase in the hardness of the powder accompanying the increase in the Mo amount is minimized.

図4は、従来の耐摩耗性焼結合金からなるバルブシートの金属組織を模式的に示す図であり、この図によると、従来のバルブシートの硬質相は、モリブデン珪化物が硬質相の合金基地内に群状に析出しており、このような金属組織によると、金属接触が発生する環境下では、硬質粒子として機能するモリブデン珪化物以外の硬質相の合金基地部分が基点となって、塑性流動、凝着が発生し、摩耗が生じやすかった。   FIG. 4 is a diagram schematically showing a metal structure of a valve seat made of a conventional wear-resistant sintered alloy. According to this figure, the hard phase of the conventional valve seat is an alloy in which molybdenum silicide is a hard phase. Deposited in groups in the base, and according to such a metal structure, in an environment where metal contact occurs, the base of the alloy base of the hard phase other than molybdenum silicide functioning as hard particles, Plastic flow and adhesion occurred, and wear was likely to occur.

一方、本発明の硬質相においては、モリブデン珪化物を一体化させ、かつ、塊状に形成したことにより、硬質相の合金基地部分の塑性流動および凝着の発生を、ピン止め効果によって抑制することができ、よって耐摩耗性を向上させることができる。   On the other hand, in the hard phase of the present invention, the molybdenum silicide is integrated and formed into a lump, thereby suppressing the plastic flow and adhesion of the alloy base portion of the hard phase by the pinning effect. Therefore, the wear resistance can be improved.

また、本発明においては上記硬質相の周囲に、潤滑性に優れたCr硫化物が析出分散することで、硬質相自体が塑性流動してしまうことが防止され、その結果、より一層の耐摩耗性の向上が果たせる。   Further, in the present invention, Cr sulfide having excellent lubricity is precipitated and dispersed around the hard phase, so that the hard phase itself is prevented from plastic flow, and as a result, further wear resistance is achieved. Improves sex.

本発明の硬質相は、焼結バルブシートの基地中に5〜40質量%分散させると、極めて良好な耐摩耗性を示す。5質量%未満では耐摩耗性向上の効果が顕著ではなく、40質量%を越えると、混合粉末の圧縮性が低下することにより焼結体の強度が低下するとともに、相手攻撃性が高まり、かえって摩耗量が増大することとなる。   When the hard phase of the present invention is dispersed in an amount of 5 to 40% by mass in the base of the sintered valve seat, it exhibits extremely good wear resistance. If the amount is less than 5% by mass, the effect of improving the wear resistance is not remarkable. If the amount exceeds 40% by mass, the compressibility of the mixed powder is reduced, so that the strength of the sintered body is reduced and the attack of the other party is increased. The amount of wear will increase.

〈上記成分組成(含有元素)の数値限定の根拠〉
上記硬質相は、後述する基地形成鋼粉末(A)〜(E)のような、従来より焼結バルブシートの基地として用いられている合金基地を適用することができ、基地を形成する鋼粉末あるいは混合粉末に、下記の硬質相形成粉末(F)が添加、混合されることにより、好適に形成される。
(F)Mo:48〜60質量%、Cr:3〜12質量%、Si:1〜5質量%、および残部:Coと不可避不純物よりなるCo基合金粉末。
これら成分組成の数値限定の根拠は、以下の通りである。
<Reason for numerical limitation of the above component composition (containing elements)>
The hard phase can be applied to an alloy base that has been conventionally used as a base for sintered valve seats, such as base-forming steel powders (A) to (E) described later, and the steel powder that forms the base. Or the following hard phase formation powder (F) is added and mixed with mixed powder, and it forms suitably.
(F) Co-based alloy powder comprising Mo: 48 to 60% by mass, Cr: 3 to 12% by mass, Si: 1 to 5% by mass, and the balance: Co and inevitable impurities.
The grounds for limiting the numerical values of these component compositions are as follows.

・Mo:48〜60質量%
Moは、主にSiと結合して、耐摩耗性、潤滑性に優れたモリブデン珪化物を形成し、焼結合金の耐摩耗性の向上に寄与する。また一部のMoは、硬質相のCo、Crと結合してモリブデン複合珪化物を形成する。Mo含有量が48質量%未満の場合にはモリブデン珪化物が一体化して析出せず、従来のような粒状のモリブデン珪化物がCo基硬質相中に分散する形態となり、耐摩耗性が従来程度に止まる。逆に、Mo含有量が60質量%を超えると、粉末の硬さが高くなって成形時の圧縮性を損ねる。また、形成される硬質相が脆くなるため、衝撃によって一部が欠けてしまい、研摩粉の作用によって耐摩耗性が逆に低下する。よって、Mo含有量は48〜60質量%とした。
・ Mo: 48-60 mass%
Mo mainly bonds with Si to form molybdenum silicide excellent in wear resistance and lubricity, and contributes to improvement in wear resistance of the sintered alloy. A part of Mo combines with hard phase Co and Cr to form molybdenum composite silicide. When the Mo content is less than 48% by mass, the molybdenum silicide is not integrated and deposited, and the conventional granular molybdenum silicide is dispersed in the Co-based hard phase, and the wear resistance is about the same as before. Stop on. On the other hand, when the Mo content exceeds 60% by mass, the hardness of the powder increases and the compressibility during molding is impaired. Moreover, since the hard phase to be formed becomes brittle, part of the hard phase is lost due to impact, and the wear resistance is reduced by the action of the abrasive powder. Therefore, the Mo content is set to 48 to 60% by mass.

・Cr:3〜12質量%
Crは、硬質相のCo基地の強化に寄与する。また、Fe基地へ拡散して、硬質相をFe基地に固着するとともに、Fe基地に固溶して基地を強化することで耐摩耗性の向上に寄与する。さらに、Fe基地に拡散したCrはSと結合することにより、硬質相の周囲に潤滑性に優れたCr硫化物を形成し、耐摩耗性の向上に寄与する。Cr含有量が3質量%に満たないとこれらの効果が乏しい。逆に、Cr含有量が12質量%を超えると、粉末の酸素量が多くなって粉末表面に酸化被膜が形成され、焼結の進行を阻害するとともに、酸化被膜により粉末が硬くなるため圧縮性の低下が生じる。このため、焼結合金の強度が低下し、耐摩耗性の低下を招くことから、Cr含有量の上限値は12質量%とした。以上により、Cr含有量は3〜12質量%とした。
・ Cr: 3-12% by mass
Cr contributes to strengthening the hard-phase Co base. Further, it diffuses to the Fe base and fixes the hard phase to the Fe base, and contributes to the improvement of the wear resistance by solid solution in the Fe base and strengthening the base. Further, Cr diffused in the Fe base is combined with S to form Cr sulfide having excellent lubricity around the hard phase, thereby contributing to improvement of wear resistance. If the Cr content is less than 3% by mass, these effects are poor. On the other hand, if the Cr content exceeds 12% by mass, the amount of oxygen in the powder increases and an oxide film is formed on the surface of the powder. Decrease. For this reason, since the intensity | strength of a sintered alloy falls and causes a fall of abrasion resistance, the upper limit of Cr content was 12 mass%. As described above, the Cr content was set to 3 to 12% by mass.

・Si:1〜5質量%
Siは、主にMoと結合して、耐摩耗性、潤滑性に優れたモリブデン珪化物を形成し、焼結合金の耐摩耗性の向上に寄与する。Si含有量が1質量%未満の場合には、十分なモリブデン珪化物が得られないため、十分な耐摩耗性の向上効果が得られない。一方、Si含有量が過剰であると、Moと反応せずに基地に拡散するSiが増える。SiはFe基地を硬くするが、同時に脆くもする。このため、ある程度のSiの基地への拡散は、硬質相の基地への固着の点で有効である。しかしながら、過剰なSiの拡散は、Fe基地の耐摩耗性を低下させ、相手攻撃性を増加させることとなるので、好ましくない。ここで、Moと反応しないSi量を低減すれば、その分、粉末の硬さを増加させずに適切なMo量を与えることができる。よって、Mo量と反応しないで基地に拡散するSiが増え始める5質量%をSi含有量の上限とした。以上により、Si含有量は1〜5質量%とした。
・ Si: 1 to 5% by mass
Si mainly combines with Mo to form molybdenum silicide excellent in wear resistance and lubricity, and contributes to improvement in wear resistance of the sintered alloy. When the Si content is less than 1% by mass, a sufficient molybdenum silicide cannot be obtained, so that a sufficient wear resistance improvement effect cannot be obtained. On the other hand, if the Si content is excessive, Si that diffuses into the base without reacting with Mo increases. Si hardens the Fe base, but also makes it brittle. For this reason, a certain amount of Si diffusion to the base is effective in terms of fixing the hard phase to the base. However, excessive diffusion of Si is not preferable because it reduces the wear resistance of the Fe base and increases the partner's aggression. Here, if the amount of Si that does not react with Mo is reduced, an appropriate amount of Mo can be provided without increasing the hardness of the powder. Therefore, the upper limit of the Si content is set to 5 mass% where Si diffused to the base without reacting with the Mo amount starts to increase. As described above, the Si content is set to 1 to 5% by mass.

〈S供給源である硫化物粉末について〉
硬質相の周囲に形成されるCr硫化物の析出に必要となるSは、以下の(G)〜(J)の硫化物粉末のいずれかの硫化物が分解することによって供給される。
(G)二硫化モリブデン粉末
(H)二硫化タングステン粉末
(I)硫化鉄粉末
(J)硫化銅粉末
<About sulfide powder as S supply source>
S required for precipitation of Cr sulfide formed around the hard phase is supplied by the decomposition of any of the following sulfides (G) to (J).
(G) Molybdenum disulfide powder (H) Tungsten disulfide powder (I) Iron sulfide powder (J) Copper sulfide powder

金属硫化物は全て安定ではなく、一部の金属硫化物は焼結時に分解しやすいものであり、二硫化モリブデン、硫化タングステン、硫化鉄、および硫化銅は特定の条件下で分解しやすいことが、参考文献(化学大辞典9縮刷版 共立出版株式会社 昭和39年3月15日発行)にも記載されている。また、実際の焼結過程においては、雰囲気中に含まれる水分、酸素、水素および鉄粉表面に吸着する水分や酸素の脱着により分解条件が満たされて分解することがあり、また硫化物が高温で活性となった金属表面と反応したり、高温で活性となった金属表面が触媒として作用して硫化物の分解を促進することは十分考えられる。一方、硫化マンガンや硫化クロムは、上記参考文献によっても分解し難い金属硫化物であることが判る。   Metal sulfides are not all stable, some metal sulfides are prone to decomposition during sintering, and molybdenum disulfide, tungsten sulfide, iron sulfide, and copper sulfide can easily decompose under certain conditions. , And a reference (issued on March 15, 1964, Kyoritsu Publishing Co., Ltd.). Also, in the actual sintering process, moisture, oxygen, hydrogen, and moisture adsorbed on the surface of the iron powder may be decomposed due to desorption of moisture and oxygen, and sulfides may be decomposed at high temperatures. It is fully conceivable that the metal surface activated at the high temperature reacts or the metal surface activated at a high temperature acts as a catalyst to promote the decomposition of the sulfide. On the other hand, it is found that manganese sulfide and chromium sulfide are metal sulfides that are hardly decomposed even by the above-mentioned references.

なお、硫化物の形成能は電気陰性度と相関があり、Sは電気陰性度の低い元素と結合して硫化物を形成しやすいという傾向を有する。ここで、各元素の電気陰性度は、
Mn(1.5)<Cr(1.6)<Fe,Ni,Co,Mo(1.8)<Cu(1.9)
の順となっており、Mnが最も結合しやすいため、選択的にマンガン硫化物を析出させることができる。この序列は上記参考文献の記載とも一致する。
The ability to form sulfides has a correlation with electronegativity, and S tends to form sulfides by binding to elements having low electronegativity. Here, the electronegativity of each element is
Mn (1.5) <Cr (1.6) <Fe, Ni, Co, Mo (1.8) <Cu (1.9)
Since Mn is most easily bonded, manganese sulfide can be selectively deposited. This order is consistent with the description in the above reference.

上記硫化物粉末を用いて、硬質相の周囲に十分な量のCr硫化物粒子を析出分散させるためには、硫化物粉末の添加量は、S分として0.04質量%以上が必要となる。一方、過剰な硫化物粉末の添加は、分解後に残留する気孔量が増大することによってバルブシートの強度低下を引き起こし、これに起因して耐摩耗性の低下を招くこととなるため、その上限をS分として5質量%となる量に止めるべきである。なお、上記の硫化物粉末が分解した金属成分は基地に拡散するが、硫化物粉末として二硫化モリブデン粉末、硫化タングステン粉末または硫化銅粉末を選択した場合は、分解して生じたMo、W、Cuは基地に拡散して基地の固溶強化に働き、基地の耐摩耗性向上に寄与する。   In order to deposit and disperse a sufficient amount of Cr sulfide particles around the hard phase using the above sulfide powder, the amount of sulfide powder added is required to be 0.04% by mass or more as S content. . On the other hand, the addition of excess sulfide powder causes a decrease in the strength of the valve seat due to an increase in the amount of pores remaining after decomposition, and this results in a decrease in wear resistance. The amount of S content should be 5% by mass. The metal component decomposed by the above-mentioned sulfide powder diffuses to the base. However, when molybdenum disulfide powder, tungsten sulfide powder, or copper sulfide powder is selected as the sulfide powder, Mo, W, Cu diffuses into the base and works to strengthen the solid solution of the base, thereby contributing to improvement of the wear resistance of the base.

〈基地について〉
本発明のバルブシートの基地は、下記(a)〜(e)に示す従来の基地を用いることができる。
<About the base>
As the base of the valve seat of the present invention, conventional bases shown in the following (a) to (e) can be used.

(a)Mo:1.5〜5質量%、C:0.4〜1.2質量%および残部がFeおよび不可避不純物からなり、組織がベイナイトとなる基地。
(b)Cr:2〜4質量%、Mo:0.2〜0.4質量%、V:0.2〜0.4質量%、C:0.4〜1.2質量%および残部:Feと不可避不純物からなり、組織がベイナイトとなる基地。
(c)Co:5.5〜7.5質量%、Mo:0.5〜3質量%、Ni:0.1〜3質量%、C:0.4〜1.2質量%および残部:Feと不可避不純物からなり、組織がソルバイトとなる基地。
(d)Mo:0.4〜4質量%、Ni:0.6〜5質量%、Cu:0.5〜5質量%、Cr:0.05〜2質量%、およびV:0.05〜0.6質量%、C:0.4〜1.2質量%および残部:Feと不可避不純物からな、組織がベイナイト単相組織またはベイナイトとマルテンサイトの混合組織となる基地。
(e)Ni:1〜10%、Cu:1〜3%、Mo:0.4〜1.0%、C:0.4〜1.2質量%および残部がFeと不可避不純物からなり、マルテンサイトとオーステナイトとベイナイトとパーライトの混合組織となる基地。
(A) Mo: 1.5 to 5% by mass, C: 0.4 to 1.2% by mass, the balance is Fe and inevitable impurities, and the base is bainite.
(B) Cr: 2-4% by mass, Mo: 0.2-0.4% by mass, V: 0.2-0.4% by mass, C: 0.4-1.2% by mass and the balance: Fe A base that consists of unavoidable impurities and has a bainite structure.
(C) Co: 5.5 to 7.5% by mass, Mo: 0.5 to 3% by mass, Ni: 0.1 to 3% by mass, C: 0.4 to 1.2% by mass, and the balance: Fe A base that consists of inevitable impurities and the organization is sorbite.
(D) Mo: 0.4-4 mass%, Ni: 0.6-5 mass%, Cu: 0.5-5 mass%, Cr: 0.05-2 mass%, and V: 0.05- 0.6% by mass, C: 0.4 to 1.2% by mass, and balance: Fe and inevitable impurities, and the base is a bainite single phase structure or a mixed structure of bainite and martensite.
(E) Ni: 1 to 10%, Cu: 1 to 3%, Mo: 0.4 to 1.0%, C: 0.4 to 1.2% by mass, and the balance consisting of Fe and inevitable impurities. Base that is a mixed structure of site, austenite, bainite, and perlite.

本発明は、上記(a)〜(e)の基地組織から少なくとも1種選択されるが、要求される耐摩耗性の程度およびコストに応じて、適宜選択し組み合わせることができる。   The present invention is selected from at least one of the above base structures (a) to (e), and can be appropriately selected and combined depending on the required degree of wear resistance and cost.

上記(a)〜(e)の単相組織もしくは混合組織は、下記(A)〜(E)の鋼粉末とC:0.4〜1.2質量%の黒鉛粉末を基地形成粉末として用いることで形成できる。   For the single phase structure or mixed structure of (a) to (e) above, the following (A) to (E) steel powder and C: 0.4 to 1.2 mass% graphite powder are used as the base forming powder. Can be formed.

(A)Mo:1.5〜5質量%および残部がFeおよび不可避不純物からなる鋼粉末。
(B)Cr:2〜4質量%、Mo:0.2〜0.4質量%、V:0.2〜0.4質量%および残部:Feと不可避不純物からなる鋼粉末。
(C)Co:5.5〜7.5質量%、Mo:0.5〜3質量%、Ni:0.1〜3質量%、および残部:Feと不可避不純物からなる鋼粉末。
(D)Mo:0.4〜4質量%、Ni:0.6〜5質量%、Cu:0.5〜5質量%、Cr:0.05〜2質量%、およびV:0.05〜0.6質量%、および残部:Feと不可避不純物からなる鋼粉末。
(E)Ni:1〜10%、Cu:1〜3%、Mo:0.4〜1.0%、および残部がFeと不可避不純物からなる部分拡散鋼粉。
(A) Mo: Steel powder consisting of 1.5 to 5% by mass and the balance being Fe and inevitable impurities.
(B) Cr: 2-4% by mass, Mo: 0.2-0.4% by mass, V: 0.2-0.4% by mass and the balance: steel powder comprising Fe and inevitable impurities.
(C) Steel powder comprising Co: 5.5 to 7.5% by mass, Mo: 0.5 to 3% by mass, Ni: 0.1 to 3% by mass, and the balance: Fe and inevitable impurities.
(D) Mo: 0.4-4 mass%, Ni: 0.6-5 mass%, Cu: 0.5-5 mass%, Cr: 0.05-2 mass%, and V: 0.05- 0.6% by mass and the balance: steel powder composed of Fe and inevitable impurities.
(E) Partially diffused steel powder consisting of Ni: 1 to 10%, Cu: 1 to 3%, Mo: 0.4 to 1.0%, and the balance of Fe and inevitable impurities.

Cは原料粉末の圧縮性の観点より上記の鋼粉末に黒鉛粉末を添加して付与される。ただし、C量(黒鉛粉末添加量)が0.4質量%に満たないと、基地組織中に強度、耐摩耗性ともに低いフェライト組織が混在するようになる。一方、C量(黒鉛粉末添加量)が1.2質量%を超えると硬いが脆いセメンタイトが析出するようになって相手攻撃性が高くなるとともに、耐摩耗性、強度が低下することとなる。したがって、C量(黒鉛粉末添加量)を0.4〜1.2質量%にする必要がある。   C is added by adding graphite powder to the above steel powder from the viewpoint of compressibility of the raw material powder. However, if the amount of C (addition amount of graphite powder) is less than 0.4% by mass, a ferrite structure having low strength and wear resistance is mixed in the base structure. On the other hand, when the amount of C (addition amount of graphite powder) exceeds 1.2% by mass, hard but brittle cementite is precipitated, and the opponent attack property becomes high, and wear resistance and strength are lowered. Therefore, the C amount (graphite powder addition amount) needs to be 0.4 to 1.2% by mass.

また、上記の基地にニッケル粉末および/または銅粉末を5質量%以下添加することで、基地組織をマルテンサイトとオーステナイトとベイナイトの混合相としても良い。この場合、基地が、5質量%以下のNiおよび/または5質量%以下のCuにより強化され、基地強度の向上が果たされる。ただしニッケル粉添加の場合、添加量が5質量%を超えると軟質なオーステナイトの量が増加するため、また銅粉末の場合、添加量が5質量%を超えると軟質な遊離銅相が基地組織中に発生し始めるため、その添加量の上限を各々5質量%に止める必要がある。   Further, the base structure may be a mixed phase of martensite, austenite, and bainite by adding 5 mass% or less of nickel powder and / or copper powder to the base. In this case, the base is strengthened by Ni of 5% by mass or less and / or Cu by 5% by mass or less, and the base strength is improved. However, in the case of nickel powder addition, the amount of soft austenite increases when the addition amount exceeds 5% by mass. In the case of copper powder, if the addition amount exceeds 5% by mass, the soft free copper phase is in the base structure. Therefore, it is necessary to limit the upper limit of the amount added to 5% by mass.

図1に示した金属組織を呈する第1発明の焼結バルブシートを製造する方法は、上記技術に基づきなされた本発明のうちの1つであり、すなわち、上記基地形成鋼粉末(A)〜(E)のうちの少なくとも1種に、上記硬質相形成粉末(F)を5〜40質量%と、黒鉛粉末:0.4〜1.2質量%と、上記硫化物粉末(G)〜(J)のうちの少なくとも1種からなり原料粉末中のS量が0.04〜5質量%となる量を添加して混合した原料粉末を、所望の形状に圧粉成形した後、焼結することを特徴としている。   The method for producing the sintered valve seat of the first invention exhibiting the metal structure shown in FIG. 1 is one of the present inventions based on the above technique, that is, the base-forming steel powder (A) to In at least one of (E), 5-40% by mass of the hard phase-forming powder (F), graphite powder: 0.4-1.2% by mass, and the sulfide powders (G)-( The raw material powder composed of at least one of J) and added in such an amount that the amount of S in the raw material powder is 0.04 to 5% by mass is compacted into a desired shape and then sintered. It is characterized by that.

本発明方法では、上記のように、基地にNiおよび/またはCuを添加させる目的で、原料粉末が、ニッケル粉末5質量%以下および/または銅粉末5質量%以下を含有することを含む。   In the method of the present invention, as described above, for the purpose of adding Ni and / or Cu to the base, it is included that the raw material powder contains 5% by mass or less of nickel powder and / or 5% by mass or less of copper powder.

[2]第2発明の焼結バルブシート
第2発明の焼結バルブシートは、第1発明の焼結バルブシートの基地中に、さらにCr硫化物粒子が群状に析出した潤滑相を5〜20質量%分散させたものである。図2は、この第2発明の焼結バルブシートの金属組織を模式的に表しており、潤滑性に優れたCr硫化物が硬質相の周囲に加わっており、このCr硫化物を基地中において群状にスポット的に分散させることで、基地の潤滑性が向上して耐摩耗性が改善される。
[2] Sintered valve seat of the second invention The sintered valve seat of the second invention comprises a lubricating phase in which Cr sulfide particles are further precipitated in groups in the base of the sintered valve seat of the first invention. 20% by mass is dispersed. FIG. 2 schematically shows the metal structure of the sintered valve seat according to the second aspect of the present invention. Cr sulfide excellent in lubricity is added around the hard phase. By dispersing the spots in groups, the lubricity of the base is improved and the wear resistance is improved.

バルブシートを切削加工するにあたり、硫化物が基地中に均一に分散する場合には、刃先が均一に硫化物にぶつかる。このため、切削抵抗を低減する効果が得られる。また、チップブレーク作用により切削粉の除去が容易となり、刃先への熱のこもりが防止され、刃先温度が低下するという効果も得られる。これらの効果により被削性はさらに向上する。一方、硫化物粒子自体は小さいので、基地組織の潤滑性を向上させて耐摩耗性を向上させるためには、多量の硫化物が必要となるが、多量の硫化物を基地中に分散させると基地の強度が低下を引き起こすこととなる。   When cutting the valve seat, if the sulfide is uniformly dispersed in the base, the cutting edge uniformly hits the sulfide. For this reason, the effect of reducing cutting resistance is acquired. In addition, the chip breaking action facilitates removal of cutting powder, prevents heat from being accumulated on the blade edge, and provides an effect that the blade edge temperature is lowered. These effects further improve machinability. On the other hand, since the sulfide particles themselves are small, in order to improve the lubricity of the matrix structure and improve the wear resistance, a large amount of sulfide is required, but if a large amount of sulfide is dispersed in the matrix, The strength of the base will be reduced.

このため本発明においては、潤滑性に優れたCr硫化物を群状にスポット的に基地中に分散させることで、基地の強度低下を引き起こさない程度の少量のCr硫化物により基地の耐摩耗性の向上を実現するものである。このような潤滑相は、基地中の分散量が5質量%に満たないと、基地の潤滑性向上による耐摩耗性向上の効果が乏しい。一方、20質量%を超えて分散させると基地の強度低下が顕著となる。このため基地中への潤滑相の分散は5〜20質量%とする必要がある。   For this reason, in the present invention, the Cr sulfide having excellent lubricity is dispersed in the base in a spot-like manner in the base, and the wear resistance of the base is reduced by a small amount of Cr sulfide that does not cause a reduction in the base strength. It is intended to realize improvement. In such a lubricating phase, if the amount of dispersion in the base is less than 5% by mass, the effect of improving the wear resistance by improving the lubricity of the base is poor. On the other hand, when the content exceeds 20% by mass, the strength of the base is significantly reduced. For this reason, the dispersion of the lubricating phase in the base needs to be 5 to 20% by mass.

上記のCr硫化物粒子が群状に析出した潤滑相は、4〜25質量%のCrを含有するクロム含有鋼粉末を原料粉末に添加することで形成することができる。すなわち、焼結過程において上記の硫化物粉末が分解して生じたSが、クロム含有鋼粉末中のCrと結合してCr硫化物が元のクロム含有鋼粉末の部分に析出することで、基地中に群状に分散下組織となる。このため、潤滑相の組成は、元のクロム含有鋼粉末の組成とほぼ一致し、すなわちCr:4〜25質量%を含有するものである。またCr硫化物が群状に析出する部分の合金基地は、Fe−Cr系合金基地となる。   The lubricating phase in which the above-mentioned Cr sulfide particles are precipitated in a group can be formed by adding chromium-containing steel powder containing 4 to 25% by mass of Cr to the raw material powder. That is, S generated by the decomposition of the sulfide powder in the sintering process is combined with Cr in the chromium-containing steel powder, and Cr sulfide is deposited on the original chromium-containing steel powder portion. It becomes a dispersed substructure in groups. For this reason, the composition of the lubricating phase substantially matches the composition of the original chromium-containing steel powder, that is, contains Cr: 4 to 25% by mass. Further, the alloy base where Cr sulfide precipitates in a group is an Fe-Cr alloy base.

この潤滑相におけるCr量は、4質量%に満たないとCr硫化物が析出せず、耐摩耗性の向上に寄与しない。一方、Cr量が25質量%を超えるとクロム含有鋼粉末が硬くなって圧縮性を損なうとともに、σ相が生じて脆化するため、上限を25質量%とする必要がある。   If the amount of Cr in this lubricating phase is less than 4% by mass, Cr sulfide does not precipitate and does not contribute to improvement of wear resistance. On the other hand, if the Cr content exceeds 25% by mass, the chromium-containing steel powder becomes hard and the compressibility is impaired, and the σ phase is generated and embrittles, so the upper limit needs to be 25% by mass.

上記潤滑相は、上記のように4〜25質量%のCrを含有するクロム含有鋼粉末により形成できるが、そのクロム含有鋼粉末は、具体的には、下記の(L)〜(Q)のうちの少なくとも1種から選択される。   The lubricating phase can be formed from chromium-containing steel powder containing 4 to 25% by mass of Cr as described above. Specifically, the chromium-containing steel powder is the following (L) to (Q) It is selected from at least one of them.

(L)Cr:4〜25質量%、および残部:Feと不可避不純物からなるクロム含有鋼粉末
(M)Cr:4〜25質量%、Ni:3.5〜22質量%、および残部:Feと不可避不純物からなるクロム含有鋼粉末。
(N)Cr:4〜25質量%と、Mo:0.3〜7質量%、Cu:1〜4質量%、Al:0.1〜5質量%、N:0.3質量%以下、Mn:5.5〜10質量%、Si:0.15〜5質量%、Nb:0.45質量%以下、P:0.2質量%以下、S:0.15質量%以下、およびSe:0.15%以下のうち、少なくとも1種以上、および残部:Feと不可避不純物からなるクロム含有鋼粉末。
(O)Cr:4〜25質量%と、Ni:3.5〜22質量%と、Mo:0.3〜7質量%、Cu:1〜4質量%、Al:0.1〜5質量%、N:0.3質量%以下、Mn:5.5〜10質量%、Si:0.15〜5質量%、Nb:0.45質量%以下、P:0.2質量%以下、S:0.15質量%以下、およびSe:0.15%以下のうち、少なくとも1種以上、および残部:Feと不可避不純物からなるクロム含有鋼粉末。
(P)Cr:7.5〜25質量%、Mo:0.3〜3.0質量%、C:0.25〜2.4質量%、およびV:0.2〜2.2質量%とW:1.0〜5.0質量%の1種または2種以上、残部がFeと不可避不純物からなるクロム含有鋼粉末。
(Q)Cr、4〜6質量%、Mo:4〜8質量%、V:0.5〜3質量%、W:4〜8%、C:0.6〜1.2%、および残部:Feと不可避的不純物からなるクロム含有鋼粉末。
(L) Cr: 4 to 25% by mass, and the balance: chromium-containing steel powder composed of Fe and inevitable impurities (M) Cr: 4 to 25% by mass, Ni: 3.5 to 22% by mass, and the balance: Fe Chrome-containing steel powder consisting of inevitable impurities.
(N) Cr: 4 to 25% by mass, Mo: 0.3 to 7% by mass, Cu: 1 to 4% by mass, Al: 0.1 to 5% by mass, N: 0.3% by mass or less, Mn : 5.5-10 mass%, Si: 0.15-5 mass%, Nb: 0.45 mass% or less, P: 0.2 mass% or less, S: 0.15 mass% or less, and Se: 0 A chromium-containing steel powder composed of at least one of 15% or less and the balance: Fe and inevitable impurities.
(O) Cr: 4 to 25% by mass, Ni: 3.5 to 22% by mass, Mo: 0.3 to 7% by mass, Cu: 1 to 4% by mass, Al: 0.1 to 5% by mass N: 0.3 mass% or less, Mn: 5.5-10 mass%, Si: 0.15-5 mass%, Nb: 0.45 mass% or less, P: 0.2 mass% or less, S: A chromium-containing steel powder comprising at least one of 0.15% by mass or less and Se: 0.15% or less, and the balance: Fe and inevitable impurities.
(P) Cr: 7.5-25 mass%, Mo: 0.3-3.0 mass%, C: 0.25-2.4 mass%, and V: 0.2-2.2 mass% W: One or more of 1.0 to 5.0% by mass of chromium-containing steel powder, the balance being Fe and inevitable impurities.
(Q) Cr, 4-6 mass%, Mo: 4-8 mass%, V: 0.5-3 mass%, W: 4-8%, C: 0.6-1.2%, and the balance: A chromium-containing steel powder consisting of Fe and inevitable impurities.

上記(L)はFe−Cr合金であり、Crが12質量%を超えるものはフェライト系ステンレス鋼粉として知られるものである。また、上記(N)のように他の元素で特性を改善したフェライト系ステンレス鋼粉も使用可能である。   The above (L) is an Fe—Cr alloy, and those in which Cr exceeds 12 mass% are known as ferritic stainless steel powders. Also, ferritic stainless steel powder whose characteristics are improved with other elements as in (N) above can be used.

上記(M)はFe−Ni−Cr合金であり、Crが12質量%を超えるものはオーステナイト系ステンレス鋼粉として知られるものである。また、(O)のように他の元素で特性を改善したオーステナイト系ステンレス鋼粉も使用可能である。   The above (M) is an Fe—Ni—Cr alloy, and the one in which Cr exceeds 12 mass% is known as an austenitic stainless steel powder. In addition, austenitic stainless steel powder having improved characteristics with other elements such as (O) can also be used.

上記(P)はダイス鋼粉として知られるものであり、元来、含有されるCrはクロム炭化物として析出するが、本発明のようにSと共存する場合、析出するCrの大部分がCr硫化物として析出する。なお、一部にクロム炭化物が残留したり、モリブデン炭化物、バナジウム炭化物、タングステン炭化物、およびそれらの複合炭化物が析出してCr硫化物と共存する潤滑相が得られる。   The above (P) is known as die steel powder, and originally contained Cr precipitates as chromium carbide, but when coexisting with S as in the present invention, most of the precipitated Cr is Cr sulfide. It precipitates as a product. In addition, a lubricating phase in which chromium carbide remains in part, or molybdenum carbide, vanadium carbide, tungsten carbide, and composite carbides thereof precipitate and coexist with Cr sulfide is obtained.

上記(Q)は高速度工具鋼粉として知られるものであり、上記(P)と同様、Sと共存してCr硫化物を析出するほか、一部にクロム炭化物が残留したり、モリブデン炭化物、バナジウム炭化物、タングステン炭化物、およびそれらの複合炭化物が析出してCr硫化物と共存する潤滑相が得られる。   (Q) is known as high-speed tool steel powder. Like (P), in addition to depositing Cr sulfide together with S, chromium carbide remains in part, molybdenum carbide, A lubricating phase in which vanadium carbide, tungsten carbide, and composite carbides thereof precipitate and coexist with Cr sulfide is obtained.

図2に示した金属組織を呈する第2発明の焼結バルブシートを製造する方法は、上記技術に基づきなされた本発明のうちの1つであり、すなわち、上記第1発明の焼結バルブシートの製造方法において、原料粉末が、さらに、潤滑相形成粉末として4〜25質量%のCrを含有するクロム含有鋼粉末を5〜20質量%を含むことを特徴としている。この場合、さらに、クロム含有鋼粉末が、上記(L)〜(Q)のうちの少なくとも1種からなることを含む。   The method for producing the sintered valve seat of the second invention exhibiting the metal structure shown in FIG. 2 is one of the present inventions based on the above technique, that is, the sintered valve seat of the first invention. In this manufacturing method, the raw material powder further contains 5 to 20% by mass of chromium-containing steel powder containing 4 to 25% by mass of Cr as a lubricating phase forming powder. In this case, it is further included that the chromium-containing steel powder is composed of at least one of the above (L) to (Q).

[3]第3発明の焼結バルブシート
上記の(P)および(Q)の場合は、潤滑相にCr硫化物とともに炭化物が析出した組織となるが、これが第3発明の焼結バルブシートである。図3は、第3発明の焼結バルブシートの金属組織を模式的に表しており、この焼結バルブシートによれば、潤滑相に炭化物が析出することで、潤滑相の合金基地部分の塑性流動を防止して耐摩耗性を一層向上させることができる。(P)と(Q)を比較すると、(P)の方が炭化物が少なく、(Q)の方が炭化物が多く析出する潤滑相が得られ、所望の特性に応じて適宜選択可能である。
[3] Sintered valve seat of the third invention In the case of the above (P) and (Q), it becomes a structure in which carbide is precipitated together with Cr sulfide in the lubricating phase. This is the sintered valve seat of the third invention. is there. FIG. 3 schematically shows the metal structure of the sintered valve seat of the third invention. According to this sintered valve seat, carbides precipitate in the lubricating phase, so that the plasticity of the alloy base portion of the lubricating phase is increased. The wear resistance can be further improved by preventing the flow. When (P) and (Q) are compared, a lubricating phase in which (P) has less carbide and (Q) precipitates more carbide is obtained, and can be appropriately selected according to desired characteristics.

さて、上記第1〜第3発明の焼結バルブシートにおいては、従来より行われている被削性改善物質添加法を併用して製造することができる。その方法としては、上記の耐摩耗性焼結部材の気孔中または粉末粒界に、硫化マンガン粒子、弗化カルシウム粒子、窒化硼素粒子、珪酸マグネシウム系鉱物粒子、ビスマス粒子、および酸化ビスマス粒子のうち少なくとも1種を分散させる方法である。   Now, the sintered valve seats of the first to third inventions can be manufactured by using a conventional machinability improving substance addition method. As the method, manganese sulfide particles, calcium fluoride particles, boron nitride particles, magnesium silicate mineral particles, bismuth particles, and bismuth oxide particles are placed in the pores of the wear-resistant sintered member or in the powder grain boundaries. This is a method of dispersing at least one kind.

これらの被削性改善物質は高温でも安定であり、粉末の形態で原料粉末に添加しても焼結過程で分解せず、被削性改善物質として上記の箇所に分散して被削性を改善できる。この被削性改善物質添加法の併用により、より一層の耐摩耗性焼結部材の被削性改善を行うことができる。また、被削性改善物質添加法を併用する場合の被削性改善物質粉末の添加量は、過剰に添加すると耐摩耗性焼結部材の強度を損ない、耐摩耗性の低下を招くため、上限を2.0質量%に止めるべきである。   These machinability improving materials are stable even at high temperatures, and even when added to the raw powder in the form of powder, they do not decompose during the sintering process, and are dispersed in the above locations as machinability improving materials to improve machinability. Can improve. By using this machinability improving substance addition method in combination, the machinability of the wear-resistant sintered member can be further improved. In addition, the amount of the machinability improving substance powder added when the machinability improving substance addition method is used in combination with the upper limit because excessive addition will impair the strength of the wear resistant sintered member and cause a decrease in wear resistance. Should be kept at 2.0% by weight.

さらに、本発明の焼結バルブシートにおいては、上記特許文献2等に記載されているように、耐摩耗性焼結部材の気孔を、鉛または鉛合金、銅または銅合金、アクリル樹脂のうちのいずれかで、含浸もしくは溶浸する方法で満たし、これによって被削性の改善を図る技術を併用することができる。   Furthermore, in the sintered valve seat of the present invention, as described in Patent Document 2 and the like, the pores of the wear-resistant sintered member are made of lead or lead alloy, copper or copper alloy, or acrylic resin. In any case, it is possible to use a technique that fills with an impregnation or infiltration method and thereby improves machinability.

すなわち、鉛または鉛合金、銅または銅合金、アクリル樹脂は気孔中に存在すると、切削時に、切削形態が断続切削から連続切削に変化する。このため、工具に与える衝撃を減少させて工具刃先の損傷を防止し、被削性を向上させるといった効果がある。また、鉛または鉛合金、銅または銅合金は軟質であるため、工具刃面に付着して工具の刃先を保護し、被削性および工具の寿命を向上させるとともに、使用時にバルブシートとバルブのフェイス面との間で固体潤滑剤として作用し、双方の摩耗を減少させる働きがある。さらに、銅または銅合金は熱伝導率が高く、切削時に刃先で発生する熱を外部へ逃がし、刃先部の熱のこもりを防止して刃先部のダメージを軽減するといった効果がある。   That is, when lead or lead alloy, copper or copper alloy, and acrylic resin are present in the pores, the cutting mode changes from intermittent cutting to continuous cutting during cutting. For this reason, it is effective in reducing the impact given to a tool, preventing damage to a tool edge, and improving machinability. Also, since lead or lead alloy, copper or copper alloy is soft, it adheres to the tool blade surface and protects the cutting edge of the tool, improving machinability and tool life, and at the time of use, the valve seat and valve It acts as a solid lubricant with the face surface and functions to reduce wear on both sides. Furthermore, copper or a copper alloy has a high thermal conductivity, and has the effect of releasing heat generated at the cutting edge during cutting to the outside, preventing heat accumulation at the cutting edge and reducing damage to the cutting edge.

本発明によれば、基地中に、組成が、Mo:48〜60質量%、Cr:3〜12質量%、Si:1〜5質量%、および残部:Coと不可避不純物からなりCo基合金基地中にモリブデン珪化物を主とする析出物が塊状に一体となって析出した硬質相が5〜40質量%分散するとともに、その硬質相の周囲にCr硫化物が分散する組織を備えさせたことにより、金属接触に伴う負荷を軽減させ、そのような環境下でもより一層の高い耐摩耗性を発揮する焼結バルブシートとなる。よって、CNGエンジンやヘビーデューティーディーゼルエンジン等の高負荷エンジン環境において、優れた高温耐摩耗性を発揮するバルブシートを提供することができるといった効果を奏する。   According to the present invention, in the matrix, the composition is Mo: 48 to 60 mass%, Cr: 3 to 12 mass%, Si: 1 to 5 mass%, and the balance: Co and inevitable impurities. A hard phase in which precipitates mainly composed of molybdenum silicide are integrally precipitated in a lump is dispersed in an amount of 5 to 40% by mass, and a structure in which Cr sulfide is dispersed around the hard phase is provided. Thus, the load associated with the metal contact is reduced, and a sintered valve seat that exhibits even higher wear resistance under such an environment is obtained. Therefore, it is possible to provide a valve seat that exhibits excellent high temperature wear resistance in a high load engine environment such as a CNG engine or a heavy duty diesel engine.

原料粉末として、以下の組成の各種粉末を混合し、さらに、成形潤滑剤(ステアリン酸亜鉛0.8質量%)を配合して、原料粉末を調製した。なお、元素記号の前の数字は粉末中に含まれる元素の質量%を示し、例えば「Fe-5Mo」はMoを5質量%含有し残部がFeおよび不可避不純物からなることを示している。   Various powders having the following composition were mixed as raw material powders, and a molding lubricant (zinc stearate 0.8% by mass) was further blended to prepare raw material powders. The number before the element symbol indicates the mass% of the element contained in the powder. For example, “Fe-5Mo” indicates that 5 mass% of Mo is contained and the balance is composed of Fe and inevitable impurities.

・基地形成粉末 :Fe-5Mo (残部)
・硬質相形成粉末:成分組成は表1の通り (25質量%;一定)
・硫化物粉末 :MoS (2質量%)
・黒鉛粉末 : (1.1質量%)
・ Base forming powder: Fe-5Mo (remainder)
・ Hard phase forming powder: Component composition is as shown in Table 1 (25% by mass; constant)
・ Sulfide powder: MoS 2 (2% by mass)
Graphite powder: (1.1% by mass)

この混合粉末を、成形圧力650MPaで、外径:φ30(mm)×内径:φ20(mm)×高さ:h10(mm)のリングに成形した。   This mixed powder was molded into a ring of outer diameter: φ30 (mm) × inner diameter: φ20 (mm) × height: h10 (mm) at a molding pressure of 650 MPa.

Figure 2007023383
Figure 2007023383

次に、これら成形体を、1180℃のアンモニア分解ガス雰囲気中で60分間加熱して焼結し、表1に示す組成の試料01〜16を作製した。これら試料について、次の要領で簡易摩耗試験を行った。   Next, these compacts were heated and sintered in an ammonia decomposition gas atmosphere at 1180 ° C. for 60 minutes to prepare samples 01 to 16 having the compositions shown in Table 1. These samples were subjected to a simple wear test in the following manner.

簡易摩耗試験は、高温下で叩きと摺動の入力がかかる状態で行った。具体的には、上記試料を、内径面に45°のテーパ面を有するバルブシート形状に加工し、試料をアルミ合金製ハウジングに圧入、嵌合した。そして、SUH−36素材で作製した、外形面に一部45°のテーパ面を有する円盤形状の相手材(バルブに相当)を、モータ駆動による偏心カムの回転によって上下ピストン運動させることにより、試料と相手材のテーパ面同士を繰り返し衝突させた。   The simple wear test was performed in a state in which tapping and sliding input were applied at a high temperature. Specifically, the sample was processed into a valve seat shape having a 45 ° tapered surface on the inner diameter surface, and the sample was press-fitted and fitted into an aluminum alloy housing. Then, a disk-shaped mating material (corresponding to a valve) made of SUH-36 material and having a tapered surface with a part of 45 ° on the outer surface is moved up and down by a motor-driven eccentric cam to move the sample. And the taper surfaces of the mating material repeatedly collided.

すなわち、バルブの動作は、モータ駆動によって回転する偏心カムによってバルブシートから離れる開放動作と、バルブスプリングによるバルブシートへの着座動作とを繰り返し、上下ピストン運動が実現される。なお、この試験では、相手材をバーナーで加熱して試料が300℃となるように温度設定し、簡易摩耗試験叩き回数を2800回/分、繰り返し時間を15時間とした。このようにして、試験後の試料および相手材(表1では、それぞれバルブシートおよびバルブと表記)の摩耗量を測定し、評価を行った。
実施例1の試験結果を、表1に併記する。
That is, the operation of the valve repeats the opening operation of separating from the valve seat by the eccentric cam rotated by the motor drive and the seating operation on the valve seat by the valve spring, thereby realizing the vertical piston motion. In this test, the partner material was heated with a burner and the temperature was set so that the sample reached 300 ° C., the number of hits of the simple wear test was 2800 times / minute, and the repetition time was 15 hours. In this way, the wear amount of the sample after test and the counterpart material (indicated in Table 1 as a valve seat and a valve, respectively) was measured and evaluated.
The test results of Example 1 are also shown in Table 1.

表1の試料番号01〜06を見ると、硬質相形成粉末中のMo量が48〜60質量%の範囲である試料(試料番号02〜05)は、バルブシートおよびバルブの摩耗量が安定して低くなっており、良好な耐摩耗性を示すことが判る。一方、Mo量が48〜60質量%の範囲を逸脱している試料(試料番号01,06)は、特にバルブシートの摩耗量が顕著に高くなっており、バルブの摩耗量も比較的高い。したがって、硬質相形成粉末中のMo量が48〜60質量%の範囲であれば、優れた耐摩耗性が実現されることが確認された。   Looking at the sample numbers 01 to 06 in Table 1, the sample in which the amount of Mo in the hard phase forming powder is in the range of 48 to 60% by mass (sample numbers 02 to 05) has a stable valve seat and valve wear amount. It can be seen that it shows a good wear resistance. On the other hand, in the sample (sample number 01, 06) in which the Mo amount deviates from the range of 48 to 60% by mass, the wear amount of the valve seat is particularly high, and the wear amount of the valve is relatively high. Therefore, it was confirmed that if the amount of Mo in the hard phase forming powder is in the range of 48 to 60% by mass, excellent wear resistance is realized.

また、表1の試料番号03,07〜11を見ると、硬質相形成粉末中のCr量が3〜12質量%の範囲である試料(試料番号03,08〜10)は、バルブシートおよびバルブの摩耗量が安定して低くなっており、良好な耐摩耗性を示すことが判る。一方、Cr量が3〜12質量%の範囲を逸脱している試料(試料番号07,11)は、特にバルブシートの摩耗量が顕著に高くなっている。したがって、硬質相形成粉末中のCr量が3〜12質量%の範囲であれば、優れた耐摩耗性が実現されることが確認された。   Moreover, when the sample numbers 03 and 07 to 11 in Table 1 are viewed, the samples (sample numbers 03 and 08 to 10) in which the Cr amount in the hard phase forming powder is in the range of 3 to 12% by mass are the valve seat and the valve. It can be seen that the amount of wear is stable and low and exhibits good wear resistance. On the other hand, in the samples (sample numbers 07 and 11) in which the Cr amount deviates from the range of 3 to 12% by mass, the wear amount of the valve seat is particularly high. Therefore, it was confirmed that excellent wear resistance was achieved when the Cr content in the hard phase forming powder was in the range of 3 to 12 mass%.

次に、表1の試料番号03,12〜16を見ると、硬質相形成粉末中のSi量が1〜5質量%の範囲である試料(試料番号03,13,14)は、バルブシートおよびバルブの摩耗量が安定して低くなっており、良好な耐摩耗性を示すことが判る。一方、Si量が1〜5質量%の範囲を逸脱している試料(試料番号12,15)は、特にバルブシートの摩耗量が顕著に高くなっている。したがって、硬質相形成粉末中のSi量が1〜5質量%の範囲であれば、優れた耐摩耗性が実現されることが確認された。   Next, when looking at sample numbers 03 and 12 to 16 in Table 1, samples (sample numbers 03, 13, and 14) in which the Si amount in the hard phase forming powder is in the range of 1 to 5% by mass are valve seats and It can be seen that the amount of wear of the valve is stable and low, and shows good wear resistance. On the other hand, in the samples (sample numbers 12 and 15) in which the Si amount deviates from the range of 1 to 5% by mass, the wear amount of the valve seat is particularly high. Therefore, it was confirmed that if the Si content in the hard phase forming powder is in the range of 1 to 5% by mass, excellent wear resistance is realized.

また、上記の本発明範囲の試料は、従来例(試料番号16)に比べてはるかに高い耐摩耗性を示すことが確認された。
さらに、試料番号03の試料について金属組織観察を行ったところ、図1の模式図に示すように、硬質相周囲にクロム硫化物が分散していることを確認した。
Moreover, it was confirmed that the sample of the said range of this invention shows much higher abrasion resistance compared with a prior art example (sample number 16).
Further, when the metal structure of the sample No. 03 was observed, it was confirmed that chromium sulfide was dispersed around the hard phase as shown in the schematic diagram of FIG.

以下の原料粉末を用いて、実施例1と同様に、原料粉末を混合し、成形、焼結して、リング状の試料を作製した。そして、これら試料につき、実施例1と同様の条件で簡易摩耗試験を行った。その結果を、表2に示す。   Using the following raw material powder, the raw material powder was mixed, molded and sintered in the same manner as in Example 1 to prepare a ring-shaped sample. And about these samples, the simple abrasion test was done on the conditions similar to Example 1. FIG. The results are shown in Table 2.

・基地形成粉末 :Fe-5Mo (残部)
・硬質相形成粉末:Co-50Mo-10Cr-3Si (添加量は表2の通り)
・硫化物粉末 :MoS (2質量%)
・黒鉛粉末 : (1.1質量%)
・ Base forming powder: Fe-5Mo (remainder)
・ Hard phase forming powder: Co-50Mo-10Cr-3Si (addition amount is as shown in Table 2)
・ Sulfide powder: MoS 2 (2% by mass)
Graphite powder: (1.1% by mass)

Figure 2007023383
Figure 2007023383

表2に示すように、混合粉末全体の質量に対する硬質相形成用合金粉末の添加量が5〜40質量%の範囲である試料(試料番号03,18〜22)は、バルブシートおよびバルブの摩耗量が安定して低くなっており、良好な耐摩耗性を示すことが判る。一方、硬質相形成用合金粉末の添加量が5〜40質量%の範囲を逸脱している焼結合金(試料番号17,23)は、特にバルブシートの摩耗量が顕著に高くなっている。したがって、混合粉末全体の質量に対する硬質相形成用合金粉末の添加量が5〜40質量%の範囲であれば、優れた耐摩耗性が実現されることが確認された。   As shown in Table 2, the samples (sample numbers 03 and 18-22) in which the amount of the hard phase forming alloy powder added to the mass of the mixed powder is in the range of 5 to 40% by mass are the wear of the valve seat and the valve. It can be seen that the amount is stable and low and exhibits good wear resistance. On the other hand, in the sintered alloy (sample numbers 17 and 23) in which the addition amount of the alloy powder for forming the hard phase deviates from the range of 5 to 40% by mass, the wear amount of the valve seat is particularly high. Therefore, it was confirmed that if the addition amount of the alloy powder for forming the hard phase with respect to the total mass of the mixed powder is in the range of 5 to 40% by mass, excellent wear resistance is realized.

以下の原料粉末を用いて、実施例1と同様に、原料粉末を混合し、成形、焼結して、リング状の試料を作製した。そして、これら試料につき、実施例1と同様の条件で簡易摩耗試験を行った。その結果を、表3に示す。   Using the following raw material powder, the raw material powder was mixed, molded and sintered in the same manner as in Example 1 to prepare a ring-shaped sample. And about these samples, the simple abrasion test was done on the conditions similar to Example 1. FIG. The results are shown in Table 3.

・基地形成粉末 :Fe-5Mo鋼粉 (残部)
Fe-6.5Co-1.5Mo-1.5Ni鋼粉 (残部)
Fe-3Cr-0.3Mo-0.3V鋼粉 (残部)
Fe-6.5Co-1.5Mo-1.5Ni鋼粉とFe-3Cr-0.3Mo-0.3V鋼粉を半々(残部)
Fe-4Ni-1.5Cu-0.5Mo部分拡散鋼粉 (残部)
・硬質相形成粉末:Co-50Mo-10Cr-3Si (25質量%)
Co-28Mo-8Cr-2.5Si(従来例) (25質量%)
・硫化物粉末 :MoS (2質量%)
・黒鉛粉末 : (1.1質量%)
・ Base forming powder: Fe-5Mo steel powder (remainder)
Fe-6.5Co-1.5Mo-1.5Ni steel powder (remainder)
Fe-3Cr-0.3Mo-0.3V steel powder (remainder)
Half of Fe-6.5Co-1.5Mo-1.5Ni steel powder and Fe-3Cr-0.3Mo-0.3V steel powder (remainder)
Fe-4Ni-1.5Cu-0.5Mo partially diffused steel powder (remainder)
・ Hard phase forming powder: Co-50Mo-10Cr-3Si (25% by mass)
Co-28Mo-8Cr-2.5Si (conventional example) (25% by mass)
・ Sulfide powder: MoS 2 (2% by mass)
・ Graphite powder: (1.1% by mass)

Figure 2007023383
Figure 2007023383

表3に示す実施例3は、各種基地に本発明の硬質相および硫化物を適用した場合と、従来の硬質相を適用した場合について、耐摩耗性を比較したものである。これによると、従来より焼結バルブシートに採用されている各種基地に本発明の硬質相および硫化物を適用した場合、従来の硬質相を適用した場合に比べてはるかに優れた耐摩耗性を示すことが確認された。また、併せて本発明の硬質相は従来より使用されている焼結バルブシートの基地に適用できることが確認された。   Example 3 shown in Table 3 compares the wear resistance when the hard phase and sulfide of the present invention are applied to various bases and when the conventional hard phase is applied. According to this, when the hard phase and sulfide of the present invention are applied to various bases conventionally used for sintered valve seats, the wear resistance is much better than when the conventional hard phase is applied. It was confirmed to show. In addition, it was confirmed that the hard phase of the present invention can be applied to a base of a sintered valve seat that has been used conventionally.

以下の原料粉末を用いて、実施例1と同様に、原料粉末を混合し、成形、焼結して、リング状の試料を作製した。そして、これら試料につき、実施例1と同様の条件で簡易摩耗試験を行った。その結果を、表4に示す。   Using the following raw material powder, the raw material powder was mixed, molded and sintered in the same manner as in Example 1 to prepare a ring-shaped sample. And about these samples, the simple abrasion test was done on the conditions similar to Example 1. FIG. The results are shown in Table 4.

・基地形成粉末 :Fe-5Mo (残部)
・硬質相形成粉末:Co-50Mo-10Cr-3Si (25質量%)
・硫化物粉末 :種類は表4の通り (2質量%)
・黒鉛粉末 : (1.1質量%)
・ Base forming powder: Fe-5Mo (remainder)
・ Hard phase forming powder: Co-50Mo-10Cr-3Si (25% by mass)
・ Sulphide powder: Types are as shown in Table 4 (2% by mass)
Graphite powder: (1.1% by mass)

Figure 2007023383
Figure 2007023383

表4の試料番号32〜35の試料について金属組織観察を行い、クロム硫化物の存在を確認したところ、分解しやすい二硫化タングステン、硫化鉄、硫化銅を添加した試料(試料番号32〜34)では、二硫化モリブデンを添加した試料(試料番号03)と同様、硬質相周囲にクロム硫化物粒子が析出していることが認められた。一方、安定な硫化物である硫化マンガンを添加した試料(試料番号35)では、硫化物は硫化マンガンの形態で気孔および粉末粒界に分散しており、硬質相周囲の基地中には析出硫化物は認められなかった。これらのことより、分解しやすい硫化物を原料粉末に添加することで、焼結時に硫化物が分解して生じたSが、硬質相より基地に拡散したCrと結合してクロム硫化物の形態で析出することが確認された。また、表4に示すように、硬質相周囲にクロム硫化物が析出した試料(試料番号03,32〜34)は、耐摩耗性が改善されや値を示しており、優れた耐摩耗性を示すことが確認された。   The metal structures of the samples Nos. 32-35 in Table 4 were observed and the presence of chromium sulfide was confirmed. Samples added with tungsten disulfide, iron sulfide, and copper sulfide, which were easily decomposed (Sample Nos. 32-34). Then, like the sample to which molybdenum disulfide was added (sample number 03), it was observed that chromium sulfide particles were precipitated around the hard phase. On the other hand, in the sample (Sample No. 35) to which manganese sulfide, which is a stable sulfide, was added, the sulfide was dispersed in pores and powder grain boundaries in the form of manganese sulfide, and precipitated sulfide was present in the matrix around the hard phase. Things were not recognized. From these facts, by adding a sulfide that is easily decomposed to the raw material powder, S generated by the decomposition of the sulfide during sintering combines with Cr diffused to the base from the hard phase, and forms chromium sulfide It was confirmed that it was precipitated. Moreover, as shown in Table 4, the samples (sample numbers 03, 32 to 34) in which chromium sulfide was deposited around the hard phase showed improved wear resistance and values, and excellent wear resistance. It was confirmed to show.

以下の原料粉末を用いて、実施例1と同様に、原料粉末を混合し、成形、焼結して、リング状の試料を作製した。そして、これら試料につき、実施例1と同様の条件で簡易摩耗試験を行った。その結果を、表5に示す。   Using the following raw material powder, the raw material powder was mixed, molded and sintered in the same manner as in Example 1 to prepare a ring-shaped sample. And about these samples, the simple abrasion test was done on the conditions similar to Example 1. FIG. The results are shown in Table 5.

・基地形成粉末 :Fe-5Mo (残部)
・硬質相形成粉末:Co-50Mo-10Cr-3Si (25質量%)
・硫化物粉末 :MoS (2質量%)
・黒鉛粉末 : (1.1質量%)
・潤滑相形成粉末:Fe-12Cr-1Mo-0.5V-1.4C (添加量は表5に示す通り)
・ Base forming powder: Fe-5Mo (remainder)
・ Hard phase forming powder: Co-50Mo-10Cr-3Si (25% by mass)
・ Sulfide powder: MoS 2 (2% by mass)
Graphite powder: (1.1% by mass)
-Lubricating phase forming powder: Fe-12Cr-1Mo-0.5V-1.4C (addition amount is as shown in Table 5)

Figure 2007023383
Figure 2007023383

表5によると、潤滑相形成粉末を5質量%添加(試料番号36)すると、未添加の場合(試料番号03)に比べて、摩耗量が小さくなり耐摩耗性が改善されることが確認された。また、潤滑相形成粉末の添加量が10質量%(試料番号37)のとき、耐摩耗性改善の効果は最大となっている。一方、添加量が10質量%を超えると、耐摩耗性改善の効果が逆に薄れていき、添加量が20質量%を超えると、基地の強度低下の影響が大きくなり、かえって摩耗量が増大している。よって、潤滑相形成粉末の添加量は5〜20質量%の範囲で耐摩耗性改善の効果があることが確認された。   According to Table 5, it is confirmed that when 5% by mass of the lubricating phase forming powder is added (Sample No. 36), the wear amount is reduced and the wear resistance is improved as compared with the case where it is not added (Sample No. 03). It was. Moreover, when the addition amount of the lubricating phase forming powder is 10% by mass (sample number 37), the effect of improving the wear resistance is maximized. On the other hand, when the added amount exceeds 10% by mass, the effect of improving the wear resistance is diminished, and when the added amount exceeds 20% by mass, the influence of the strength of the base is increased, and the wear amount is increased. is doing. Therefore, it was confirmed that the addition amount of the lubricating phase forming powder has an effect of improving the wear resistance in the range of 5 to 20% by mass.

また、潤滑相形成粉末を添加した試料(試料番号37)の金属組織を観察したところ、クロム硫化物が硬質相の周囲に析出し、さらに元の潤滑相形成粉末の箇所に、クロム硫化物粒子が群状に析出していることが確認された。また、このクロム硫化物粒子が群状に析出する潤滑相に一部炭化物粒子が併せて析出していることが確認された。   Further, when the metal structure of the sample to which the lubricating phase forming powder was added (Sample No. 37) was observed, chromium sulfide was precipitated around the hard phase, and further, chromium sulfide particles were found in the original lubricating phase forming powder. It was confirmed that was deposited in groups. Further, it was confirmed that some carbide particles were precipitated together with the lubricating phase in which the chromium sulfide particles were precipitated in groups.

以下の原料粉末を用いて、実施例1と同様に、原料粉末を混合し、成形、焼結して、リング状の試料を作製した。そして、これら試料につき、実施例1と同様の条件で簡易摩耗試験を行った。その結果を、表6に示す。   Using the following raw material powder, the raw material powder was mixed, molded and sintered in the same manner as in Example 1 to prepare a ring-shaped sample. And about these samples, the simple abrasion test was done on the conditions similar to Example 1. FIG. The results are shown in Table 6.

・基地形成粉末 :Fe-5Mo (残部)
・硬質相形成粉末:Co-50Mo-10Cr-3Si (25質量%)
・硫化物粉末 :MoS (2質量%)
・黒鉛粉末 : (1.1質量%)
・潤滑相形成粉末:種類は表6に示す通り (10質量%)
・ Base forming powder: Fe-5Mo (remainder)
・ Hard phase forming powder: Co-50Mo-10Cr-3Si (25% by mass)
・ Sulfide powder: MoS 2 (2% by mass)
Graphite powder: (1.1% by mass)
-Lubricating phase forming powder: The types are as shown in Table 6 (10% by mass)

Figure 2007023383
Figure 2007023383

表6によると、潤滑相形成粉末の種類を変更しても、同様に耐摩耗性改善の効果があることが確認された。また、これらの試料について金属組織を観察したところ、試料番号41,42の試料では、硬質相の周囲にクロム硫化物の析出が認められるとともに、クロム硫化物粒子が群状に析出する潤滑相が基地中に分散していることが確認された。また、試料番号43の試料では、硬質相の周囲にクロム硫化物の析出が認められるとともに、クロム硫化物粒子と炭化物粒子が群状に析出する潤滑相が基地中に分散していることが確認された。   According to Table 6, it was confirmed that even if the type of the lubricating phase forming powder was changed, the effect of improving the wear resistance was similarly obtained. Further, when the metallographic structure of these samples was observed, in the samples of sample numbers 41 and 42, precipitation of chromium sulfide was observed around the hard phase, and a lubricating phase in which chromium sulfide particles precipitated in groups was found. It was confirmed that they were dispersed throughout the base. In addition, in the sample of Sample No. 43, precipitation of chromium sulfide was observed around the hard phase, and it was confirmed that the lubricating phase in which chromium sulfide particles and carbide particles were precipitated in groups was dispersed in the base. It was done.

本発明における第1発明の焼結バルブシートの金属組織を模式的に表す図である。It is a figure which represents typically the metal structure of the sintered valve seat of 1st invention in this invention. 本発明における第2発明の焼結バルブシートの金属組織を模式的に表す図である。It is a figure which represents typically the metal structure of the sintered valve seat of 2nd invention in this invention. 本発明における第3発明の焼結バルブシートの金属組織を模式的に表す図である。It is a figure which represents typically the metal structure of the sintered valve seat of 3rd invention in this invention. 従来のバルブシートの金属組織を模式的に示す図である。It is a figure which shows typically the metal structure of the conventional valve seat.

Claims (13)

基地中に、組成が、Mo:48〜60質量%、Cr:3〜12質量%、Si:1〜5質量%、および残部:Coと不可避不純物からなりCo基合金基地中にモリブデン珪化物を主とする析出物が塊状に一体となって析出した硬質相が5〜40質量%分散するとともに、前記硬質相の周囲にCr硫化物が分散する組織を呈することを特徴とする焼結バルブシート。   In the matrix, the composition is Mo: 48-60 mass%, Cr: 3-12 mass%, Si: 1-5 mass%, and the balance: Co and inevitable impurities. A sintered valve seat characterized by exhibiting a structure in which a hard phase in which main precipitates are integrally formed in a lump is dispersed in an amount of 5 to 40% by mass and Cr sulfide is dispersed around the hard phase. . 前記焼結バルブシート中のS量が0.04〜5質量%であることを特徴とする請求項1に記載の焼結バルブシート。   2. The sintered valve seat according to claim 1, wherein an amount of S in the sintered valve seat is 0.04 to 5 mass%. 前記基地中に、Cr:4〜25質量%を含有するとともに、Fe−Cr系合金基地中にCr硫化物粒子が群状に析出した潤滑相が5〜20質量%分散することを特徴とする請求項1に記載の焼結バルブシート。   The base contains Cr: 4 to 25% by mass, and 5 to 20% by mass of a lubricating phase in which Cr sulfide particles are precipitated in a group is dispersed in the Fe—Cr alloy base. The sintered valve seat according to claim 1. 前記潤滑相中に、炭化物が分散することを特徴とする請求項3に記載の焼結バルブシート。   The sintered valve seat according to claim 3, wherein carbides are dispersed in the lubricating phase. 粉末粒界および気孔中に、硫化マンガン粒子、弗化カルシウム粒子、窒化硼素粒子、珪酸マグネシウム系鉱物粒子、ビスマス粒子、および酸化ビスマス粒子のうち少なくとも1種以上が2質量%以下分散する金属組織を呈することを特徴とする請求項1〜4のいずれかに記載の焼結バルブシート。   A metal structure in which at least one of manganese sulfide particles, calcium fluoride particles, boron nitride particles, magnesium silicate-based mineral particles, bismuth particles, and bismuth oxide particles is dispersed in an amount of 2% by mass or less in the powder grain boundaries and pores. It exhibits, The sintered valve seat | sheet in any one of Claims 1-4 characterized by the above-mentioned. 気孔中に、鉛、鉛合金、銅、銅合金およびアクリル樹脂のうち1種が充填されていることを特徴とする請求項1〜5のいずれかに記載の焼結バルブシート。   The sintered valve seat according to any one of claims 1 to 5, wherein the pores are filled with one of lead, lead alloy, copper, copper alloy and acrylic resin. 下記の基地形成鋼粉末(A)〜(E)のうちの少なくとも1種に、下記の硬質相形成粉末(F)を5〜40質量%と、黒鉛粉末:0.4〜1.2質量%と、下記の硫化物粉末(G)〜(J)のうちの少なくとも1種からなり原料粉末中のS量が0.04〜5質量%となる量を添加して混合した原料粉末を、所望の形状に圧粉成形した後、焼結することを特徴とする焼結バルブシートの製造方法。
「基地形成鋼粉末」
(A)Mo:1.5〜5質量%および残部がFeおよび不可避不純物からなる鋼粉末。
(B)Cr:2〜4質量%、Mo:0.2〜0.4質量%、V:0.2〜0.4質量%および残部:Feと不可避不純物からなる鋼粉末。
(C)Co:5.5〜7.5質量%、Mo:0.5〜3質量%、Ni:0.1〜3質量%、および残部:Feと不可避不純物からなる鋼粉末。
(D)Mo:0.4〜4質量%、Ni:0.6〜5質量%、Cu:0.5〜5質量%、Cr:0.05〜2質量%、およびV:0.05〜0.6質量%、および残部:Feと不可避不純物からなる鋼粉末。
(E)Ni:1〜10%、Cu:1〜3%、Mo:0.4〜1.0%、および残部がFeと不可避不純物からなる部分拡散鋼粉。
「硬質相形成粉末」
(F)Mo:48〜60質量%、Cr:3〜12質量%、Si:1〜5質量%、および残部:Coと不可避不純物よりなるCo基合金粉末。
「硫化物粉末」
(G)二硫化モリブデン粉末
(H)二硫化タングステン粉末
(I)硫化鉄粉末
(J)硫化銅粉末
In at least one of the following base-forming steel powders (A) to (E), 5 to 40% by mass of the following hard phase forming powder (F) and graphite powder: 0.4 to 1.2% by mass And a raw material powder comprising at least one of the following sulfide powders (G) to (J) and added and mixed in an amount such that the amount of S in the raw material powder is 0.04 to 5% by mass. A method for producing a sintered valve seat, comprising: compacting into a green shape and then sintering.
"Base forming steel powder"
(A) Mo: Steel powder consisting of 1.5 to 5% by mass and the balance being Fe and inevitable impurities.
(B) Cr: 2-4% by mass, Mo: 0.2-0.4% by mass, V: 0.2-0.4% by mass and the balance: steel powder comprising Fe and inevitable impurities.
(C) Steel powder comprising Co: 5.5 to 7.5% by mass, Mo: 0.5 to 3% by mass, Ni: 0.1 to 3% by mass, and the balance: Fe and inevitable impurities.
(D) Mo: 0.4-4 mass%, Ni: 0.6-5 mass%, Cu: 0.5-5 mass%, Cr: 0.05-2 mass%, and V: 0.05- 0.6% by mass and the balance: steel powder composed of Fe and inevitable impurities.
(E) Partially diffused steel powder consisting of Ni: 1 to 10%, Cu: 1 to 3%, Mo: 0.4 to 1.0%, and the balance of Fe and inevitable impurities.
"Hard phase forming powder"
(F) Co-based alloy powder comprising Mo: 48 to 60% by mass, Cr: 3 to 12% by mass, Si: 1 to 5% by mass, and the balance: Co and inevitable impurities.
"Sulfide powder"
(G) Molybdenum disulfide powder (H) Tungsten disulfide powder (I) Iron sulfide powder (J) Copper sulfide powder
前記原料粉末が、さらにニッケル粉末5質量%以下を含有することを特徴とする請求項7に記載の焼結バルブシートの製造方法。   The method for producing a sintered valve seat according to claim 7, wherein the raw material powder further contains 5% by mass or less of nickel powder. 前記原料粉末が、さらに銅粉末5質量%以下を含有することを特徴とする請求項7または8に記載の焼結バルブシートの製造方法。   The method for producing a sintered valve seat according to claim 7 or 8, wherein the raw material powder further contains 5% by mass or less of copper powder. 前記原料粉末が、さらに、潤滑相形成粉末として4〜25質量%のCrを含有するクロム含有鋼粉末を5〜20質量%を含むことを特徴とする請求項7〜9のいずれかに記載の焼結バルブシートの製造方法。   The said raw material powder further contains 5-20 mass% of chromium containing steel powder containing 4-25 mass% Cr as lubrication phase formation powder, The any one of Claims 7-9 characterized by the above-mentioned. A method for manufacturing a sintered valve seat. 前記クロム含有鋼粉末が、下記の(L)〜(Q)のうちの少なくとも1種からなることを特徴とする請求項10に記載の焼結バルブシートの製造方法。
(L)Cr:4〜25質量%、および残部:Feと不可避不純物からなるクロム含有鋼粉末。
(M)Cr:4〜25質量%、Ni:3.5〜22質量%、および残部:Feと不可避不純物からなるクロム含有鋼粉末。
(N)Cr:4〜25質量%と、Mo:0.3〜7質量%、Cu:1〜4質量%、Al:0.1〜5質量%、N:0.3質量%以下、Mn:5.5〜10質量%、Si:0.15〜5質量%、Nb:0.45質量%以下、P:0.2質量%以下、S:0.15質量%以下、およびSe:0.15%以下のうち、少なくとも1種以上、および残部:Feと不可避不純物からなるクロム含有鋼粉末。
(O)Cr:4〜25質量%と、Ni:3.5〜22質量%と、Mo:0.3〜7質量%、Cu:1〜4質量%、Al:0.1〜5質量%、N:0.3質量%以下、Mn:5.5〜10質量%、Si:0.15〜5質量%、Nb:0.45質量%以下、P:0.2質量%以下、S:0.15質量%以下、およびSe:0.15%以下のうち、少なくとも1種以上、および残部:Feと不可避不純物からなるクロム含有鋼粉末。
(P)Cr:7.5〜25質量%、Mo:0.3〜3.0質量%、C:0.25〜2.4質量%、およびV:0.2〜2.2質量%とW:1.0〜5.0質量%の1種または2種以上、残部がFeと不可避不純物からなるクロム含有鋼粉末。
(Q)Cr、4〜6質量%、Mo:4〜8質量%、V:0.5〜3質量%、W:4〜8%、C:0.6〜1.2%、および残部:Feと不可避的不純物からなるクロム含有鋼粉末。
The said chromium containing steel powder consists of at least 1 sort (s) of following (L)-(Q), The manufacturing method of the sintered valve seat | sheet of Claim 10 characterized by the above-mentioned.
(L) Cr: 4 to 25% by mass, and balance: chromium-containing steel powder composed of Fe and inevitable impurities.
(M) Cr: 4 to 25% by mass, Ni: 3.5 to 22% by mass, and the balance: chromium-containing steel powder composed of Fe and inevitable impurities.
(N) Cr: 4 to 25% by mass, Mo: 0.3 to 7% by mass, Cu: 1 to 4% by mass, Al: 0.1 to 5% by mass, N: 0.3% by mass or less, Mn : 5.5-10 mass%, Si: 0.15-5 mass%, Nb: 0.45 mass% or less, P: 0.2 mass% or less, S: 0.15 mass% or less, and Se: 0 A chromium-containing steel powder composed of at least one of 15% or less and the balance: Fe and inevitable impurities.
(O) Cr: 4 to 25% by mass, Ni: 3.5 to 22% by mass, Mo: 0.3 to 7% by mass, Cu: 1 to 4% by mass, Al: 0.1 to 5% by mass N: 0.3 mass% or less, Mn: 5.5-10 mass%, Si: 0.15-5 mass%, Nb: 0.45 mass% or less, P: 0.2 mass% or less, S: A chromium-containing steel powder comprising at least one of 0.15% by mass or less and Se: 0.15% or less, and the balance: Fe and inevitable impurities.
(P) Cr: 7.5-25 mass%, Mo: 0.3-3.0 mass%, C: 0.25-2.4 mass%, and V: 0.2-2.2 mass% W: One or more of 1.0 to 5.0% by mass of chromium-containing steel powder, the balance being Fe and inevitable impurities.
(Q) Cr, 4-6 mass%, Mo: 4-8 mass%, V: 0.5-3 mass%, W: 4-8%, C: 0.6-1.2%, and the balance: A chromium-containing steel powder consisting of Fe and inevitable impurities.
前記原料粉末が、硫化マンガン粉末、弗化カルシウム粉末、窒化硼素粉末、珪酸マグネシウム系鉱物粉末、ビスマス粉末、および酸化ビスマス粉末のうち少なくとも1種以上を2質量%以下含むことを特徴とする請求項7〜11のいずれかに記載の焼結バルブシートの製造方法。   The raw material powder contains 2% by mass or less of at least one of manganese sulfide powder, calcium fluoride powder, boron nitride powder, magnesium silicate mineral powder, bismuth powder, and bismuth oxide powder. The manufacturing method of the sintered valve seat | sheet in any one of 7-11. 焼結後に、焼結体の気孔中に、鉛、鉛合金、銅、銅合金またはアクリル樹脂のいずれかを含浸もしくは溶浸することを特徴とする請求項7〜12のいずれかに記載の焼結バルブシートの製造方法。   After sintering, the pores of the sintered body are impregnated or infiltrated with any one of lead, lead alloy, copper, copper alloy, and acrylic resin. A manufacturing method for a valve seat.
JP2006162088A 2005-06-13 2006-06-12 Sintered valve seat manufacturing method Expired - Fee Related JP4467013B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006162088A JP4467013B2 (en) 2005-06-13 2006-06-12 Sintered valve seat manufacturing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005172626 2005-06-13
JP2006162088A JP4467013B2 (en) 2005-06-13 2006-06-12 Sintered valve seat manufacturing method

Publications (2)

Publication Number Publication Date
JP2007023383A true JP2007023383A (en) 2007-02-01
JP4467013B2 JP4467013B2 (en) 2010-05-26

Family

ID=37784541

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006162088A Expired - Fee Related JP4467013B2 (en) 2005-06-13 2006-06-12 Sintered valve seat manufacturing method

Country Status (1)

Country Link
JP (1) JP4467013B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009035786A (en) * 2007-08-02 2009-02-19 Hitachi Powdered Metals Co Ltd Method for manufacturing sintered parts having corrosion resistance and abrasion resistance at high temperature
JP2009035785A (en) * 2007-08-02 2009-02-19 Hitachi Powdered Metals Co Ltd Method for manufacturing sintered parts having corrosion resistance and abrasion resistance at high temperature
JP2012251245A (en) * 2012-07-31 2012-12-20 Hitachi Powdered Metals Co Ltd Method for manufacturing sintered parts having corrosion resistance and abrasion resistance at high temperature
JP2013213278A (en) * 2012-04-02 2013-10-17 Hyundai Motor Co Ltd Sintered alloy for valve seat, method for manufacturing valve seat and valve seat utilizing the same
WO2017110813A1 (en) * 2015-12-22 2017-06-29 山陽特殊製鋼株式会社 High-hardness high-toughness powder
WO2020218479A1 (en) * 2019-04-24 2020-10-29 株式会社ダイヤメット Sintered sliding member and method for producing same

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009035786A (en) * 2007-08-02 2009-02-19 Hitachi Powdered Metals Co Ltd Method for manufacturing sintered parts having corrosion resistance and abrasion resistance at high temperature
JP2009035785A (en) * 2007-08-02 2009-02-19 Hitachi Powdered Metals Co Ltd Method for manufacturing sintered parts having corrosion resistance and abrasion resistance at high temperature
JP2013213278A (en) * 2012-04-02 2013-10-17 Hyundai Motor Co Ltd Sintered alloy for valve seat, method for manufacturing valve seat and valve seat utilizing the same
JP2012251245A (en) * 2012-07-31 2012-12-20 Hitachi Powdered Metals Co Ltd Method for manufacturing sintered parts having corrosion resistance and abrasion resistance at high temperature
WO2017110813A1 (en) * 2015-12-22 2017-06-29 山陽特殊製鋼株式会社 High-hardness high-toughness powder
JP2017115177A (en) * 2015-12-22 2017-06-29 山陽特殊製鋼株式会社 High Hardness High Toughness Powder
WO2020218479A1 (en) * 2019-04-24 2020-10-29 株式会社ダイヤメット Sintered sliding member and method for producing same

Also Published As

Publication number Publication date
JP4467013B2 (en) 2010-05-26

Similar Documents

Publication Publication Date Title
KR100608216B1 (en) Alloy powder for forming hard phase, sintered alloy having an abrasion resistance using the same and method for manufacturing thereof
KR100850152B1 (en) Method of manufacturing the anti-wear sintered member, sintered valve seat, and method of manufacturing the same
KR100796117B1 (en) Sintered valve seat and method of manufacturing the same
JP4368245B2 (en) Hard particle dispersion type iron-based sintered alloy
JP2001050020A (en) Valve device for internal combustion engine
JP2002129296A (en) Iron-base sintered alloy material for valve seat, and valve seat made of iron-base sintered alloy
JP2006307331A (en) Wear-resistant sintered member and producing method therefor
JP4693170B2 (en) Wear-resistant sintered alloy and method for producing the same
JP4467013B2 (en) Sintered valve seat manufacturing method
JP4455390B2 (en) Wear-resistant sintered alloy and method for producing the same
JP4179550B2 (en) Wear-resistant sintered alloy and method for producing the same
US10619229B2 (en) Manufacturing method of wear-resistant iron-based sintered alloy and wear-resistant iron-based sintered alloy
JP2002285293A (en) Valve seat material for high load engine and production method therefor
JP4716366B2 (en) Sintered valve seat manufacturing method
JPH10219411A (en) Wear resistant sintered alloy and its production
JP2003166025A (en) Hard-grain dispersion type sintered alloy and manufacturing method therefor
JP5253132B2 (en) Wear-resistant sintered alloy and method for producing the same
JP2006274359A (en) Alloy powder for forming hard phase and ferrous powder mixture using the same
JP4020857B2 (en) Alloy powder for forming hard phase, iron-based mixed powder using the same, method for producing wear-resistant sintered alloy, and wear-resistant sintered alloy
JP2010144235A (en) Wear-resistant sintered alloy and method for producing the same
JP2000064003A (en) Wear resistant sintered alloy and its production
JP5253131B2 (en) Wear-resistant sintered alloy and method for producing the same
JP2010144237A (en) Wear-resistant sintered alloy and method for producing the same
JPH10280108A (en) Wear resistant iron base sintered alloy
JPH07138714A (en) Wear resistant iron-based sintered alloy and its production

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070920

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091202

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100129

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100219

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100219

R150 Certificate of patent or registration of utility model

Ref document number: 4467013

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130305

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130305

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140305

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees