JPH07138714A - Wear resistant iron-based sintered alloy and its production - Google Patents

Wear resistant iron-based sintered alloy and its production

Info

Publication number
JPH07138714A
JPH07138714A JP11797094A JP11797094A JPH07138714A JP H07138714 A JPH07138714 A JP H07138714A JP 11797094 A JP11797094 A JP 11797094A JP 11797094 A JP11797094 A JP 11797094A JP H07138714 A JPH07138714 A JP H07138714A
Authority
JP
Japan
Prior art keywords
iron
alloy
powder
balance
sintered
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11797094A
Other languages
Japanese (ja)
Other versions
JP3264092B2 (en
Inventor
Yoshitaka Takahashi
義孝 高橋
Tadataka Kaneko
忠孝 金子
Setsuhito Daiza
攝人 台座
Yoshihiko Ito
与志彦 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP11797094A priority Critical patent/JP3264092B2/en
Publication of JPH07138714A publication Critical patent/JPH07138714A/en
Application granted granted Critical
Publication of JP3264092B2 publication Critical patent/JP3264092B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To produce an iron-based sintered alloy excellent in wear resistance. CONSTITUTION:Ni-based alloy power having a compsn. contg., by weight, 2 to 15% Co and 2 to 10%, preferably >3 to 10% Mo, and the balance Fe with inevitable impurities is mixed with Ni-based alloy powder having a compsn. contg. 5 to 20% Mo, 20 to 40% Cr, 10 to 20% W and 10 to 30% Fe, furthermore contg., if necessary, 0.5 to 4% C and <=2% Si, and the balance Ni with inevitable impurities and a lubricant for compacting, which is compacted to form a green compact. This green compact is sintered to form an iron-based sintered alloy. Though the hard grains dispersed into the matrix of the iron-based sintered alloy are constituted of an Ni-based hard alloy and they are hard themselves, C is furthermore incorporated, thereby it combines with Mo, Cr, W, Si and Fe to form carbides to improve the wear resistance.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は耐摩耗性に優れた鉄基焼
結合金とその製造方法に関する。本発明は、例えば、自
動車等の車両の内燃機関に使用されるバルブシート、ピ
ストンリング或いは排気系のカラー等の焼結部品に有用
である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an iron-based sintered alloy having excellent wear resistance and a method for producing the same. INDUSTRIAL APPLICABILITY The present invention is useful for sintered parts such as valve seats, piston rings, and collars of exhaust systems used in internal combustion engines of vehicles such as automobiles.

【0002】[0002]

【従来の技術】耐摩耗性をもつ鉄基焼結合金の従来技術
について、自動車の内燃機関に使用されるバルブシート
用焼結合金を例にとって説明する。従来より、バルブシ
ート用焼結合金としては、Fe−C−Co−Ni基材
料、Fe−C基材料に耐摩耗性の向上を狙ってフェロモ
リブデン(Fe−Mo)、フェロクロム(Fe−Cr)
等の金属間化合物またはFe−C−Cr−Mo−V合金
等を添加したものが使用されている(特開昭56−15
4110号公報)。
2. Description of the Related Art The prior art of an iron-based sintered alloy having wear resistance will be described by taking a sintered alloy for a valve seat used in an internal combustion engine of an automobile as an example. Conventionally, as sintered alloys for valve seats, Fe-C-Co-Ni-based materials, Fe-C-based materials have been used to improve wear resistance, and ferromolybdenum (Fe-Mo) and ferrochrome (Fe-Cr) are used.
An intermetallic compound such as Fe-C-Cr-Mo-V alloy added is used (Japanese Patent Laid-Open No. 56-15).
4110).

【0003】さらに、CrおよびMoを含有するFe−
C基地組織中に、Cr、Mo、V等からなる鉄系硬質粒
子を分散させ耐摩耗性と相手攻撃性を改善した焼結合金
(特開昭60−224762号公報)、またFe−C−
Co−Ni系基地組織中にFeMoおよびFeWからな
る硬質粒子を分散させさらにPb合金等を含浸させて耐
摩耗性を改善した焼結合金(特開昭62−202058
号公報)が開示されている。
Further, Fe-containing Cr and Mo
Sintered alloy in which iron-based hard particles composed of Cr, Mo, V, etc. are dispersed in the C matrix structure to improve wear resistance and opponent attacking property (JP-A-60-224762), and Fe-C-
Sintered alloys having improved wear resistance by dispersing hard particles of FeMo and FeW in a Co-Ni matrix structure and further impregnated with a Pb alloy or the like (JP-A-62-202058).
Japanese patent publication).

【0004】バルブシート材に要求される特性として
は、耐摩耗性の他に耐腐食性および耐熱性が挙げられ
る。ここで耐摩耗性は主として硬質粒子が受持ち、耐腐
食性および耐熱性は主として基地組織が受持ち、両者が
相まって耐久性を確保している。
The properties required of the valve seat material include not only wear resistance but also corrosion resistance and heat resistance. Here, the wear resistance is mainly taken by the hard particles, and the corrosion resistance and heat resistance are mainly taken by the matrix structure, and the two are combined to secure the durability.

【0005】[0005]

【発明が解決しようとする課題】ところで最近、耐摩耗
性鉄基焼結合金を用いる分野においてはその焼結合金の
性質の改善要求が一段と高まっている。例えば、自動車
の内燃機関においては、長寿命化、高出力、高回転化、
排出ガス浄化対策、あるいは燃費向上対策に対する改善
要求が一段と高まっており、このため、自動車の内燃機
関におけるエンジンバルブ、バルブシートに対しては、
従来にも増して厳しい使用環境に耐えることが不可避と
なってきており、耐熱性、耐摩耗性をより一層向上させ
ると共に、高温での耐腐食性を向上させる必要が生じて
きている。
By the way, in recent years, in the field of using wear-resistant iron-based sintered alloys, demands for improving the properties of the sintered alloys have been further increased. For example, in an internal combustion engine of an automobile, long life, high output, high rotation,
There is an ever-increasing demand for improvements in exhaust gas purification measures or fuel efficiency improvement measures. Therefore, for engine valves and valve seats in internal combustion engines of automobiles,
It has become unavoidable to withstand harsh operating environments more than ever, and it is necessary to further improve heat resistance and wear resistance, and also to improve corrosion resistance at high temperatures.

【0006】しかるに、従来より提供されている鉄系バ
ルブシート材の基地の形成は、鉄粉末に対して、合金元
素であるNi粉末、Co粉末、Mo粉末等のそれぞれの
元素の要素粉末を混合した混合粉末を用い、この混合粉
末を原料として圧粉体を成形し、圧粉体を焼結して焼結
体を形成し、これによりNi、Co、Mo等を鉄中に拡
散させている。そのため、これら合金元素を鉄中に完全
に拡散させることが難しく、合金添加量に見合った特性
の向上が得られにくい。
[0006] However, the base of the iron-based valve seat material that has been conventionally provided is formed by mixing element powders of respective elements such as Ni powder, Co powder, Mo powder, which are alloying elements, with iron powder. Using the mixed powder described above, a green compact is formed by using this mixed powder as a raw material, and the green compact is sintered to form a sintered body, whereby Ni, Co, Mo, etc. are diffused in iron. . Therefore, it is difficult to completely diffuse these alloying elements into iron, and it is difficult to improve the characteristics in proportion to the alloying amount.

【0007】そこで、合金元素添加の効果を効率良く引
き出すために、合金元素を予め鉄と合金化した粉末を採
用することが考えられるが、これら合金元素を鉄と予め
合金化した粉末では、固溶硬化により粉末の圧縮性が低
下するため、圧粉体の高密度化が難しくなり、強度及び
耐久性向上に対し不利に作用する。本発明は上記した従
来の鉄基焼結合金における問題点を解決すべくなされた
ものである。請求項1〜8は、Mo、Cr、W、Feま
たはSiの炭化物を有するNi基の硬質粒子を鉄基の基
地組織に分散することにより、近年のバルブシート材な
どの様に、厳しい使用環境に対応でき、耐摩耗性特に高
温における耐摩耗性をより一層向上させた耐摩耗性鉄基
焼結合金およびその製造方法を提供することを目的とす
る。
Therefore, in order to efficiently bring out the effect of the addition of alloying elements, it is conceivable to adopt a powder in which the alloying elements are alloyed with iron in advance. Since the compressibility of the powder is lowered by the solution hardening, it is difficult to increase the density of the green compact, which is disadvantageous for improving the strength and durability. The present invention has been made to solve the above-mentioned problems in the conventional iron-based sintered alloy. Claims 1 to 8 disperse Ni-based hard particles having a carbide of Mo, Cr, W, Fe or Si in an iron-based matrix structure, so that a severe environment for use such as valve seat materials in recent years. It is an object of the present invention to provide a wear-resistant iron-based sintered alloy having improved wear resistance, particularly wear resistance at high temperature, and a method for producing the same.

【0008】更に請求項4〜8は、鉄基合金粉末に対し
てNi基硬質合金粉末と黒鉛粉末等とを混合した混合粉
末を用いることにより、基地を構成する鉄基合金粉末の
圧縮成形性を確保し、更に焼結によりNi基硬質合金粉
末のNiを基地に拡散させることにより、基地の耐酸化
性を確保し、耐摩耗性特に高温における耐摩耗性を一層
向上させた耐摩耗性鉄基焼結合金の製造方法を提供する
ことを目的とする。
Further, according to claims 4 to 8, by using a mixed powder obtained by mixing the Ni-based hard alloy powder and the graphite powder with the iron-based alloy powder, the compression-moldability of the iron-based alloy powder forming the matrix. Of the Ni-based hard alloy powder by sintering to diffuse Ni into the matrix, thereby ensuring the oxidation resistance of the matrix and further improving the wear resistance, especially at high temperatures. An object is to provide a method for producing a base sintered alloy.

【0009】更にまた、請求項3、8は、上記した課題
に加えて、上記した焼結合金を構成する焼結体の気孔に
溶浸剤を溶浸することにより、近年のバルブシート材な
どの様に、厳しい使用環境に対応でき、耐摩耗性、特に
高温における耐摩耗性をより一層向上させた耐摩耗性鉄
基焼結合金、その製造方法を提供することを目的とす
る。
Further, in addition to the above-mentioned problems, the third and the eighth aspects of the present invention provide a valve seat material or the like in recent years by infiltrating an infiltrant into pores of a sintered body forming the above-mentioned sintered alloy. Thus, it is an object of the present invention to provide a wear-resistant iron-based sintered alloy which can be used in a severe environment of use and has further improved wear resistance, particularly wear resistance at high temperatures, and a method for producing the same.

【0010】[0010]

【課題を解決するための手段】本発明者は、耐摩耗性、
耐腐食性、耐酸化性を向上させるために、バルブシート
用鉄系焼結合金の基地の化学成分と合金化形態、硬質粒
子の種類と添加量、基地組織と焼結条件等々について、
鋭意研究を重ねた。その結果、高温における優れた耐酸
化性と耐腐食性を発揮する基地の特定組成範囲および合
金化形態を見出すと共に、特定組成範囲の炭化物を有す
る硬質粒子をこの基地中に分散させることにより、極め
て良好な耐摩耗性、耐腐食性、耐酸化性を保持しうるこ
とを知見し、且つ従来材に比べて経済性に優れているこ
とを見出して本発明を完成した。
The present inventors have found that the wear resistance,
In order to improve corrosion resistance and oxidation resistance, the chemical composition and alloying morphology of the matrix of the iron-based sintered alloy for valve seats, the type and addition amount of hard particles, the matrix structure and the sintering conditions, etc.
We have earnestly studied. As a result, by finding a specific composition range and alloying morphology of the base that exhibits excellent oxidation resistance and corrosion resistance at high temperatures, and by dispersing hard particles having carbides in the specific composition range in this base, The present invention has been completed by finding that good wear resistance, corrosion resistance, and oxidation resistance can be maintained, and finding that it is more economical than conventional materials.

【0011】即ち、本発明者は、Niを積極的に含まな
い鉄基合金粉末に対して、Ni基硬質合金粉末と黒鉛粉
末とを混合した混合粉末で圧粉体を形成し、その圧粉体
を所定温度域において焼結することにより、基地を形成
する鉄基合金粉末の圧縮性を確保すること、焼結に伴い
Ni基硬質合金粉末のNiを基地に拡散させることによ
り基地の耐酸化性、特に高温における酸化性を確保する
こと、更に焼結に伴い黒鉛粉末のCを拡散させて基地あ
るいはNi基硬質合金粉末の内部に炭化物を生成し、こ
れにより鉄基焼結合金の耐摩耗性、耐酸化性、耐熱性を
一層確保することを意図している。 ○請求項1の耐摩耗性に優れた鉄基焼結合金は、重量比
で全体組成が、Co;1.4〜15%、Mo;1.5〜
16%、Cr;0.4〜12%、W;0.2〜6.0
%、C;0.4〜3.2%、Ni;0.2〜9.0%を
含有し、残部が不可避不純物とFeからなり、Co;2
〜15%、Mo;2〜10%、C;0.2〜2%、N
i;10%以下を含有し残部が不可避不純物とFeから
なる基地組織に、Mo;5〜20%、Cr;20〜40
%、W;10〜20%、C;0.5〜5.0%、Fe;
5〜30%を含有し、残部が不可避不純物とNiからな
る硬質粒子を2〜30%分散した焼結体からなることを
特徴とするものである。 ○請求項2の耐摩耗性に優れた鉄基焼結合金は、重量比
で全体組成が、Co;1.4〜15%、Mo;1.5〜
16%、Cr;0.4〜12%、W;0.2〜6.0
%、C;0.01〜4.0%、Ni;0.2〜9.0
%、さらにSi;0.6%以下を含有し、残部が不可避
不純物とFeからなり、Co;2〜15%、Mo;2〜
10%、C;0.2〜2%、Ni;10%以下を含有し
残部が不可避不純物とFeからなる基地組織に、Mo;
5〜20%、Cr;20〜40%、W;10〜20%、
C;0.5〜4.0%、Fe;5〜30%、さらにS
i;2%以下を含有し、残部が不可避不純物とNiから
なる硬質粒子を2〜30%分散した焼結体からなること
を特徴とするものである。 ○請求項3の耐摩耗性に優れた鉄基焼結合金は、請求項
1または請求項2記載の焼結体は気孔をもち、気孔内
に、Pb、Cu、Pb−Cu系合金の少なくとも1種を
主要成分とした溶浸剤を、焼結体を重量比で100%と
したとき100%に対して1〜25%溶浸したことを特
徴とするものである。 ○請求項4の耐摩耗性に優れた鉄基焼結合金の製造方法
は、重量比で、Co;2〜15%、Mo;2〜10%を
含有し、残部が不可避不純物とFeからなる鉄基合金粉
末に対して、Mo;5〜20%、Cr;20〜40%、
W;10〜20%、Fe;10〜30%と残部が不可避
不純物とNiからなるNi基硬質合金粉末と、黒鉛粉末
0.2〜2%と成形用潤滑剤とを混合、成形し、132
3KからNi基硬質合金粉末の融点未満の温度で焼結す
ることにより、焼結体からなる鉄基焼結合金を製造する
ことを特徴とするものである。 ○請求項5の鉄基焼結合金の製造方法は、請求項4にお
いて、鉄基粉末合金のMo含有量が3%を越え10%以
下であることを特徴とするものである。 ○請求項6の耐摩耗性に優れた鉄基焼結合金の製造方法
は、重量比で、Co;2〜15%、Mo;2〜10%を
含有し、残部が不可避不純物とFeからなる鉄基合金粉
末に対して、Mo;5〜20%、Cr;20〜40%、
W;10〜20%、Fe;10〜30%と、C;0.5
〜4%、Si;2%以下を含有し残部が不可避不純物と
NiからなるNi基硬質合金粉末と、黒鉛粉末0.2〜
2%と成形用潤滑剤とを混合、成形し、1323Kから
Ni基硬質合金粉末の融点未満の温度で焼結することに
より、焼結体からなる鉄基焼結合金を製造することを特
徴とするものである。 ○請求項7の耐摩耗性に優れた鉄基合金粉末の製造方法
は、請求項6において、鉄基合金粉末のMo含有量が3
%を越え10%以下であることを特徴とするものであ
る。 ○請求項8の耐摩耗性に優れた鉄基焼結合金の製造方法
は、請求項4〜請求項7において、焼結体は気孔をも
ち、気孔内に、Pb、Cu、Pb−Cu系合金の少なく
とも1種を主要成分とした溶浸剤を、焼結体を重量比で
100%としたとき100%に対して1〜25%溶浸し
たことを特徴とするものである。
That is, the inventor of the present invention forms a green compact with a mixed powder obtained by mixing an Ni-based hard alloy powder and a graphite powder with an iron-based alloy powder that does not positively contain Ni, and then presses the green compact. By sintering the body in a predetermined temperature range, the compressibility of the iron-based alloy powder forming the matrix is ensured, and the Ni of the Ni-based hard alloy powder is diffused into the matrix along with the sintering to prevent oxidation of the matrix. Property, especially oxidizability at high temperature, and further, C of graphite powder is diffused during sintering to form carbides in the matrix or inside the Ni-based hard alloy powder, which results in wear resistance of the iron-based sintered alloy. It is intended to further secure the heat resistance, oxidation resistance, and heat resistance. The iron-based sintered alloy having excellent wear resistance according to claim 1 has an overall composition of Co: 1.4 to 15%, Mo: 1.5 to
16%, Cr; 0.4-12%, W; 0.2-6.0
%, C; 0.4 to 3.2%, Ni; 0.2 to 9.0%, the balance consisting of inevitable impurities and Fe, Co; 2
~ 15%, Mo; 2-10%, C; 0.2-2%, N
i: a matrix structure containing 10% or less and the balance consisting of inevitable impurities and Fe, Mo: 5 to 20%, Cr: 20 to 40
%, W; 10 to 20%, C; 0.5 to 5.0%, Fe;
It is characterized in that it comprises a sintered body containing 5 to 30% and the rest containing 2 to 30% of hard particles consisting of unavoidable impurities and Ni. The iron-based sintered alloy having excellent wear resistance according to claim 2 has a total composition by weight of Co: 1.4 to 15%, Mo: 1.5 to
16%, Cr; 0.4-12%, W; 0.2-6.0
%, C; 0.01 to 4.0%, Ni; 0.2 to 9.0
%, Si: 0.6% or less, the balance consisting of inevitable impurities and Fe, Co: 2 to 15%, Mo: 2 to
10%, C; 0.2 to 2%, Ni; 10% or less, and the balance consists of inevitable impurities and Fe.
5 to 20%, Cr; 20 to 40%, W; 10 to 20%,
C: 0.5-4.0%, Fe: 5-30%, and further S
i: A sintered body containing 2% or less, and the balance being 2 to 30% of hard particles composed of unavoidable impurities and Ni dispersed therein. In the iron-based sintered alloy having excellent wear resistance according to claim 3, the sintered body according to claim 1 or 2 has pores, and at least Pb, Cu, or Pb-Cu based alloy is present in the pores. It is characterized in that 1% to 25% of the infiltrant containing one kind as a main component is infiltrated with respect to 100% when the weight of the sintered body is 100%. The method for manufacturing an iron-based sintered alloy having excellent wear resistance according to claim 4 contains Co: 2 to 15%, Mo: 2 to 10% by weight, and the balance is inevitable impurities and Fe. Mo: 5 to 20%, Cr: 20 to 40%, based on the iron-based alloy powder,
W: 10 to 20%, Fe: 10 to 30%, the balance being Ni-based hard alloy powder consisting of inevitable impurities and Ni, graphite powder 0.2 to 2% and a molding lubricant were mixed and molded, 132
The present invention is characterized in that an iron-based sintered alloy composed of a sintered body is manufactured by sintering at a temperature lower than the melting point of the Ni-based hard alloy powder from 3K. The method for producing an iron-based sintered alloy according to claim 5 is the method according to claim 4, wherein the Mo content of the iron-based powder alloy is more than 3% and 10% or less. The method for manufacturing an iron-based sintered alloy having excellent wear resistance according to claim 6 contains Co: 2 to 15%, Mo: 2 to 10% by weight, and the balance is inevitable impurities and Fe. Mo: 5 to 20%, Cr: 20 to 40%, based on the iron-based alloy powder,
W; 10 to 20%, Fe; 10 to 30%, and C; 0.5
.About.4%, Si; Ni: 2% or less, the balance being Ni-based hard alloy powder consisting of unavoidable impurities and Ni, and graphite powder 0.2 to
2% and a molding lubricant are mixed, molded, and sintered at a temperature lower than the melting point of Ni-based hard alloy powder from 1323K to produce an iron-based sintered alloy composed of a sintered body. To do. In the method for producing an iron-based alloy powder having excellent wear resistance according to claim 7, the iron-based alloy powder according to claim 6 has a Mo content of 3
% And 10% or less. The method for producing an iron-based sintered alloy having excellent wear resistance according to claim 8 is the same as in claim 4 to claim 7, wherein the sintered body has pores, and Pb, Cu, and Pb-Cu based alloys are contained in the pores. It is characterized in that an infiltrant containing at least one kind of alloy as a main component is infiltrated by 1 to 25% with respect to 100% when the sintered body is taken as 100% by weight.

【0012】[0012]

【作用】請求項1〜3の鉄基焼結合金において、基地組
織は、Co;2〜15%、Mo;2〜10%、Ni;1
0%以下を固溶した合金元素で構成したので、合金元素
の素地への固溶均質度が高く、従って各種の要素粉末を
混合する従来法に比べて、少ない合金量で優れた耐腐食
性、耐酸化性および耐摩耗性を得ることができる。
In the iron-based sintered alloy according to claims 1 to 3, the matrix structure is Co: 2 to 15%, Mo: 2 to 10%, Ni: 1
Since 0% or less is composed of solid-dissolved alloy elements, the degree of solid solution homogeneity of the alloy elements in the matrix is high, and therefore, compared with the conventional method in which various element powders are mixed, excellent corrosion resistance is achieved with a small amount of alloy. , Oxidation resistance and wear resistance can be obtained.

【0013】請求項1〜3の鉄基焼結合金の基地にはN
iが含まれており、耐酸化性が向上し、更にこの基地に
はMoの炭化物が生成している。請求項4〜8の製造方
法における鉄基合金粉末(Fe−2〜15%Co−2〜
10%Moの組成をもつ合金粉末)は、請求項1〜3の
鉄基焼結合金における基地を構成するものである。請求
項4〜8の製造方法におけるNi基硬質合金粉末は、請
求項1〜3の硬質粒子を構成するものである。この硬質
粒子はNi基硬質合金であってそれ自体硬いものであ
る。さらにこの硬質粒子はC(請求項6の様にNi基硬
質合金粉末にその粉末状態でCが含まれている場合には
そのC、あるいは、請求項4〜8で添加される黒鉛粉末
のC)を含むことによって、Mo、Cr、W、Fe、S
iと結合し、炭化物を形成することにより、硬質粒子自
体の耐摩耗性を一層向上させる。
The base of the iron-based sintered alloy according to claims 1 to 3 is N
Since i is included, the oxidation resistance is improved, and Mo carbide is generated in this base. Iron-based alloy powder (Fe-2 to 15% Co-2 to
The alloy powder having a composition of 10% Mo) constitutes the matrix in the iron-based sintered alloy of claims 1 to 3. The Ni-based hard alloy powder in the manufacturing method of claims 4 to 8 constitutes the hard particles of claims 1 to 3. The hard particles are Ni-based hard alloys and are hard themselves. Further, the hard particles are C (if the Ni-based hard alloy powder contains C in the powder state as in claim 6, the C is contained therein, or the C of the graphite powder added in claims 4 to 8). ), Mo, Cr, W, Fe, S
By combining with i to form a carbide, the wear resistance of the hard particles themselves is further improved.

【0014】請求項4〜8の製造方法において鉄基合金
粉末は前述した様に鉄基焼結合金の基地を構成するもの
であり、粉末状態ではNiを積極的には含まないので、
圧粉体の成形の際において、基地を構成する鉄基合金粉
末自体の圧縮性は確保され、従って圧粉体の高密度化に
有利である。更に、硬質粒子を構成するNi基合金粉末
中のNiは、焼結の際に基地中に拡散して、基地の耐酸
化性、特に高温における耐酸化性や耐熱性を向上させ
る。
In the manufacturing method of claims 4 to 8, the iron-based alloy powder constitutes the matrix of the iron-based sintered alloy as described above, and since Ni is not positively contained in the powder state,
During molding of the green compact, the compressibility of the iron-based alloy powder itself forming the matrix is secured, which is advantageous for increasing the density of the green compact. Furthermore, Ni in the Ni-based alloy powder that constitutes the hard particles diffuses into the matrix during sintering, and improves the oxidation resistance of the matrix, particularly the oxidation resistance and heat resistance at high temperatures.

【0015】また請求項4〜8の製造方法において、焼
結の際には、黒鉛粉末のCはNi基硬質合金粉末中のM
o、Cr、W、Fe等と結合して、または、鉄基合金粉
末中のMo等と結合して、炭化物を形成することによ
り、基地及びNi基硬質合金粉末の耐摩耗性を向上させ
る。 (組織)本発明の焼結合金の基地の金属組織は一般的に
はパーライト、オーステナイト、ベイナイトが混在する
組織であると判定される。かかる基地組織には生成した
炭化物が分散している。更に、炭化物を生成したNi基
硬質合金粉末で構成された硬質粒子が上記基地組織に分
散している。 (鉄基合金粉末)請求項4〜8の鉄基合金粉末は前述の
様に本発明の鉄基焼結合金の基地を構成するものであ
り、重量比でCo;2〜15%、Mo;2〜10%を含
有し、残部が不可避不純物とFeからなる。 Co;2〜15% Coは素地に固溶してこれを強化するとともに、耐熱性
および耐腐食性を向上させる効果があるが、鉄基合金粉
末においてCo含有量が2%未満ではその効果が不足
し、一方15%を越えて含有させると、効果のさらなる
向上は見られるものの経済性に欠けるため、この点を考
慮してその含有量を2〜15%と規定した。 Mo;2〜10% Moは、素地に固溶してこれを強化するとともに、高温
域における強度の改善に効果を示し、炭素を含む焼結体
においては一部が炭化物を生成し耐摩耗性の改善に効果
を示す。これらの効果は、鉄基合金粉末において含有量
が2%未満では不十分であり、さらに好ましくは3%を
越えることであり、10%を越えても効果の向上は認め
られるものの、鉄基合金粉末の圧縮性低下を招くため、
その含有量を2〜10%に規定した。上記理由から好ま
しくは鉄基合金粉末においてMoは3%を越え10%以
下が適当である。 (Ni基硬質合金粉末)Ni基硬質合金粉末は鉄基焼結
合金の耐摩耗性の向上に寄与する。このNi基硬質合金
粉末は本発明者等が開発した硬質粒子粉末であり、請求
項1〜3における硬質粒子を構成する。Ni基硬質合金
粉末はMo;5〜20%、Cr;20〜40%、W;1
0〜20%、Fe;10〜30%を含む。Mo、Cr、
W、Si、FeはCと結合し炭化物を形成することによ
り、鉄基焼結合金の耐摩耗性の向上に寄与する。
Further, in the manufacturing method of claims 4 to 8, at the time of sintering, C of the graphite powder is M in the Ni-based hard alloy powder.
By combining with O, Cr, W, Fe or the like, or with Mo or the like in the iron-based alloy powder to form a carbide, the wear resistance of the matrix and the Ni-based hard alloy powder is improved. (Structure) The base metal structure of the sintered alloy of the present invention is generally determined to be a structure in which pearlite, austenite, and bainite are mixed. The generated carbide is dispersed in the matrix structure. Further, hard particles composed of Ni-based hard alloy powder that has generated carbide are dispersed in the matrix structure. (Iron-based alloy powder) The iron-based alloy powder of claims 4 to 8 constitutes the matrix of the iron-based sintered alloy of the present invention as described above, and the weight ratio of Co: 2 to 15%, Mo; It contains 2 to 10%, and the balance consists of unavoidable impurities and Fe. Co; 2 to 15% Co has the effect of forming a solid solution in the matrix to strengthen it and improve heat resistance and corrosion resistance, but if the Co content in the iron-based alloy powder is less than 2%, that effect is obtained. On the other hand, if the content exceeds 15%, the effect is further improved, but the economy is lacking. Therefore, considering this point, the content is defined as 2 to 15%. Mo; 2-10% Mo is solid-dissolved in the matrix to strengthen it and shows an effect of improving the strength in a high temperature range. In a sintered body containing carbon, a part of carbide is generated to form wear resistance. Shows the effect of improving. These effects are insufficient if the content of the iron-based alloy powder is less than 2%, more preferably more than 3%, and even if the content exceeds 10%, the effect is recognized, but the iron-based alloy is Since it causes a decrease in the compressibility of the powder,
Its content was defined as 2-10%. For the above reasons, it is preferable that the iron-based alloy powder has a Mo content of more than 3% and 10% or less. (Ni-based hard alloy powder) The Ni-based hard alloy powder contributes to improvement of wear resistance of the iron-based sintered alloy. The Ni-based hard alloy powder is a hard particle powder developed by the present inventors and constitutes the hard particles in claims 1 to 3. Ni-based hard alloy powder is Mo; 5-20%, Cr; 20-40%, W; 1
0 to 20%, Fe; 10 to 30% are included. Mo, Cr,
W, Si and Fe combine with C to form a carbide, which contributes to the improvement of the wear resistance of the iron-based sintered alloy.

【0016】Ni基硬質合金粉末はさらに必要に応じて
請求項6の様にC;0.5〜4.0%、Si;2%以下
を含有することが好ましい。Ni基硬質合金粉末はFe
を10〜30%含み特に12〜22%なかでも15〜2
0%にできる。Ni基硬質合金粉末つまり硬質粒子中の
Feは、鉄基焼結合金の相手攻撃性を規制することを主
として意図している。その理由はFeの炭化物は他の炭
化物等に比較して硬度が低いためである。なお、Ni基
硬質合金粉末が噴霧法で形成された噴霧粉末である場合
には、Siを含めば噴霧性は確保される。Ni基硬質合
金粉末のNiおよびFeの一部は、焼結により基地中に
拡散し、基地における耐酸化性の向上および硬質粒子の
基地への保持力向上に作用する。
It is preferable that the Ni-based hard alloy powder further contains C: 0.5 to 4.0% and Si: 2% or less, if necessary. Ni-based hard alloy powder is Fe
10 to 30%, especially 12 to 22%, 15 to 2
Can be 0%. The Fe in the Ni-based hard alloy powder, that is, the hard particles, is mainly intended to control the opponent attack of the iron-based sintered alloy. The reason is that Fe carbide has a lower hardness than other carbides. In addition, when the Ni-based hard alloy powder is a spray powder formed by a spraying method, the sprayability is secured by including Si. A part of Ni and Fe of the Ni-based hard alloy powder diffuses into the matrix by sintering, and acts to improve the oxidation resistance of the matrix and the retention of the hard particles in the matrix.

【0017】Ni基硬質合金粉末は、圧粉体を構成する
混合粉末(潤滑剤をのぞく)、つまり焼結体を重量比で
100%としたとき、100%のうちの2〜30%が好
ましい。従って請求項1においては硬質粒子は焼結体全
体を100%としたとき2〜30%に規定されている。
ここでNi基硬質合金粉末の添加量が2%未満では、耐
摩耗性の向上が不十分であり、30%を越えて添加して
も、添加の割に向上が少なく、また成形性の低下を招く
ため、Ni基硬質合金粉末の添加量を2〜30%が妥当
である。さらに上記理由あるいは鉄基焼結合金の用途や
種類に基づき、Ni基硬質合金粉末の量は例えば上限値
が27%、23%、15%にでき、下限値が3%、5
%、8%にできる。
The Ni-based hard alloy powder is preferably 2 to 30% of 100% when the mixed powder (excluding the lubricant) constituting the green compact, that is, the sintered body is 100% by weight. . Therefore, in claim 1, the hard particles are defined as 2 to 30% when the whole sintered body is taken as 100%.
Here, if the addition amount of the Ni-based hard alloy powder is less than 2%, the abrasion resistance is insufficiently improved, and even if it is added in excess of 30%, the improvement is small relative to the addition, and the moldability is deteriorated. Therefore, it is appropriate that the addition amount of the Ni-based hard alloy powder be 2 to 30%. Further, based on the above reason or the application and type of the iron-based sintered alloy, the amount of the Ni-based hard alloy powder can be, for example, the upper limit value of 27%, 23%, 15%, and the lower limit value of 3%, 5%.
%, 8%

【0018】以上において鉄基合金粉末およびNi基硬
質合金粉末組成の限定理由を述べたが、鉄基焼結合金中
の基地組織や硬質粒子の組成限定理由も基本的にはこれ
に対応するものである。 (C)Cは基地に固溶し基地を強化するとともに、一部
はNi基硬質合金粉末(基地に分散した硬質粒子に相
当)に拡散し、Ni基硬質合金粉末中のMo、Cr、W
等と結合して炭化物を生成し、Ni基硬質合金粉末つま
り硬質粒子の硬度を高め、耐摩耗性の向上に効果を示
す。Cは黒鉛粉末から供給できる。黒鉛粉末は、圧粉体
を構成する混合粉末全体(潤滑剤をのぞく)、つまり焼
結体を重量比で100%としたとき、100%のうちの
0.2〜2%が好ましい。また請求項6の様にNi基硬
質合金粉末が予めCを含有していても良い。請求項4に
おいて黒鉛粉末の添加量が0.2%未満では前記効果が
あまり期待できず、また2.0%を越えて添加すると焼
結合金を脆化させるおそれがあるので、その添加量は
0.2〜2.0%が好ましい。例えば0.6〜1.3
%、0.7〜1.0%にできる。 (焼結温度)本発明の焼結合金の焼結温度は1323K
からNi基硬質合金粉末の融点未満の温度が好ましい。
焼結温度が1323K未満では、焼結進行が不十分であ
り耐摩耗性が不足するからであり、焼結温度がNi基硬
質合金粉末の融点未満の温度を越えると結晶粒の粗大化
のため好ましくないからである。 (溶浸剤)請求項3、8では焼結合金を構成する焼結体
はスケルトン状であり気孔をもち、気孔に溶浸剤が溶浸
される。溶浸は、より厳しい条件下で使用される耐摩耗
性鉄基焼結合金(例えば内燃機関のバルブシート)に適
する。溶浸された溶浸剤は、相手材(例えばバルブ)と
本発明の鉄基焼結合金との接触部に介在し、潤滑剤とし
て作用する。その結果、相手材(例えばバルブ)と本発
明の鉄基焼結合金(例えばバルブシート)との間におけ
る相互の耐摩耗性や耐焼付性を向上させる。更に、溶浸
剤は本発明の鉄基焼結合金の熱伝導性を向上させること
により、鉄基焼結合金の当り面(例えばバルブシート当
り面)の温度を効率的に低下させ、耐摩耗性、耐焼付性
を一層向上させる。
Although the reasons for limiting the compositions of the iron-based alloy powder and the Ni-based hard alloy powder have been described above, the reasons for limiting the composition of the matrix structure and the hard particles in the iron-based sintered alloy basically correspond to this. Is. (C) C solid-dissolves in the matrix to strengthen the matrix, and partly diffuses into the Ni-based hard alloy powder (corresponding to the hard particles dispersed in the matrix) to form Mo, Cr, W in the Ni-based hard alloy powder.
And the like form carbides to increase the hardness of the Ni-based hard alloy powder, that is, hard particles, and are effective in improving wear resistance. C can be supplied from graphite powder. The graphite powder is preferably 0.2 to 2% of 100% when the entire mixed powder (excluding the lubricant) constituting the green compact, that is, the sintered body is 100% by weight. Further, as in claim 6, the Ni-based hard alloy powder may contain C in advance. In claim 4, if the amount of graphite powder added is less than 0.2%, the above effect cannot be expected, and if it exceeds 2.0%, the sintered alloy may be embrittled. 0.2-2.0% is preferable. For example, 0.6 to 1.3
%, 0.7 to 1.0%. (Sintering temperature) The sintering temperature of the sintered alloy of the present invention is 1323K.
To a temperature below the melting point of the Ni-based hard alloy powder.
This is because if the sintering temperature is less than 1323 K, the progress of sintering is insufficient and the wear resistance is insufficient, and if the sintering temperature exceeds the temperature lower than the melting point of the Ni-based hard alloy powder, the crystal grains become coarse. This is because it is not preferable. (Infiltrant) In claims 3 and 8, the sintered body forming the sintered alloy has a skeleton shape and has pores, and the pores are infiltrated with the infiltrant. Infiltration is suitable for wear resistant iron-based sintered alloys used under more severe conditions (eg valve seats of internal combustion engines). The infiltrated agent infiltrated intervenes in the contact portion between the mating material (for example, valve) and the iron-based sintered alloy of the present invention, and acts as a lubricant. As a result, mutual wear resistance and seizure resistance between the mating material (for example, valve) and the iron-based sintered alloy of the present invention (for example, valve seat) are improved. Further, the infiltrant improves the thermal conductivity of the iron-based sintered alloy of the present invention, thereby effectively lowering the temperature of the contact surface (for example, the valve seat contact surface) of the iron-based sintered alloy and improving the wear resistance. , Further improve the seizure resistance.

【0019】請求項3、8では溶浸剤は、焼結体を重量
比で100%としたとき100%に対して1〜25%と
されている。従って溶浸剤の溶浸量が25%のときに
は、溶浸剤/(焼結体+溶浸剤)=25/(100+2
5)の意味である。ここで、溶浸剤が1%未満では、溶
浸の効果があまり発揮できず、25%を超えて溶浸する
と、焼結合金を構成するスケルトンの脆化、弱化などよ
り逆効果を起こす可能性があり、この意味で1%〜25
%が適当であり特に3〜23%なかでも10〜22%が
適当である。
In the third and eighth aspects, the infiltration agent is 1 to 25% with respect to 100% when the weight ratio of the sintered body is 100%. Therefore, when the infiltration amount of the infiltration agent is 25%, infiltration agent / (sintered body + infiltration agent) = 25 / (100 + 2
It means 5). Here, if the infiltrant is less than 1%, the effect of infiltration cannot be exerted so much, and if it exceeds 25%, the skeleton constituting the sintered alloy may have an adverse effect such as embrittlement or weakening. There is 1% to 25 in this sense
% Is suitable, and 10 to 22% is particularly suitable among 3 to 23%.

【0020】溶浸剤としては、鉛、鉛ー銅合金、銅ない
し、これらを主要成分とする金属系が適している。鉛ー
銅合金としては、Cu−30重量%Pbを採用できる。
As the infiltrant, lead, lead-copper alloy, copper or a metal system containing these as main components is suitable. As the lead-copper alloy, Cu-30 wt% Pb can be adopted.

【0021】[0021]

【実施例】本発明の好適な実施例を比較材と対比して説
明し、本発明の特徴を明らかにする。 (実施例1〜7)これらの例では、重量比でMo;4.
9%、Co;4.6%、残部が実質的にFeである鉄基
噴霧合金粉末Aを用いる。重量比でMo;1.2%、C
o;4.7%、残部が実質的にFeである鉄基噴霧合金
粉末Dを用いる。重量比でMo;2.2%、Co;4.
6%、残部が実質的にFeである鉄基噴霧合金粉末Eを
用いる。重量比でMo;3.1%、Co;4.5%、残
部が実質的にFeである鉄基噴霧合金粉末Fを用いる。
上記した鉄基噴霧合金粉末A、D、E、Fはいずれも粒
径177μm以下である。
EXAMPLE A preferred example of the present invention will be described in comparison with a comparative material to clarify the features of the present invention. (Examples 1 to 7) In these examples, Mo: 4.
An iron-based spray alloy powder A having 9%, Co: 4.6%, and the balance being substantially Fe is used. Mo: 1.2% by weight, C
o: An iron-based spray alloy powder D having 4.7% and the balance being substantially Fe is used. Mo; 2.2% by weight, Co; 4.
An iron-based spray alloy powder E having 6% and the balance being substantially Fe is used. An iron-based spray alloy powder F having a weight ratio of Mo: 3.1%, Co: 4.5% and the balance substantially Fe is used.
The iron-based spray alloy powders A, D, E, and F described above all have a particle size of 177 μm or less.

【0022】更に、重量比でCr;35.2%、W;1
2.5%、Mo;8.7%、Fe;18.7%、C;
2.6%、Si;0.6%残部が実質的にNiであるN
i基噴霧合金粉末B(粒径149μm以下)を用いる。
更に重量比でCr;26.7%、W;16.2%、M
o;13.3%、Fe;17.0%、Si;0.6%、
C;2.7%、残部が実質的にNiであるNi噴霧合金
粉末C(粒径149μm以下)を用いる。なお上記した
各合金粉末の組成は、各合金粉末自体を重量比で100
%としたときの割合を意味する。
Further, by weight ratio, Cr: 35.2%, W: 1
2.5%, Mo; 8.7%, Fe; 18.7%, C;
2.6%, Si; 0.6% N with the balance being essentially Ni
The i-based spray alloy powder B (particle size 149 μm or less) is used.
Further, by weight ratio, Cr: 26.7%, W: 16.2%, M
o; 13.3%, Fe; 17.0%, Si; 0.6%,
C: Ni spray alloy powder C (particle size 149 μm or less) with 2.7% and the balance being Ni is used. The composition of each alloy powder described above is 100% by weight of each alloy powder itself.
It means the ratio when it is set to%.

【0023】そして上記した合金粉末A〜Fと硬質粒子
(Ni基硬質合金粉末)と黒鉛粉と潤滑ステアリン酸亜
鉛とを、表1に示す配合組成になるように適宜秤量し、
V型混合機で混合し、混合粉末を得た。なお表1は、混
合粉末(焼結に伴い蒸散する潤滑剤をのぞく、即ち、合
金粉末+硬質粒子+黒鉛粉)を重量比で100%とした
ときの割合を示す。
Then, the alloy powders A to F, the hard particles (Ni-based hard alloy powder), the graphite powder and the lubricating zinc stearate are appropriately weighed so as to have the composition shown in Table 1,
The powder was mixed with a V-type mixer to obtain a mixed powder. In addition, Table 1 shows the ratio when the weight ratio of the mixed powder (excluding the lubricant evaporated during sintering, that is, alloy powder + hard particles + graphite powder) is 100%.

【0024】その後、混合粉末を成形圧力7ton/c
2 にて圧縮し、圧粉体を成形した。得られた圧粉体を
分解アンモニアガス雰囲気中で、1393Kの温度で3
0分間焼結し、これにより各実施例1〜7と比較材1、
2を製造した。各実施例1〜7の試験片では、基地組織
に炭化物が分散し、更に、炭化物が生成したNi基の硬
質粒子(Ni基合金粉末)が基地組織に分散している。
表2は、製造した焼結合金の合金組成を示すものであ
る。表2の割合は、焼結合金を重量比で100%とした
ときの割合である。
Thereafter, the mixed powder is molded at a molding pressure of 7 ton / c.
It was compressed at m 2 to form a green compact. The obtained green compact was heated at a temperature of 1393 K in a decomposed ammonia gas atmosphere for 3 hours.
Sintered for 0 minutes, whereby each of Examples 1 to 7 and Comparative Material 1,
2 was produced. In each of the test pieces of Examples 1 to 7, carbide was dispersed in the matrix structure, and further, Ni-based hard particles (Ni-based alloy powder) in which the carbide was generated were dispersed in the matrix structure.
Table 2 shows the alloy composition of the produced sintered alloy. The ratios in Table 2 are ratios when the weight ratio of the sintered alloy is 100%.

【0025】[0025]

【表1】 [Table 1]

【0026】[0026]

【表2】 上記実施例1〜7および比較材1〜2の試験片につい
て、実機を模したバルブ−バルブシート試験機を用い、
各試験片の高温における耐摩耗性の評価を行った。この
試験では、各試験片をリング状のバルブシート形状とし
た。この試験装置はプロパンガスの燃焼によってバルブ
とバルブシートを加熱し、カムの駆動によってバルブを
開閉する機構により、バルブとバルブシートの叩き摩耗
状況を再現するものである。
[Table 2] For the test pieces of Examples 1 to 7 and Comparative Materials 1 and 2 described above, a valve-valve seat tester simulating an actual machine was used.
The wear resistance of each test piece at high temperature was evaluated. In this test, each test piece was formed into a ring-shaped valve seat shape. This test device reproduces the hitting wear condition of the valve and the valve seat by a mechanism that heats the valve and the valve seat by combustion of propane gas and opens and closes the valve by driving a cam.

【0027】上記試験では,相手材であるバルブの材質
をJIS SUH35とし、バルブの温度を1120
K、バルブシートの温度を670Kに保つよう制御し、
カムの回転数を2200rpmにし、運転時間72Ks
の条件で行い、試験片であるバルブシートの摩耗をバル
ブシートの当り幅増加量として測定した。得られた試験
結果を図1に示した。
In the above test, the material of the mating valve was JIS SUH35, and the valve temperature was 1120.
K, control to keep the temperature of the valve seat at 670K,
The cam rotation speed is set to 2200 rpm and the operation time is 72 Ks.
The wear of the valve seat as a test piece was measured as the amount of increase in the contact width of the valve seat. The test results obtained are shown in FIG.

【0028】図1に示す様に、硬質粒子を添加していな
い比較材1の当り幅増加量が205μmであるのに対し
て、本発明の実施例1〜7の当り幅増加量は89〜12
3μmであり、本発明にかかる焼結合金は耐摩耗性に優
れていることが確認された。また、図2は、基地を構成
する合金粉末(表2)中のMo量を横軸にとり、バルブ
シート当り幅加量を横軸にとった線図である。図2の特
性線から明らかなように、Mo含有量が2%を越えると
摩耗量の減少が見られ3%を越えると、試験片の摩耗特
性が安定し、当り幅増加量が100μmをやや越える程
度で安定する。 (実施例8〜11)この例は焼結体に溶浸剤を溶浸させ
る例である。この例では、重量比でMo:4.9%、C
o:4.6%、残部が実質的にFeの粒径177μm以
下の鉄基噴霧合金粉末Aを用いる。この鉄基噴霧合金粉
末Aは、実施例1〜7で用いた鉄基噴霧合金粉末Aと同
様のものである。更に、重量比でCr:35.2%、
W:12.5%、Mo:8.7%、Fe:18.7%、
C:2.6%、Si:0.6%、残部が実質的にNiの
粒径149μm以下のNi基噴霧合金粉末Bを用いる。
このNi基噴霧合金粉末Bは、実施例1〜7で用いたN
i基噴霧合金粉末Bと同様のものである。
As shown in FIG. 1, the contact width increase of the comparative material 1 containing no hard particles is 205 μm, while the contact width increase of Examples 1 to 7 of the present invention is 89 to 90 μm. 12
It was 3 μm, and it was confirmed that the sintered alloy according to the present invention had excellent wear resistance. Further, FIG. 2 is a diagram in which the horizontal axis represents the amount of Mo in the alloy powder (Table 2) constituting the matrix and the horizontal axis represents the width addition amount per valve seat. As is clear from the characteristic line of FIG. 2, when the Mo content exceeds 2%, the wear amount decreases, and when the Mo content exceeds 3%, the wear properties of the test piece become stable, and the contact width increase amount is slightly 100 μm. Be stable when it exceeds the limit. (Examples 8 to 11) This example is an example of infiltrating a sintered body with an infiltrant. In this example, Mo: 4.9% by weight, C
o: 4.6%, with the balance being iron-based spray alloy powder A having a Fe particle size of 177 μm or less. This iron-based spray alloy powder A is the same as the iron-based spray alloy powder A used in Examples 1 to 7. Further, Cr: 35.2% by weight,
W: 12.5%, Mo: 8.7%, Fe: 18.7%,
Ni-based spray alloy powder B having C: 2.6%, Si: 0.6%, and the balance being substantially Ni having a particle size of 149 μm or less is used.
This Ni-based spray alloy powder B was N used in Examples 1 to 7.
It is the same as the i-based spray alloy powder B.

【0029】この例でも上記した粉末を黒鉛粉、潤滑剤
ステアリン酸亜鉛粉とともに、表3に示す配合組成にな
るよう秤量後、V型混合機により混粉を行ない、混合粉
末を得た。次にこの混合粉末を成形圧力7ton/cm
2 にて圧縮し、試験片を作成した。ただし、実施例10
については、成形圧力6.3ton/cm2 にて圧縮
し、試験片を作成した。実施例10の試験片における溶
浸剤の割合を増加させるためである。続いて、窒素ガス
を吹き込む窒素雰囲気にて1404Kに30分間保持
し、焼結を実施した。焼結した後の試験片は、焼結時と
同一雰囲気、同一温度条件にて溶浸処理を行った。溶浸
処理は試験片の上に溶浸剤を置いて行った。溶浸剤は、
表3に示す様に実施例8〜10ではPbを用い、実施例
11ではCuー30重量%Pbを用いた。比較材3は溶
浸処理されていない。
Also in this example, the above powder was weighed together with the graphite powder and the lubricant zinc stearate powder so as to have the composition shown in Table 3, and then mixed with a V-type mixer to obtain a mixed powder. Next, this mixed powder is molded at a molding pressure of 7 ton / cm.
It was compressed at 2 to prepare a test piece. However, Example 10
For, a test piece was prepared by compressing at a molding pressure of 6.3 ton / cm 2 . This is to increase the ratio of the infiltrant in the test piece of Example 10. Subsequently, sintering was carried out by holding at 1404K for 30 minutes in a nitrogen atmosphere in which nitrogen gas was blown. The test piece after sintering was subjected to the infiltration treatment under the same atmosphere and the same temperature condition as those at the time of sintering. The infiltration treatment was performed by placing an infiltration agent on the test piece. The infiltrant is
As shown in Table 3, Pb was used in Examples 8 to 10, and Cu-30 wt% Pb was used in Example 11. Comparative material 3 is not infiltrated.

【0030】得られた試験片について以下に示す条件で
大越式摩耗試験を実施した。試験結果は、比較材3を1
00とした相対表示で表4に示した。大越摩耗試験条件
は以下の様である。即ち、相手材(リング状ロータ)の
材質はJIS SUH35であり、ブロック材は実施例
及び比較材の試験片(固定式)であり、すべり速度は
0.51m/sであり、摩擦距離は100mであり、試
験開始前の温度は相手材が773Kで、ブロック材が6
93Kであり、最終荷重は31.5Nであり、測定項目
はブロック材の摩耗痕幅である。
An Ogoshi-type wear test was carried out on the obtained test pieces under the following conditions. The test result shows that Comparative Material 3 is 1
The relative display of 00 is shown in Table 4. The Ogoshi abrasion test conditions are as follows. That is, the material of the mating material (ring-shaped rotor) is JIS SUH35, the block material is the test piece (fixed type) of the example and the comparative material, the sliding speed is 0.51 m / s, and the friction distance is 100 m. The temperature before starting the test was 773K for the mating material and 6 for the block material.
It is 93 K, the final load is 31.5 N, and the measurement item is the wear scar width of the block material.

【0031】[0031]

【表3】 [Table 3]

【0032】[0032]

【表4】 ここで実施例8〜11と比較材3の比較から明らかな様
に、溶浸することにより摩耗痕幅は、溶浸量に応じて減
少している。従って、溶浸剤による効果の若干の違いは
みられるが、溶浸の効果は大きいことが明らかである。
しかし、実施例9、10を比較すると、溶浸量の多い実
施例10の方が逆に試験片の摩耗痕幅は大きい。これ
は、溶浸量には適性範囲が存在し、溶浸量の増加による
摩耗痕幅減少効果以上に、スケルトンの弱化が始まって
いるためと考えられる。従って溶浸量は1〜25%が妥
当である。 (その他)焼結は上記した場合に限らず、真空、不活性
ガス雰囲気等でもよく、要するに非酸化性雰囲気で行な
うことができる。請求項では鉄基合金粉末のCoは2〜
15%とされているが、鉄基焼結合金の用途や種類に応
じて上限値は13%、10%、8%、6%、5%にでき
下限値は3%にできる。また請求項では鉄基合金粉末の
Moは2〜10%とされているが、鉄基焼結合金の用途
や種類に応じて、上限値は8%、7%、6%にでき下限
値は2.5%、3%にできる。また請求項ではNi基硬
質合金粉末はMo;5〜20%、Cr;20〜40%、
W;10〜20%を含むが、Moは6〜18%なかでも
7〜13%にでき、Crは22〜40%なかでも30〜
40%にでき、Wは11〜19%なかでも12〜18%
にできる。
[Table 4] Here, as is clear from the comparison between Examples 8 to 11 and Comparative Material 3, the infiltration width decreases due to infiltration, depending on the infiltration amount. Therefore, although there are some differences in the effect of the infiltration agent, it is clear that the infiltration effect is large.
However, comparing Examples 9 and 10, Example 10 with a larger infiltration amount has a larger wear scar width of the test piece. It is considered that this is because the infiltration amount has an appropriate range, and the skeleton is starting to weaken more than the effect of reducing the wear scar width by increasing the infiltration amount. Therefore, the infiltration amount of 1 to 25% is appropriate. (Others) Sintering is not limited to the above case, but may be performed in a vacuum, an inert gas atmosphere, or the like, that is, it can be performed in a non-oxidizing atmosphere. In the claim, Co of the iron-based alloy powder is 2 to
Although it is set to 15%, the upper limit value can be set to 13%, 10%, 8%, 6%, 5% and the lower limit value can be set to 3% depending on the use and type of the iron-based sintered alloy. Further, although Mo in the iron-based alloy powder is set to 2 to 10% in the claims, the upper limit can be set to 8%, 7% and 6%, and the lower limit can be set depending on the use and type of the iron-based sintered alloy. It can be 2.5% and 3%. Further, in the claims, the Ni-based hard alloy powder is Mo; 5 to 20%, Cr; 20 to 40%,
W; 10 to 20% is included, but Mo can be 6 to 18%, 7 to 13%, and Cr is 22 to 40%, 30 to 30%.
40%, W is 11-19%, 12-18%
You can

【0033】請求項6のNi基硬質合金粉末はC;0.
5〜4.0%、Si;2%以下を含有する。このうちC
は上限値が3.5%、3.2%にでき下限値は0.8
%、1.0%にでき、Siは上限値が1.0%、0.5
%にできる。上記した組成の規定は鉄基焼結合金の基地
組織や硬質粒子の組成においても同様に適用可能であ
る。
The Ni-based hard alloy powder according to claim 6 is C;
5-4.0%, Si; 2% or less is contained. Of these, C
Can have an upper limit of 3.5% and 3.2% and a lower limit of 0.8
%, 1.0%, and the upper limit of Si is 1.0%, 0.5
Can be%. The above definition of the composition is similarly applicable to the matrix structure of the iron-based sintered alloy and the composition of the hard particles.

【0034】[0034]

【発明の効果】本発明の耐摩耗性鉄基焼結合金およびそ
の製造方法の発明は以上説明したように、重量比で、C
o;2〜15%、Mo;2〜10%を含有し、残部が不
可避不純物とFeからなる鉄基合金粉末に対して、M
o;5〜20%、Cr;20〜40%、W;10〜20
%、Fe;10〜30%を含有し、さらに必要に応じて
とC;0.5〜4%、Si;2%以下を含有し残部が不
可避不純物とNiからなるNi基硬質合金粉末と、黒鉛
粉末0.2〜2%と成形用潤滑剤を混合、成形し、13
23KからNi基硬質合金粉末の融点未満の温度で焼結
するものであって、鉄基焼結合金の基地組織に分散した
硬質粒子は、Ni基硬質合金であって、それ自体硬いも
のであるが、さらに、Cを含むことによって、Mo、C
r、W、Si、Feと結合し、炭化物を形成することに
より、耐摩耗性を一層向上させる。
As described above, the invention of the wear-resistant iron-based sintered alloy of the present invention and the method for producing the same is, by weight ratio, C
O; 2 to 15%, Mo; 2 to 10%, and the balance is M based on the iron-based alloy powder consisting of unavoidable impurities and Fe.
o: 5-20%, Cr: 20-40%, W: 10-20
%, Fe; 10 to 30%, and optionally C; 0.5 to 4%, Si; 2% or less, and the balance being Ni-based hard alloy powder consisting of unavoidable impurities and Ni. Graphite powder 0.2 to 2% and molding lubricant are mixed and molded.
The hard particles that are sintered at a temperature lower than the melting point of the Ni-based hard alloy powder from 23K, and are dispersed in the matrix structure of the iron-based sintered alloy are Ni-based hard alloys and are themselves hard. However, by further containing C, Mo, C
By combining with r, W, Si and Fe to form a carbide, the wear resistance is further improved.

【0035】請求項4〜8は、鉄基合金粉末に対してN
i基硬質合金粉末と黒鉛粉末等とを混合した混合粉末を
用いるため、鉄基合金粉末は積極的にはNiを含まず、
従って、基地を構成する鉄基合金粉末の過剰硬化を回避
でき、鉄基合金粉末の圧縮成形性を確保できる。更に焼
結によりNi基硬質合金粉末のNiを基地に拡散させる
ことにより、焼結合金の基地の耐酸化性、特に高温にお
ける耐酸化性、耐熱性を確保できる。
According to claims 4 to 8, N is added to the iron-based alloy powder.
Since the mixed powder in which the i-based hard alloy powder and the graphite powder are mixed is used, the iron-based alloy powder does not positively contain Ni,
Therefore, it is possible to avoid excessive hardening of the iron-based alloy powder forming the matrix and ensure the compression moldability of the iron-based alloy powder. Further, by diffusing Ni of the Ni-based hard alloy powder into the matrix by sintering, it is possible to secure the oxidation resistance of the matrix of the sintered alloy, particularly the oxidation resistance and heat resistance at high temperatures.

【0036】更に請求項3、8では、Pb、Cu、Pb
−Cu系合金の少なくとも1種を主要成分とする溶浸剤
を溶浸しているので、本発明の鉄基焼結合金と相手材と
の接触部に溶浸剤が介在して潤滑剤として機能する効果
を期待でき、耐摩耗性、耐焼付性の向上を期待できる。
更に溶浸剤は鉄基焼結合金の熱伝導性を向上させ、相手
材との接触部の温度の上昇防止に有利である効果を期待
でき、この意味でも耐摩耗性を一層向上させる。
Further, in claims 3 and 8, Pb, Cu, Pb
-Since the infiltrant containing at least one of the Cu-based alloys as the main component is infiltrated, the effect that the infiltrant intervenes in the contact portion between the iron-based sintered alloy of the present invention and the mating material to function as a lubricant It can be expected that wear resistance and seizure resistance can be improved.
Further, the infiltrant can improve the thermal conductivity of the iron-based sintered alloy and can be expected to be advantageous in preventing the temperature rise at the contact portion with the mating material, and in this sense, further improve the wear resistance.

【図面の簡単な説明】[Brief description of drawings]

【図1】摩耗試験における本発明の実施例と比較材のバ
ルブシートの当り幅増加数を示す図である。
FIG. 1 is a diagram showing the number of increase in the contact width of a valve seat of an example of the present invention and a comparative material in a wear test.

【図2】摩耗試験におけるバルブシートの当り幅増加数
と基地中のMo量との関係を示す線図である。
FIG. 2 is a diagram showing the relationship between the number of increase in the contact width of the valve seat and the amount of Mo in the matrix in the wear test.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 伊藤 与志彦 愛知県豊田市トヨタ町1番地 トヨタ自動 車株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Yoshihiko Ito 1 Toyota-cho, Toyota-shi, Aichi Toyota Automobile Co., Ltd.

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】重量比で全体組成が、Co;1.4〜15
%、Mo;1.5〜16%、Cr;0.4〜12%、
W;0.2〜6.0%、C;0.4〜3.2%、Ni;
0.2〜9.0%を含有し、残部が不可避不純物とFe
からなり、 Co;2〜15%、Mo;2〜10%、C;0.2〜2
%、Ni;10%以下を含有し残部が不可避不純物とF
eからなる基地組織に、 Mo;5〜20%、Cr;20〜40%、W;10〜2
0%、C;0.5〜5.0%、Fe;5〜30%を含有
し、残部が不可避不純物とNiからなる硬質粒子を2〜
30%分散した焼結体からなることを特徴とする耐摩耗
性に優れた鉄基焼結合金。
1. The total composition by weight ratio is Co: 1.4 to 15
%, Mo; 1.5 to 16%, Cr; 0.4 to 12%,
W: 0.2-6.0%, C: 0.4-3.2%, Ni;
0.2 to 9.0%, the balance being inevitable impurities and Fe
Co; 2 to 15%, Mo; 2 to 10%, C; 0.2 to 2
%, Ni; 10% or less, with the balance being inevitable impurities and F
In a base structure composed of e, Mo: 5 to 20%, Cr: 20 to 40%, W: 10 to 2
2% of hard particles containing 0%, C; 0.5 to 5.0%, Fe; 5 to 30%, and the balance being inevitable impurities and Ni.
An iron-based sintered alloy having excellent wear resistance, which is composed of a sintered body in which 30% is dispersed.
【請求項2】重量比で全体組成が、Co;1.4〜15
%、Mo;1.5〜16%、Cr;0.4〜12%、
W;0.2〜6.0%、C;0.01〜4.0%、N
i;0.2〜9.0%、さらにSi;0.6%以下を含
有し、残部が不可避不純物とFeからなり、 Co;2〜15%、Mo;2〜10%、C;0.2〜2
%、Ni;10%以下を含有し残部が不可避不純物とF
eからなる基地組織に、 Mo;5〜20%、Cr;20〜40%、W;10〜2
0%、C;0.5〜4.0%、Fe;5〜30%、さら
にSi;2%以下を含有し、残部が不可避不純物とNi
からなる硬質粒子を2〜30%分散した焼結体からなる
ことを特徴とする耐摩耗性に優れた鉄基焼結合金。
2. The total composition by weight ratio is Co; 1.4 to 15
%, Mo; 1.5 to 16%, Cr; 0.4 to 12%,
W: 0.2-6.0%, C: 0.01-4.0%, N
i; 0.2 to 9.0%, Si: 0.6% or less, the balance consisting of inevitable impurities and Fe, Co: 2 to 15%, Mo: 2 to 10%, C: 0. 2 to 2
%, Ni; 10% or less, with the balance being inevitable impurities and F
In a base structure composed of e, Mo: 5 to 20%, Cr: 20 to 40%, W: 10 to 2
0%, C: 0.5 to 4.0%, Fe: 5 to 30%, Si: 2% or less, and the balance is inevitable impurities and Ni.
An iron-based sintered alloy having excellent wear resistance, which is composed of a sintered body in which 2 to 30% of hard particles made of is dispersed.
【請求項3】請求項1または請求項2記載の焼結体は気
孔をもち、該気孔内に、Pb、Cu、Pb−Cu系合金
の少なくとも1種を主要成分とした溶浸剤を、該焼結体
を重量比で100%としたとき100%に対して1〜2
5%溶浸したことを特徴とする耐摩耗性に優れた鉄基焼
結合金。
3. The sintered body according to claim 1 or 2, wherein the sintered body has pores, and an infiltrant containing at least one of Pb, Cu and a Pb-Cu alloy as a main component is contained in the pores. When the weight ratio of the sintered body is 100%, it is 1-2 with respect to 100%.
Iron-based sintered alloy with excellent wear resistance, characterized by being infiltrated by 5%.
【請求項4】重量比でCo;2〜15%、Mo;2〜1
0%を含有し、残部が不可避不純物とFeからなる鉄基
合金粉末に対して、 Mo;5〜20%、Cr;20〜40%、W;10〜2
0%、Fe;10〜30%と残部が不可避不純物とNi
からなるNi基硬質合金粉末と、 黒鉛粉末0.2〜2%と成形用潤滑剤とを混合、成形
し、 1323Kから該Ni基硬質合金粉末の融点未満の温度
で焼結することにより、焼結体からなる鉄基焼結合金を
製造することを特徴とする耐摩耗性に優れた鉄基焼結合
金の製造方法。
4. A weight ratio of Co: 2 to 15%, Mo: 2-1
With respect to the iron-based alloy powder containing 0% and the balance being unavoidable impurities and Fe, Mo: 5 to 20%, Cr: 20 to 40%, W: 10 to 2
0%, Fe; 10 to 30% and the balance is unavoidable impurities and Ni
Ni-based hard alloy powder consisting of, graphite powder 0.2 to 2% and a molding lubricant are mixed and molded, and sintered by sintering from 1323K at a temperature lower than the melting point of the Ni-based hard alloy powder. A method for producing an iron-based sintered alloy having excellent wear resistance, which comprises producing an iron-based sintered alloy comprising a bound body.
【請求項5】鉄基粉末合金のMo含有量が3%を越え1
0%以下であることを特徴とする請求項4に記載の耐摩
耗性に優れた鉄基焼結合金の製造方法。
5. The Mo content of the iron-based powder alloy exceeds 3% to 1
It is 0% or less, The manufacturing method of the iron-based sintered alloy excellent in wear resistance of Claim 4 characterized by the above-mentioned.
【請求項6】重量比で、Co;2〜15%、Mo;2〜
10%を含有し、残部が不可避不純物とFeからなる鉄
基合金粉末に対して、 Mo;5〜20%、Cr;20〜40%、W;10〜2
0%、Fe;10〜30%と、C;0.5〜4%、S
i;2%以下を含有し残部が不可避不純物とNiからな
るNi基硬質合金粉末と、 黒鉛粉末0.2〜2%と成形用潤滑剤とを混合、成形
し、 1323KからNi基硬質合金粉末の融点未満の温度で
焼結することにより、焼結体からなる鉄基焼結合金を製
造することを特徴とする耐摩耗性に優れた鉄基焼結合金
の製造方法。
6. A weight ratio of Co: 2 to 15%, Mo: 2 to
With respect to the iron-based alloy powder containing 10% and the balance being inevitable impurities and Fe, Mo: 5 to 20%, Cr: 20 to 40%, W: 10 to 2
0%, Fe; 10 to 30%, C; 0.5 to 4%, S
i; Ni-based hard alloy powder containing 2% or less and the balance being unavoidable impurities and Ni, graphite powder 0.2 to 2% and a molding lubricant are mixed and molded, and 1323K to Ni-based hard alloy powder A method for producing an iron-based sintered alloy having excellent wear resistance, which comprises producing an iron-based sintered alloy composed of a sintered body by sintering at a temperature lower than the melting point of.
【請求項7】鉄基合金粉末のMo含有量が3%を越え1
0%以下であることを特徴とする請求項6に記載の耐摩
耗性に優れた鉄基焼結合金の製造方法。
7. The Mo content of the iron-based alloy powder exceeds 3% and 1
It is 0% or less, The manufacturing method of the iron-based sintered alloy excellent in wear resistance of Claim 6 characterized by the above-mentioned.
【請求項8】請求項4〜請求項7に記載の焼結体は気孔
をもち、該気孔内に、Pb、Cu、Pb−Cu系合金の
少なくとも1種を主要成分とした溶浸剤を、該焼結体を
重量比で100%としたとき100%に対して1〜25
%溶浸したことを特徴とする耐摩耗性に優れた鉄基焼結
合金の製造方法。
8. The sintered body according to any one of claims 4 to 7 has pores, and an infiltrant containing at least one of Pb, Cu and a Pb-Cu alloy as a main component is contained in the pores. When the weight ratio of the sintered body is 100%, it is 1 to 25 with respect to 100%.
% Infiltrated iron-based sintered alloy having excellent wear resistance.
JP11797094A 1993-09-24 1994-05-31 Wear-resistant iron-based sintered alloy and method for producing the same Expired - Fee Related JP3264092B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11797094A JP3264092B2 (en) 1993-09-24 1994-05-31 Wear-resistant iron-based sintered alloy and method for producing the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP5-238449 1993-09-24
JP23844993 1993-09-24
JP11797094A JP3264092B2 (en) 1993-09-24 1994-05-31 Wear-resistant iron-based sintered alloy and method for producing the same

Publications (2)

Publication Number Publication Date
JPH07138714A true JPH07138714A (en) 1995-05-30
JP3264092B2 JP3264092B2 (en) 2002-03-11

Family

ID=26455993

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11797094A Expired - Fee Related JP3264092B2 (en) 1993-09-24 1994-05-31 Wear-resistant iron-based sintered alloy and method for producing the same

Country Status (1)

Country Link
JP (1) JP3264092B2 (en)

Also Published As

Publication number Publication date
JP3264092B2 (en) 2002-03-11

Similar Documents

Publication Publication Date Title
JP2957180B2 (en) Wear-resistant iron-based sintered alloy and method for producing the same
US8876936B2 (en) Engine valve seat and manufacturing method thereof
US20020084004A1 (en) Iron-based sintered alloy material for valve seat and valve seat made of iron-based sintered alloy
JP2000199040A (en) Wear resistant ferrous sintered alloy material for valve seat and valve seat made of ferrous sintered alloy
JP3469435B2 (en) Valve seat for internal combustion engine
JP4693170B2 (en) Wear-resistant sintered alloy and method for producing the same
JP3784926B2 (en) Ferrous sintered alloy for valve seat
JP3614237B2 (en) Valve seat for internal combustion engine
JP3763782B2 (en) Method for producing wear-resistant iron-based sintered alloy material for valve seat
JP3957234B2 (en) Wear-resistant iron-based sintered alloy material
JP3434527B2 (en) Sintered alloy for valve seat
JP3225649B2 (en) Wear resistant iron-based sintered alloy
JP3569166B2 (en) Wear-resistant sintered alloy and method for producing the same
JP3264092B2 (en) Wear-resistant iron-based sintered alloy and method for producing the same
JP3942136B2 (en) Iron-based sintered alloy
JP3226618B2 (en) Iron-based sintered alloy for valve seat
JPH09256120A (en) Powder metallurgy material excellent in wear resistance
JPH0555591B2 (en)
JPH0555592B2 (en)
JP3257349B2 (en) Iron-based sintered alloy with excellent strength and wear resistance
JP3068127B2 (en) Wear-resistant iron-based sintered alloy and method for producing the same
JPH0633184A (en) Production of sintered alloy for valve seat excellent in wear resistance
JP3862196B2 (en) Iron-based sintered valve seat
JP2877211B2 (en) Iron-based sintered alloy for valve seat
JPH0313546A (en) Ferrous sintered alloy for valve seat

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081228

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 7

Free format text: PAYMENT UNTIL: 20081228

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091228

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees