JP2007023317A - Wear resistant titanium material - Google Patents

Wear resistant titanium material Download PDF

Info

Publication number
JP2007023317A
JP2007023317A JP2005204618A JP2005204618A JP2007023317A JP 2007023317 A JP2007023317 A JP 2007023317A JP 2005204618 A JP2005204618 A JP 2005204618A JP 2005204618 A JP2005204618 A JP 2005204618A JP 2007023317 A JP2007023317 A JP 2007023317A
Authority
JP
Japan
Prior art keywords
plating
plating film
film
titanium material
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005204618A
Other languages
Japanese (ja)
Other versions
JP4519727B2 (en
Inventor
Wataru Urushibara
亘 漆原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2005204618A priority Critical patent/JP4519727B2/en
Publication of JP2007023317A publication Critical patent/JP2007023317A/en
Application granted granted Critical
Publication of JP4519727B2 publication Critical patent/JP4519727B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Chemically Coating (AREA)
  • Electroplating And Plating Baths Therefor (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a wear resistant titanium material subjected to Ni-P plating which has high reliability and ensures characteristics such as fatigue life, wear resistance or adherability. <P>SOLUTION: The titanium material is provided with a Ni-P plated film. The Ni-P plated film is a crystalline plated film which is formed from a Ni-alloy containing, by mass, ≥85% Ni, 1-5% P and 0.1-1% NH<SB>4</SB>group and has an average crystallite size of 1-5 nm, in the Ni-P plated film texture analysis by an X-ray diffraction method. At least one layer of a Ni or Ni-alloy layer containing ≥99% Ni and a Pd or Pd-alloy layer containing ≥90% Pd is formed at the interface between the titanium material and the Ni-P plated film. The Ni-P plated film has a hardness of ≥500 Hv in as-plated state. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、表面に硬質めっき皮膜を有する耐摩耗性チタン材に関する。   The present invention relates to a wear-resistant titanium material having a hard plating film on the surface.

近年、炭酸ガスの排出低減などの地球環境保全の立場、あるいは機械自体の高性能化や省エネルギー化を推進するため、自動車やオートバイなどを代表とする、航空機、鉄道車両などの輸送機、あるいはロボットなどの産業機械では、構成部品の軽量化が求められている。そして、この軽量化対策の一環として、構成部品に用いられる部品の、鋼材から純チタン材またはチタン合金材(以下、単にチタン材と言う)への転換が進んでいる。特に、構成部品の内でも、動力伝達部品をチタン材製とすれば、動力伝達部品自体の軽量化だけではなく、動力伝達部品の駆動装置の小型化なども図ることができるので、軽量化の効果が大きい。   In recent years, in order to promote global environmental conservation, such as reducing carbon dioxide emissions, or to improve the performance and energy saving of machines themselves, transport aircraft such as automobiles and motorcycles, and robots, such as automobiles and motorcycles, or robots In industrial machines such as these, it is required to reduce the weight of components. As part of this lightening measure, the components used for the component parts are being converted from steel materials to pure titanium materials or titanium alloy materials (hereinafter simply referred to as titanium materials). In particular, among the components, if the power transmission component is made of titanium, not only the weight of the power transmission component itself but also the size of the drive device for the power transmission component can be reduced. Great effect.

チタン材の、特に耐摩耗性の向上を図るために、表面に硬質な皮膜を設けることが従来から行なわれている。   In order to improve the wear resistance of the titanium material, in particular, a hard film has been conventionally provided on the surface.

この表面の硬質な皮膜としては、Crめっき、窒化、浸炭などの硬質表面皮膜に比して、耐摩耗性や耐久性、靱性などの総合的に優れた、Ni−P無電解めっき皮膜が用いられている。   As the hard film on this surface, Ni-P electroless plating film, which is comprehensively superior in wear resistance, durability and toughness compared to hard surface films such as Cr plating, nitriding and carburizing, is used. It has been.

例えば、特許文献1には、表面をRa0.5μm以上でPPI50 が130以上に粗面化したチタン合金またはアルミ合金の表面に、直接硬度HV500以上のNi−Pメッキ層を100μm以上被覆した転動疲労寿命に優れた機械構造用複合材が開示されている。   For example, Patent Document 1 discloses rolling in which a Ni-P plating layer having a hardness of HV500 or more is directly coated on a surface of a titanium alloy or aluminum alloy whose surface is roughened to Ra 0.5 μm or more and PPI50 is 130 or more. A mechanical structural composite material having an excellent fatigue life is disclosed.

特許文献2には、表面をRa0.5μm以上でPPI50 が130以上に粗面化したチタンまたはチタン合金及びアルミまたはアルミ合金の表面に、P含有量4重量%以上で、メッキの結晶面方位〈111〉をメインとする内層と、P含有量4重量%未満で、メッキ硬さHV500以上の外層の少なくとも二層のNi−Pメッキ層を被覆した転動疲労寿命に優れた機械構造用複合材が開示されている。   In Patent Document 2, the surface of titanium or a titanium alloy and aluminum or aluminum alloy whose surface is roughened to Ra 0.5 μm or more and PPI50 is 130 or more, the P content is 4 wt% or more, and the crystal plane orientation < 111> main layer and a composite material for mechanical structure with excellent rolling fatigue life, coated with at least two Ni-P plating layers of P content less than 4% by weight and outer layer with plating hardness of HV500 or more Is disclosed.

特許文献3には、表面をRa0.5μm以上でPPI50 が130以上に粗面化したチタン合金またはアルミ合金の表面に、直接Ni- Pメッキ層を100μm以上被覆したのち、室温〜200℃または450〜600℃の熱処理を施した転動疲労寿命に優れた機械構造用複合材の製造方法が開示されている。   Patent Document 3 discloses that a surface of a titanium alloy or aluminum alloy whose surface is roughened to Ra 0.5 μm or more and PPI50 130 or more is directly coated with a Ni—P plating layer of 100 μm or more, and then room temperature to 200 ° C. or 450 A method for producing a composite material for machine structure excellent in rolling fatigue life after heat treatment at ˜600 ° C. is disclosed.

また、特許文献4には、硬質Ni-Pめっき皮膜を設けたTi合金などの金属基材製動力伝達部品において、外部からの応力や衝撃によるめっき皮膜の破壊や、長期間の使用によるめっき皮膜自体の疲労破壊や剥離を防止する技術が開示されている。より具体的には、金属基材の表面に、硬質電気Ni-Pめっき皮膜を設けた後に熱処理を行って、めっき皮膜の高硬度化と高密着化を図り、その後更に、めっき皮膜に微粒子を吹き当てるショットピーニングやドライホーニングを行って、めっき皮膜に残留圧縮応力を付与し、前記熱処理によるNi-Pめっき皮膜の靱性低下を回復して、めっき皮膜の硬さと靱性をバランスよく向上させる技術が開示されている。   In Patent Document 4, in power transmission parts made of a metal base material such as a Ti alloy provided with a hard Ni-P plating film, the plating film is broken due to external stress or impact, or the plating film is used over a long period of time. A technique for preventing fatigue fracture and peeling of itself is disclosed. More specifically, after a hard electric Ni-P plating film is provided on the surface of the metal substrate, heat treatment is performed to increase the hardness and adhesion of the plating film. A technology to improve the hardness and toughness of the plating film in a well-balanced manner by applying residual peening stress to the plating film by recovering shot peening and dry honing, and recovering the decrease in toughness of the Ni-P plating film due to the heat treatment. It is disclosed.

これらのNi-Pめっき皮膜技術では、耐摩耗性、密着性、転動疲労寿命の向上は図れる。しかし、動力伝達等に用いられる機械部品においては、より接触応力が大きく、より動作速度が速くなる傾向にあり、現行の技術では性能的に不十分となってきている。すなわち、密着性、耐摩耗性の優れた表面処理が求められている。
特許第2777460号 (特許請求の範囲) 特許第2777468号 (特許請求の範囲) 特許第2888953号 (特許請求の範囲) 特開平8−39432号公報 (特許請求の範囲)
These Ni-P plating film technologies can improve wear resistance, adhesion, and rolling fatigue life. However, mechanical parts used for power transmission and the like tend to have a larger contact stress and a higher operating speed, and the current technology has become insufficient in performance. That is, a surface treatment having excellent adhesion and wear resistance is required.
Patent No. 2777460 (Claims) Patent No. 2777468 (Claims) Patent No. 28888953 (Claims) JP-A-8-39432 (Claims)

本発明はこのような課題を解決するためになされたものであって、その目的は、疲労寿命および耐摩耗性、密着性などの特性を保障しうる、信頼性の高いNi−Pめっきを施した、耐摩耗性チタン材を提供することである。   The present invention has been made to solve such problems, and its purpose is to apply highly reliable Ni-P plating that can guarantee characteristics such as fatigue life, wear resistance, and adhesion. Another object of the present invention is to provide a wear-resistant titanium material.

この目的を達成するために、本発明耐摩耗性チタン材の要旨は、Ni−Pめっき皮膜を設けたチタン材であって、前記Ni−Pめっき皮膜が、質量%で、Ni:85%以上、P:1〜5%、NH4 基:0.1〜1%を含むNi合金からなるとともに、X線回折法によるNi−Pめっき皮膜組織解析における皮膜の結晶子平均サイズが1〜5nmである結晶性めっき皮膜からなり、かつ前記チタン材とNi−Pめっき皮膜との界面に、Niが99%以上からなるNiまたはNi合金層か、Pdが90%以上からなるPdまたはPd合金層かの、少なくともいずれか一方が形成されており、Ni−Pめっき皮膜のめっきままでの硬度が500Hv以上であることとする。 In order to achieve this object, the gist of the wear-resistant titanium material of the present invention is a titanium material provided with a Ni-P plating film, and the Ni-P plating film is in mass%, and Ni: 85% or more. , P: 1 to 5%, NH 4 group: 0.1 to 1%, and the average crystallite size of the film in the Ni-P plating film structure analysis by X-ray diffraction method is 1 to 5 nm. Whether the Ni or Ni alloy layer is made of 99% or more of Ni or the Pd or Pd alloy layer of Pd is made 90% or more at the interface between the titanium material and the Ni-P plating film. Or at least one of them is formed, and the hardness of the Ni-P plating film as plated is 500 Hv or more.

本発明では、上記要旨のように、耐摩耗性、密着性などの特性を保障するために、Ni−Pめっき皮膜の結晶子平均サイズを小さくする。このために、Ni−Pめっき皮膜中にNH4 基を含むものとする。 In the present invention, as described above, the average crystallite size of the Ni—P plating film is reduced in order to ensure characteristics such as wear resistance and adhesion. For this purpose, it is assumed that the Ni—P plating film contains NH 4 groups.

これによって、Ni−Pめっき皮膜のめっきままでの硬度が500Hv以上に上昇し、靱性も高くなって割れにくくなる。また、Ni−Pめっき皮膜の潤滑性も向上する。   As a result, the hardness of the Ni-P plating film as plated increases to 500 Hv or more, and the toughness is increased, making it difficult to crack. Moreover, the lubricity of the Ni—P plating film is also improved.

また、本発明では、Ni−Pめっき皮膜の配向度を、X線回折法による皮膜組織解析における、Ni(111)とNi(200)との測定ピーク強度比Ni(111)/Ni(200)を0.3〜0.5とすることによって、低減することが好ましい。このようなNi−Pめっき皮膜のNi−Pめっき皮膜の配向度低減によって、靱性が50kN以上に高くなる一方、めっき引張応力が5kgf/mm2 以下となって、前記高硬度でも割れにくくなる。 In the present invention, the degree of orientation of the Ni-P plating film is determined by measuring the peak intensity ratio of Ni (111) and Ni (200) in the film structure analysis by X-ray diffraction method Ni (111) / Ni (200). It is preferable to reduce by setting 0.3 to 0.5. By reducing the degree of orientation of the Ni—P plating film as described above, the toughness is increased to 50 kN or more, while the plating tensile stress is 5 kgf / mm 2 or less, and it is difficult to crack even with the high hardness.

これらの効果を密着性良く発現させるためには、前記チタン材とNi−Pめっき皮膜との界面に、Niが99%以上からなるNiまたはNi合金層、または、Pdが90%以上からなるPdまたはPd合金層を形成する。   In order to express these effects with good adhesion, Ni or a Ni alloy layer with Ni of 99% or more, or Pd with Pd of 90% or more at the interface between the titanium material and the Ni-P plating film. Alternatively, a Pd alloy layer is formed.

耐摩耗性を更に向上させるためには、前記Ni−Pめっき皮膜の上層として、更に、平均膜厚が0.1〜5μmで、硬度が900Hv以上の、硬質Crめっきが施されていることが好ましい。   In order to further improve the wear resistance, a hard Cr plating having an average film thickness of 0.1 to 5 μm and a hardness of 900 Hv or more is applied as an upper layer of the Ni-P plating film. preferable.

そして、これらのめっき皮膜を確実に得るためには、前記Ni−Pめっき皮膜が無電解めっきであることが好ましい。無電解めっきは、電気めっきよりは、膜厚(膜厚分布)の均一性に優れる。   And in order to obtain these plating films reliably, it is preferable that the said Ni-P plating film is electroless plating. Electroless plating is more excellent in film thickness (film thickness distribution) uniformity than electroplating.

以上の効果を有する本発明は、高い耐摩耗性を保障しうる、チタン材、およびチタン材製部品を提供できる。   The present invention having the above effects can provide a titanium material and a titanium material part that can ensure high wear resistance.

(Ni−Pめっき皮膜組成)
先ず、本発明におけるNi−Pめっき皮膜組成について説明する。本発明では、Ni−Pめっき皮膜は、基本的に、質量%で、Ni:85%以上、P:1〜5%、NH4 基:0.1〜1%を含むNi合金からなるめっき皮膜組成とする。
(Ni-P plating film composition)
First, the Ni-P plating film composition in the present invention will be described. In the present invention, the Ni—P plating film is basically a plating film made of a Ni alloy containing, by mass%, Ni: 85% or more, P: 1 to 5%, NH 4 group: 0.1 to 1%. The composition.

NiとPとは、硬質皮膜における耐摩耗性および疲労寿命特性を基本的に保障するものであり、このために、Niは85%以上、Pは1%以上含有させる。NiとPとの含有量が下限値未満では、上記基本特性が低下する。   Ni and P basically ensure the wear resistance and fatigue life characteristics of the hard coating. For this purpose, Ni is contained at 85% or more, and P is contained at 1% or more. When the content of Ni and P is less than the lower limit, the basic characteristics are deteriorated.

一方、Niを98.9%を超えて含有させると、他のPやNH4 基の含有量が不足して、上記基本特性が低下する。したがって、Niは85%以上、好ましくは98.9%以下とする。 On the other hand, if Ni is contained in excess of 98.9%, the content of other P and NH 4 groups is insufficient, and the basic characteristics are deteriorated. Therefore, Ni is 85% or more, preferably 98.9% or less.

また、Pを5%を超えて含有させると、めっきままでの硬度が不足する。このため、硬度を500Hv以上とするための熱処理が更に必要となる。更に、めっき皮膜の靱性も低下して、割れやすくなる。したがって、Pは1〜5%の範囲とする。   Moreover, when P is contained exceeding 5%, the hardness as plated is insufficient. For this reason, the heat processing for making hardness into 500 Hv or more is needed further. Furthermore, the toughness of the plating film is also reduced, and it becomes easy to break. Therefore, P is in the range of 1 to 5%.

NH4 基は、Ni−Pめっき浴からの、めっき皮膜成膜時に、めっき皮膜中に含有させるものであり、めっき皮膜の結晶粒を、X線回折測定法による結晶子平均サイズで5nm以下に微細化させると推考される。これによって、皮膜における耐摩耗性および疲労寿命、めっき密着性などの基本特性を保障する。 The NH 4 group is contained in the plating film at the time of forming the plating film from the Ni-P plating bath, and the crystal grain size of the plating film is 5 nm or less in terms of the average crystallite size by the X-ray diffraction measurement method. It is presumed to be miniaturized. This ensures basic properties such as wear resistance, fatigue life and plating adhesion in the coating.

これらの効果を発揮させるためには、めっき浴成分の調整によって、NH4 基は0.1%以上含有させる。NH4 基含有量が0.1%未満では、これらの効果が発揮されず、結晶子平均サイズを微細化できない。また、NH4 基を含まないめっき浴組成では、めっき皮膜の配向性も強くなって、Ni−Pめっき皮膜の配向度を、X線回折法による皮膜組織解析における、Ni(111)とNi(200)との測定ピーク強度比Ni(111)/Ni(200)を0.3〜0.5とすることができなくなる。一方、NH4 基含有量が1%を超えてもこの効果は飽和し、却って上記基本特性が低下する。したがって、NH4 基は0.1〜1%の範囲で含有させる。 In order to exert these effects, the NH 4 group is contained by 0.1% or more by adjusting the plating bath components. If the NH 4 group content is less than 0.1%, these effects cannot be exhibited, and the average crystallite size cannot be refined. In addition, the plating bath composition containing no NH 4 group also enhances the orientation of the plating film, and the degree of orientation of the Ni—P plating film can be determined using Ni (111) and Ni ( 200) and the measurement peak intensity ratio Ni (111) / Ni (200) cannot be made 0.3 to 0.5. On the other hand, even if the NH 4 group content exceeds 1%, this effect is saturated, and the basic characteristics are lowered. Therefore, the NH 4 group is contained in the range of 0.1 to 1%.

その他、本発明めっき皮膜では、CoやSの含有を許容する。Coは0.05%以上、Sは0.01%以上の含有で、硬度向上の効果がある。但し、多過ぎるとめっき皮膜の上記基本特性を低下させる恐れがあるので、Coについては、Ni、P、NH4 基などの含有量を保証できる1%以下とし、Sについては、靱性低下の観点から3%以下とする。 In addition, the plating film of the present invention allows the inclusion of Co and S. Co contains 0.05% or more and S contains 0.01% or more, and has an effect of improving hardness. However, if the amount is too large, the above-mentioned basic characteristics of the plating film may be deteriorated. Therefore, for Co, the content of Ni, P, NH 4 groups, etc. can be guaranteed to 1% or less, and for S, the viewpoint of reduced toughness To 3% or less.

また、この他、C、B、W、Moなどの金属元素も、硬度向上の効果があり、Ni、P、NH4 基などの含有量を保証できる量までの含有を許容する。一方、Fe、Cu、Znは、めっき皮膜の上記基本特性を低下させる恐れがあるので、上記特性を阻害しない範囲での含有は許容する。 In addition, metal elements such as C, B, W, and Mo also have an effect of improving the hardness, and allow the inclusion up to an amount that can guarantee the content of Ni, P, NH 4 groups, and the like. On the other hand, since Fe, Cu, and Zn may deteriorate the basic characteristics of the plating film, inclusion in a range that does not inhibit the characteristics is allowed.

(Ni−Pめっき皮膜組織)
本発明では、特徴的には、Ni−Pめっき皮膜の、X線回折法による皮膜組織解析において、皮膜の結晶子平均サイズを1〜5nmに微細化させる。また、好ましくは、X線回折法による皮膜組織解析において、Ni(111)とNi(200)との測定ピーク強度比Ni(111)/Ni(200)が0.3〜0.5である配向の弱い乃至無いめっき皮膜とする。
(Ni-P plating film structure)
In the present invention, characteristically, in the film structure analysis of the Ni-P plating film by the X-ray diffraction method, the average crystallite size of the film is refined to 1 to 5 nm. Further, preferably, in the film structure analysis by the X-ray diffraction method, the measurement peak intensity ratio Ni (111) / Ni (200) of Ni (111) and Ni (200) is 0.3 to 0.5. The plating film is weak or no.

上記皮膜の結晶子平均サイズの微細化によって、硬質皮膜における耐摩耗性、めっき密着性などの基本特性を保障する。   By refining the average crystallite size of the film, basic properties such as wear resistance and plating adhesion in the hard film are guaranteed.

これに対して、例えば、前記した特許文献3では、Ni−Pメッキ密着性を向上させるために、被メッキ材表面の結晶面方位とメッキの結晶面方位との整合性を極力保つべく、結晶面方位〈111 〉の積分強度を次式で90%以下となるように、積極的に配向させている。〔〈111 〉/(〈111 〉+〈200 〉+〈220 〉+〈311 〉+〈222 〉)〕×100 ≦90。   On the other hand, for example, in Patent Document 3 described above, in order to improve the Ni—P plating adhesion, the crystal surface orientation of the material to be plated and the crystal plane orientation of the plating are maintained as much as possible. The orientation is positively oriented so that the integral intensity of the plane orientation <111> is 90% or less in the following equation. [<111> / (<111> + <200> + <220> + <311> + <222>)] × 100 ≦ 90.

しかし、このように、めっきの結晶面方位を配向させた場合、上記基本特性が低下しやすい。また、めっきの結晶面方位を敢えて配向させずとも、めっき皮膜とチタン基材との密着性は、本発明の界面層(中間層)によって、より向上させることができる。   However, when the crystal plane orientation of the plating is oriented as described above, the basic characteristics are likely to deteriorate. In addition, the adhesion between the plating film and the titanium substrate can be further improved by the interface layer (intermediate layer) of the present invention without intentionally orienting the crystal plane orientation of the plating.

本発明では、好ましくは、めっき皮膜の結晶の配向性を、めっき皮膜の主結晶面方位であるNi(111)とNi(200)とのX線回折法(XRD)による測定ピーク強度比によって規定し、この測定ピーク強度比で0.3〜0.5の範囲にあることとする。このように、めっき皮膜の結晶の配向性を弱くすることによって、靱性が50kN以上に高くなる一方、めっき引張応力が5kgf/mm2 以下となって、前記高硬度でも割れにくくなる。 In the present invention, preferably, the crystal orientation of the plating film is defined by the ratio of peak intensity measured by X-ray diffraction (XRD) between Ni (111) and Ni (200) which are the main crystal plane orientations of the plating film. In addition, the measurement peak intensity ratio is in the range of 0.3 to 0.5. Thus, by weakening the crystal orientation of the plating film, the toughness is increased to 50 kN or more, while the plating tensile stress is 5 kgf / mm 2 or less, and it is difficult to crack even with the high hardness.

この測定ピーク強度比が0.3未満の場合はNi(200)の結晶面方位の配向性が強くなり、一方、0.5を超えた場合も、前記従来技術と同様に、Ni(111)の結晶面方位の配向性が強くなり、靱性が低下したり、めっき引張応力が上昇して、上記基本特性が低下する可能性がある。   When the measured peak intensity ratio is less than 0.3, the orientation of the crystal plane orientation of Ni (200) becomes strong. On the other hand, when it exceeds 0.5, as in the above-described conventional technique, Ni (111) There is a possibility that the orientation of the crystal plane orientation becomes strong and the toughness is lowered, or the plating tensile stress is increased and the basic characteristics are lowered.

(Ni−Pめっき皮膜膜厚)
以上の組成からなるNi−Pめっき皮膜の平均膜厚は、好ましくは1〜100μmの範囲から選択される。Ni−Pめっき皮膜の平均膜厚が1μm未満では、耐摩耗性を保障できない可能性がある。一方、Ni−Pめっき皮膜の平均膜厚が100μmを超えると、逆に、密着性を含めためっき皮膜の基本特性が低下する可能性がある。
(Ni-P plating film thickness)
The average film thickness of the Ni—P plating film having the above composition is preferably selected from the range of 1 to 100 μm. If the average film thickness of the Ni—P plating film is less than 1 μm, the wear resistance may not be guaranteed. On the other hand, when the average film thickness of the Ni—P plating film exceeds 100 μm, the basic characteristics of the plating film including adhesion may be deteriorated.

なお、本発明によれば、Ni−Pめっき皮膜の平均膜厚は上記範囲から選択されるものの、選択(制作)した平均膜厚の部品表面における分布(ばらつき)は、最大の膜厚と最小の膜厚との差が少ない方が好ましい。   According to the present invention, although the average film thickness of the Ni-P plating film is selected from the above range, the distribution (variation) of the average film thickness selected (produced) on the component surface is the maximum film thickness and the minimum film thickness. It is preferable that the difference from the film thickness is small.

(チタン材とNi−Pめっき皮膜との界面)
Ni−Pめっき皮膜のこれらの効果を更に向上させるためには、前記チタン材とNi−Pめっき皮膜との界面に、界面層(中間層、Ni−Pめっき皮膜の下地層)として、下記する各中間層を形成させる。
(1)Niが99%以上からなるNiまたはNi合金層。
(2)Pdが90%以上からなるPdまたはPd合金層。
これら各中間層のNiあるいはPdの純度がこれ以上低くなると、これら中間層の効果が達成できない可能性が生じる。
(Interface between titanium material and Ni-P plating film)
In order to further improve these effects of the Ni-P plating film, an interface layer (an intermediate layer, an underlayer of the Ni-P plating film) is provided below at the interface between the titanium material and the Ni-P plating film. Each intermediate layer is formed.
(1) Ni or Ni alloy layer comprising Ni of 99% or more.
(2) A Pd or Pd alloy layer comprising Pd of 90% or more.
If the purity of Ni or Pd in each of these intermediate layers is further lowered, there is a possibility that the effects of these intermediate layers cannot be achieved.

(NiまたはNi合金層)
NiまたはNi合金層上はNiめっきが析出しやすく、また密着性良く成膜しやすい。しかしながら、析出するNiめっきの結晶子サイズ、配向度の制御は難しく、結晶子サイズが大きく、配向度が強くなりがちである。前述のNi−Pめっき浴を用いれば、請求範囲内に結晶子サイズ、配向度を抑制することも可能であり、望ましくは、NiまたはNi合金層上が粗面化されている方が、Ni-Pめっきが析出する核を多数形成し、結晶子サイズを低減することができるため良い。
(Ni or Ni alloy layer)
On the Ni or Ni alloy layer, Ni plating is likely to be deposited, and it is easy to form a film with good adhesion. However, it is difficult to control the crystallite size and orientation degree of the Ni plating to be deposited, and the crystallite size is large and the orientation degree tends to be strong. If the above-described Ni-P plating bath is used, it is possible to suppress the crystallite size and the degree of orientation within the scope of claims. Desirably, the surface of the Ni or Ni alloy layer is roughened if Ni This is good because a large number of nuclei from which -P plating precipitates can be formed and the crystallite size can be reduced.

(PdまたはPd合金層)
PdまたはPd合金層は、Pdの分散析出ができている場合には、Pdが核としてNi−Pめっきが析出するため、Ni−Pめっき皮膜の前記結晶子サイズを微細化する作用を有する。また、Ni−PめっきはこのPd面に密着性良く成膜しやすいため、Ni−Pめっき皮膜とチタン材との密着性を向上させる。
(Pd or Pd alloy layer)
The Pd or Pd alloy layer has the effect of refining the crystallite size of the Ni—P plating film because Ni—P plating is precipitated with Pd as a nucleus when Pd is dispersed and precipitated. Moreover, since Ni-P plating is easy to form a film with good adhesion on the Pd surface, the adhesion between the Ni-P plating film and the titanium material is improved.

(硬質Crめっき)
本発明では、用途からくるより高硬度化の要求に応じて、必要により、前記Ni−Pめっき皮膜の上層として、更に、平均膜厚が0.1〜5μmで、硬度が900Hv以上の、硬質Crめっきを施しても良い。硬質Crめっきは、他部材の接触時に、初期当たり(衝撃)を緩和する役割を果たす。但し、高荷重では、特にチッピング(割れによる摩耗)が生じやすく、Ni−Pめっき皮膜の潤滑性を低下させる。このため、硬質Crめっきを設ける場合には、初期の摩耗で硬質Crめっき皮膜が無くなり、部材のなじみが出てからは、硬質Crめっき皮膜が無い状態で使用されるように、皮膜厚みを調整することが好ましい。
(Hard Cr plating)
In the present invention, according to the demand for higher hardness from the application, if necessary, as an upper layer of the Ni-P plating film, a hard material having an average film thickness of 0.1 to 5 μm and a hardness of 900 Hv or more. Cr plating may be applied. Hard Cr plating plays a role of mitigating initial strike (impact) when contacting other members. However, especially at high loads, chipping (abrasion due to cracking) is likely to occur, and the lubricity of the Ni-P plating film is reduced. For this reason, when hard Cr plating is provided, the thickness of the film is adjusted so that the hard Cr plating film disappears due to the initial wear, and after the familiarity of the member comes out, it is used without the hard Cr plating film. It is preferable to do.

以上のように形成したNi−Pめっき皮膜は、硬度が500Hv以上、より好ましくは、靱性が50kN以上、めっき引張応力が5kgf/mm2 以下の基本特性を有する。硬度が500Hv未満では耐摩耗性が不足する。靱性が50kN未満では疲労寿命などの耐久性が不足する可能性がある。めっき引張応力が5kgf/mm2 未満では残留応力が高過ぎ、密着性が低下するとともに割れやすくなり、耐久性が不足する可能性がある。 The Ni-P plating film formed as described above has the basic properties of hardness of 500 Hv or more, more preferably toughness of 50 kN or more and plating tensile stress of 5 kgf / mm 2 or less. When the hardness is less than 500 Hv, the wear resistance is insufficient. If the toughness is less than 50 kN, durability such as fatigue life may be insufficient. When the plating tensile stress is less than 5 kgf / mm 2 , the residual stress is too high, the adhesiveness is lowered and the crack is easily broken, and the durability may be insufficient.

また、以上のように形成した、中間層、上層:Ni−Pめっき皮膜からなる皮膜、特に無電解めっき皮膜は、最大の膜厚と最小の膜厚との差が、最も良い状態では、例えば0.5μm以内の範囲に均一化され、膜厚分布が均一で、めっき皮膜も均一化される。この結果、耐摩耗性を部品のどの部位においても保障しうる利点もある。   In addition, the intermediate layer and the upper layer formed as described above: a film made of a Ni-P plating film, particularly an electroless plating film, in a state where the difference between the maximum film thickness and the minimum film thickness is the best, for example, Uniformity within a range of 0.5 μm, uniform film thickness distribution, and uniform plating film. As a result, there is also an advantage that wear resistance can be guaranteed at any part of the part.

(皮膜形成方法)
以上説明した本発明皮膜の形成方法につき、以下に、具体的に説明する。
本発明皮膜の形成方法は、必要により粗面化処理されたチタン基材を、先ず、市販アルカリ脱脂剤にて脱脂、酸洗(例えば、3:1程度の硝弗酸で常温で約10分洗浄するか、10g/l程度の濃度の塩酸で常温で約10分洗浄する)、活性化処理(10g/l程度の濃度の硫酸で常温で約2分洗浄する)、水洗などの適当な前処理を必要により行なう。なお、本発明の皮膜形成方法では、以下に説明する各めっき工程間に、水洗などの適当な中間処理あるいは前処理を必要により適宜加えることを含む。
(Film formation method)
The method for forming the coating of the present invention described above will be specifically described below.
In the method of forming the coating of the present invention, if necessary, the surface-roughened titanium substrate is first degreased with a commercially available alkaline degreasing agent and pickled (for example, about 3: 1 nitrofluoric acid at room temperature for about 10 minutes) Washing or washing with hydrochloric acid with a concentration of about 10 g / l for about 10 minutes at normal temperature), activation treatment (washing with sulfuric acid with a concentration of about 10 g / l for about 2 minutes at normal temperature), water washing, etc. Processing is performed as necessary. In addition, in the film formation method of this invention, it includes adding suitably intermediate | middle processes, such as washing, or pre-processing as needed between each plating process demonstrated below.

(中間層)
上記前処理後に、先ず、前記した各中間層を設ける。
(Middle layer)
After the pretreatment, first, the above-described intermediate layers are provided.

(NiまたはNi合金層形成方法)
400g/l硫酸ニッケル+50g/l塩化ニッケル+50g/l硫酸を各々含むめっき浴で、浴温50℃程度、5A/dm2 程度通電して、所定時間の電気めっきを行なう。この電気めっき処理の回数や、金属イオン濃度、あるいは通電時間や通電量を調整して、NiまたはNi合金層のNi濃度(純度)や膜厚を制御する。
(Ni or Ni alloy layer forming method)
In a plating bath containing 400 g / l nickel sulfate + 50 g / l nickel chloride + 50 g / l sulfuric acid, energization is performed at a bath temperature of about 50 ° C. and about 5 A / dm 2 to perform electroplating for a predetermined time. The Ni concentration (purity) and film thickness of the Ni or Ni alloy layer are controlled by adjusting the number of electroplating treatments, the metal ion concentration, the energization time, and the energization amount.

(NiまたはNi合金層粗面化方法)
NiまたはNi合金層上を粗面化するのは、基材を機械的、化学的に粗面化してもよいが、NiまたはNi合金層を形成してから、機械的、化学的に粗面化してもよい。容易であることから、NiまたはNi合金層を形成してから、#100のガラスビーズやアルミナビーズを吹き付けることによって、粗面化させることが推奨される。
(Ni or Ni alloy layer roughening method)
The surface of the Ni or Ni alloy layer may be roughened by mechanically or chemically roughening the substrate. However, after the Ni or Ni alloy layer is formed, the surface is mechanically and chemically roughened. May be used. Since it is easy, it is recommended to roughen the surface by forming a Ni or Ni alloy layer and then spraying # 100 glass beads or alumina beads.

(PdまたはPd合金層形成方法)
0.2g/l塩化パラジウム+10g/l塩化第一錫+100ml塩酸を各々含むめっき浴に、浴温40℃程度、2分程度浸漬する、浸漬めっきを行なう。その後、温度40℃、100g/l濃度の硫酸水溶液で、2分程度洗浄して、錫を除去する。この間の水洗は必要となる。上記めっき処理の回数や、金属イオン濃度、あるいは浸漬時間を調整して、PdまたはPd合金層のPd濃度(純度)や膜厚を制御する。
(Pd or Pd alloy layer forming method)
Immersion plating is performed by immersing in a plating bath each containing 0.2 g / l palladium chloride + 10 g / l stannous chloride + 100 ml hydrochloric acid at a bath temperature of about 40 ° C. for about 2 minutes. Thereafter, the tin is removed by washing with a sulfuric acid aqueous solution at a temperature of 40 ° C. and a concentration of 100 g / l for about 2 minutes. Washing with water during this time is required. The Pd concentration (purity) and film thickness of the Pd or Pd alloy layer are controlled by adjusting the number of plating treatments, metal ion concentration, or immersion time.

(Ni−Pめっき方法)
Ni−Pめっき皮膜を得るためには、電気めっきでも可であるが、膜厚(膜厚分布)の均一性の点で、前記Ni−Pめっき皮膜が無電解めっきであることが好ましい。以下に、好適な無電解めっき条件を説明する。
(Ni-P plating method)
In order to obtain a Ni-P plating film, electroplating is acceptable, but the Ni-P plating film is preferably electroless plating from the viewpoint of uniformity of film thickness (film thickness distribution). Hereinafter, suitable electroless plating conditions will be described.

上記前処理後、あるいは選択的に設ける上記中間層(下地層)形成後に、Ni−Pめっき皮膜を無電解めっき法により形成する。めっき浴の浴組成は、上記めっき皮膜組成範囲内となるように、例えば、硫酸ニッケル30(10〜50の範囲)g/l、ホスフィン酸ナトリウム20(10〜30の範囲)g/l、NH4 基を含む化合物(例えばクエン酸水素第二アンモニウム)50(30〜70の範囲)g/l、を含み、更に添加剤として、酢酸ナトリウム、コハク酸、クエン酸、リンゴ酸もしくはそれらのナトリウム塩等の有機添加剤を10g/l程度含むものとする。浴温は、80〜90℃の比較的高温が採用される。なお、浴の最適PHは6〜7の中性範囲である。 After the pretreatment or after forming the intermediate layer (underlying layer) that is selectively provided, a Ni-P plating film is formed by an electroless plating method. The bath composition of the plating bath is, for example, nickel sulfate 30 (range 10-50) g / l, sodium phosphinate 20 (range 10-30) g / l, NH, so as to be within the above-described plating film composition range. A compound containing 4 groups (for example, diammonium hydrogen citrate) 50 (range 30-70) g / l, and, as an additive, sodium acetate, succinic acid, citric acid, malic acid or their sodium salts And about 10 g / l of an organic additive. A relatively high temperature of 80 to 90 ° C. is employed as the bath temperature. The optimum pH of the bath is in the neutral range of 6-7.

これら組成と温度、PHを制御しためっき浴に、上記中間層(皮膜)形成後のチタン基材を所定時間浸漬する。このNi−P無電解めっき浴の組成と温度、PH、あるいは浸漬時間を調整して、上記Ni−Pの組成や膜厚を制御する。   The titanium base material after the formation of the intermediate layer (film) is immersed in a plating bath whose composition, temperature, and pH are controlled for a predetermined time. The composition and thickness of the Ni-P are controlled by adjusting the composition, temperature, pH, or immersion time of the Ni-P electroless plating bath.

(Crめっき)
Crめっきは公知の方法で可能で、クロム酸100〜500g/l、硫酸3〜7g/l、三価クロム3〜7g/l、有機スルホン酸6〜10g/l、程度含むめっき浴を、45〜55℃、通電量約40〜60A/dm2 程度で電気めっきを行なう。このめっき浴の組成と温度、あるいは通電量、通電時間を調整して、Crめっきの膜厚を制御する。
(Cr plating)
Cr plating can be performed by a known method. A plating bath containing about 100 to 500 g / l of chromic acid, 3 to 7 g / l of sulfuric acid, 3 to 7 g / l of trivalent chromium, 6 to 10 g / l of organic sulfonic acid, Electroplating is performed at about 55 ° C. and an energization amount of about 40-60 A / dm 2 . The film thickness of the Cr plating is controlled by adjusting the composition and temperature of the plating bath, or the energization amount and energization time.

(チタン基材)
皮膜の素材(母材)であるチタン基材の種類は、公知の純チタンやα、βチタン合金などを、要求特性や機械的性質に応じて適宜選択して用いることができる。
(Titanium base)
As the type of the titanium base material that is the material (base material) of the film, known pure titanium, α, β titanium alloy, and the like can be appropriately selected and used according to required characteristics and mechanical properties.

以下に本発明の実施例を説明する。
Ti−6%Al−4%V板から通常の摩耗試験用の44mmφ×5mmのディスク材を製作し、チタン基材とした。
Examples of the present invention will be described below.
A disk material of 44 mmφ × 5 mm for a normal wear test was manufactured from a Ti-6% Al-4% V plate, and used as a titanium substrate.

これらのチタン基材を被処理材として、前記した方法および条件で、選択的に、中間層、そして、上層:Ni−P無電解めっき皮膜からなる皮膜を各々形成した。この内、Ni−P無電解めっき皮膜は各例とも共通して平均皮膜厚みが10μm、または75μm(±0.5 μm)となるように成膜した。なお、硬質Crめっきも、Ni−P無電解めっき皮膜の上層に選択的に形成した。また、中間層として、NiまたはNi合金層を形成した場合は、NiまたはNi合金層表面に対し、#100のガラスビーズを吹き付け粗面化させた。   Using these titanium substrates as materials to be treated, an intermediate layer and an upper layer: a Ni-P electroless plating film were selectively formed by the above-described method and conditions. Among these, the Ni—P electroless plating film was formed in common with each example so that the average film thickness was 10 μm or 75 μm (± 0.5 μm). The hard Cr plating was also selectively formed on the upper layer of the Ni-P electroless plating film. Further, when a Ni or Ni alloy layer was formed as the intermediate layer, # 100 glass beads were sprayed and roughened on the surface of the Ni or Ni alloy layer.

これら作製した各ディスク材の皮膜性状を以下の通り測定した。これらの結果を表1に示す。
(中間層)
Ni層、Pd層の、各層の厚さ。
Ni層あるいはPd層の、Ni、Pdの純度。
(Ni−P無電解めっき皮膜)
Ni量、P量、NH4 + ( NH4 基) 量、結晶子サイズ、
XRDでの測定ピーク強度比:Ni(111)/Ni(200)。
The film properties of each of the produced disk materials were measured as follows. These results are shown in Table 1.
(Middle layer)
The thickness of each layer of the Ni layer and the Pd layer.
Ni and Pd purity of Ni layer or Pd layer.
(Ni-P electroless plating film)
Ni amount, P amount, NH 4 + (NH 4 group) amount, crystallite size,
XRD measurement peak intensity ratio: Ni (111) / Ni (200).

なお、これら各皮膜性状は、それぞれ以下の方法により測定した。
(Ni−P無電解めっき皮膜)
Ni−Pめっき皮膜のNi、P量はICP発光分光法、NH4 + 量はイオンクロマトグラフ法を使用した。但し、これらの分析は、めっき皮膜がついた状態の試料で行い、標準基板には純チタンを用いた。また、測定により得られた下地層などからのCu、Zn、Alなどの元素は、Ni、P量やNH4 + 量算出のための計算からは除外した。
Each of these film properties was measured by the following methods.
(Ni-P electroless plating film)
ICP emission spectroscopy was used for the Ni and P amounts of the Ni-P plating film, and ion chromatography was used for the NH 4 + amount. However, these analyzes were performed on samples with a plating film, and pure titanium was used as a standard substrate. In addition, elements such as Cu, Zn, and Al from the underlayer obtained by measurement were excluded from the calculation for calculating the Ni, P amount and NH 4 + amount.

Ni−Pめっき皮膜の結晶子サイズは、試料表面よりX線回折装置により特性X線Cu-Kα(波長:1.54Å)を用い、Ni(200)回折面で行い、回折プロファイルの広がり(積分幅)の測定結果を下記のScherrerの式に算入して求めた。なお、積分幅にはCauchy関数により補正した値を用いた。D=K・λ/βcosθ、D:結晶氏の大きさ(Å)、K:定数(1.05)、λ:測定X線波長(Å)、β:結晶子の大きさによる回折線の広がり、積分幅(ラジアン)、θ:回折線のブラック角。   The crystallite size of the Ni-P plating film is measured on the Ni (200) diffraction surface using the characteristic X-ray Cu-Kα (wavelength: 1.54 mm) from the sample surface with an X-ray diffractometer. ) Was included in the following Scherrer equation. For the integral width, a value corrected by the Cauchy function was used. D = K · λ / βcos θ, D: crystal size (Å), K: constant (1.05), λ: measured X-ray wavelength (Å), β: broadening of diffraction line due to crystallite size, integration Width (radian), θ: Black angle of diffraction line.

Ni−Pめっき皮膜のXRDでの測定ピーク強度比は、同じくめっき皮膜がついた状態の試料表面より、X線回折装置により特性X線Cu-Kα(波長:1.54Å)を用い、得られたX線回折チャートより{111}、{200}のピーク高さからピーク強度を求め、Ni(111)/Ni(200)を算出した。   The XRD measurement peak intensity ratio of the Ni-P plating film was obtained by using characteristic X-ray Cu-Kα (wavelength: 1.54 mm) with an X-ray diffractometer from the same sample surface with the plating film attached. The peak intensity was obtained from the peak heights of {111} and {200} from the X-ray diffraction chart, and Ni (111) / Ni (200) was calculated.

(中間層)
Ni層のNi量、Pd層のPd量は、オージェ電子分光法の深さ方向濃度分布より、各金属量がピークとなる深さでの定量分析を行なった。
(Middle layer)
The amount of Ni in the Ni layer and the amount of Pd in the Pd layer were quantitatively analyzed at a depth at which each metal amount peaks from the concentration distribution in the depth direction of Auger electron spectroscopy.

(厚み)
各層あるいは皮膜の厚みは、各10箇所の500倍のSEM(走査型電子顕微鏡)にて断面を観察して、各層あるいは皮膜の平均膜厚を求めた。
(Thickness)
The thickness of each layer or film was determined by observing the cross section with a 500 times SEM (scanning electron microscope) at each 10 locations to determine the average film thickness of each layer or film.

(Ni−P無電解めっき皮膜特性)
また、作製した各ディスク材皮膜の、硬度、靭性、めっき引張応力などの特性を以下の通り測定した。これらの結果を表1に示す。
(Characteristics of Ni-P electroless plating film)
In addition, the properties of the produced disk material films, such as hardness, toughness and plating tensile stress, were measured as follows. These results are shown in Table 1.

硬度:ビッカース硬度を荷重50gfにて断面より測定した。
靭性:ビッカース圧子押し込みによって、皮膜に割れが発生する最小荷重にて評価した。ただし、装置の最大荷重(50kgf)で割れが発生しない場合、>50kgfとした。
めっき引張応力:スパイラルめっき応力計によりめっき引張応力を測定した。
Hardness: Vickers hardness was measured from a cross section at a load of 50 gf.
Toughness: Evaluated at the minimum load at which cracking occurs in the film by indentation of the Vickers indenter. However, if no crack occurred at the maximum load (50kgf) of the device, it was set to> 50kgf.
Plating tensile stress: Plating tensile stress was measured with a spiral plating stress meter.

その上で、これら作製した各ディスク材表面 (皮膜) の耐摩耗性を各々以下の条件で評価した。これらの評価結果も表1に示す。
(耐摩耗性評価)
耐摩耗性試験1として、ショットブラスト(5kg/cm2、カ゛ラスヒ゛ース゛#100、直上10cmより吹き付け)により、各例の約10μm のNi−P無電解めっき皮膜が摩滅または剥離し、基材が露出するまでの時間を測定した。この試験の評価は以下の通りとした。>60sec :◎、30〜60sec :○、10〜30sec :△、<10sec :×。
In addition, the wear resistance of each disk material surface (coating) produced was evaluated under the following conditions. These evaluation results are also shown in Table 1.
(Abrasion resistance evaluation)
As abrasion resistance test 1, shot blasting (5 kg / cm2, glass base # 100, sprayed from 10 cm directly above) causes the Ni-P electroless plating film of about 10 μm in each example to wear or peel, exposing the substrate. The time until was measured. The evaluation of this test was as follows. > 60 sec: A, 30-60 sec: A, 10-30 sec: Δ, <10 sec: ×.

耐摩耗性試験2として、ボールオンディスク試験を行った。この試験条件は、相手材のボールをSUJ2とし、荷重1kgf(最大接触面圧100kgf/mm2−ヘルツ圧より計算)、無潤滑、摺動速度1m/s、摺動距離1km での摩耗減量(mg)により評価した。この試験の評価は以下の通りとした。<3mg で◎、3 〜6mg で○、6 〜10mgで△、>10mgで×。 As the abrasion resistance test 2, a ball-on-disk test was performed. The test conditions were: SUJ2 as the mating ball, load 1 kgf (calculated from maximum contact surface pressure 100 kgf / mm 2 -hertz pressure), no lubrication, sliding speed 1 m / s, sliding distance 1 km ( mg). The evaluation of this test was as follows. <◎ at 3 mg, ○ at 3 to 6 mg, Δ at 6 to 10 mg, and × at> 10 mg.

表1から分かる通り、発明例J〜Vは、Ni−Pめっき皮膜において、組成、結晶子平均サイズが本発明範囲を満足している。このため、Ni−Pめっき皮膜のめっきままでの硬度が500Hv以上であり、靭性も1kgf以上であり、めっき応力も5kgf/mm2以下である。 As can be seen from Table 1, Invention Examples J to V have compositions and crystallite average sizes satisfying the scope of the present invention in the Ni-P plating film. For this reason, the hardness of the Ni—P plating film as plated is 500 Hv or more, the toughness is 1 kgf or more, and the plating stress is 5 kgf / mm 2 or less.

この結果、表1から分かる通り、発明例J〜Vは、全ての耐摩耗性試験において、評価×が無く、耐摩耗性チタン材として、あるいはこれを用いた機械部品として適用可能であることが分かる。   As a result, as can be seen from Table 1, Invention Examples J to V have no evaluation x in all wear resistance tests, and can be applied as wear-resistant titanium materials or machine parts using the same. I understand.

これに対して、比較例A〜Gは、Ni−Pめっき皮膜において、Ni−Pめっき組成、結晶子平均サイズ、中間層のいずれかが、本発明範囲外である。   On the other hand, in Comparative Examples A to G, in the Ni—P plating film, any of the Ni—P plating composition, the crystallite average size, and the intermediate layer is outside the scope of the present invention.

比較例Aは、中間層が無く、成膜できなかった。
比較例Bは、Ni−Pめっき組成の内、Ni量が少な過ぎる。
比較例Cは、Ni−Pめっき組成の内、P量が少な過ぎる。
比較例Dは、Ni−Pめっき組成の内、NH4 基量が少な過ぎる。
比較例Eは、Ni−Pめっき組成の内、NH4 基量が多過ぎる。
比較例Fは、中間層のNi合金皮膜の組成の内、Ni量が少なすぎる。
比較例Gは、中間層のPd合金皮膜の組成の内、Pd量が少なすぎる。
この結果、比較例Bは硬度が低く、また、比較例C〜Gは結晶子サイズが本発明から外れ、靭性が低いまたはめっき応力が高い。
Comparative Example A had no intermediate layer and could not be formed.
In Comparative Example B, the amount of Ni is too small in the Ni-P plating composition.
In Comparative Example C, the amount of P is too small in the Ni-P plating composition.
In Comparative Example D, the NH 4 group content is too small in the Ni—P plating composition.
In Comparative Example E, the NH 4 group content is too large in the Ni—P plating composition.
In Comparative Example F, the amount of Ni is too small in the composition of the Ni alloy film of the intermediate layer.
In Comparative Example G, the amount of Pd is too small in the composition of the Pd alloy film of the intermediate layer.
As a result, Comparative Example B has a low hardness, and Comparative Examples C to G have a crystallite size that is out of the present invention, and has low toughness or high plating stress.

また、比較例H、Iは、Ni−Pめっき組成、結晶子平均サイズ、中間層ともに本発明範囲内であるが、前述のように、NiまたはNi合金中間層上にNi−Pめっきを施した場合、条件によっては結晶子サイズが大きくなる。   In Comparative Examples H and I, the Ni-P plating composition, the average crystallite size, and the intermediate layer are all within the scope of the present invention. As described above, Ni-P plating is performed on the Ni or Ni alloy intermediate layer. In such a case, the crystallite size increases depending on conditions.

この結果、比較例A〜Iは、耐摩耗性が劣っており、耐摩耗性チタン材として、あるいはこれを用いた機械部品として適用できないことが分かる。   As a result, it can be seen that Comparative Examples A to I are inferior in wear resistance and cannot be applied as wear-resistant titanium materials or machine parts using the same.

発明例の中でも、発明例Jは、Ni−Pめっき組成の内、Ni量が下限値に近い。発明例Kは、P量が下限値に近い。発明例L、Mは、NH4 基量が下限、上限値に近い。発明例N、Oは、中間層のNi、Pb成分量が下限値に近い。また発明例Pは、NiまたはNi合金中間層上のNi−Pめっきであり結晶子平均サイズが上限値に近い。 Among Invention Examples, Invention Example J has a Ni amount close to the lower limit value in the Ni-P plating composition. In invention example K, the P amount is close to the lower limit. Invention Examples L and M have NH 4 group amounts close to the lower limit and the upper limit. In Invention Examples N and O, the amounts of Ni and Pb components in the intermediate layer are close to the lower limit values. Invention Example P is Ni-P plating on Ni or Ni alloy intermediate layer, and the average crystallite size is close to the upper limit.

このため、これらの発明例は、これらのNi−Pめっき組成や中間層を中庸値近くで満足する発明例Q、T〜Vに比して、Ni−Pめっき皮膜のめっきままでの硬度が低い、靱性が低い、めっき引張応力が高いのいずれかの傾向にある。そのため、耐摩耗性も発明例Q、T〜Vに比して劣る。   For this reason, these invention examples have a Ni-P plating film hardness as plated as compared with Invention Examples Q and T-V which satisfy these Ni-P plating compositions and intermediate layers near the intermediate value. It tends to be either low, low toughness, or high plating tensile stress. Therefore, abrasion resistance is also inferior compared with invention example Q and TV.

したがって、これらの結果から、本発明におけるNi−Pめっきの組成や結晶子平均サイズ、中間層の、耐摩耗性に対する臨界的な意義が裏付けられる。   Therefore, these results support the critical significance of the Ni-P plating composition, the average crystallite size, and the intermediate layer in the present invention with respect to wear resistance.

更に、発明例R、SのようにCr層を施すことによって、いっそう耐摩耗性が向上することがわかる。   Furthermore, it can be seen that the wear resistance is further improved by applying a Cr layer as in Invention Examples R and S.

Figure 2007023317
Figure 2007023317

以上説明したように、本発明によれば、耐摩耗性や疲労特性の優れたNi−Pめっきを施した耐摩耗性チタン材、およびチタン材製機械部品を提供することができる。この結果、耐摩耗部品を軽量化したい用途、あるいは、耐摩耗性を含めてより信頼性の高い耐摩耗部品を求める用途に、耐摩耗性チタン材の適用を拡大できる。   As described above, according to the present invention, it is possible to provide a wear-resistant titanium material subjected to Ni-P plating having excellent wear resistance and fatigue characteristics, and a mechanical component made of titanium material. As a result, it is possible to expand the application of the wear-resistant titanium material to applications where it is desired to reduce the weight of wear-resistant parts, or applications that require wear-resistant parts with higher reliability including wear resistance.

Claims (5)

Ni−Pめっき皮膜を設けたチタン材であって、前記Ni−Pめっき皮膜が、質量%で、Ni:85%以上、P:1〜5%、NH4 基:0.1〜1%を含むNi合金からなるとともに、X線回折法によるNi−Pめっき皮膜組織解析における皮膜の結晶子平均サイズが1〜5nmである結晶性めっき皮膜からなり、かつ前記チタン材とNi−Pめっき皮膜との界面に、Niが99%以上からなるNiまたはNi合金層か、Pdが90%以上からなるPdまたはPd合金層かの、少なくともいずれか一方が形成されており、Ni−Pめっき皮膜のめっきままでの硬度が500Hv以上であることを特徴とする耐摩耗性チタン材。 A titanium material provided with a Ni-P plating film, wherein the Ni-P plating film is in mass%, Ni: 85% or more, P: 1 to 5%, NH 4 group: 0.1 to 1%. A Ni-P plating film having a crystallite average size of 1 to 5 nm in a Ni-P plating film structure analysis by an X-ray diffraction method, and the titanium material and the Ni-P plating film At least one of a Ni or Ni alloy layer with Ni of 99% or more and a Pd or Pd alloy layer with Pd of 90% or more is formed on the interface, and the Ni-P plating film is plated. A wear-resistant titanium material having a hardness of 500 Hv or more as it is. 前記X線回折法によるNi−Pめっき皮膜組織解析における、Ni(111)とNi(200)との測定ピーク強度比Ni(111)/Ni(200)が0.3〜0.5である請求項1に記載の耐摩耗性チタン材。   The measurement peak intensity ratio Ni (111) / Ni (200) of Ni (111) and Ni (200) in the Ni-P plating film structure analysis by the X-ray diffraction method is 0.3 to 0.5. Item 2. The wear-resistant titanium material according to Item 1. 前記Ni−Pめっき皮膜のめっき引張応力が5kgf/mm2 以下である請求項1乃至2のいずれか1項に記載の耐摩耗性チタン材。 The wear-resistant titanium material according to any one of claims 1 to 2, wherein a plating tensile stress of the Ni-P plating film is 5 kgf / mm 2 or less. 前記Ni−Pめっき皮膜が無電解めっきである請求項1乃至3のいずれか1項に記載の耐摩耗性チタン材。   The wear-resistant titanium material according to any one of claims 1 to 3, wherein the Ni-P plating film is electroless plating. 前記Ni−Pめっき皮膜の上層に更に硬質Crめっきが施されている請求項1乃至4のいずれか1項に記載の耐摩耗性チタン材。   The wear-resistant titanium material according to any one of claims 1 to 4, wherein a hard Cr plating is further applied to an upper layer of the Ni-P plating film.
JP2005204618A 2005-07-13 2005-07-13 Abrasion resistant titanium Expired - Fee Related JP4519727B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005204618A JP4519727B2 (en) 2005-07-13 2005-07-13 Abrasion resistant titanium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005204618A JP4519727B2 (en) 2005-07-13 2005-07-13 Abrasion resistant titanium

Publications (2)

Publication Number Publication Date
JP2007023317A true JP2007023317A (en) 2007-02-01
JP4519727B2 JP4519727B2 (en) 2010-08-04

Family

ID=37784487

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005204618A Expired - Fee Related JP4519727B2 (en) 2005-07-13 2005-07-13 Abrasion resistant titanium

Country Status (1)

Country Link
JP (1) JP4519727B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010070811A (en) * 2008-09-18 2010-04-02 Canon Electronics Inc Machine component, method for producing the same and rotary device using the same
JP2010182558A (en) * 2009-02-06 2010-08-19 Toyota Central R&D Labs Inc Anti-corrosion conductive material, solid polymer type fuel cell and separator thereof, and method of manufacturing anti-corrosion conductive material
US8613807B2 (en) 2009-02-06 2013-12-24 Kabushiki Kaisha Toyota Chuo Kenkyusho Conductive film, corrosion-resistant conduction film, corrosion-resistant conduction material and process for producing the same
JP2015209589A (en) * 2014-04-30 2015-11-24 日本エレクトロプレイテイング・エンジニヤース株式会社 Nickel-tungsten alloy plating solution
JP2016108641A (en) * 2014-12-10 2016-06-20 株式会社シマノ Member made of titanium

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63192889A (en) * 1987-02-04 1988-08-10 Nippon Mining Co Ltd Ni-p plating solution
JPH06173072A (en) * 1992-12-07 1994-06-21 Kobe Steel Ltd Machine parts excellent in interline wear resistance
JPH0959793A (en) * 1995-08-21 1997-03-04 Kobe Steel Ltd Wear resistant member excellent in slidability with hard chromium plating
JPH1025594A (en) * 1996-07-09 1998-01-27 Inax Corp Nickel-chromium plating method
JPH1096084A (en) * 1996-09-20 1998-04-14 Taiho Kogyo Co Ltd Treatment of surface of sliding member
JP2005081474A (en) * 2003-09-05 2005-03-31 Japan Science & Technology Agency Hyperfine crystal electroforming tool and its manufacturing method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63192889A (en) * 1987-02-04 1988-08-10 Nippon Mining Co Ltd Ni-p plating solution
JPH06173072A (en) * 1992-12-07 1994-06-21 Kobe Steel Ltd Machine parts excellent in interline wear resistance
JPH0959793A (en) * 1995-08-21 1997-03-04 Kobe Steel Ltd Wear resistant member excellent in slidability with hard chromium plating
JPH1025594A (en) * 1996-07-09 1998-01-27 Inax Corp Nickel-chromium plating method
JPH1096084A (en) * 1996-09-20 1998-04-14 Taiho Kogyo Co Ltd Treatment of surface of sliding member
JP2005081474A (en) * 2003-09-05 2005-03-31 Japan Science & Technology Agency Hyperfine crystal electroforming tool and its manufacturing method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010070811A (en) * 2008-09-18 2010-04-02 Canon Electronics Inc Machine component, method for producing the same and rotary device using the same
JP2010182558A (en) * 2009-02-06 2010-08-19 Toyota Central R&D Labs Inc Anti-corrosion conductive material, solid polymer type fuel cell and separator thereof, and method of manufacturing anti-corrosion conductive material
US8613807B2 (en) 2009-02-06 2013-12-24 Kabushiki Kaisha Toyota Chuo Kenkyusho Conductive film, corrosion-resistant conduction film, corrosion-resistant conduction material and process for producing the same
JP2015209589A (en) * 2014-04-30 2015-11-24 日本エレクトロプレイテイング・エンジニヤース株式会社 Nickel-tungsten alloy plating solution
JP2016108641A (en) * 2014-12-10 2016-06-20 株式会社シマノ Member made of titanium

Also Published As

Publication number Publication date
JP4519727B2 (en) 2010-08-04

Similar Documents

Publication Publication Date Title
JP4571546B2 (en) Wear resistant parts and power transmission parts
Sahoo et al. Tribology of electroless nickel coatings–a review
KR101437806B1 (en) Corrosion-resistant alloy coating film for metal materials and method for forming same
CA2178146C (en) Electroless nickel cobalt phosphorous composition and plating process
Keong et al. Crystallisation and phase transformation behaviour of electroless nickel-phosphorus deposits and their engineering properties
US5897965A (en) Electrolessly plated nickel/phosphorus/boron system coatings and machine parts utilizing the coatings
US8202627B2 (en) Electrocomposite coatings for hard chrome replacement
JP4519727B2 (en) Abrasion resistant titanium
RU2610811C9 (en) Aluminium zinc plating
JP4654346B2 (en) Method for producing hot dip galvanized steel sheet having zinc phosphate coating
WO2004085705A1 (en) Sliding material
JP6682691B1 (en) Surface-treated galvanized steel sheet and method for producing the same
KR100569206B1 (en) Tungsten-iron alloy electroless plating solution and plating method using the same
Narayanan et al. Electroless Nanocomposite Coatings
JPH02133578A (en) Production of beta-ti alloy spring
US20020182337A1 (en) Mechanical plating of zinc alloys
Narayanan et al. 16 Electroless Nanocomposite
JP2777468B2 (en) Composite material for mechanical structure with excellent rolling fatigue life
JPS60138052A (en) Cold rolled steel sheet having superior corrosion resistance after coating
JPH06306674A (en) Production of electroplated steel sheet
JPH05125585A (en) Manufacture of electroplated steel sheet excellent in impact resistance and adhesive strength
JPH0635674B2 (en) Manufacturing method of Zn-Ni plated steel plate for outer surface of automobile body
JPH11279772A (en) Hot dip galvanized steel sheet excellent in blackening resistance and its production
JPH0426792A (en) Laminated material for machine structural use excellent in rolling fatigue life and its production
JPH0466693A (en) Double layer alloy electroplated steel sheet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070928

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080313

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100518

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100519

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130528

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140528

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees