JP2007022901A - Apparatus and method for manufacturing silicon single crystal - Google Patents

Apparatus and method for manufacturing silicon single crystal Download PDF

Info

Publication number
JP2007022901A
JP2007022901A JP2005369820A JP2005369820A JP2007022901A JP 2007022901 A JP2007022901 A JP 2007022901A JP 2005369820 A JP2005369820 A JP 2005369820A JP 2005369820 A JP2005369820 A JP 2005369820A JP 2007022901 A JP2007022901 A JP 2007022901A
Authority
JP
Japan
Prior art keywords
single crystal
magnetic field
silicon single
rotating magnetic
crucible
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005369820A
Other languages
Japanese (ja)
Inventor
Teruyuki Tamaki
輝幸 玉木
Atsushi Ikari
敦 碇
Yutaka Kishida
岸田 豊
Filar Piotr
フィーラ ピヨトール
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siltronic AG
Original Assignee
Siltronic AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siltronic AG filed Critical Siltronic AG
Priority to JP2005369820A priority Critical patent/JP2007022901A/en
Publication of JP2007022901A publication Critical patent/JP2007022901A/en
Pending legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an apparatus for manufacturing a silicon single crystal, with which the silicon single crystal can be pulled at a high speed while keeping the oxygen concentration in the radial direction of the silicon single crystal uniform by controlling the oxygen concentration in the single crystal by appropriately controlling the temperature gradients of the surface and the inside of a silicon melt and the speed distribution in the melt. <P>SOLUTION: The apparatus for manufacturing the silicon single crystal is equipped with a heater for heating a quartz crucible 4a from the periphery of the crucible 4a, a radiation heat shielding body 13 for preventing heating of the silicon single crystal 12 by radiation heat, and a rotating magnetic field device for applying a plurality of rotating magnetic fields MF having at least different rotation frequencies in the rotation direction, the rotation frequency and the magnetic field intensity in the plane vertical to the pulling direction of the silicon single crystal 12 to a silicon melt 15 in the quartz crucible 4a. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、チョクラルスキ法(以下、CZ法と記す。)によるシリコン単結晶製造技術に関し、特に、磁場中引上法(以下、MCZ法と記す。)により結晶育成を行うシリコン単結晶の製造装置及び製造方法に関する。   The present invention relates to a silicon single crystal manufacturing technique by the Czochralski method (hereinafter referred to as CZ method), and in particular, a silicon single crystal manufacturing apparatus that performs crystal growth by a magnetic field pulling method (hereinafter referred to as MCZ method). And a manufacturing method.

MCZ法は、磁場を印加することによってシリコン融液の動粘性率を高くした状態で結晶を育成する方法である。MCZ法によれば、磁場の作用によって融液の対流が制御されるため安定な結晶成長を行うことが可能である。また、MCZ法は、坩堝から生じた酸素を含む融液の流れを制御できるため、シリコン単結晶中の酸素濃度の制御に有効な方法とされている。   The MCZ method is a method for growing a crystal in a state where the kinematic viscosity of the silicon melt is increased by applying a magnetic field. According to the MCZ method, since the convection of the melt is controlled by the action of a magnetic field, stable crystal growth can be performed. In addition, the MCZ method is an effective method for controlling the oxygen concentration in the silicon single crystal because the flow of the melt containing oxygen generated from the crucible can be controlled.

MCZ法を用いた従来のシリコン単結晶製造技術として、坩堝にその回転方向と反対方向または同方向に外部から回転磁場を加え、その方向および強度を変えることによりシリコン融液内の対流、特に表面における融液の流れを制御することにより、育成されるシリコン単結晶中の酸素濃度を制御する方法が知られている(特許文献1、特許文献2)。
特開昭59−73491号公報 特公昭63−53157号公報
As a conventional silicon single crystal manufacturing technique using the MCZ method, convection in the silicon melt, especially the surface, is applied to the crucible by applying a rotating magnetic field from the outside in the opposite direction or the same direction as the rotating direction. There is known a method for controlling the oxygen concentration in a silicon single crystal to be grown by controlling the flow of melt in (Patent Document 1, Patent Document 2).
JP 59-73491 A Japanese Patent Publication No. 63-53157

しかし、上述した従来のシリコン単結晶製造技術のように、シリコン融液に印加する回転磁場の回転方向および強度を変化させるだけでは、坩堝の中心領域とその外側の領域とで向きや速さを異ならせてシリコン融液を動かすことができないため、シリコン融液の表面および内部の温度勾配や速度分布を適切に制御することができない。   However, just by changing the rotation direction and strength of the rotating magnetic field applied to the silicon melt as in the conventional silicon single crystal manufacturing technology described above, the direction and speed of the crucible center region and the outer region can be adjusted. Since the silicon melt cannot be moved differently, the temperature gradient and velocity distribution in the surface and inside of the silicon melt cannot be appropriately controlled.

本発明が解決しようとする課題は、シリコン融液の表面および内部の温度勾配や速度分布を適切に制御することによって、育成されるシリコン単結晶の酸素濃度を制御し且つ径方向に均一に保ちつつ、シリコン単結晶を高速で引き上げることができるシリコン単結晶の製造装置を提供することにある。   The problem to be solved by the present invention is to control the oxygen concentration of the grown silicon single crystal and keep it uniform in the radial direction by appropriately controlling the temperature gradient and velocity distribution inside and inside the silicon melt. Meanwhile, an object of the present invention is to provide a silicon single crystal manufacturing apparatus capable of pulling up a silicon single crystal at high speed.

上記課題を解決するために、本発明の製造装置は、シリコン融液を収容した坩堝と、前記坩堝を周囲から加熱するヒータと、前記ヒータおよび前記坩堝からの輻射熱によるシリコン単結晶の加熱を防止するべく設けられた輻射熱遮蔽体と、シリコン単結晶の引き上げ方向に対して垂直な面内における回転の向きと回転周波数と磁場強度のうち、少なくとも回転周波数が異なる複数の回転磁場を前記坩堝内のシリコン融液に印加する回転磁場装置と、を備えた。   In order to solve the above problems, a manufacturing apparatus of the present invention prevents a crucible containing a silicon melt, a heater for heating the crucible from the surroundings, and heating of the silicon single crystal due to radiant heat from the heater and the crucible. A radiant heat shield provided to the surface, and a rotation direction, a rotation frequency, and a magnetic field strength in a plane perpendicular to the pulling direction of the silicon single crystal, and at least a plurality of rotating magnetic fields having different rotation frequencies in the crucible And a rotating magnetic field device applied to the silicon melt.

上記のように構成された製造装置によれば、シリコン単結晶の引き上げ方向に対して垂直な面内における回転の向きと回転周波数と磁場強度のうち、少なくとも回転周波数が異なる複数の回転磁場を坩堝内のシリコン融液に印加することにより、坩堝の中心領域とその外側の領域とで向きや速さを異ならせてシリコン融液を動かすことができるので、シリコン融液の表面および内部の温度勾配や速度分布を適切に制御することによって、育成されるシリコン単結晶の酸素濃度を制御し且つ径方向に均一に保ちつつ、シリコン単結晶を高速で引き上げることができる。   According to the manufacturing apparatus configured as described above, at least a plurality of rotating magnetic fields having different rotation frequencies among the rotation direction, the rotation frequency, and the magnetic field strength in a plane perpendicular to the pulling direction of the silicon single crystal are crucible. By applying to the inner silicon melt, the silicon melt can be moved in different directions and speeds in the central region and the outer region of the crucible. In addition, by appropriately controlling the velocity distribution, the silicon single crystal can be pulled at a high speed while controlling the oxygen concentration of the grown silicon single crystal and keeping it uniform in the radial direction.

この製造装置において、前記回転磁場装置は、前記シリコン単結晶の直下領域の前記シリコン融液の鉛直方向の温度勾配を小さくするとともに、前記シリコン単結晶の外周付近の前記シリコン融液の表面における径方向の温度勾配を増大させるべく、前記複数の回転磁場を発生させることが望ましい。   In this manufacturing apparatus, the rotating magnetic field device reduces a temperature gradient in the vertical direction of the silicon melt in a region immediately below the silicon single crystal, and has a diameter on the surface of the silicon melt near the outer periphery of the silicon single crystal. In order to increase the temperature gradient in the direction, it is desirable to generate the plurality of rotating magnetic fields.

この製造装置によれば、シリコン単結晶の直下領域のシリコン融液の鉛直方向の温度勾配を小さくすることにより、シリコン融液から引き上げ中のシリコン単結晶への伝熱を抑えることができ、前記シリコン単結晶の外周付近の前記シリコン融液の表面における径方向の温度勾配を増大させることにより、引き上げられるシリコン単結晶の変形を防止することができる。   According to this manufacturing apparatus, by reducing the vertical temperature gradient of the silicon melt in the region immediately below the silicon single crystal, heat transfer from the silicon melt to the silicon single crystal being pulled can be suppressed, By increasing the temperature gradient in the radial direction on the surface of the silicon melt near the outer periphery of the silicon single crystal, it is possible to prevent deformation of the silicon single crystal that is pulled up.

また、前記回転磁場装置は、前記坩堝の中心から外側に向かう前記シリコン融液の表面の流れと外側から内側に向かう前記シリコン融液の表面の流れとが互いに衝突する位置が前記シリコン単結晶の外側になるように、前記複数の回転磁場を発生させることが望ましい。   In the rotating magnetic field apparatus, the silicon single crystal has a position where the flow of the surface of the silicon melt flowing from the center of the crucible to the outside and the flow of the surface of the silicon melt flowing from the outside to the inside collide with each other. It is desirable to generate the plurality of rotating magnetic fields so as to be outside.

この製造装置によれば、育成されるシリコン単結晶の酸素濃度を制御するだけでなく面内酸素濃度分布を改善することができる。   According to this manufacturing apparatus, not only the oxygen concentration of the grown silicon single crystal can be controlled but also the in-plane oxygen concentration distribution can be improved.

また、前記回転磁場装置は、前記回転周波数が1Hz以上かつ1000Hz以下になるように前記複数の回転磁場を制御することが望ましい。回転磁場の周波数が1Hz未満では回転磁場装置(特に安価な構造の装置)から十分な出力を得ることが難しくなり、1000Hzを超えると磁場がシリコン融液に浸透し難くなり、シリコン融液を回転させる十分な動力が得られない。   Moreover, it is desirable that the rotating magnetic field device controls the plurality of rotating magnetic fields so that the rotation frequency is 1 Hz or more and 1000 Hz or less. If the frequency of the rotating magnetic field is less than 1 Hz, it will be difficult to obtain a sufficient output from the rotating magnetic field device (particularly an inexpensive device), and if it exceeds 1000 Hz, it will be difficult for the magnetic field to penetrate into the silicon melt and rotate the silicon melt. Insufficient power to be obtained.

また、前記回転磁場装置は、前記シリコン融液の最大回転数が1rpm以上かつ200rpm以下になるように前記複数の回転磁場を制御することが望ましい。シリコン融液の回転数が1rpm未満では、熱対流や、坩堝やシリコン単結晶の回転によって引き起こされる流動に比べて、回転磁場による回転の効果が小さすぎ、200rpmを超えると、遠心力による坩堝付近での湯面の上昇が大きくなり、結晶引上げに支障をきたすことになる。   Moreover, it is desirable that the rotating magnetic field device controls the plurality of rotating magnetic fields so that a maximum rotation speed of the silicon melt is 1 rpm or more and 200 rpm or less. If the rotation speed of the silicon melt is less than 1 rpm, the effect of rotation by the rotating magnetic field is too small compared to the flow caused by the heat convection or the rotation of the crucible or silicon single crystal. As a result, the rise of the hot water level in the area becomes large, which hinders the pulling of crystals.

本発明の製造方法は、シリコン融液を収容した坩堝と、前記坩堝を周囲から加熱するヒータと、前記ヒータおよび前記坩堝からの輻射熱によるシリコン単結晶の加熱を防止するべく設けられた輻射熱遮蔽体と、シリコン単結晶の引き上げ方向に対して垂直な面内における回転の向きと回転周波数と磁場強度のうち、少なくとも回転周波数が異なる複数の回転磁場を前記坩堝内のシリコン融液に印加する回転磁場装置とを備えた製造装置を使用してチョクラルスキ法によりシリコン単結晶を製造する方法であって、前記ヒータおよび坩堝からの輻射熱を輻射熱遮蔽体によって遮蔽しつつ、前記回転磁場装置により前記坩堝内のシリコン融液に回転磁場を印加することにより前記坩堝の中心領域とその外側の領域とで向きや速さを異ならせてシリコン融液を動かしつつ、シリコン単結晶の引き上げを行うことを特徴としている。   The manufacturing method of the present invention includes a crucible containing a silicon melt, a heater for heating the crucible from the surroundings, and a radiant heat shield provided to prevent heating of the silicon single crystal due to radiant heat from the heater and the crucible. And a rotating magnetic field that applies to the silicon melt in the crucible at least a plurality of rotating magnetic fields having different rotating frequencies among rotation directions, rotation frequencies, and magnetic field strengths in a plane perpendicular to the pulling direction of the silicon single crystal. A silicon single crystal is produced by the Czochralski method using a production apparatus comprising a device, wherein the rotary magnetic field device is used to shield the radiant heat from the heater and the crucible with a radiant heat shield, By applying a rotating magnetic field to the silicon melt, the direction and speed of the central region of the crucible and the region outside the crucible are made different. While moving the NTorueki is characterized by performing the pulling of the silicon single crystal.

この製造方法によれば、シリコン融液の表面および内部の温度勾配や速度分布を適切に制御することによって、育成されるシリコン単結晶の酸素濃度を制御し且つ径方向に均一に保ちつつ、シリコン単結晶を高速で引き上げることができる。   According to this manufacturing method, by appropriately controlling the temperature gradient and velocity distribution inside and inside the silicon melt, the oxygen concentration of the grown silicon single crystal is controlled and kept uniform in the radial direction. A single crystal can be pulled up at high speed.

本発明の製造方法において、前記回転磁場の回転周波数は10Hz以上かつ200Hz以下であり、前記回転磁場の回転の向きは前記坩堝の回転の向きと反対であり、前記回転磁場の回転の向きは前記シリコン単結晶の回転の向きと反対であり、前記坩堝の回転速度は1rpm以上且つ12rpm以下であり、前記シリコン単結晶の回転速度は0.1rpm以上且つ20rpm以下であることが望ましい。   In the manufacturing method of the present invention, the rotation frequency of the rotating magnetic field is 10 Hz or more and 200 Hz or less, the rotation direction of the rotating magnetic field is opposite to the rotation direction of the crucible, and the rotation direction of the rotating magnetic field is the rotation direction. It is preferable that the rotation speed of the silicon single crystal is opposite to the rotation direction of the silicon single crystal, the rotation speed of the crucible is 1 rpm to 12 rpm, and the rotation speed of the silicon single crystal is 0.1 rpm to 20 rpm.

本発明によれば、育成されるシリコン単結晶の酸素濃度を制御し且つ径方向に均一に保ちつつ、シリコン単結晶を高速で引き上げることができる。   According to the present invention, the silicon single crystal can be pulled at a high speed while controlling the oxygen concentration of the grown silicon single crystal and keeping it uniform in the radial direction.

以下、本発明を実施するための最良の形態について説明する。   Hereinafter, the best mode for carrying out the present invention will be described.

図1は本発明にかかる製造装置の形態例を示す概略断面図である。   FIG. 1 is a schematic cross-sectional view showing an example of a manufacturing apparatus according to the present invention.

この製造装置1は、引上炉2と、引上炉2の底部中央を貫通して設けられた坩堝支持軸3と、坩堝支持軸3の上端部に保持された黒鉛坩堝4bと、黒鉛坩堝4b内に装填された石英坩堝4aと、坩堝4a、4bとその周辺を周囲から加熱するべく引上炉2内に配置されたヒータ5と、坩堝4a、4bおよびヒータ5を同心円状に囲むようにして引上炉2の外部に設けられた回転磁場装置6と、坩堝支持軸3を昇降及び回転させる坩堝支持軸駆動機構7と、種結晶8を保持するシードチャック9と、シードチャック9を釣支する引上ワイヤ10と、ワイヤ巻取り機構11と、ヒータ5および坩堝4a、4bからの輻射熱によるシリコン単結晶12の加熱を防止するべく設けられた逆円錐形状の輻射熱遮蔽体13と、制御装置14と、を備えている。制御装置14は、回転磁場装置6、坩堝支持軸駆動機構7、ワイヤ巻取り機能11、図示しないヒータ電源、およびガス供給・排出機構の動作を制御する。   The manufacturing apparatus 1 includes a pulling furnace 2, a crucible support shaft 3 provided through the center of the bottom of the pulling furnace 2, a graphite crucible 4 b held at the upper end of the crucible support shaft 3, and a graphite crucible The quartz crucible 4a loaded in 4b, the heater 5 disposed in the pulling furnace 2 to heat the crucibles 4a, 4b and their surroundings from the surroundings, and the crucibles 4a, 4b and the heater 5 are concentrically surrounded. A rotating magnetic field device 6 provided outside the pulling furnace 2, a crucible support shaft drive mechanism 7 that moves the crucible support shaft 3 up and down, a seed chuck 9 that holds a seed crystal 8, and a seed chuck 9 that supports the seed chuck 9. Pull-up wire 10, wire winding mechanism 11, reverse cone-shaped radiant heat shield 13 provided to prevent heating of silicon single crystal 12 by radiant heat from heater 5 and crucibles 4 a and 4 b, and control device 14 and . The control device 14 controls operations of the rotating magnetic field device 6, the crucible support shaft drive mechanism 7, the wire winding function 11, a heater power source (not shown), and a gas supply / discharge mechanism.

図2(a)は図1に示す製造装置1における石英坩堝4aと回転磁場装置6と輻射熱遮蔽体13の位置関係および構造を概念的に示す斜視図である。   FIG. 2A is a perspective view conceptually showing the positional relationship and structure of the quartz crucible 4a, the rotating magnetic field device 6, and the radiant heat shield 13 in the manufacturing apparatus 1 shown in FIG.

回転磁場装置6は坩堝4を包囲するようにして同心円状に固定して配置されている。回転磁場装置6は、図3に示すように、略円筒状の電磁石コア21を有し、コア21の内周面に、放射状に外周面に向うスロットが周方向に24個、等ピッチで形成されている。コア21は、内歯付平板リング形の薄電磁鋼板を積層したものである。コア21の外周縁には縦断面が「コ」の字型である略リング型の銅製の巻芯22が装着されており、電気コイルC1〜C24がコア21の各スロットに案内され、さらに巻芯22の外側面を巻き回されて、コア21に胴巻きされている。(コイルNo.は、C1から時計廻りに順にC24までである。)なお、コア21,巻芯22および電気コイルC1〜C24はステンレス製のカバ−23で被覆されている。コア21の各スロット間の歯が磁極でありその端面が、炉壁および黒鉛坩堝4bを介して石英坩堝4aの外周面に対向している。   The rotating magnetic field device 6 is arranged concentrically so as to surround the crucible 4. As shown in FIG. 3, the rotating magnetic field device 6 has a substantially cylindrical electromagnet core 21, and 24 slots radially extending toward the outer circumferential surface are formed at equal pitches on the inner circumferential surface of the core 21. Has been. The core 21 is formed by laminating thin electromagnetic steel plates having a flat ring shape with internal teeth. A substantially ring-shaped copper winding core 22 having a vertical “U” shape is attached to the outer peripheral edge of the core 21, and the electric coils C <b> 1 to C <b> 24 are guided to the slots of the core 21 and further wound. The outer surface of the core 22 is wound around and wound around the core 21. (Coil No. is from C1 to C24 in the clockwise direction.) The core 21, the winding core 22, and the electric coils C1 to C24 are covered with a stainless steel cover 23. The teeth between the slots of the core 21 are magnetic poles, and the end faces thereof are opposed to the outer peripheral surface of the quartz crucible 4a through the furnace wall and the graphite crucible 4b.

各電気コイルC1〜C24の内、半数(第1グル−プ)の電気コイルC1,C2,C5,C6,C9,C10,C13,C14,C17,C18,C21,C22には、電源端子TUa〜TWaを介して高周波(設計値:10Hz)の3相交流電圧を発生する高周波電源回路25A(以下、電源回路25A)が接続されるとともに、各電気コイルC1〜C24の内、残りの半数(第2グル−プの電気コイルC3,C4,C7,C8,C11,C12,C15,C16,C19,C20,C23,C24には電源端子TUb〜TWbを介して低周波(設計値:5Hz)の3相交流電圧を発生する低周波電源回路25B(以下、電源回路25B)が接続される。   Of the electric coils C1 to C24, half (first group) electric coils C1, C2, C5, C6, C9, C10, C13, C14, C17, C18, C21, and C22 include power supply terminals TUa to A high frequency power supply circuit 25A (hereinafter referred to as power supply circuit 25A) that generates a high-frequency (design value: 10 Hz) three-phase AC voltage is connected via TWa, and the other half of each of the electric coils C1 to C24 (first Two groups of electric coils C3, C4, C7, C8, C11, C12, C15, C16, C19, C20, C23, and C24 have a low frequency (design value: 5 Hz) 3 through power supply terminals TUb to TWb. A low frequency power supply circuit 25B (hereinafter referred to as power supply circuit 25B) that generates a phase alternating voltage is connected.

電源回路25Aおよび電源回路25Bは、制御回路26に接続されている。制御回路26は、制御装置14より入力される高周波指示値fhに対応した周波数指令値FH及び指示電流値iAに対応したコイル電圧指令値VdcAを電源回路25Aに与え、低周波指示値fLに対応した周波数指令値FL及び指示電流値iBに対応したコイル電圧指令値VdcBを電源回路25Bに与える。電源回路25Aは、周波数指令値FHで指示された高周波数の3相交流電圧をコイル電圧指令値VdcAに対応した電圧値で電源端子TUa〜TWaを介して電気コイルC1〜C24の内、第1グル−プの電気コイルに与える。また、電源回路25Bは、周波数指令値FLで指示された低周波数の3相交流電圧をコイル電圧指令値VdcBに対応した電圧値で電源端子TUb〜TWbを介して電気コイルC1〜C24の内、残りの第2グル−プの電気コイルに与える。   The power supply circuit 25A and the power supply circuit 25B are connected to the control circuit 26. The control circuit 26 gives a frequency command value FH corresponding to the high frequency instruction value fh input from the control device 14 and a coil voltage command value VdcA corresponding to the instruction current value iA to the power supply circuit 25A, and corresponds to the low frequency instruction value fL. The coil voltage command value VdcB corresponding to the frequency command value FL and the command current value iB is supplied to the power supply circuit 25B. The power supply circuit 25A uses the first frequency of the electric coils C1 to C24 via the power supply terminals TUa to TWa at a voltage value corresponding to the coil voltage command value VdcA with the high-frequency three-phase AC voltage indicated by the frequency command value FH. Apply to the group's electrical coil. In addition, the power supply circuit 25B uses a low-frequency three-phase AC voltage indicated by the frequency command value FL as a voltage value corresponding to the coil voltage command value VdcB through the power supply terminals TUb to TWb. Apply to the remaining second group of electrical coils.

この製造装置1によれば、回転磁場装置6を制御して、シリコン単結晶12の引き上げ方向に対して垂直な面内における回転の向きと回転周波数と磁場強度のうち、少なくとも回転周波数が異なる複数の回転磁場MFを石英坩堝4a内のシリコン融液15に印加することにより、図2(c)および図4に示すように、石英坩堝4aの中心領域とその外側の領域とで速さを異ならせてシリコン融液15を動かすことができる。また、図5に示すように、石英坩堝4aの中心領域とその外側の領域とで向きを異ならせてシリコン融液15を動かすこともできる。   According to this manufacturing apparatus 1, the rotating magnetic field device 6 is controlled so that at least the rotational frequency, the rotational frequency, and the magnetic field strength in the plane perpendicular to the pulling direction of the silicon single crystal 12 are different. Is applied to the silicon melt 15 in the quartz crucible 4a, so that the speed is different between the central region of the quartz crucible 4a and the region outside thereof, as shown in FIG. 2 (c) and FIG. The silicon melt 15 can be moved. In addition, as shown in FIG. 5, the silicon melt 15 can be moved in different directions between the central region of the quartz crucible 4a and the outer region.

このように、石英坩堝4aの中心領域とその外側の領域とで速さや向きを異ならせてシリコン融液15を動かすことができることにより、シリコン融液の15の表面および内部の温度勾配や速度分布を適切に制御しつつ、シリコン単結晶12の引き上げを行うことができる。具体的には、シリコン単結晶12の直下領域のシリコン融液15の鉛直方向の温度勾配を回転磁場の無い通常のCZ法による結晶引上げ条件下における温度勾配よりも小さくするとともに、前記シリコン単結晶の外周付近の前記シリコン融液の表面における径方向の温度勾配を回転磁場の無い通常のCZ法による結晶引上げ条件下における温度勾配よりも大きくした状態で、シリコン単結晶12の引き上げを行うことができる。シリコン単結晶12の直下領域のシリコン融液15の鉛直方向の温度勾配を小さくすることにより、シリコン融液15から引き上げ中のシリコン単結晶12への伝熱を抑えることができ、シリコン単結晶12の外周付近の前記シリコン融液15の表面における径方向の温度勾配を大きくすることにより、引き上げられるシリコン単結晶12の変形を防止することができる。その際、ヒータ5および石英坩堝4aからの輻射熱が輻射熱遮蔽体13によって遮断されることにより、輻射熱によるシリコン単結晶12の加熱が抑えられているので、シリコン単結晶12の高速引き上げをより確実なものとすることができる。   As described above, the silicon melt 15 can be moved while changing the speed and direction between the central region of the quartz crucible 4a and the region outside thereof, so that the temperature gradient and velocity distribution in the surface and inside of the silicon melt 15 are obtained. The silicon single crystal 12 can be pulled up while appropriately controlling the above. Specifically, the temperature gradient in the vertical direction of the silicon melt 15 in the region immediately below the silicon single crystal 12 is made smaller than the temperature gradient under the crystal pulling condition by a normal CZ method without a rotating magnetic field, and the silicon single crystal The silicon single crystal 12 can be pulled up in a state where the temperature gradient in the radial direction on the surface of the silicon melt near the outer periphery of the silicon is larger than the temperature gradient under the crystal pulling condition by a normal CZ method without a rotating magnetic field. it can. By reducing the temperature gradient in the vertical direction of the silicon melt 15 in the region immediately below the silicon single crystal 12, heat transfer from the silicon melt 15 to the silicon single crystal 12 being pulled can be suppressed. By increasing the radial temperature gradient on the surface of the silicon melt 15 in the vicinity of the outer periphery of the silicon single crystal 12, it is possible to prevent deformation of the silicon single crystal 12 that is pulled up. At that time, since the radiant heat from the heater 5 and the quartz crucible 4a is blocked by the radiant heat shield 13, the heating of the silicon single crystal 12 due to the radiant heat is suppressed, so that the silicon single crystal 12 can be pulled up more quickly. Can be.

また、図6に示すように、石英坩堝4aの中心から外側に向かうシリコン融液15の表面の流れf1と外側から内側に向かうシリコン融液15の表面の流れf2とが互いに衝突する位置Pがシリコン単結晶12の外側に位置するように、回転磁場MFの発生を制御することにより、育成されるシリコン単結晶12の酸素濃度を制御するだけでなく面内酸素濃度分布を改善することができる。   Further, as shown in FIG. 6, the position P where the flow f1 of the surface of the silicon melt 15 from the center of the quartz crucible 4a to the outside and the flow f2 of the surface of the silicon melt 15 from the outside to the inside collide with each other. By controlling the generation of the rotating magnetic field MF so as to be located outside the silicon single crystal 12, not only the oxygen concentration of the grown silicon single crystal 12 but also the in-plane oxygen concentration distribution can be improved. .

以上説明したように、この実施形態の製造装置1によれば、ヒータ5および坩堝4a、4bからの輻射熱を輻射熱遮蔽体13によって遮蔽しつつ、シリコン単結晶12の直下領域のシリコン融液15の鉛直方向の温度勾配を回転磁場の無い通常のCZ法による結晶引上げ条件下における温度勾配よりも小さくするとともに、シリコン単結晶12の外周付近のシリコン融液15の表面における径方向の温度勾配を回転磁場MFの無い通常のCZ法による結晶引上げ条件下における温度勾配よりも大きくした状態で、シリコン単結晶12の引き上げを行うことができるので、育成されるシリコン単結晶12の酸素濃度を制御し且つ径方向に均一に保ちつつ、変形の少ない高品質のシリコン単結晶12を高速で引き上げることができる。   As described above, according to the manufacturing apparatus 1 of this embodiment, the radiant heat from the heater 5 and the crucibles 4a and 4b is shielded by the radiant heat shield 13, and the silicon melt 15 in the region immediately below the silicon single crystal 12 is shielded. The temperature gradient in the vertical direction is made smaller than the temperature gradient under the crystal pulling condition by the normal CZ method without a rotating magnetic field, and the temperature gradient in the radial direction on the surface of the silicon melt 15 near the outer periphery of the silicon single crystal 12 is rotated. Since the silicon single crystal 12 can be pulled up in a state where the temperature gradient is larger than the temperature gradient under the crystal pulling condition by the normal CZ method without the magnetic field MF, the oxygen concentration of the grown silicon single crystal 12 is controlled and It is possible to pull up the high-quality silicon single crystal 12 with little deformation at a high speed while keeping it uniform in the radial direction.

これに対し、従来のMCZ法のようにシリコン融液15に印加する回転磁場MFの回転方向および強度を変化させるだけでは、シリコン単結晶12の直下領域のシリコン融液15の鉛直方向の温度勾配を回転磁場の無い通常のCZ法による結晶引上げ条件下における温度勾配よりも小さくするとともに、シリコン単結晶12の外周付近のシリコン融液15の表面における径方向の温度勾配を回転磁場MFの無い通常のCZ法による結晶引上げ条件下における温度勾配よりも大きくすることは不可能であり、また輻射熱遮蔽体13による輻射熱の遮蔽効果も得られないため、この実施形態の製造装置1のように酸素濃度を制御し且つ径方向に均一に保ちつつ、変形の少ない高品質のシリコン単結晶12を高速で引上げることはできない。   On the other hand, the temperature gradient in the vertical direction of the silicon melt 15 in the region immediately below the silicon single crystal 12 is changed only by changing the rotation direction and strength of the rotating magnetic field MF applied to the silicon melt 15 as in the conventional MCZ method. Is made smaller than the temperature gradient under the crystal pulling condition by the normal CZ method without a rotating magnetic field, and the radial temperature gradient on the surface of the silicon melt 15 near the outer periphery of the silicon single crystal 12 is changed to the normal without the rotating magnetic field MF. Since it is impossible to make the temperature gradient larger than the temperature gradient under the crystal pulling condition of the CZ method, and the radiation heat shielding effect by the radiation heat shield 13 cannot be obtained, the oxygen concentration as in the manufacturing apparatus 1 of this embodiment It is impossible to pull up the high-quality silicon single crystal 12 with little deformation at a high speed while maintaining the same in the radial direction.

なお、上記の説明では、一つの制御装置14が、回転磁場装置6、坩堝支持軸駆動機構7、ワイヤ巻取り機能11、ヒータ電源、およびガス供給・排出機構のすべての動作を制御する構成としたが、それぞれの制御対象ごとに制御装置を設けてもよいことは言うまでもない。   In the above description, one control device 14 controls all the operations of the rotating magnetic field device 6, the crucible support shaft drive mechanism 7, the wire winding function 11, the heater power supply, and the gas supply / discharge mechanism. However, it goes without saying that a control device may be provided for each control target.

また、回転磁場装置6の構造やスロット数、コイル数、コイルの区分の仕方、制御方法などは任意である。たとえば、上記複数の回転磁場MFを発生させる別の方法として、コンピュータとインバータとにより形成された多周波成分の重畳した電流を回転磁場装置6の電気コイルC1〜C24に供給する方法を挙げることができる。   Further, the structure of the rotating magnetic field device 6, the number of slots, the number of coils, the way of dividing the coils, the control method, etc. are arbitrary. For example, as another method of generating the plurality of rotating magnetic fields MF, there is a method of supplying a current superimposed with multi-frequency components formed by a computer and an inverter to the electric coils C1 to C24 of the rotating magnetic field device 6. it can.

実施例1
図1の装置を用いて直径75mmのシリコン結晶の引き上げをおこなった。石英坩堝4aは直径155mmのものを使用し、回転周波数の異なる2種類の回転磁場を印加した。第一の回転磁場の回転周波数は50Hz、第二の回転磁場の回転周波数は200Hzである。両回転磁場を同時に印加したときの、シリコン融液15内の回転磁場によるローレンツ力は図7のようになる。坩堝4aの回転方向は回転磁場の回転方向とは逆方向に8rpm、シリコン単結晶12の回転速度は坩堝4aと同方向に10rpmとした。
Example 1
The silicon crystal having a diameter of 75 mm was pulled using the apparatus shown in FIG. A quartz crucible 4a having a diameter of 155 mm was used, and two types of rotating magnetic fields having different rotation frequencies were applied. The rotational frequency of the first rotating magnetic field is 50 Hz, and the rotating frequency of the second rotating magnetic field is 200 Hz. FIG. 7 shows the Lorentz force generated by the rotating magnetic field in the silicon melt 15 when both rotating magnetic fields are applied simultaneously. The rotation direction of the crucible 4a was 8 rpm in the direction opposite to the rotation direction of the rotating magnetic field, and the rotation speed of the silicon single crystal 12 was 10 rpm in the same direction as the crucible 4a.

シリコン単結晶12の直胴部の平均引き上げ速度は1.5mm/分であった。これに対し、回転磁場を用いず、同様の引き上げ条件で引き上げを行った場合の平均引き上げ速度は0.8mm/分であった。また回転磁場を用いず、シリコン単結晶12の回転を坩堝4aの回転方向とは逆方向に10rpmとした場合には1.0mm/分であった。いずれの場合にも回転磁場を用いた場合に比べ、低い引き上げ速度しか得られなかった。   The average pulling speed of the straight body portion of the silicon single crystal 12 was 1.5 mm / min. On the other hand, the average pulling speed when using a similar pulling condition without using a rotating magnetic field was 0.8 mm / min. Further, when the rotation of the silicon single crystal 12 was 10 rpm in the direction opposite to the rotation direction of the crucible 4a without using a rotating magnetic field, the speed was 1.0 mm / min. In either case, only a lower pulling speed was obtained than when a rotating magnetic field was used.

実施例2
直径300mmの結晶の引き上げ時の本発明の効果を数値シミュレーションにより確かめた。坩堝4aの直径は711mm(28インチ)とした。印加した回転磁場は図8のものであり、第一の回転磁場の周波数は25Hz、第二の回転磁場の周波数は50Hzである。この回転磁場の回転方向と逆方向にシリコン単結晶12および坩堝4aをそれぞれ6rpm、3rpmで回転させた。このときの坩堝4a内のシリコン融液15の流れをあらわしたものが図9及び図10である。図9はシリコン融液15の表面近傍およびシリコン単結晶12の直下の流れを調べたものであるが、シリコン単結晶12の接していないところでは回転磁場により、シリコン融液15が坩堝4aや結晶12とは逆方向に回転していることがわかる。図10は融液15の内部の流れを示したものである。図中のベクトルは融液の流れを、濃淡は温度分布をそれぞれ示している。回転磁場が作る流れが融液全体の流れを支配し、融液表面近傍では坩堝に接している熱い融液が結晶の近くまで運ばれ、結晶近傍での水平方向の温度勾配を急峻にしている。この結果、推定引き上げ速度は1.3mm/分が得られた。
Example 2
The effect of the present invention when pulling up a crystal having a diameter of 300 mm was confirmed by numerical simulation. The diameter of the crucible 4a was 711 mm (28 inches). The applied rotating magnetic field is that of FIG. 8, the frequency of the first rotating magnetic field is 25 Hz, and the frequency of the second rotating magnetic field is 50 Hz. The silicon single crystal 12 and the crucible 4a were rotated at 6 rpm and 3 rpm, respectively, in the direction opposite to the rotating direction of the rotating magnetic field. 9 and 10 show the flow of the silicon melt 15 in the crucible 4a at this time. FIG. 9 shows the flow in the vicinity of the surface of the silicon melt 15 and the flow immediately below the silicon single crystal 12, but the silicon melt 15 is transferred to the crucible 4 a and the crystal by a rotating magnetic field where the silicon single crystal 12 is not in contact. It turns out that it is rotating in the opposite direction to 12. FIG. 10 shows the flow inside the melt 15. The vector in the figure indicates the flow of the melt, and the shade indicates the temperature distribution. The flow generated by the rotating magnetic field dominates the flow of the entire melt, and the hot melt in contact with the crucible is carried near the crystal near the surface of the melt, steepening the horizontal temperature gradient near the crystal. . As a result, an estimated pulling speed of 1.3 mm / min was obtained.

比較として、回転磁場を印加しない条件でのシミュレーションも行った。条件としては、実験により得られた引き上げ速度の最も速い条件の一つである、坩堝4aの回転速度6rpm、シリコン単結晶12の結晶回転を逆方向に−10rpmとした。シミュレーション結果は図11及び図12であり、シリコン融液15の流れが、坩堝4aによる流れと結晶12による流れとに二分されている。この結果、流れは複雑になり、また結晶12近傍の水平方向の温度勾配も図13に示すように、回転磁場を用いた場合に比べ小さくなっていた。シミュレーションによる推定引き上げ速度は1.0mm/分となり、実験結果とよい一致を示したが、回転磁場を用いた場合に比べ20%以上低くなっている。   As a comparison, a simulation was also performed under the condition where no rotating magnetic field was applied. As conditions, the rotational speed of the crucible 4a, which was one of the fastest pulling speeds obtained by experiments, was 6 rpm, and the crystal rotation of the silicon single crystal 12 was −10 rpm in the reverse direction. The simulation results are shown in FIGS. 11 and 12, and the flow of the silicon melt 15 is divided into a flow by the crucible 4 a and a flow by the crystal 12. As a result, the flow is complicated, and the temperature gradient in the horizontal direction in the vicinity of the crystal 12 is smaller than that when a rotating magnetic field is used, as shown in FIG. The estimated pulling speed by simulation is 1.0 mm / min, which is in good agreement with the experimental results, but is 20% or more lower than when a rotating magnetic field is used.

本発明にかかる製造装置の形態例を示す概略断面図Schematic sectional view showing an example of a manufacturing apparatus according to the present invention (a)は本発明にかかる製造装置の要部斜視図 (b)は回転磁場の変化を示す遷移図 (c)は回転磁場によるシリコン融液の流速分布制御状態を例示する斜視断面図(A) is a principal part perspective view of the manufacturing apparatus concerning this invention. (B) is a transition diagram which shows the change of a rotating magnetic field. (C) is a perspective sectional view which illustrates the flow rate distribution control state of the silicon melt by a rotating magnetic field. 回転磁場装置の構造を例示する構成図Configuration diagram illustrating structure of rotating magnetic field device 回転磁場によるシリコン融液の流速分布制御状態を例示する平面図Plan view illustrating flow velocity distribution control state of silicon melt by rotating magnetic field 回転磁場によるシリコン融液の流速分布制御状態を例示する平面図Plan view illustrating flow velocity distribution control state of silicon melt by rotating magnetic field (a)回転磁場によるシリコン融液の流れ制御状態を例示する平面図 (b)回転磁場によるシリコン融液の流れ制御状態を例示する断面図(A) Plan view illustrating flow control state of silicon melt by rotating magnetic field (b) Cross-sectional view illustrating flow control state of silicon melt by rotating magnetic field 実施例1で用いた回転磁場により融液に与えられる駆動力(ローレンツ力)と坩堝中心からの距離との関係を示す図The figure which shows the relationship between the driving force (Lorentz force) given to a melt by the rotating magnetic field used in Example 1, and the distance from the crucible center. 実施例2で用いた回転磁場により融液に与えられる駆動力(ローレンツ力)と坩堝中心からの距離との関係を示す図The figure which shows the relationship between the driving force (Lorentz force) given to a melt by the rotating magnetic field used in Example 2, and the distance from the crucible center. 実施例2におけるシリコン融液の流れを示す平面図The top view which shows the flow of the silicon melt in Example 2. 実施例2におけるシリコン融液の流れを示す断面図Sectional drawing which shows the flow of the silicon melt in Example 2 比較例におけるシリコン融液の流れを示す平面図The top view which shows the flow of the silicon melt in a comparative example 比較例におけるシリコン融液の流れ流れを示す断面図Sectional drawing which shows the flow flow of the silicon melt in a comparative example 実施例2と比較例それぞれの、融液表面近傍での水平方向の温度勾配を示す図The figure which shows the temperature gradient of the horizontal direction in the melt surface vicinity of Example 2 and each comparative example

符号の説明Explanation of symbols

1 製造装置
2 引上炉
3 坩堝支持軸
4a 石英坩堝
4b 黒鉛坩堝
5 ヒータ
6 回転磁場装置
7 坩堝支持軸駆動機構
8 種結晶
9 シードチャック
10 引上ワイヤ
11 ワイヤ巻取り機構
12 シリコン単結晶
13 輻射熱遮蔽体
14 制御装置
15 シリコン融液
MF 回転磁場
f1 内側から外側に向かう流れ
f2 外側から内側に向かう流れ
DESCRIPTION OF SYMBOLS 1 Manufacturing apparatus 2 Pulling furnace 3 Crucible support shaft 4a Quartz crucible 4b Graphite crucible 5 Heater 6 Rotary magnetic field apparatus 7 Crucible support shaft drive mechanism 8 Seed crystal 9 Seed chuck 10 Pulling wire 11 Wire winding mechanism 12 Silicon single crystal 13 Radiation heat Shield 14 Control device 15 Silicon melt MF Rotating magnetic field f1 Flow from inside to outside f2 Flow from outside to inside

Claims (7)

チョクラルスキ法によりシリコン単結晶を製造する装置において、
シリコン融液を収容した坩堝と、
前記坩堝を周囲から加熱するヒータと、
前記ヒータおよび前記坩堝からの輻射熱によるシリコン単結晶の加熱を防止するべく設けられた輻射熱遮蔽体と、
シリコン単結晶の引き上げ方向に対して垂直な面内における回転の向きと回転周波数と磁場強度のうち、少なくとも回転周波数が異なる複数の回転磁場を前記坩堝内のシリコン融液に印加する回転磁場装置と、
を備えたことを特徴とするシリコン単結晶の製造装置。
In an apparatus for producing a silicon single crystal by the Czochralski method,
A crucible containing a silicon melt;
A heater for heating the crucible from the surroundings;
A radiant heat shield provided to prevent heating of the silicon single crystal due to radiant heat from the heater and the crucible;
A rotating magnetic field apparatus for applying a plurality of rotating magnetic fields having different rotating frequencies among the rotating direction, rotating frequency and magnetic field strength in a plane perpendicular to the pulling direction of the silicon single crystal to the silicon melt in the crucible; ,
An apparatus for producing a silicon single crystal, comprising:
前記回転磁場装置は、
前記シリコン単結晶の直下領域の前記シリコン融液の鉛直方向の温度勾配を小さくするとともに、前記シリコン単結晶の外周付近の前記シリコン融液の表面における径方向の温度勾配を増大させるべく、前記複数の回転磁場を発生させることを特徴とする請求項1の製造装置。
The rotating magnetic field device includes:
In order to reduce the vertical temperature gradient of the silicon melt in the region immediately below the silicon single crystal, and to increase the radial temperature gradient on the surface of the silicon melt near the outer periphery of the silicon single crystal. The manufacturing apparatus according to claim 1, wherein the rotating magnetic field is generated.
前記回転磁場装置は、
前記坩堝の中心から外側に向かう前記シリコン融液の表面の流れと外側から内側に向かう前記シリコン融液の表面の流れとが互いに衝突する位置が前記シリコン単結晶の外側になるように、前記複数の回転磁場を発生させることを特徴とする請求項1または2の製造装置。
The rotating magnetic field device includes:
The plurality of positions are such that the position where the flow of the silicon melt surface from the center of the crucible toward the outside and the flow of the silicon melt surface from the outside to the inside collide with each other are outside the silicon single crystal. The manufacturing apparatus according to claim 1, wherein the rotating magnetic field is generated.
前記回転磁場装置は、
前記回転周波数が1Hz以上かつ1000Hz以下になるように前記複数の回転磁場を制御することを特徴とする請求項1〜3のいずれかの製造装置。
The rotating magnetic field device includes:
The manufacturing apparatus according to claim 1, wherein the plurality of rotating magnetic fields are controlled so that the rotation frequency is 1 Hz or more and 1000 Hz or less.
前記回転磁場装置は、
前記シリコン融液の最大回転数が1rpm以上かつ200rpm以下になるように前記複数の回転磁場を制御することを特徴とする請求項1〜4のいずれかの製造装置。
The rotating magnetic field device includes:
5. The manufacturing apparatus according to claim 1, wherein the plurality of rotating magnetic fields are controlled so that a maximum rotation speed of the silicon melt is 1 rpm or more and 200 rpm or less.
シリコン融液を収容した坩堝と、
前記坩堝を周囲から加熱するヒータと、
前記ヒータおよび前記坩堝からの輻射熱によるシリコン単結晶の加熱を防止するべく設けられた輻射熱遮蔽体と、
シリコン単結晶の引き上げ方向に対して垂直な面内における回転の向きと回転周波数と磁場強度のうち、少なくとも回転周波数が異なる複数の回転磁場を前記坩堝内のシリコン融液に印加する回転磁場装置とを備えた製造装置を使用してチョクラルスキ法によりシリコン単結晶を製造する方法であって、
前記ヒータおよび坩堝からの輻射熱を輻射熱遮蔽体によって遮蔽しつつ、前記回転磁場装置により前記坩堝内のシリコン融液に回転磁場を印加することにより前記坩堝の中心領域とその外側の領域とで向きや速さを異ならせてシリコン融液を動かしつつ、シリコン単結晶の引き上げを行うことを特徴とするシリコン単結晶の製造方法。
A crucible containing a silicon melt;
A heater for heating the crucible from the surroundings;
A radiant heat shield provided to prevent heating of the silicon single crystal due to radiant heat from the heater and the crucible;
A rotating magnetic field apparatus for applying a plurality of rotating magnetic fields having different rotating frequencies among the rotating direction, rotating frequency and magnetic field strength in a plane perpendicular to the pulling direction of the silicon single crystal to the silicon melt in the crucible; A method for producing a silicon single crystal by the Czochralski method using a production apparatus comprising:
While the radiant heat from the heater and the crucible is shielded by a radiant heat shield, the rotating magnetic field device applies a rotating magnetic field to the silicon melt in the crucible so that the direction of the center region of the crucible and the region outside the crucible A method for producing a silicon single crystal, wherein the silicon single crystal is pulled up while moving the silicon melt at different speeds.
前記回転磁場の回転周波数が10Hz以上かつ200Hz以下であり、
前記回転磁場の回転の向きが前記坩堝の回転の向きと反対であり、
前記回転磁場の回転の向きが前記シリコン単結晶の回転の向きと反対であり、
前記坩堝の回転速度が1rpm以上且つ12rpm以下であり、
前記シリコン単結晶の回転速度が0.1rpm以上且つ20rpm以下であることを特徴とする請求項6のシリコン単結晶の製造方法。
The rotational frequency of the rotating magnetic field is 10 Hz or more and 200 Hz or less,
The direction of rotation of the rotating magnetic field is opposite to the direction of rotation of the crucible,
The direction of rotation of the rotating magnetic field is opposite to the direction of rotation of the silicon single crystal;
The rotational speed of the crucible is 1 rpm or more and 12 rpm or less,
The method for producing a silicon single crystal according to claim 6, wherein the rotation speed of the silicon single crystal is 0.1 rpm or more and 20 rpm or less.
JP2005369820A 2005-06-15 2005-12-22 Apparatus and method for manufacturing silicon single crystal Pending JP2007022901A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005369820A JP2007022901A (en) 2005-06-15 2005-12-22 Apparatus and method for manufacturing silicon single crystal

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005175594 2005-06-15
JP2005369820A JP2007022901A (en) 2005-06-15 2005-12-22 Apparatus and method for manufacturing silicon single crystal

Publications (1)

Publication Number Publication Date
JP2007022901A true JP2007022901A (en) 2007-02-01

Family

ID=37784153

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005369820A Pending JP2007022901A (en) 2005-06-15 2005-12-22 Apparatus and method for manufacturing silicon single crystal

Country Status (1)

Country Link
JP (1) JP2007022901A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102560626A (en) * 2012-03-10 2012-07-11 天津市环欧半导体材料技术有限公司 Method for improving radial resistivity uniformity of straightly-pulled and heavily-doped silicon single crystal
WO2014174752A1 (en) * 2013-04-26 2014-10-30 信越半導体株式会社 Method for producing silicon single crystal
CN111441084A (en) * 2019-01-17 2020-07-24 银川隆基硅材料有限公司 Heat shield and thermal field for single crystal furnace

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005060151A (en) * 2003-08-08 2005-03-10 Shin Etsu Handotai Co Ltd Silicon single crystal production method and silicon single crystal wafer

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005060151A (en) * 2003-08-08 2005-03-10 Shin Etsu Handotai Co Ltd Silicon single crystal production method and silicon single crystal wafer

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JPN6011035664; SPITZER,K. et al: 'Application of Rotating Magnetic Fields in Czochralski Crystal Growth' Progress in Crystal Growth Characterization of Materials Vol.38, 1999, p.39-58 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102560626A (en) * 2012-03-10 2012-07-11 天津市环欧半导体材料技术有限公司 Method for improving radial resistivity uniformity of straightly-pulled and heavily-doped silicon single crystal
WO2014174752A1 (en) * 2013-04-26 2014-10-30 信越半導体株式会社 Method for producing silicon single crystal
CN111441084A (en) * 2019-01-17 2020-07-24 银川隆基硅材料有限公司 Heat shield and thermal field for single crystal furnace

Similar Documents

Publication Publication Date Title
JP4095975B2 (en) Method and apparatus for producing silicon single crystal, silicon single crystal and semiconductor wafer cut from the same
JP5618614B2 (en) Method and apparatus for growing a silicon single crystal from a melt
JP2009173536A (en) Apparatus for manufacturing high-quality semiconductor single crystal ingot and method using the same
JP2002226294A (en) Method and apparatus for manufacturing single crystal consisting of silicon
JP5297306B2 (en) Induction heating method and induction heating apparatus
JP4209325B2 (en) Single crystal semiconductor manufacturing apparatus and manufacturing method
JP2007031274A (en) Silicon single crystal ingot and wafer, growing apparatus and method thereof
JP2007022901A (en) Apparatus and method for manufacturing silicon single crystal
JPH11171686A (en) Device for growing semiconductor single crystal and growth of the crystal
JP5782323B2 (en) Single crystal pulling method
JP2004099416A (en) Heater for producing crystal, and apparatus for and method of producing crystal
JP2007254200A (en) Method for manufacturing single crystal
JP2000247787A (en) Method and apparatus for producing single crystal
JP2004342450A (en) High frequency induction heating device and semiconductor fabrication device
JP2005145724A (en) Method for manufacturing silicon single crystal and silicon single crystal
JP2007145666A (en) Method for manufacturing silicon single crystal
JP2008162829A (en) Apparatus and method for manufacturing silicon single crystal
WO1998049378A1 (en) Method for single crystal growth
WO2022163091A1 (en) Single crystal pulling device and single crystal pulling method
JP2011054318A (en) Induction heating method and induction heating device
WO2022196127A1 (en) Single crystal pulling-up apparatus and single crystal pulling-up method
JP2008162827A (en) Apparatus and method for manufacturing silicon single crystal
JPH10279394A (en) Apparatus for growing single crystal and method therefor
JP5056603B2 (en) Silicon single crystal pulling method and silicon single crystal wafer obtained from ingot pulled by the method
JP5454625B2 (en) Silicon single crystal wafer obtained from ingot pulled by silicon single crystal pulling method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080925

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20080929

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20100823

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20101228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110713

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111007

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20111024

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20111116

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20111116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120724

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130108