JP2007022435A - Negative pressure type booster - Google Patents

Negative pressure type booster Download PDF

Info

Publication number
JP2007022435A
JP2007022435A JP2005210217A JP2005210217A JP2007022435A JP 2007022435 A JP2007022435 A JP 2007022435A JP 2005210217 A JP2005210217 A JP 2005210217A JP 2005210217 A JP2005210217 A JP 2005210217A JP 2007022435 A JP2007022435 A JP 2007022435A
Authority
JP
Japan
Prior art keywords
negative pressure
valve body
pressure chamber
valve
axial
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005210217A
Other languages
Japanese (ja)
Other versions
JP4655799B2 (en
Inventor
Kaoru Tsubouchi
坪内  薫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Advics Co Ltd
Original Assignee
Advics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Advics Co Ltd filed Critical Advics Co Ltd
Priority to JP2005210217A priority Critical patent/JP4655799B2/en
Publication of JP2007022435A publication Critical patent/JP2007022435A/en
Application granted granted Critical
Publication of JP4655799B2 publication Critical patent/JP4655799B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a negative pressure type booster assuring excellent response in actuation and an excellent calmness. <P>SOLUTION: The negative pressure type booster is equipped with a plunger 32 arranged to advance and retreat relative to a valve body 22 in the axial hole 22a of the valve body 22 coupled with a movable bulkhead 21 partitioning inside a housing 10 into a negative pressure chamber R1 and a pressure change chamber R2, a valve mechanism V furnished with a negative pressure valve to put the negative pressure chamber R1 in communication with the pressure change chamber R2 and shut the communication and with an atmospheric valve to put the pressure change chamber R2 in communication to the atmosphere and shut the communication, a reaction member 34 whose rear face admits engagement of the front extremities of the plunger 32 and the valve body 22, and an output shaft 35 whose tail is engaged with the front face of the reaction member 34. The atmosphere flows into the pressure change chamber R2 through the axial communication paths A2 and A4 and the radial communication paths B2 and B4 provided in the valve body 22. In the front parts of the axial communication paths A2 and A4, curved slopes S2 and S4 are formed which bend and change the flowing direction of the atmosphere flowing toward the pressure change chamber R2 one by one toward the radial inner ends of the communication paths B2 and B4. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、自動車に適用される負圧式倍力装置に係り、特に、ハウジング内にて可動隔壁によって区画される前方の負圧室と後方の変圧室との間に生じる差圧により、入力が増大されて出力するように構成した負圧式倍力装置に関するものである。   The present invention relates to a negative pressure booster applied to an automobile, and in particular, an input is caused by a differential pressure generated between a front negative pressure chamber and a rear transformer chamber defined by a movable partition wall in a housing. The present invention relates to a negative pressure booster configured to be increased and output.

この種の負圧式倍力装置の一つとして、ハウジング内を前方の負圧室と後方の変圧室とに区画する可動隔壁に連結されたバルブボデーが軸孔を備えていて、この軸孔内には、前記バルブボデーに対して軸方向に進退可能なプランジャと、このプランジャの前記バルブボデーに対する進退移動に応じて前記負圧室と前記変圧室間を連通・遮断する負圧弁および前記変圧室と大気間を連通・遮断する大気弁を備えた弁機構が組み込まれるとともに、前記プランジャの前端部と前記バルブボデーの前端部が後面に係合可能な反動部材と、この反動部材の前面に後端部にて係合し前記バルブボデーに対して軸方向に移動可能な出力部材が組付けられていて、前記プランジャが前記バルブボデーに対して軸方向に前進移動することにより、前記負圧弁が閉じて前記負圧室と前記変圧室間の連通が遮断され、前記大気弁が開いて前記変圧室と大気間が連通されて、前記バルブボデーに設けた軸方向連通路と径方向連通路を通して大気が前記変圧室に流入するように構成したものがあり、例えば下記の特許文献1に記載されている。
特開平9−290742号公報
As one of the negative pressure type boosters of this type, a valve body connected to a movable partition that divides the inside of a housing into a front negative pressure chamber and a rear variable pressure chamber is provided with a shaft hole. A plunger that can advance and retreat in the axial direction with respect to the valve body, a negative pressure valve that communicates and blocks between the negative pressure chamber and the variable pressure chamber in accordance with a forward and backward movement of the plunger with respect to the valve body, and the variable pressure chamber And a reaction mechanism in which a front end portion of the plunger and a front end portion of the valve body can be engaged with the rear surface, and a rear surface on the front surface of the reaction member. An output member that is engaged at an end and is movable in the axial direction with respect to the valve body is assembled, and the plunger moves forward in the axial direction with respect to the valve body. Then, the communication between the negative pressure chamber and the variable pressure chamber is cut off, the atmospheric valve is opened, and the variable pressure chamber and the atmosphere are communicated with each other through the axial communication path and the radial communication path provided in the valve body. There exists what was comprised so that air | atmosphere might flow in into the said transformation room, for example, it describes in the following patent document 1. FIG.
JP-A-9-290742

上記した特許文献1に記載されている負圧式倍力装置においては、バルブボデーに設けた軸方向連通路と径方向連通路が略直角に交差していて、軸方向連通路を通して流れる大気は、軸方向連通路の端部にてバルブボデーの内壁に当たって略直角に方向変換した後に径方向連通路を通して変圧室に向けて流れる。このため、軸方向連通路を通して流れる大気は径方向連通路にスムーズに流れ難く、その流れに乱れが生じやすい。したがって、大気の流れが乱れることによる作動応答遅れや作動音の発生が生じやすい。   In the negative pressure booster described in Patent Document 1 described above, the axial communication path and the radial communication path provided in the valve body intersect each other at a substantially right angle, and the atmosphere flowing through the axial communication path is After striking the inner wall of the valve body at the end of the axial communication path and changing the direction at a substantially right angle, it flows toward the variable pressure chamber through the radial communication path. For this reason, the air flowing through the axial communication path is unlikely to flow smoothly through the radial communication path, and the flow tends to be disturbed. Therefore, the operation response delay and the operation sound are likely to occur due to the disturbance of the air flow.

また、上記した特許文献1に記載されている負圧式倍力装置においては、円弧状に形成された負圧弁の弁座が設けられている部位にて軸方向連通路を通して流れる大気が、負圧弁の弁座が設けられていない部位にて軸方向連通路を通して流れる大気と軸方向連通路の端部にて合流した後に、径方向連通路を通して変圧室に向けて流れる構成となっている。このため、上記した合流によっても、大気の流れに乱れが生じやすい。   Moreover, in the negative pressure type booster described in Patent Document 1 described above, the air flowing through the axial communication path at the portion where the valve seat of the negative pressure valve formed in an arc shape is provided is the negative pressure valve. After the air flow through the axial communication passage is merged at the end of the axial communication passage at a portion where the valve seat is not provided, the flow is directed toward the variable pressure chamber through the radial communication passage. For this reason, turbulence is likely to occur in the air flow even by the above-described merging.

本発明は、上記した課題を解消すべくなされたものであり、作動応答性と静粛性に優れた負圧式倍力装置を提供することを目的としている。かかる目的を達成するために、本発明では、ハウジング内を前方の負圧室と後方の変圧室とに区画する可動隔壁に連結されたバルブボデーが軸孔を備えていて、この軸孔内には、前記バルブボデーに対して軸方向に進退可能なプランジャと、このプランジャの前記バルブボデーに対する進退移動に応じて前記負圧室と前記変圧室間を連通・遮断する負圧弁および前記変圧室と大気間を連通・遮断する大気弁を備えた弁機構が組み込まれるとともに、前記プランジャの前端部と前記バルブボデーの前端部が後面に係合可能な反動部材と、この反動部材の前面に後端部にて係合し前記バルブボデーに対して軸方向に移動可能な出力部材が組付けられていて、前記プランジャが前記バルブボデーに対して軸方向に前進移動することにより、前記負圧弁が閉じて前記負圧室と前記変圧室間の連通が遮断され、前記大気弁が開いて前記変圧室と大気間が連通されて、前記バルブボデーに設けた軸方向連通路と径方向連通路を通して大気が前記変圧室に流入するように構成した負圧式倍力装置において、前記軸方向連通路を通して前記変圧室に向けて流れる大気の流動方向を前記軸方向連通路の前方部位にて前記径方向連通路の径方向内端部に向けて順次変更する傾斜面を前記バルブボデーの内壁面に設けたことに特徴がある。この場合において、前記傾斜面は、前記軸方向連通路を通して前記変圧室に向けて流れる大気の流動方向を前記軸方向連通路の前方部位にて前記径方向連通路の径方向内端部に向けて順次曲げて変更する湾曲傾斜面で構成されていることも可能である。   The present invention has been made to solve the above-described problems, and an object of the present invention is to provide a negative pressure booster that is excellent in operation response and silence. In order to achieve such an object, in the present invention, a valve body connected to a movable partition wall that divides the inside of a housing into a front negative pressure chamber and a rear variable pressure chamber has a shaft hole, and the shaft hole has a shaft hole. A plunger that can advance and retreat in the axial direction with respect to the valve body, a negative pressure valve that communicates and blocks between the negative pressure chamber and the variable pressure chamber according to a forward and backward movement of the plunger with respect to the valve body, and the variable pressure chamber; A valve mechanism having an atmospheric valve for communicating and blocking between the atmospheres is incorporated, a reaction member in which a front end portion of the plunger and a front end portion of the valve body can be engaged with a rear surface, and a rear end on the front surface of the reaction member And an output member that is movable in the axial direction with respect to the valve body, and the plunger moves forward in the axial direction with respect to the valve body. Is closed, the communication between the negative pressure chamber and the variable pressure chamber is blocked, the atmospheric valve is opened and the variable pressure chamber and the atmosphere are communicated, and the axial communication path and the radial communication path provided in the valve body In the negative pressure type booster configured so that the atmosphere flows into the variable pressure chamber through the flow direction of the air flowing toward the variable pressure chamber through the axial communication path at the front portion of the axial communication path. The present invention is characterized in that an inclined surface that is sequentially changed toward the radially inner end of the directional communication passage is provided on the inner wall surface of the valve body. In this case, the inclined surface directs the flow direction of the air flowing toward the variable pressure chamber through the axial communication path toward the radially inner end portion of the radial communication path at a front portion of the axial communication path. It is also possible to form a curved inclined surface that is bent and changed sequentially.

この負圧式倍力装置においては、プランジャをバルブボデーに対して軸方向に前進移動させると、負圧弁が閉じて負圧室と変圧室間の連通が遮断されるとともに、大気弁が開いて変圧室と大気間が連通される。このため、バルブボデーに設けた軸方向連通路と径方向連通路を通して変圧室に大気が流入して、変圧室の圧力が負圧から順次大気圧となり、負圧室と変圧室間の差圧に応じた出力が出力部材に生じる。また、出力部材に出力が生じると、その反力が出力部材から反動部材の前面に伝達されるとともに反動部材の後面からバルブボデーとプランジャに伝達される。   In this negative pressure type booster, when the plunger is moved forward in the axial direction with respect to the valve body, the negative pressure valve is closed, the communication between the negative pressure chamber and the variable pressure chamber is shut off, and the atmospheric valve is opened to change the pressure. The room communicates with the atmosphere. For this reason, the atmosphere flows into the variable pressure chamber through the axial communication path and the radial communication path provided in the valve body, and the pressure in the variable pressure chamber gradually increases from negative pressure to atmospheric pressure, and the differential pressure between the negative pressure chamber and the variable pressure chamber. An output corresponding to is generated in the output member. Further, when output is generated in the output member, the reaction force is transmitted from the output member to the front surface of the reaction member and from the rear surface of the reaction member to the valve body and the plunger.

ところで、本発明の負圧式倍力装置においては、軸方向連通路を通して変圧室に向けて流れる大気が、バルブボデーの内壁面に設けた傾斜面(または湾曲傾斜面)により、その流動方向を軸方向連通路の前方部位にて径方向連通路の径方向内端部に向けて順次変更(または順次曲げられて変更)される。このため、軸方向連通路から径方向連通路への大気の流れがスムーズとなって、大気の流れが乱れ難くなる。したがって、大気の流れが乱れることによる作動応答遅れや作動音の発生を抑制することが可能であり、良好な作動応答性や静粛な作動を得ることが可能である。   By the way, in the negative pressure type booster of the present invention, the air flowing toward the variable pressure chamber through the axial communication passage is axially flowed by the inclined surface (or curved inclined surface) provided on the inner wall surface of the valve body. It is sequentially changed (or sequentially bent and changed) toward the radially inner end of the radial communication path at the front portion of the directional communication path. For this reason, the air flow from the axial communication passage to the radial communication passage becomes smooth, and the air flow is hardly disturbed. Therefore, it is possible to suppress the delay in the operation response and the generation of the operation sound due to the disturbance of the atmospheric flow, and it is possible to obtain a good operation response and a quiet operation.

上記した本発明の実施に際して、前記軸方向連通路を通して前記変圧室に向けて流れる大気を前記軸方向連通路の前方部位にて周方向に分流させる分流壁が前記バルブボデーの内壁から内方に向けて凸状に設けられていて、この分流壁に前記湾曲傾斜面が形成されていることも可能である。また、前記軸方向連通路を前記バルブボデーの軸孔内壁とにより形成する案内壁が前記プランジャの外周に沿って前記バルブボデーに扇状に設けられていて、この案内壁に前記湾曲傾斜面が形成されていることも可能である。   In carrying out the above-described present invention, a shunt wall that shunts the air flowing toward the variable pressure chamber through the axial communication passage in the circumferential direction at a front portion of the axial communication passage is inward from the inner wall of the valve body. It is also possible that the curved inclined surface is formed on the flow dividing wall. In addition, a guide wall that forms the axial communication path with the inner wall of the shaft hole of the valve body is provided in a fan shape on the valve body along the outer periphery of the plunger, and the curved inclined surface is formed on the guide wall. It is also possible.

また、本発明の実施に際して、前記分流壁と前記案内壁が前記バルブボデーに周方向にて交互に設けられているとともに、前記分流壁に形成されている前記湾曲傾斜面によって流動方向を変更された大気が流れる径方向連通路と、前記案内壁に形成されている前記湾曲傾斜面によって流動方向を変更された大気が流れる径方向連通路が別個に設けられていることも可能である。この場合には、分流壁に形成されている湾曲傾斜面によって流動方向を変更された大気と、案内壁に形成されている湾曲傾斜面によって流動方向を変更された大気が別個に設けられている各径方向連通路を通して変圧室に流入する。したがって、分流壁に形成されている湾曲傾斜面によって流動方向を変更された大気と、案内壁に形成されている湾曲傾斜面によって流動方向を変更された大気が、径方向連通路に流入する前に合流することがなくて、かかる合流に伴う乱れの発生を防ぐことが可能である。   In carrying out the present invention, the flow dividing wall and the guide wall are alternately provided in the valve body in the circumferential direction, and the flow direction is changed by the curved inclined surface formed in the flow dividing wall. It is also possible to separately provide a radial communication path through which the atmosphere flows and a radial communication path through which the atmosphere whose flow direction is changed by the curved inclined surface formed in the guide wall. In this case, the atmosphere whose flow direction is changed by the curved inclined surface formed on the flow dividing wall and the atmosphere whose flow direction is changed by the curved inclined surface formed on the guide wall are separately provided. It flows into the variable pressure chamber through each radial communication path. Therefore, before the atmosphere whose flow direction has been changed by the curved inclined surface formed on the flow dividing wall and the air whose flow direction has been changed by the curved inclined surface formed on the guide wall flow into the radial communication path. It is possible to prevent the occurrence of turbulence associated with such merging.

また、本発明の実施に際して、前記負圧弁の弁座が前記プランジャの外周に沿った円弧形状で前記バルブボデーに形成されていることも可能である。この場合には、空気が流れる通路を十分に確保することが可能で作動応答性を十分に高めることが可能である。また、前記プランジャは前記湾曲傾斜面が設けられている部位より前方位置と後方位置にて前記バルブボデーに軸方向にて摺動可能に支持されていることも可能である。この場合には、特許文献1に示されるような空気が流れる通路途中のプランジャ支承部がないため、空気の流れが円滑で静粛となり、かつプランジャを安定して支持することが可能である。   In carrying out the present invention, the valve seat of the negative pressure valve may be formed in the valve body in an arc shape along the outer periphery of the plunger. In this case, it is possible to sufficiently secure a passage through which air flows and to sufficiently improve the operation response. Further, the plunger can be supported by the valve body so as to be slidable in the axial direction at a front position and a rear position from a portion where the curved inclined surface is provided. In this case, since there is no plunger support part in the middle of the passage through which air flows as shown in Patent Document 1, the air flow is smooth and quiet, and the plunger can be stably supported.

以下に、本発明の一実施形態を図面に基づいて説明する。図1〜図3は本発明を車両用ブレーキの負圧式倍力装置に実施した実施形態を示していて、この実施形態の負圧式倍力装置においては、ハウジング10に可動隔壁21とバルブボデー22を備えるパワーピストン20が組付けられていて、ハウジング10内が可動隔壁21により前方の負圧室R1と後方の変圧室R2とに区画されている。   Hereinafter, an embodiment of the present invention will be described with reference to the drawings. 1 to 3 show an embodiment in which the present invention is implemented in a negative pressure booster for a vehicle brake. In the negative pressure booster of this embodiment, a movable partition 21 and a valve body 22 are provided in a housing 10. The housing 10 is partitioned by a movable partition wall 21 into a front negative pressure chamber R1 and a rear variable pressure chamber R2.

ハウジング10は、図1に示したように、前方シェル11と後方シェル12を備えるとともに、負圧室R1を負圧源(例えば、図示省略のエンジンの吸気マニホールド)に常時連通させるための負圧導入管13を備えている。このハウジング10は、同ハウジング10と可動隔壁21を気密的に貫通する複数本(図1では1本が示されている)のタイロッド14の後端部に設けられたねじ部14aにて静止部材、すなわち車体(図示省略)に固定されるように構成されている。なお、タイロッド14の前端部に設けられたねじ部14bには、ブレーキマスタシリンダ100が組付けられている。   As shown in FIG. 1, the housing 10 includes a front shell 11 and a rear shell 12, and a negative pressure for constantly communicating the negative pressure chamber R1 with a negative pressure source (for example, an intake manifold of an engine not shown). An introduction pipe 13 is provided. The housing 10 is a stationary member by a screw portion 14a provided at the rear end portion of a plurality of tie rods 14 (one is shown in FIG. 1) penetrating the housing 10 and the movable partition wall 21 in an airtight manner. That is, it is configured to be fixed to a vehicle body (not shown). Note that the brake master cylinder 100 is assembled to the screw portion 14b provided at the front end portion of the tie rod 14.

ブレーキマスタシリンダ100は、そのシリンダ本体101の後端部101aが前方シェル11に形成された中心筒部11aを貫通して負圧室R1内に気密的に突入し、またシリンダ本体101に形成されたフランジ部101bの後面が前方シェル11の前面に当接している。また、ブレーキマスタシリンダ100のピストン102は、シリンダ本体101から後方に突出して負圧室R1内に突入しており、後述する出力軸35の先端ロッド部35aによって前方に押動されるように構成されている。   The brake master cylinder 100 has a rear end portion 101a of the cylinder body 101 penetrating through a central cylinder portion 11a formed in the front shell 11 and hermetically entering the negative pressure chamber R1, and is formed in the cylinder body 101. The rear surface of the flange portion 101 b is in contact with the front surface of the front shell 11. The piston 102 of the brake master cylinder 100 protrudes rearward from the cylinder body 101 and enters the negative pressure chamber R1, and is configured to be pushed forward by a distal end rod portion 35a of the output shaft 35 described later. Has been.

パワーピストン20の可動隔壁21は、金属製で環状のプレート21aと、ゴム製で環状のダイアフラム21bとからなり、ハウジング10内にて前後方向(パワーピストン20の軸方向)へ移動可能に設置されている。ダイアフラム21bは、その外周縁に形成された環状の外周ビード部にて、後方シェル12の外周縁に設けられた折り返し部と前方シェル11とにより気密的に挟持されている。また、ダイアフラム21bは、その内周縁に形成された環状の内周ビード部にて、バルブボデー22の前端部外周に形成した環状の溝にプレート21aの内周部とともに気密的に固定されている。   The movable partition wall 21 of the power piston 20 includes a metal-made annular plate 21a and a rubber-made annular diaphragm 21b, and is installed in the housing 10 so as to be movable in the front-rear direction (the axial direction of the power piston 20). ing. The diaphragm 21b is airtightly sandwiched between the folded portion provided at the outer peripheral edge of the rear shell 12 and the front shell 11 at an annular outer peripheral bead portion formed at the outer peripheral edge thereof. The diaphragm 21b is airtightly fixed together with the inner peripheral portion of the plate 21a in an annular groove formed on the outer periphery of the front end portion of the valve body 22 at an annular inner peripheral bead portion formed on the inner peripheral edge thereof. .

パワーピストン20のバルブボデー22は、可動隔壁21の内周部に連結された樹脂製の中空体であって、円筒状に形成された中間部位にてハウジング10の後方シェル12に気密的かつ前後方向へ移動可能に組付けられており、ハウジング10の前方シェル11との間に介装されたリターンスプリング15によって後方に向けて付勢されている。なお、バルブボデー22のハウジング10外に突出する部位は、後端に複数の通気孔19aを有するブーツ19によって被覆保護されている。   The valve body 22 of the power piston 20 is a resin hollow body connected to the inner peripheral portion of the movable partition wall 21, and is airtight and front-rear to the rear shell 12 of the housing 10 at an intermediate portion formed in a cylindrical shape. It is assembled so as to be movable in the direction, and is urged rearward by a return spring 15 interposed between the housing 10 and the front shell 11. The portion of the valve body 22 that protrudes outside the housing 10 is covered and protected by a boot 19 having a plurality of vent holes 19a at the rear end.

また、バルブボデー22には、図2および図3に示したように、前後方向にて貫通する段付の軸孔22aが形成されるとともに、この軸孔22aの中間段部に後端にて連通するとともに前端にて負圧室R1に連通する一対の連通孔22bと、軸孔22aの前方部分に略直交していてキー部材39を外周から挿通可能な一対のキー取付孔22cが形成されている。   Further, as shown in FIGS. 2 and 3, the valve body 22 is formed with a stepped shaft hole 22a penetrating in the front-rear direction, and at the rear end of the intermediate step portion of the shaft hole 22a. A pair of communication holes 22b that communicate with the negative pressure chamber R1 at the front end and a pair of key attachment holes 22c that are substantially orthogonal to the front portion of the shaft hole 22a and allow the key member 39 to be inserted from the outer periphery are formed. ing.

上記した軸孔22aには、入力軸31とプランジャ32と伝達部材33が同軸的に組付けられるとともに、弁機構Vとフィルタ51,52が同軸的に組付けられている。また、上記した軸孔22aには、伝達部材33の前方に、反動部材34および出力軸(出力部材)35が同軸的に組付けられている。   The input shaft 31, the plunger 32, and the transmission member 33 are coaxially assembled in the above-described shaft hole 22a, and the valve mechanism V and the filters 51 and 52 are coaxially assembled. In addition, a reaction member 34 and an output shaft (output member) 35 are coaxially assembled in front of the transmission member 33 in the shaft hole 22a.

入力軸31は、バルブボデー22に対して進退可能であり、球状先端部31aにてプランジャ32の受承連結部32cに関節状に連結され、後端ねじ部31b(図1参照)にてヨーク111を介してブレーキペダル110に連結されていて、ブレーキペダル110に作用する踏力を入力Fiとして前方に向けて受けるように構成されている。   The input shaft 31 can move forward and backward with respect to the valve body 22, and is connected to the receiving connection portion 32c of the plunger 32 in a joint shape by a spherical tip portion 31a, and the yoke by a rear end screw portion 31b (see FIG. 1). It is connected to the brake pedal 110 via 111, and is configured to receive a pedal force acting on the brake pedal 110 forward as an input Fi.

プランジャ32は、その先端部32aにて伝達部材33を介して反動部材34における後面の中央部位に係合可能であるとともに、その中間部に形成した環状フランジ部32bにてキー部材39に係合可能であって、先端部32aが反動部材34から出力Foの反力を部分的に受ける部分である。また、プランジャ32の後端には、弁機構Vの環状大気弁部41bに離座可能に着座する環状の大気弁座32dが形成されていて、この大気弁座32dと弁機構Vの環状大気弁部41bによって、変圧室R2と大気間を連通・遮断する大気弁が構成されている。   The plunger 32 can be engaged with the central portion of the rear surface of the reaction member 34 through the transmission member 33 at the tip end portion 32a, and can be engaged with the key member 39 with an annular flange portion 32b formed in the intermediate portion thereof. The tip 32a is a part that receives the reaction force of the output Fo from the reaction member 34 partially. An annular atmospheric valve seat 32d is formed at the rear end of the plunger 32 so as to be separable from the annular atmospheric valve portion 41b of the valve mechanism V, and the annular atmosphere of the atmospheric valve seat 32d and the valve mechanism V is formed. The valve portion 41b constitutes an atmospheric valve that communicates and blocks between the variable pressure chamber R2 and the atmosphere.

反動部材34は、その後面の中央部位が後方に膨出変形可能なリアクションゴムディスクであり、出力軸35の後方円筒部35b内に収容されて前面全体にて出力軸35の後端部後面に係合(当接)した状態にて、バルブボデー22の前端部に組付けられている。この反動部材34は、その後面にて、プランジャ32の先端部32a前面に伝達部材33を介して当接可能であるとともに、バルブボデー22の円環状前端面に当接している。   The reaction member 34 is a reaction rubber disk whose rear surface has a central portion that can be bulged and deformed rearwardly. In an engaged (abutted) state, the valve body 22 is assembled to the front end portion. The reaction member 34 can be brought into contact with the front surface of the distal end portion 32a of the plunger 32 via the transmission member 33 at the rear surface thereof, and is in contact with the annular front end surface of the valve body 22.

出力軸35は、反動部材34とともにバルブボデー22の軸孔22aの前端部内に前後方向へ移動可能に組付けられていて、図1および図2に示したように、先端部に組付けた先端ロッド部35aにてブレーキマスタシリンダ100におけるピストン102の係合部に押動可能に当接しており、制動作動時にはブレーキマスタシリンダ100のピストン102から受ける反力を反動部材34に伝達するようになっている。   The output shaft 35 is assembled in the front end portion of the shaft hole 22a of the valve body 22 together with the reaction member 34 so as to be movable in the front-rear direction, and as shown in FIGS. 1 and 2, the distal end assembled to the distal end portion. The rod portion 35a abuts against the engaging portion of the piston 102 in the brake master cylinder 100 so as to be able to be pushed, and the reaction force received from the piston 102 of the brake master cylinder 100 is transmitted to the reaction member 34 during braking operation. ing.

キー部材39は、パワーピストン20のバルブボデー22に対するプランジャ32の前後方向移動を規定する機能と、ハウジング10に対するパワーピストン20の後方への移動限界位置(バルブボデー22の後方復帰位置)を規定する機能を有していて、バルブボデー22とプランジャ32のそれぞれに対してパワーピストン20の軸方向に相対移動可能に組付けられている。   The key member 39 defines the function of defining the movement of the plunger 32 in the front-rear direction with respect to the valve body 22 of the power piston 20 and the limit position of the rearward movement of the power piston 20 with respect to the housing 10 (rear return position of the valve body 22). It has a function and is assembled so as to be movable relative to the valve body 22 and the plunger 32 in the axial direction of the power piston 20.

弁機構Vは、バルブボデー22における各連通孔22bの後端部に一体的に形成した円弧形状の負圧弁座22dと、プランジャ32の後端部に一体的に形成した環状の大気弁座32dと、この大気弁座32dに対して同軸的に配置されてバルブボデー22に組付けた筒状の弁体41を備えている。弁体41は、負圧弁座22dに対して着座・離座可能で負圧弁座22dとにより負圧室R1と変圧室R2を連通・遮断可能な負圧弁を構成する負圧弁部41aを有するとともに、大気弁座32dに対して着座・離座可能で大気弁座32dとにより変圧室R2と大気を連通・遮断可能な大気弁を構成する環状の大気弁部41bを有している。   The valve mechanism V includes an arc-shaped negative pressure valve seat 22d formed integrally at the rear end of each communication hole 22b in the valve body 22, and an annular atmospheric valve seat 32d formed integrally at the rear end of the plunger 32. And a cylindrical valve body 41 that is coaxially disposed with respect to the atmospheric valve seat 32d and is assembled to the valve body 22. The valve body 41 has a negative pressure valve portion 41a that constitutes a negative pressure valve that can be seated / separated with respect to the negative pressure valve seat 22d and that allows the negative pressure valve seat 22d to communicate and block the negative pressure chamber R1 and the variable pressure chamber R2. The atmospheric valve seat 32d has an annular atmospheric valve portion 41b that constitutes an atmospheric valve that can be seated and separated from the atmospheric valve seat 32d and that can communicate with and shut off the atmosphere from the variable pressure chamber R2 by the atmospheric valve seat 32d.

負圧弁部41aと大気弁部41bは、弁体41の可動部(軸方向に移動可能な部分)に一体的に形成されていて、圧縮スプリング42によって負圧弁座22dと大気弁座32dに向けて(前方に向けて)付勢されている。なお、弁体41の固定部(軸方向に移動不能な部分)は、リテーナ43を介して入力軸31の段部に係止する圧縮スプリング44によって前方に向けて付勢されていて、バルブボデー22における軸孔22aの定位置(段部)に保持されている。   The negative pressure valve portion 41a and the atmospheric valve portion 41b are formed integrally with a movable portion (a portion movable in the axial direction) of the valve body 41, and are directed toward the negative pressure valve seat 22d and the atmospheric valve seat 32d by the compression spring 42. Is energized (towards the front). The fixed portion (portion that cannot move in the axial direction) of the valve body 41 is urged forward by a compression spring 44 that is engaged with the stepped portion of the input shaft 31 via the retainer 43, so that the valve body 22 is held at a fixed position (step portion) of the shaft hole 22a.

上記した弁機構Vの構成によって、変圧室R2は、入力軸31およびプランジャ32のバルブボデー22に対する前後方向の移動に応じて、負圧室R1または大気に連通可能である。すなわち、図1および図2に示した入力軸31およびプランジャ32がバルブボデー22に対して前方へ移動して、負圧弁部41aが負圧弁座22dに着座し、大気弁座32dが大気弁部41bから離座したときには、変圧室R2が負圧室R1との連通を遮断されて大気に連通する。このときには、ブーツ19の通気孔19a、フィルタ51,52、弁体41の内部、大気弁座32dと大気弁部41b間の隙間、バルブボデー22に設けた軸方向連通路A1〜A4と径方向連通路B1〜B4等を通して、変圧室R2に大気が流入する。   With the configuration of the valve mechanism V described above, the variable pressure chamber R2 can communicate with the negative pressure chamber R1 or the atmosphere in accordance with the movement of the input shaft 31 and the plunger 32 in the front-rear direction with respect to the valve body 22. That is, the input shaft 31 and the plunger 32 shown in FIGS. 1 and 2 move forward with respect to the valve body 22, the negative pressure valve portion 41a is seated on the negative pressure valve seat 22d, and the atmospheric valve seat 32d is the atmospheric valve portion. When separated from 41b, the variable pressure chamber R2 is disconnected from the negative pressure chamber R1 and communicates with the atmosphere. At this time, the ventilation hole 19a of the boot 19, the filters 51 and 52, the inside of the valve body 41, the gap between the atmospheric valve seat 32d and the atmospheric valve portion 41b, the axial communication paths A1 to A4 provided in the valve body 22 and the radial direction The air flows into the variable pressure chamber R2 through the communication paths B1 to B4.

また、図1および図2に示したように、入力軸31およびプランジャ32がバルブボデー22に対して復帰位置に戻って、負圧弁部41aが負圧弁座22dから離座し、大気弁座32dが大気弁部41bに着座している状態では、変圧室R2が大気との連通を遮断されて負圧室R1に連通する。このときには、バルブボデー22に設けた径方向連通路B1〜B4と軸方向連通路A1〜A4、負圧弁部41aと負圧弁座22d間の隙間、連通孔22b等を通して、変圧室R2から負圧室R1に空気が吸引される。   Further, as shown in FIGS. 1 and 2, the input shaft 31 and the plunger 32 return to the return position with respect to the valve body 22, and the negative pressure valve portion 41a is separated from the negative pressure valve seat 22d, and the atmospheric valve seat 32d. Is seated on the atmospheric valve portion 41b, the variable pressure chamber R2 is disconnected from the atmosphere and communicated with the negative pressure chamber R1. At this time, the negative pressure is supplied from the variable pressure chamber R2 through the radial communication passages B1 to B4 and the axial communication passages A1 to A4 provided in the valve body 22, the gap between the negative pressure valve portion 41a and the negative pressure valve seat 22d, the communication hole 22b, and the like. Air is sucked into the chamber R1.

上記した各軸方向連通路A1とA2は、図2および図3に示したように、各負圧弁座22d(連通孔22bの後端部)の内周にてプランジャ32の外周に沿って形成される円弧状通路であり、左右対称形状に形成されていて、その各前方部位には変圧室R2に向けて流れる大気を周方向に分流させる分流壁22eが設けられている。各分流壁22eは、バルブボデー22の内壁から内方に向けて凸状に設けられていて、各軸方向連通路A1とA2をそれぞれ略二等分しており、その内壁面には湾曲傾斜面S1,S2がそれぞれ形成されている。   Each of the axial communication paths A1 and A2 described above is formed along the outer periphery of the plunger 32 at the inner periphery of each negative pressure valve seat 22d (rear end portion of the communication hole 22b), as shown in FIGS. This arc-shaped passage is formed in a bilaterally symmetric shape, and is provided with a branch wall 22e at each front portion thereof for diverting the air flowing toward the variable pressure chamber R2 in the circumferential direction. Each flow dividing wall 22e is provided so as to protrude inward from the inner wall of the valve body 22, and each of the axial communication paths A1 and A2 is divided into approximately equal halves. Surfaces S1 and S2 are formed, respectively.

各湾曲傾斜面S1は、各軸方向連通路A1,A2の図3上半分を通して変圧室R2に向けて流れる大気の流動方向を各軸方向連通路A1,A2の図3上半分の前方部位にて径方向連通路B1(キー取付孔22cの図3上半分に形成される通路)の径方向内端部に向けて順次曲げて変更するものであり、分流壁22eの前端部に形成されている。各湾曲傾斜面S2は、各軸方向連通路A1,A2の図3下半分を通して変圧室R2に向けて流れる大気の流動方向を各軸方向連通路A1,A2の図3下半分の前方部位にて径方向連通路B2(キー取付孔22cの図3下半分に形成される通路)の径方向内端部に向けて順次曲げて変更するものであり、分流壁22eの前端部に形成されている。   Each curved inclined surface S1 causes the flow direction of the air flowing toward the variable pressure chamber R2 through the upper half of FIG. 3 of each axial communication path A1, A2 to the front portion of the upper half of FIG. 3 of each axial communication path A1, A2. The radial communication passage B1 (passage formed in the upper half of FIG. 3 of the key attachment hole 22c) is sequentially bent and changed toward the radially inner end, and is formed at the front end of the flow dividing wall 22e. Yes. Each curved inclined surface S2 causes the flow direction of the air flowing toward the variable pressure chamber R2 through the lower half of each axial communication passage A1, A2 in FIG. 3 to the front portion of the lower half of FIG. 3 of each axial communication passage A1, A2. The radial communication path B2 (passage formed in the lower half of FIG. 3 of the key attachment hole 22c) is sequentially bent and changed toward the radially inner end, and is formed at the front end of the flow dividing wall 22e. Yes.

一方、上記した各軸方向連通路A3とA4は、図3に示したように、各負圧弁座22dが設けられていない部位にてプランジャ32の外周に沿って形成される扇状通路であり、上下対称形状に形成されていて、その周方向中間部位には変圧室R2に向けて流れる大気を周方向にて略二等分するリブ22fが設けられ、このリブ22fの前方部位には扇状の案内壁22gが設けられている。各案内壁22gは、バルブボデー22の軸孔22a内壁にまで延びていて、その図2右側面には湾曲傾斜面S3,S4がそれぞれ形成されている。   On the other hand, each of the axial communication paths A3 and A4 described above is a fan-shaped path formed along the outer periphery of the plunger 32 at a portion where each negative pressure valve seat 22d is not provided, as shown in FIG. It is formed in a vertically symmetrical shape, and a rib 22f that bisects the air flowing toward the variable pressure chamber R2 in the circumferential direction is provided at a circumferential intermediate portion thereof, and a fan-like shape is provided at a front portion of the rib 22f. A guide wall 22g is provided. Each guide wall 22g extends to the inner wall of the shaft hole 22a of the valve body 22, and curved inclined surfaces S3 and S4 are formed on the right side surface in FIG.

図3上方の各湾曲傾斜面S3は、図3上方の軸方向連通路A3を通して変圧室R2に向けて流れる大気の流動方向を軸方向連通路A3の前方部位にて径方向連通路B3(キー取付孔22cの図3上半分に形成される通路とは別に形成された通路)の径方向内端部に向けて順次曲げて変更するものであり、リブ22fの前端部に連続的に形成されている案内壁22gの前方部に形成されている。図3下方の各湾曲傾斜面S4は、図3下方の軸方向連通路A4を通して変圧室R2に向けて流れる大気の流動方向を軸方向連通路A4の前方部位にて径方向連通路B4(キー取付孔22cの図3下半分に形成される通路とは別に形成された通路)の径方向内端部に向けて順次曲げて変更するものであり、リブ22fの前端部に連続的に形成されている案内壁22gの前方部に形成されている。   Each curved inclined surface S3 in the upper part of FIG. 3 has a radial communication path B3 (key) at the front part of the axial communication path A3 in the flow direction of the air flowing toward the variable pressure chamber R2 through the axial communication path A3 in the upper part of FIG. 3 is formed by continuously bending and changing toward the radially inner end of a passage formed separately from the passage formed in the upper half of FIG. 3 of the mounting hole 22c, and continuously formed at the front end of the rib 22f. It is formed in the front part of the guide wall 22g. Each curved inclined surface S4 in the lower part of FIG. 3 indicates the flow direction of the air flowing toward the variable pressure chamber R2 through the axial communication path A4 in the lower part of FIG. 3 at the front part of the axial communication path A4. In the radial direction inner end portion of a passage formed separately from the passage formed in the lower half of FIG. 3 of the mounting hole 22c, it is sequentially bent and changed, and is continuously formed at the front end portion of the rib 22f. It is formed in the front part of the guide wall 22g.

上記のように構成した実施形態の負圧式倍力装置においては、ブレーキペダル110を踏み込んで、入力軸31とプランジャ32をバルブボデー22に対して軸方向に前進移動させると、負圧弁部41aが負圧弁座22dに着座することにより負圧弁が閉じて、負圧室R1と変圧室R2間の連通が遮断されるとともに、大気弁座32dが大気弁部41bから離座することにより大気弁が開いて、変圧室R2と大気間が連通される。このため、バルブボデー22に設けた各軸方向連通路A1〜A4と各径方向連通路B1〜B4を通して変圧室R2に大気が流入して、変圧室R2の圧力が負圧から順次大気圧となり、負圧室R1と変圧室R2間の差圧に応じた出力Foが出力軸35に生じる。また、出力軸35に出力Foが生じると、その反力が出力軸35から反動部材34の前面34aに伝達され、反動部材34の後面34bからバルブボデー22に直接伝達されるとともに伝達部材33を介してプランジャ32に伝達される。   In the negative pressure booster of the embodiment configured as described above, when the brake pedal 110 is depressed and the input shaft 31 and the plunger 32 are moved forward in the axial direction with respect to the valve body 22, the negative pressure valve portion 41a is By sitting on the negative pressure valve seat 22d, the negative pressure valve is closed, the communication between the negative pressure chamber R1 and the variable pressure chamber R2 is blocked, and the atmospheric valve seat 32d is separated from the atmospheric valve portion 41b, whereby the atmospheric valve is Open and communication between the variable pressure chamber R2 and the atmosphere is established. For this reason, the atmosphere flows into the variable pressure chamber R2 through the axial communication passages A1 to A4 and the radial communication passages B1 to B4 provided in the valve body 22, and the pressure in the variable pressure chamber R2 gradually becomes the atmospheric pressure from the negative pressure. An output Fo corresponding to the differential pressure between the negative pressure chamber R1 and the variable pressure chamber R2 is generated on the output shaft 35. Further, when the output Fo is generated in the output shaft 35, the reaction force is transmitted from the output shaft 35 to the front surface 34a of the reaction member 34, directly transmitted from the rear surface 34b of the reaction member 34 to the valve body 22, and the transmission member 33 is transmitted. To the plunger 32.

ところで、この実施形態の負圧式倍力装置においては、各軸方向連通路A1〜A4を通して変圧室R2に向けて流れる大気が、バルブボデー22の内壁面に設けた各湾曲傾斜面S1〜S4により、その流動方向を各軸方向連通路A1〜A4の前方部位にて各径方向連通路B1〜B4の径方向内端部に向けて順次曲げられて変更される。このため、各軸方向連通路A1〜A4から各径方向連通路B1〜B4への大気の流れがスムーズとなって、大気の流れが乱れ難くなる。したがって、大気の流れが乱れることによる作動応答遅れや作動音の発生を抑制することが可能であり、良好な作動応答性や静粛な作動を得ることが可能である。   By the way, in the negative pressure type booster of this embodiment, the air flowing toward the variable pressure chamber R2 through the axial communication paths A1 to A4 is caused by the curved inclined surfaces S1 to S4 provided on the inner wall surface of the valve body 22. The flow direction is changed by sequentially bending toward the radially inner end of each of the radial communication paths B1 to B4 at the front portion of each of the axial communication paths A1 to A4. For this reason, the air flow from the axial communication passages A1 to A4 to the radial communication passages B1 to B4 is smooth, and the air flow is less likely to be disturbed. Therefore, it is possible to suppress the delay in the operation response and the generation of the operation sound due to the disturbance of the atmospheric flow, and it is possible to obtain a good operation response and a quiet operation.

また、この実施形態の負圧式倍力装置においては、各軸方向連通路A1,A2を通して変圧室R2に向けて流れる大気を各軸方向連通路A1,A2の前方部位にて周方向に分流させる分流壁22eがバルブボデー22の内壁から内方に向けて凸状に設けられていて、この分流壁22eに各湾曲傾斜面S1,S2が形成されている。また、各軸方向連通路A3,A4をバルブボデー22の軸孔22a内壁とにより形成する案内壁22gがプランジャ32の外周に沿ってバルブボデー22に扇状に設けられていて、この案内壁22gの前方部に各湾曲傾斜面S3,S4が形成されている。   Further, in the negative pressure booster of this embodiment, the air flowing toward the variable pressure chamber R2 through the axial communication passages A1 and A2 is diverted in the circumferential direction at the front portion of the axial communication passages A1 and A2. The flow dividing wall 22e is provided so as to protrude inward from the inner wall of the valve body 22, and curved curved surfaces S1 and S2 are formed on the flow dividing wall 22e. Further, a guide wall 22g for forming each axial communication path A3, A4 with the inner wall of the shaft hole 22a of the valve body 22 is provided in a fan shape on the valve body 22 along the outer periphery of the plunger 32, and the guide wall 22g Each curved inclined surface S3, S4 is formed in the front part.

また、この実施形態の負圧式倍力装置においては、各分流壁22eと各案内壁22gがバルブボデー22に周方向にて交互に設けられているとともに、各分流壁22eに形成されている各湾曲傾斜面S1,S2によって流動方向を変更された大気が流れる各径方向連通路B1,B2と、各案内壁22gに形成されている各湾曲傾斜面S3,S3によって流動方向を変更された大気が流れる各径方向連通路B3,B4が別個に設けられている。このため、各分流壁22eに形成されている各湾曲傾斜面S1,S2によって流動方向を変更された大気と、各案内壁22gに形成されている各湾曲傾斜面S3,S4によって流動方向を変更された大気が、別個に設けられている各径方向連通路B1,B2とB3,B4を通して変圧室R2に流入する。したがって、各分流壁22eに形成されている各湾曲傾斜面S1,S2によって流動方向を変更された大気と、各案内壁22gに形成されている各湾曲傾斜面S3,S4によって流動方向を変更された大気が、各径方向連通路B1,B2とB3,B4に流入する前に合流することがなくて、かかる合流に伴う乱れの発生を防ぐことが可能である。   Moreover, in the negative pressure type booster of this embodiment, each flow dividing wall 22e and each guide wall 22g are alternately provided in the valve body 22 in the circumferential direction, and each formed in each flow dividing wall 22e. Air in which the flow direction has been changed by the respective radial communication paths B1, B2 through which the air whose flow direction has been changed by the curved inclined surfaces S1, S2 flows and the respective curved inclined surfaces S3, S3 formed in the respective guide walls 22g. The radial communication passages B3 and B4 through which the gas flows are provided separately. For this reason, the flow direction is changed by the air whose flow direction is changed by the curved inclined surfaces S1 and S2 formed on the flow dividing walls 22e and the curved inclined surfaces S3 and S4 formed on the guide walls 22g. The air thus formed flows into the variable pressure chamber R2 through the radial communication paths B1, B2 and B3, B4 provided separately. Accordingly, the flow direction is changed by the atmosphere whose flow direction is changed by the curved inclined surfaces S1 and S2 formed on the flow dividing walls 22e and the curved inclined surfaces S3 and S4 formed on the guide walls 22g. The air does not merge before flowing into the radial communication paths B1, B2, B3, and B4, and it is possible to prevent the occurrence of turbulence associated with the merge.

また、この実施形態の負圧式倍力装置においては、負圧弁座22dがプランジャ32の外周に沿った円弧形状でバルブボデー22に形成されている。このため、空気が流れる通路を十分に確保することが可能で作動応答性を十分に高めることが可能である。また、プランジャ32は、図2にて示したように、各湾曲傾斜面(S1〜S4)が設けられている部位より前方位置と後方位置にて、バルブボデー22に軸方向にて摺動可能に支持されている。このため、プランジャ32を安定して支持することが可能である。   In the negative pressure booster of this embodiment, the negative pressure valve seat 22 d is formed on the valve body 22 in an arc shape along the outer periphery of the plunger 32. For this reason, it is possible to sufficiently secure a passage through which air flows and to sufficiently improve the operation response. Further, as shown in FIG. 2, the plunger 32 is slidable in the axial direction on the valve body 22 at a front position and a rear position from a portion where each curved inclined surface (S1 to S4) is provided. It is supported by. For this reason, it is possible to support the plunger 32 stably.

上記した実施形態においては、バルブボデー22の内壁面に湾曲傾斜面S1〜S4(軸方向連通路A1〜A4を通して変圧室R2に向けて流れる大気の流動方向を軸方向連通路A1〜A4の前方部位にて径方向連通路B1〜B4の径方向内端部に向けて順次曲げて変更するもの)を設けて実施したが、バルブボデーの内壁面に傾斜面(軸方向連通路を通して変圧室に向けて流れる大気の流動方向を軸方向連通路の前方部位にて径方向連通路の径方向内端部に向けて順次変更するもの)を設けて実施することも可能である。   In the above-described embodiment, the curved surfaces S1 to S4 (the flow direction of the air flowing toward the variable pressure chamber R2 through the axial communication passages A1 to A4 is set in front of the axial communication passages A1 to A4 on the inner wall surface of the valve body 22. It was implemented by providing a portion that is bent and changed toward the radially inner ends of the radial communication passages B1 to B4 at the site, but the inner wall surface of the valve body is inclined (through the axial communication passage into the variable pressure chamber). The flow direction of the air flowing in the direction toward the radially inner end of the radial communication path at the front portion of the axial communication path may be provided.

本発明による負圧式倍力装置の一実施形態を示す断面図である。It is sectional drawing which shows one Embodiment of the negative pressure type booster by this invention. 図3の2−2線に沿った断面を展開して示した図1に示した負圧式倍力装置の要部拡大断面図である。It is a principal part expanded sectional view of the negative pressure type booster shown in FIG. 1 which expanded and showed the cross section along the 2-2 line of FIG. 図2に示したバルブボデー単体の3−3線に沿った断面図である。FIG. 3 is a cross-sectional view taken along line 3-3 of the valve body shown in FIG.

符号の説明Explanation of symbols

10…ハウジング、20…パワーピストン、21…可動隔壁、22…バルブボデー、22a…軸孔、22c…キー取付孔、22d…負圧弁座、22e…分流壁、22f…リブ、22g…案内壁、31…入力軸、32…プランジャ、32d…大気弁座、34…反動部材、35…出力軸、39…キー部材、41…弁体、41a…負圧弁部、41b…大気弁部、A1〜A4…軸方向連通路、B1〜B4…径方向連通路、S1〜S4…湾曲傾斜面、V…弁機構、R1…負圧室、R2…変圧室
DESCRIPTION OF SYMBOLS 10 ... Housing, 20 ... Power piston, 21 ... Movable partition, 22 ... Valve body, 22a ... Shaft hole, 22c ... Key attachment hole, 22d ... Negative pressure valve seat, 22e ... Diverging wall, 22f ... Rib, 22g ... Guide wall, DESCRIPTION OF SYMBOLS 31 ... Input shaft, 32 ... Plunger, 32d ... Atmospheric valve seat, 34 ... Reaction member, 35 ... Output shaft, 39 ... Key member, 41 ... Valve body, 41a ... Negative pressure valve part, 41b ... Atmospheric valve part, A1-A4 ... Axial direction communication path, B1 to B4 ... Radial direction communication path, S1 to S4 ... Curved inclined surface, V ... Valve mechanism, R1 ... Negative pressure chamber, R2 ... Transformer chamber

Claims (7)

ハウジング内を前方の負圧室と後方の変圧室とに区画する可動隔壁に連結されたバルブボデーが軸孔を備えていて、この軸孔内には、前記バルブボデーに対して軸方向に進退可能なプランジャと、このプランジャの前記バルブボデーに対する進退移動に応じて前記負圧室と前記変圧室間を連通・遮断する負圧弁および前記変圧室と大気間を連通・遮断する大気弁を備えた弁機構が組み込まれるとともに、前記プランジャの前端部と前記バルブボデーの前端部が後面に係合可能な反動部材と、この反動部材の前面に後端部にて係合し前記バルブボデーに対して軸方向に移動可能な出力部材が組付けられていて、前記プランジャが前記バルブボデーに対して軸方向に前進移動することにより、前記負圧弁が閉じて前記負圧室と前記変圧室間の連通が遮断され、前記大気弁が開いて前記変圧室と大気間が連通されて、前記バルブボデーに設けた軸方向連通路と径方向連通路を通して大気が前記変圧室に流入するように構成した負圧式倍力装置において、
前記軸方向連通路を通して前記変圧室に向けて流れる大気の流動方向を前記軸方向連通路の前方部位にて前記径方向連通路の径方向内端部に向けて順次変更する傾斜面を前記バルブボデーの内壁面に設けたことを特徴とする負圧式倍力装置。
A valve body connected to a movable partition that divides the inside of the housing into a front negative pressure chamber and a rear variable pressure chamber has a shaft hole, and the shaft body advances and retreats in the axial direction with respect to the valve body. And a negative pressure valve for communicating / blocking between the negative pressure chamber and the variable pressure chamber and an atmospheric valve for communicating / blocking between the variable pressure chamber and the atmosphere according to the forward / backward movement of the plunger relative to the valve body. A valve mechanism is incorporated, and a reaction member in which a front end portion of the plunger and a front end portion of the valve body can engage with a rear surface, and a front end of the reaction member is engaged with a rear end portion with respect to the valve body. An output member movable in the axial direction is assembled, and when the plunger moves forward in the axial direction with respect to the valve body, the negative pressure valve is closed and the communication between the negative pressure chamber and the variable pressure chamber is established. The negative pressure type is configured such that the atmosphere valve is opened to communicate between the variable pressure chamber and the atmosphere, and the atmosphere flows into the variable pressure chamber through the axial communication path and the radial communication path provided in the valve body. In the booster,
The valve has an inclined surface that sequentially changes the flow direction of the air flowing toward the variable pressure chamber through the axial communication path toward the radially inner end of the radial communication path at a front portion of the axial communication path. A negative pressure booster provided on the inner wall surface of the body.
請求項1に記載の負圧式倍力装置において、前記傾斜面は、前記軸方向連通路を通して前記変圧室に向けて流れる大気の流動方向を前記軸方向連通路の前方部位にて前記径方向連通路の径方向内端部に向けて順次曲げて変更する湾曲傾斜面で構成されていることを特徴とする負圧式倍力装置。   2. The negative pressure booster according to claim 1, wherein the inclined surface changes the flow direction of the air flowing toward the variable pressure chamber through the axial communication path at the front portion of the axial communication path. A negative pressure booster comprising a curved inclined surface that is sequentially bent and changed toward the radially inner end of the passage. 請求項2に記載の負圧式倍力装置において、前記軸方向連通路を通して前記変圧室に向けて流れる大気を前記軸方向連通路の前方部位にて周方向に分流させる分流壁が前記バルブボデーの内壁から内方に向けて凸状に設けられていて、この分流壁に前記湾曲傾斜面が形成されていることを特徴とする負圧式倍力装置。   3. The negative pressure type booster according to claim 2, wherein a shunt wall that shunts the air flowing toward the variable pressure chamber through the axial communication passage in a circumferential direction at a front portion of the axial communication passage is formed on the valve body. A negative pressure booster characterized in that it is provided in a convex shape inward from the inner wall, and the curved inclined surface is formed on the flow dividing wall. 請求項2に記載の負圧式倍力装置において、前記軸方向連通路を前記バルブボデーの軸孔内壁とにより形成する案内壁が前記プランジャの外周に沿って前記バルブボデーに扇状に設けられていて、この案内壁に前記湾曲傾斜面が形成されていることを特徴とする負圧式倍力装置。   The negative pressure type booster according to claim 2, wherein a guide wall that forms the axial communication path with an inner wall of the shaft hole of the valve body is provided in a fan shape on the valve body along an outer periphery of the plunger. The negative pressure type booster is characterized in that the curved inclined surface is formed on the guide wall. 請求項2に記載の負圧式倍力装置において、前記軸方向連通路を通して前記変圧室に向けて流れる大気を前記軸方向連通路の前方部位にて周方向に分流させる分流壁と、前記軸方向連通路を前記バルブボデーの軸孔内壁とにより形成する案内壁が前記バルブボデーに周方向にて交互に設けられているとともに、前記分流壁に形成されている前記湾曲傾斜面によって流動方向を変更された大気が流れる径方向連通路と、前記案内壁に形成されている前記湾曲傾斜面によって流動方向を変更された大気が流れる径方向連通路が別個に設けられていることを特徴とする負圧式倍力装置。   3. The negative pressure type booster according to claim 2, wherein a shunt wall that shunts air flowing toward the variable pressure chamber through the axial communication passage in a circumferential direction at a front portion of the axial communication passage, and the axial direction Guide walls that form communication passages with the inner wall of the shaft hole of the valve body are alternately provided in the valve body in the circumferential direction, and the flow direction is changed by the curved inclined surface formed in the flow dividing wall. A negative communicating path through which the atmospheric air flows and a radial communicating path through which the air whose flow direction is changed by the curved inclined surface formed in the guide wall flow are separately provided. Pressure booster. 請求項2〜5の何れか一項に記載の負圧式倍力装置において、前記負圧弁の弁座が前記プランジャの外周に沿った円弧形状で前記バルブボデーに形成されていることを特徴とする負圧式倍力装置。   The negative pressure type booster according to any one of claims 2 to 5, wherein a valve seat of the negative pressure valve is formed in the valve body in an arc shape along an outer periphery of the plunger. Negative pressure booster. 請求項2〜6の何れか一項に記載の負圧式倍力装置において、前記プランジャは前記湾曲傾斜面が設けられている部位より前方位置と後方位置にて前記バルブボデーに軸方向にて摺動可能に支持されていることを特徴とする負圧式倍力装置。
The negative pressure type booster according to any one of claims 2 to 6, wherein the plunger slides in an axial direction on the valve body at a front position and a rear position from a portion where the curved inclined surface is provided. A negative pressure booster which is supported so as to be movable.
JP2005210217A 2005-07-20 2005-07-20 Negative pressure booster Expired - Fee Related JP4655799B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005210217A JP4655799B2 (en) 2005-07-20 2005-07-20 Negative pressure booster

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005210217A JP4655799B2 (en) 2005-07-20 2005-07-20 Negative pressure booster

Publications (2)

Publication Number Publication Date
JP2007022435A true JP2007022435A (en) 2007-02-01
JP4655799B2 JP4655799B2 (en) 2011-03-23

Family

ID=37783742

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005210217A Expired - Fee Related JP4655799B2 (en) 2005-07-20 2005-07-20 Negative pressure booster

Country Status (1)

Country Link
JP (1) JP4655799B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012530645A (en) * 2009-06-25 2012-12-06 ロベルト・ボッシュ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング Electrically boosted brake system
JP2013091375A (en) * 2011-10-25 2013-05-16 Advics Co Ltd Negative pressure booster

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6067255A (en) * 1983-08-24 1985-04-17 アルフレツド・テヴエス・ゲーエムベーハー Vacuum power brake booster
JPH0173459U (en) * 1987-11-06 1989-05-17
JPH08500307A (en) * 1992-08-22 1996-01-16 アイティーティー・オートモーティブ・ヨーロップ・ゲーエムベーハー Negative pressure braking force booster for automobiles
JPH09240462A (en) * 1995-12-26 1997-09-16 Aisin Seiki Co Ltd Negative pressure type booster
JP2000503935A (en) * 1996-01-30 2000-04-04 ボッシュ システム ド フラナージュ Pneumatic booster for braking assistance with improved valve

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6067255A (en) * 1983-08-24 1985-04-17 アルフレツド・テヴエス・ゲーエムベーハー Vacuum power brake booster
JPH0173459U (en) * 1987-11-06 1989-05-17
JPH08500307A (en) * 1992-08-22 1996-01-16 アイティーティー・オートモーティブ・ヨーロップ・ゲーエムベーハー Negative pressure braking force booster for automobiles
JPH09240462A (en) * 1995-12-26 1997-09-16 Aisin Seiki Co Ltd Negative pressure type booster
JP2000503935A (en) * 1996-01-30 2000-04-04 ボッシュ システム ド フラナージュ Pneumatic booster for braking assistance with improved valve

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012530645A (en) * 2009-06-25 2012-12-06 ロベルト・ボッシュ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング Electrically boosted brake system
US9108610B2 (en) 2009-06-25 2015-08-18 Robert Bosch Gmbh Electrically boosted braking system
JP2013091375A (en) * 2011-10-25 2013-05-16 Advics Co Ltd Negative pressure booster
US9045124B2 (en) 2011-10-25 2015-06-02 Advics Co., Ltd Vacuum brake booster

Also Published As

Publication number Publication date
JP4655799B2 (en) 2011-03-23

Similar Documents

Publication Publication Date Title
JP4655799B2 (en) Negative pressure booster
JP2962342B2 (en) Booster
JP5617815B2 (en) Negative pressure booster
US6389951B1 (en) Brake booster
WO2016159275A1 (en) Negative pressure type booster device
JP4278427B2 (en) Pneumatic booster with tubular intake valve and pressure equalizing valve
JP5845847B2 (en) Negative pressure booster
JP2017132271A (en) Negative pressure type booster
WO2016035550A1 (en) Vacuum-type booster
JP5935443B2 (en) Negative pressure booster
JPH1086812A (en) Negative pressure type booster
JP4380389B2 (en) Negative pressure booster
JP4998882B2 (en) Pneumatic booster
JP2007161214A (en) Negative pressure booster
JP4720040B2 (en) Negative pressure booster
JP2017154566A (en) Negative-pressure type assistor
JP2014196030A (en) Negative pressure type assistor
JP5446583B2 (en) Negative pressure booster
JP2005145158A (en) Negative pressure type booster
JP2021003992A (en) Negative pressure type booster
JP2006088887A (en) Pneumatic booster
JP2013226896A (en) Negative pressure type booster
JP2021112979A (en) Negative pressure type booster
JP2019177817A (en) Negative pressure type booster device
JP2008296788A (en) Pneumatic booster and check valve with throttling for pneumatic booster

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080326

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100223

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100414

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101130

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101213

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140107

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees