JP2007021651A - Cutting tool made of surface coated cemented carbide having coated layer exhibiting excellent chipping resistance in high-speed cutting work of hard-to-cut material - Google Patents

Cutting tool made of surface coated cemented carbide having coated layer exhibiting excellent chipping resistance in high-speed cutting work of hard-to-cut material Download PDF

Info

Publication number
JP2007021651A
JP2007021651A JP2005207377A JP2005207377A JP2007021651A JP 2007021651 A JP2007021651 A JP 2007021651A JP 2005207377 A JP2005207377 A JP 2005207377A JP 2005207377 A JP2005207377 A JP 2005207377A JP 2007021651 A JP2007021651 A JP 2007021651A
Authority
JP
Japan
Prior art keywords
layer
content point
layer thickness
cemented carbide
coated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2005207377A
Other languages
Japanese (ja)
Inventor
Kazunori Sato
和則 佐藤
Yusuke Tanaka
裕介 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Mitsubishi Materials Kobe Tools Corp
Original Assignee
Mitsubishi Materials Corp
Mitsubishi Materials Kobe Tools Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp, Mitsubishi Materials Kobe Tools Corp filed Critical Mitsubishi Materials Corp
Priority to JP2005207377A priority Critical patent/JP2007021651A/en
Publication of JP2007021651A publication Critical patent/JP2007021651A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Drilling Tools (AREA)
  • Cutting Tools, Boring Holders, And Turrets (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a cutting tool made of surface coated cemented carbide having a coated layer exhibiting excellent chipping resistance in high-speed cutting work of hard-to-cut material. <P>SOLUTION: In this cutting tool made of surface coated cemented carbide, a hard coated layer formed by following (a) to (c) is formed on the surface of a tungsten carbide-base cemented carbide base body or a titanium carbide nitride-base cermet base body; (a) a lower layer formed of (Ti, Al, B)N layer having an average layer thickness ranging from 1 to 5 μm, in which Al maximum content point and minimum content point alternately exist repeatedly at predetermined intervals in the direction of layer thickness, having a component concentration distribution structure in which Al and Ti contents respectively continuously change from the Al maximum content point to the Al minimum content point and from the Al minimum content point to the Al maximum content point, and the Al maximum and minimum containing points satisfy a specific composition formula, (b) an adhesive bonding layer formed of CrN layer having an average layer thickness ranging from 0.1 to 1.5 μm, and (c) an upper layer formed of Cr dispersed Cr<SB>2</SB>O<SB>3</SB>layer having an average layer thickness ranging from 1 to 5 μm, and having the structure in which metal Cr is dispersed and distributed in a base of Cr<SB>2</SB>O<SB>3</SB>by 0.1 to 5 atom% at the proportion of occupation in the sum amount with Cr<SB>2</SB>O<SB>3</SB>. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

この発明は、特にステンレス鋼や高マンガン鋼、さらに軟鋼などの難削材の切削を高い発熱を伴なう高速切削条件で行った場合にも、すぐれた耐チッピング性を発揮する表面被覆超硬合金製切削工具(以下、被覆超硬工具という)に関するものである。   The present invention provides a surface-coated carbide that exhibits excellent chipping resistance even when cutting difficult-to-cut materials such as stainless steel, high manganese steel, and even mild steel under high-speed cutting conditions with high heat generation. The present invention relates to an alloy cutting tool (hereinafter referred to as a coated carbide tool).

一般に、被覆超硬工具には、各種の鋼や鋳鉄などの被削材の旋削加工や平削り加工にバイトの先端部に着脱自在に取り付けて用いられるスローアウエイチップ、前記被削材の穴あけ切削加工などに用いられるドリルやミニチュアドリル、さらに前記被削材の面削加工や溝加工、肩加工などに用いられるソリッドタイプのエンドミルなどがあり、また前記スローアウエイチップを着脱自在に取り付けて前記ソリッドタイプのエンドミルと同様に切削加工を行うスローアウエイエンドミル工具などが知られている。   Generally, for coated carbide tools, a throw-away tip that is attached to the tip of a cutting tool for turning or flattening of various steel and cast iron work materials, and drilling of the work material. There are drills and miniature drills used for processing, etc., and solid type end mills used for chamfering, grooving, shoulder processing, etc. of the work material. A slow-away end mill tool that performs cutting work in the same manner as a type end mill is known.

また、被覆超硬工具として、炭化タングステン(以下、WCで示す)基超硬合金または炭窒化チタン(以下、TiCNで示す)基サーメットで構成された超硬基体の表面に、
1〜15μmの平均層厚を有し、かつ、層厚方向にそって、Al最高含有点とAl最低含有点とが所定間隔をおいて交互に繰り返し存在し、かつ前記Al最高含有点から前記Al最低含有点、前記Al最低含有点から前記Al最高含有点へAlおよびTi含有量がそれぞれ連続的に変化する成分濃度分布構造を有し、
さらに、上記Al最高含有点が、組成式:(Al1-(X+Y)TiX)N(ただし、原子比で、Xは0.10〜0.35、Yは0.01〜0.1を示す)、
上記Al最低含有点が、組成式:(Al1-(E+F)Ti)N(ただし、原子比で、Eは0.40〜0.65、Fは0.01〜0.1を示す)、
を満足し、かつ隣り合う上記Al最高含有点とAl最低含有点の間隔が、0.01〜0.1μmであるAlとTiとB(ボロン)の複合窒化物層[以下、(Al,Ti,B)Nで示す]層、からなる硬質被覆層を物理蒸着してなる被覆超硬工具が知られており、かつ前記被覆超硬工具の硬質被覆層である(Al,Ti,B)N層が、成分濃度分布変化構造のAlによってすぐれた高温硬さと耐熱性、同Tiによってすぐれた高温強度を具備し、さらにB成分含有による一段の高温硬さ向上と相俟って、これを各種の一般鋼や普通鋳鉄などの連続切削や断続切削を通常の条件で行うのに用いた場合は勿論のこと、これを高速切削加工条件で行うのに用いた場合にもすぐれた切削性能を発揮することも知られている。
Further, as a coated carbide tool, on the surface of a carbide substrate composed of tungsten carbide (hereinafter referred to as WC) -based cemented carbide or titanium carbonitride (hereinafter referred to as TiCN) -based cermet,
And having an average layer thickness of 1 to 15 μm, and along the layer thickness direction, Al highest content points and Al lowest content points are alternately present at predetermined intervals, and from the Al highest content point Al lowest content point, having a component concentration distribution structure in which the Al and Ti content continuously change from the Al lowest content point to the Al highest content point, respectively,
Furthermore, the Al highest content point, the composition formula: (Al 1- (X + Y ) Ti X B Y) N ( provided that an atomic ratio, X is 0.10 to 0.35, Y is from 0.01 to 0. 1),
The Al minimum content point is the composition formula: (Al 1− (E + F) Ti E B F ) N (wherein, E is 0.40 to 0.65, F is 0.01 to 0.1) Show),
And a composite nitride layer of Al, Ti, and B (boron) having an interval between the Al highest content point and the Al minimum content point adjacent to each other of 0.01 to 0.1 μm [hereinafter referred to as (Al, Ti , B) N]], a coated carbide tool formed by physical vapor deposition of a hard coating layer is known, and (Al, Ti, B) N is a hard coating layer of the coated carbide tool. The layer has excellent high temperature hardness and heat resistance due to the Al of the component concentration distribution change structure, and excellent high temperature strength due to the Ti, and in addition to the further improvement of the high temperature hardness due to the inclusion of the B component, Excellent cutting performance when used for high-speed cutting conditions as well as continuous cutting and intermittent cutting of ordinary steel and normal cast iron under normal conditions. It is also known to do.

さらに、上記の従来被覆超硬工具は、例えば図2(a)に概略平面図で、同(b)に概略正面図で示される構造のアークイオンプレーティング装置(図2ではAIP装置で示す)、すなわち装置中央部に超硬基体装着用回転テーブルを設け、前記回転テーブルを挟んで、一方側に相対的にAl含有量の高い(Ti含有量の低い)Al−Ti−B合金、他方側に相対的にTi含有量の高い(Al含有量の低い)Al−Ti−B合金をカソード電極(蒸発源)として対向配置したアークイオンプレーティング装置を用い、この装置の前記回転テーブル上に、これの中心軸から半径方向に所定距離離れた位置に複数の超硬基体をリング状に装着し、この状態で装置内雰囲気を窒素雰囲気として前記回転テーブルを回転させると共に、蒸着形成される硬質被覆層の層厚均一化を図る目的で超硬基体自体も自転させながら、前記の両側のカソード電極(蒸発源)とアノード電極との間にアーク放電を発生させて、前記超硬基体の表面に(Al,Ti,B)N層を形成することにより製造されるものであり、この結果形成された(Al,Ti,B)N層において、回転テーブル上にリング状に配置された前記超硬基体が上記の一方側の相対的にAl含有量の高い(Ti含有量の低い)Al−Ti−B合金のカソード電極(蒸発源)に最も接近した時点で層中にAl最高含有点が形成され、また前記超硬基体が上記の他方側の相対的にTi含有量の高い(Al含有量の低い)Al−Ti−B合金のカソード電極に最も接近した時点で層中にAl最低含有点が形成され、上記回転テーブルの回転によって層中には層厚方向にそって前記Al最高含有点とAl最低含有点が所定間隔をもって交互に繰り返し現れると共に、前記Al最高含有点から前記Al最低含有点、前記Al最低含有点から前記Al最高含有点へAlおよびTi含有量がそれぞれ連続的に変化する成分濃度分布構造が形成されるものである。
特開2004−130496号
Further, the above conventional coated carbide tool is, for example, an arc ion plating apparatus having a structure shown in a schematic plan view in FIG. 2A and a schematic front view in FIG. 2B (shown as an AIP apparatus in FIG. 2). That is, a rotating table for mounting a cemented carbide substrate is provided in the center of the apparatus, and an Al—Ti—B alloy having a relatively high Al content (low Ti content) is placed on one side across the rotating table, and the other side. Using an arc ion plating apparatus in which an Al—Ti—B alloy having a relatively high Ti content (low Al content) is disposed as a cathode electrode (evaporation source) on the rotary table of the apparatus, A plurality of cemented carbide substrates are attached in a ring shape at a predetermined distance in the radial direction from the central axis, and in this state, the atmosphere in the apparatus is set as a nitrogen atmosphere and the rotary table is rotated and vapor deposition is performed. While the carbide substrate itself is rotated for the purpose of uniforming the thickness of the porous coating layer, an arc discharge is generated between the cathode electrode (evaporation source) and the anode electrode on both sides, and the carbide substrate It is manufactured by forming an (Al, Ti, B) N layer on the surface, and in the (Al, Ti, B) N layer formed as a result, the ring arranged on the rotary table When the carbide substrate is closest to the cathode electrode (evaporation source) of the Al-Ti-B alloy having a relatively high Al content (low Ti content) on one side, the highest Al content in the layer And when the cemented carbide substrate is closest to the cathode electrode of the Al—Ti—B alloy having a relatively high Ti content (low Al content) on the other side, the Al minimum in the layer is formed. The content point is formed and In the layer, the highest Al content point and the lowest Al content point appear alternately at predetermined intervals along the layer thickness direction, and the lowest Al content point from the highest Al content point, from the lowest Al content point, A component concentration distribution structure in which the Al and Ti contents continuously change to the Al highest content point is formed.
JP 2004-130396 A

近年の切削加工装置のFA化はめざましく、一方で切削加工に対する省力化および省エネ化、さらに低コスト化の要求は強く、これに伴い、被覆超硬工具には被削材の材種になるべく影響を受けない汎用性、すなわち、できるだけ多くの材種の被削材の切削加工が可能な被覆超硬工具が求められる傾向にあるが、上記の従来被覆超硬工具においては、これを低合金鋼や炭素鋼などの一般鋼や、ダクタイル鋳鉄やねずみ鋳鉄などの普通鋳鉄の高速切削加工に用いた場合には問題はないが、特に切粉の粘性が高く、かつ工具表面に溶着し易いステンレス鋼や高マンガン鋼、さらに軟鋼などの難削材の切削加工を高速で行った場合には、切削時の高い発熱によって難削材からなる被削材およびその切粉は高温に加熱されて粘性度が一段と増大し、これに伴なって硬質被覆層表面に対する粘着性および反応性が一段と増すようになり、この結果切刃部におけるチッピング(微少欠け)の発生が急激に増加し、これが原因で比較的短時間で使用寿命に至るのが現状である。   In recent years, FA has been remarkable for cutting devices, but on the other hand, there are strong demands for labor saving and energy saving and further cost reduction for cutting, and as a result, coated carbide tools have an influence on the grade of work material as much as possible. However, in the conventional coated carbide tools described above, this is a low alloy steel. There is no problem when used for high-speed cutting of general steel such as steel or carbon steel, or ordinary cast iron such as ductile cast iron or gray cast iron, but stainless steel with high chip viscosity and easy welding to the tool surface. When cutting difficult-to-cut materials such as steel, high-manganese steel, and mild steel at high speed, the work material and chips made of difficult-to-cut materials are heated to a high temperature due to high heat generated during cutting. Increased further. As a result, the adhesiveness and reactivity to the surface of the hard coating layer are further increased, and as a result, the occurrence of chipping (slight chipping) at the cutting edge portion increases rapidly, which causes a service life in a relatively short time. Is the current situation.

そこで、本発明者等は、上述のような観点から、特に難削材の高速切削加工で硬質被覆層がすぐれた耐チッピング性を発揮する被覆超硬工具を開発すべく、上記の従来被覆超硬工具に着目し、研究を行った結果、
(a)上記従来被覆超硬工具の硬質被覆層である(Al,Ti,B)N層を1〜5μmの平均層厚で下部層として形成し、これの上に上部層として酸化クロム(以下、Crで示す)層を同じく1〜5μmの平均層厚で形成すると、前記Cr層は熱的安定性にすぐれ、特に高速切削時に発生する高熱で高温加熱された状態でも上記の難削材との反応性および親和性がきわめて低く、かつ著しく低い粘着性を保持することから、前記下部層である(Al,Ti,B)N層を十分に保護し、この結果((Al,Ti,B)N層のもつすぐれた特性が長期に亘って十分に発揮されるようになること。
In view of the above, the inventors of the present invention have developed the above-mentioned conventional coated carbide tool in order to develop a coated carbide tool that exhibits excellent chipping resistance with a hard coating layer particularly in high-speed cutting of difficult-to-cut materials. As a result of conducting research with a focus on hard tools,
(A) The (Al, Ti, B) N layer, which is a hard coating layer of the conventional coated carbide tool, is formed as a lower layer with an average layer thickness of 1 to 5 μm, and chromium oxide (hereinafter referred to as the upper layer) is formed thereon. , the Cr 2 O indicated by 3) layer also is formed with an average layer thickness of 1 to 5 [mu] m, the Cr 2 O 3 layer is excellent in thermal stability, even in a state of being high temperature heating at high heat particularly generated during high-speed cutting Since the reactivity and affinity with the above difficult-to-cut materials are extremely low and the adhesiveness is extremely low, the (Al, Ti, B) N layer as the lower layer is sufficiently protected, and as a result ( The excellent characteristics of the (Al, Ti, B) N layer can be fully demonstrated over a long period of time.

(b)しかし、上記のCr層は、相対的に高温強度の低いものであるために、これをそのまま硬質被覆層の上部層として用いると、Cr層自体にチッピングが発生し易いが、これに前記Crとの合量に占める割合で、0.1〜5原子%の金属クロム(Cr)を分散分布させてCr分散Cr層とすると、前記Crの作用で高温強度が向上し、チッピング発生が著しく抑制されるようになること。 (B) However, since the above Cr 2 O 3 layer has a relatively low high-temperature strength, if it is used as it is as the upper layer of the hard coating layer, chipping occurs in the Cr 2 O 3 layer itself. easily, but a percentage of the total amount of the Cr 2 O 3 thereto, the 0.1 to 5 atomic% of the metal chromium (Cr) and dispersed distribution and Cr disperse Cr 2 O 3 layer, the Cr As a result, the high-temperature strength is improved and the occurrence of chipping is remarkably suppressed.

(c)さらに、上部層であるCr分散Cr層と下部層である(Al,Ti,B)N層との密着性は十分でなく、特に難削材の断続切削を高速で行った場合に剥離現象が発生し易いが、前記Cr分散Cr層と(Al,Ti,B)N層との間に窒化クロム(以下、CrNで示す)層を0.1〜1.5μmの平均層厚で介在させると、前記CrN層は前記Cr分散Cr層および(Al,Ti,B)N層のいずれとも強固に密着することから、前記(Al,Ti,B)N層が超硬基体表面に対してすぐれた密着性を有することと相俟って、前記Cr分散Cr層と(Al,Ti,B)N層との間にCrN層を介在させてなる硬質被覆層は、上記難削材の高熱発生を伴なう高速切削でも、層間剥離の発生なく、すぐれた耐摩耗性を発揮するようになること。 (C) Furthermore, the adhesion between the Cr-dispersed Cr 2 O 3 layer, which is the upper layer, and the (Al, Ti, B) N layer, which is the lower layer, is not sufficient, and intermittent cutting of particularly difficult-to-cut materials is performed at high speed. In this case, a peeling phenomenon is likely to occur. However, a chromium nitride (hereinafter referred to as CrN) layer is formed between 0.1 and 1.1 between the Cr-dispersed Cr 2 O 3 layer and the (Al, Ti, B) N layer. When interposed with an average layer thickness of 5 μm, the CrN layer adheres firmly to both the Cr-dispersed Cr 2 O 3 layer and the (Al, Ti, B) N layer, so the (Al, Ti, B) Combined with the excellent adhesion of the N layer to the surface of the carbide substrate, a CrN layer is interposed between the Cr-dispersed Cr 2 O 3 layer and the (Al, Ti, B) N layer. The hard coating layer is excellent without causing delamination even in high-speed cutting with high heat generation of the above difficult-to-cut materials. It is like to exhibit abrasion resistance.

(d)上記(c)の硬質被覆層は、例えば図1(a)に概略平面図で、同(b)に概略正面図で示される構造のアークイオンプレーティング装置(以下、AIP装置と略記する)とスパッタリング装置(以下、SP装置と略記する)が共存の蒸着装置、すなわち装置中央部に超硬基体装着用回転テーブルを設け、前記回転テーブルを挟んで、一方側に前記AIP装置のカソード電極(蒸発源)として金属Cr、他方側に前記SP装置のカソード電極(蒸発源)としてCr分散Cr焼結体(例えば原料粉末としてCr粉末とCr粉末を用い、これら原料粉末を所定の割合に配合し、混合し、圧粉体にプレス成形し、これを焼結することにより成形された焼結体)を対向配置し、さらに前記回転テーブルに沿って、かつ前記金属CrおよびCr分散Cr焼結体のそれぞれから90度離れた位置の一方側に相対的にAl含有量の高い(Ti含有量の低い)Al−Ti−B合金、他方側に相対的にTi含有量の高い(Al含有量の低い)Al−Ti−B合金をカソード電極(蒸発源)として対向配置した蒸着装置を用い、この装置の前記回転テーブル上の中心軸から半径方向に所定距離離れた位置に外周部に沿って複数の超硬基体をリング状に装着し、この状態で装置内雰囲気を窒素雰囲気として前記回転テーブルを回転させると共に、蒸着形成される硬質被覆層の層厚均一化を図る目的で超硬基体自体も自転させながら、基本的に、まず前記対向配置した両Al−Ti−B合金のカソード電極(蒸発源)とアノード電極との間にそれぞれアーク放電を発生させて、前記超硬基体の表面に下部層として(Ti,Al,B)N層を1〜5μmの平均層厚で蒸着し、ついで、前記両Al−Ti−B合金のカソード電極(蒸発源)とアノード電極との間のアーク放電を停止し、装置内雰囲気を窒素雰囲気に保持したままで、前記AIP装置のカソード電極(蒸発源)である金属Crとアノード電極との間にアーク放電を発生させて、密着接合層としてCrN層を0.1〜1.5μmの平均層厚で蒸着した後、前記蒸着装置内の雰囲気を酸素雰囲気とすると共に、前記SP装置のカソード電極(蒸発源)として配置したCr分散Cr焼結体のスパッタリングを行って前記CrN層に重ねて上部層として1〜5μmの平均層厚でCr分散Cr層を蒸着することにより形成することができること。 (D) The hard coating layer of the above (c) is, for example, an arc ion plating apparatus (hereinafter, abbreviated as AIP apparatus) having a structure shown in a schematic plan view in FIG. 1A and a schematic front view in FIG. And a sputtering apparatus (hereinafter abbreviated as SP apparatus), that is, a carbide substrate mounting rotary table is provided at the center of the apparatus, and the cathode of the AIP apparatus is placed on one side of the rotary table. Metal Cr as an electrode (evaporation source), Cr dispersed Cr 2 O 3 sintered body (for example, Cr powder and Cr 2 O 3 powder as raw material powders) as the cathode electrode (evaporation source) of the SP device on the other side, these raw materials The powder is blended at a predetermined ratio, mixed, pressed into a green compact, and sintered body formed by sintering the powder is disposed oppositely, and further along the rotary table and the metal. high one relatively to the side Al content of position 90 degrees apart from each of r and Cr disperse Cr 2 O 3 sintered body (low Ti content) Al-Ti-B alloy, relative to the other side In addition, a vapor deposition apparatus in which an Al—Ti—B alloy having a high Ti content (low Al content) is disposed as a cathode electrode (evaporation source) oppositely is used, and a predetermined radial direction from the central axis on the rotary table of this apparatus is used. A plurality of cemented carbide substrates are mounted in a ring shape along the outer periphery at a distance away from each other, and in this state, the rotary table is rotated with the atmosphere inside the apparatus being a nitrogen atmosphere, and the thickness of the hard coating layer formed by vapor deposition First, arc discharge is generated between the cathode electrode (evaporation source) and anode electrode of both the Al-Ti-B alloys arranged opposite to each other while the carbide substrate itself is rotated for the purpose of homogenization. Let me A (Ti, Al, B) N layer is deposited as a lower layer on the surface of the cemented carbide substrate with an average layer thickness of 1 to 5 μm, and then the cathode electrode (evaporation source) and anode of both the Al—Ti—B alloys. The arc discharge between the electrodes is stopped, and while maintaining the atmosphere in the apparatus in a nitrogen atmosphere, an arc discharge is generated between the metal Cr, which is the cathode electrode (evaporation source) of the AIP apparatus, and the anode electrode. Then, after depositing a CrN layer with an average layer thickness of 0.1 to 1.5 μm as an adhesive bonding layer, the atmosphere in the vapor deposition apparatus was set as an oxygen atmosphere and arranged as a cathode electrode (evaporation source) of the SP apparatus. It can be formed by sputtering a Cr-dispersed Cr 2 O 3 sintered body and depositing a Cr-dispersed Cr 2 O 3 layer with an average layer thickness of 1 to 5 μm as an upper layer on the CrN layer.

(e)上記の下部層、密着接合層、および上部層で構成された硬質被覆層を蒸着形成してなる被覆超硬工具は、特に粘性および粘着性の高いステンレス鋼や高マンガン鋼、さらに軟鋼などの難削材の高熱発生を伴なう高速切削でも、下部層である(Al,Ti,B)N層がすぐれた高温硬さと耐熱性、さらにすぐれた高温強度を有し、前記高温硬さはB成分の共存含有によって一段と向上したものになり、かつ密着接合層としてのCrN層によって強固に密着したCr分散Cr層によって、前記難削材との間にきわめて低い粘着性および反応性が確保されることから、層間剥離の発生なく、すぐれた耐摩耗性を長期に亘って発揮するようになること。
以上(a)〜(e)に示される研究結果を得たのである。
(E) A coated cemented carbide tool formed by vapor-depositing a hard coating layer composed of the lower layer, the tight junction layer, and the upper layer includes stainless steel, high manganese steel, and mild steel, which are particularly highly viscous and sticky. Even in high-speed cutting accompanied by high heat generation of difficult-to-cut materials such as (Al, Ti, B) N layer, the lower layer has excellent high temperature hardness and heat resistance, and excellent high temperature strength. The coexistence of the B component further improves the strength, and the Cr-dispersed Cr 2 O 3 layer firmly adhered by the CrN layer as the tight junction layer provides extremely low adhesion to the difficult-to-cut material and Since the reactivity is ensured, excellent wear resistance should be exhibited for a long time without delamination.
The research results shown in (a) to (e) above were obtained.

この発明は、上記の研究結果に基づいてなされたものであって、超硬基体の表面に、
(a)1〜5μmの平均層厚を有し、かつ、層厚方向にそって、Al最高含有点とAl最低含有点とが所定間隔をおいて交互に繰り返し存在し、かつ前記Al最高含有点から前記Al最低含有点、前記Al最低含有点から前記Al最高含有点へAlおよびTi含有量がそれぞれ連続的に変化する成分濃度分布構造を有し、
さらに、上記Al最高含有点が、組成式:(Al1-(X+Y)TiX)N(ただし、原子比で、Xは0.10〜0.35、Yは0.01〜0.1を示す)、
上記Al最低含有点が、組成式:(Al1-(E+F)Ti)N(ただし、原子比で、Eは0.40〜0.65、Fは0.01〜0.1を示す)、
を満足し、かつ隣り合う上記Al最高含有点とAl最低含有点の間隔が、0.01〜0.1μmである(Al,Ti,B)N層からなる下部層、
(b)0.1〜1.5μmの平均層厚を有するCrN層からなる密着接合層、
(c)1〜5μmの平均層厚を有し、かつCrの素地に、前記Crとの合量に占める割合で、0.1〜5原子%のCrが分散分布した組織を有するCr分散Cr層からなる上部層、
以上(a)〜(c)で構成された硬質被覆層を形成してなる、難削材の高速切削加工で硬質被覆層がすぐれた耐チッピング性を発揮する被覆超硬工具に特徴を有するものである。
This invention was made based on the above research results, and on the surface of the carbide substrate,
(A) It has an average layer thickness of 1 to 5 μm, and along the layer thickness direction, Al maximum content points and Al minimum content points are alternately present at predetermined intervals, and the Al maximum content A component concentration distribution structure in which the Al and Ti contents continuously change from the point to the Al minimum content point, from the Al minimum content point to the Al maximum content point,
Furthermore, the Al highest content point, the composition formula: (Al 1- (X + Y ) Ti X B Y) N ( provided that an atomic ratio, X is 0.10 to 0.35, Y is from 0.01 to 0. 1),
The Al minimum content point is the composition formula: (Al 1− (E + F) Ti E B F ) N (wherein, E is 0.40 to 0.65, F is 0.01 to 0.1) Show),
A lower layer composed of an (Al, Ti, B) N layer, wherein the distance between the Al highest content point and the Al lowest content point adjacent to each other is 0.01 to 0.1 μm,
(B) an adhesive bonding layer comprising a CrN layer having an average layer thickness of 0.1 to 1.5 μm;
(C) It has an average layer thickness of 1 to 5 μm, and 0.1 to 5 atomic% of Cr was dispersed and distributed on the Cr 2 O 3 substrate in a proportion of the total amount with the Cr 2 O 3 . An upper layer comprising a Cr-dispersed Cr 2 O 3 layer having a texture;
What is characterized by a coated carbide tool that exhibits a chipping resistance with excellent hard coating layer in high-speed cutting of difficult-to-cut materials, formed by forming a hard coating layer composed of (a) to (c) above It is.

つぎに、この発明の被覆超硬工具の硬質被覆層の構成層に関し、上記の通りに数値限定した理由を説明する。
(A)下部層
(a)Al最高含有点の組成
(Al,Ti,B)N層のAl成分は、高温硬さおよび耐熱性を向上させ、同Ti成分は高温強度を向上させ、さらに同B成分は一段と高温硬さを向上させる作用があり、したがって相対的にAl成分の含有割合が高いAl最高含有点では一段とすぐれた高温硬さと耐熱性を具備し、高熱発生を伴う高速切削で、すぐれた耐摩耗性を発揮するようになるが、Tiの割合を示すX値がAlとBの合量に占める割合(原子比)で0.10未満になると、相対的にAlの割合が多くなり過ぎて、相対的に高い高温強度を有するAl最低含有点が隣接して存在しても層自体の強度低下は避けられず、この結果チッピングなどが発生し易くなり、一方Ti成分の割合を示すX値が同0.35を越えると、相対的にAlの割合が少なくなり過ぎて、所望のすぐれた高温硬さおよび耐熱性を確保することができなくなり、またB成分の割合を示すY値がAlとTiの合量に占める割合(原子比)で0.01未満では所望の高温硬さ向上効果が得られず、さらに同Y値が0.10を超えると、高温強度が急激に低下するようになることから、X値を0.10〜0.35、Y値を0.01〜0.10とそれぞれ定めた。
Next, the reason why the numerical values of the constituent layers of the hard coating layer of the coated carbide tool of the present invention are limited as described above will be described.
(A) Lower layer (a) Composition of Al highest content point (Al, Ti, B) The Al component of the N layer improves the high temperature hardness and heat resistance, the Ti component improves the high temperature strength, and the same The B component has the effect of further improving the high-temperature hardness. Therefore, the Al highest content point with a relatively high Al component content has excellent high-temperature hardness and heat resistance, and high-speed cutting with high heat generation. Excellent wear resistance will be exhibited, but if the X value indicating the proportion of Ti is less than 0.10 in terms of the total amount of Al and B (atomic ratio), the proportion of Al is relatively large. Even if there is an adjacent Al minimum content point having a relatively high high-temperature strength, a decrease in the strength of the layer itself is inevitable, and as a result, chipping and the like are likely to occur, while the proportion of the Ti component is reduced. If the indicated X value exceeds 0.35, the relative In addition, the proportion of Al becomes too small, and the desired excellent high-temperature hardness and heat resistance cannot be secured, and the Y value indicating the proportion of the B component accounts for the total amount of Al and Ti (atomic ratio) ) Less than 0.01, the desired high-temperature hardness improvement effect cannot be obtained, and when the Y value exceeds 0.10, the high-temperature strength suddenly decreases. ˜0.35 and Y value of 0.01˜0.10 respectively.

(b)Al最低含有点の組成
上記の通りAl最高含有点は高温硬さおよび耐熱性のすぐれたものであるが、反面高温強度の劣るものであるため、このAl最高含有点の高温強度不足を補う目的で、Ti含有割合が相対的に高く、これによって相対的に高い高温強度を有するようになるAl最低含有点を厚さ方向に交互に介在させるものであり、したがってTiの割合(E値)がAlとBとの合量に占める割合(原子比)で0.40未満では、所望のすぐれた高温強度を確保することができず、一方その割合(E値)が同じく0.65を越えると、相対的にTiの割合が多くなり過ぎて、Al最低含有点に所定の所望の高温硬さおよび耐熱性を具備せしめることができなくなることから、その割合を0.40〜0.65と定めたものであり、またB成分の割合を示すF値は上記のAl最高含有点におけると同じ理由で0.01〜0.10と定めた。。
(B) Composition of Al minimum content point As described above, the Al maximum content point is excellent in high-temperature hardness and heat resistance, but on the other hand, it is inferior in high-temperature strength. In order to compensate for this, the Al content is relatively high, whereby the Al minimum content points that have a relatively high high-temperature strength are alternately interposed in the thickness direction. Therefore, the Ti content (E If the value is less than 0.40 in terms of the ratio of the total amount of Al and B (atomic ratio), the desired excellent high-temperature strength cannot be secured, while the ratio (E value) is also 0.65. In the case of exceeding the ratio of Ti, the ratio of Ti becomes relatively large, and it becomes impossible to provide the predetermined desired high-temperature hardness and heat resistance at the Al minimum content point. 65, and The F value indicating the ratio of the B component was determined to be 0.01 to 0.10 for the same reason as in the above Al highest content point. .

(c)Al最高含有点とAl最低含有点間の間隔
その間隔が0.01μm未満ではそれぞれの点を上記の組成で明確に形成することが困難であり、この結果それぞれの層に所望の高温硬さと耐熱性、および高温強度を確保することができなくなり、またその間隔が0.1μmを越えるとそれぞれの点がもつ欠点、すなわちAl最高含有点であれば高温強度不足、Al最低含有点であれば高温硬さおよび耐熱性不足が層内に局部的に現れ、これが原因で切刃にチッピングが発生し易くなったり、摩耗進行が促進されるようになることから、その間隔を0.01〜0.1μmと定めた。
(C) Interval between the highest Al content point and the lowest Al content point If the distance is less than 0.01 μm, it is difficult to clearly form each point with the above composition. As a result, each layer has a desired high temperature. Hardness, heat resistance, and high-temperature strength cannot be ensured, and if the distance exceeds 0.1 μm, each point has a defect, that is, if Al is the highest content point, insufficient high-temperature strength, Al minimum content point If so, high-temperature hardness and insufficient heat resistance appear locally in the layer, which makes it easier for chipping to occur on the cutting edge and promotes the progress of wear. It was defined as ˜0.1 μm.

(d)平均層厚
その平均層厚が1μm未満では、所望の耐摩耗性を確保することができず、一方その平均層厚が5μmを越えると、切刃にチッピングが発生し易くなることから、その平均層厚を1〜5μmと定めた。
(D) Average layer thickness If the average layer thickness is less than 1 μm, the desired wear resistance cannot be ensured. On the other hand, if the average layer thickness exceeds 5 μm, chipping tends to occur on the cutting edge. The average layer thickness was determined to be 1 to 5 μm.

(B)密着接合層の平均層厚
その平均層厚が0.1μm未満では、上部層と下部層の間に強固な接合強度を確保することができず、一方その平均層厚が1.5μmを越えると、硬質被覆層の強度が密着接合層部分で急激に低下するようになり、これがチッピング発生の原因となることから、その平均層厚を0.1〜1.5μmと定めた。
(B) Average layer thickness of close contact bonding layer If the average layer thickness is less than 0.1 μm, a strong bonding strength cannot be secured between the upper layer and the lower layer, while the average layer thickness is 1.5 μm. If it exceeds 1, the strength of the hard coating layer suddenly decreases at the tight junction layer portion, which causes the occurrence of chipping, so the average layer thickness was determined to be 0.1 to 1.5 μm.

(C)上部層の平均層厚および分散Crの含有割合
上部層を構成するCr分散Cr層は、上記の通り難削材に対する粘着性および反応性がきわめて低く、これは高速切削で前記難削材が高温加熱された状態でも変わることなく維持されることから、下部層である(Al,Ti,B)N層を前記高温加熱された難削材から保護し、これのチッピング発生を抑制する作用を発揮するが、その平均層厚が1μm未満では、前記作用に所望の効果が得られず、一方その平均層厚が5μmを越えて厚くなり過ぎると、チッピングが発生し易くなることから、その平均層厚を1〜5μmと定めた。
また、上記Cr分散Cr層におけるCrには、上記の通り自身の高温強度を向上させ、もって高速切削におけるチッピングの発生を著しく抑制する作用があるが、その割合が素地のCrとの合量に占める割合で0.1原子%未満では所望の高温強度向上効果を確保することができず、一方その割合が5原子%を越えると、被削材である上記難削材との間にきわめて低い粘着性および反応性を確保することができなくなり、特にその切粉との間にチッピング発生の原因となる粘着現象が現れるようになることから、その割合を0.1〜5原子%と定めた。
(C) Average layer thickness of upper layer and content ratio of dispersed Cr The Cr-dispersed Cr 2 O 3 layer constituting the upper layer has extremely low adhesiveness and reactivity with difficult-to-cut materials as described above. Since the difficult-to-cut material is maintained without being changed even when heated at a high temperature, the lower layer (Al, Ti, B) N layer is protected from the high-temperature heated difficult-to-cut material and chipping occurs. However, if the average layer thickness is less than 1 μm, the desired effect cannot be obtained. On the other hand, if the average layer thickness exceeds 5 μm, the chipping tends to occur. Therefore, the average layer thickness was set to 1 to 5 μm.
Also, the Cr in the Cr disperse Cr 2 O 3 layer improves the high temperature strength of the street itself above, there is a significantly effect of suppressing occurrence of chipping in the high-speed cutting with, Cr 2 O in the percentage matrix If the ratio to the total amount with 3 is less than 0.1 atomic%, the desired high-temperature strength improvement effect cannot be ensured. On the other hand, if the ratio exceeds 5 atomic%, the above difficult-to-cut material that is a work material It becomes impossible to ensure extremely low tackiness and reactivity between the slag and the sticking phenomenon that causes the occurrence of chipping between the swarf and the chips. 5 atomic% was determined.

この発明の被覆超硬工具は、硬質被覆層を構成する下部層の(Al,Ti,B)N層がすぐれた高温硬さと耐熱性、さらにすぐれた高温強度を有し、かつ同密着接合層としてのCrN層によって強固に密着接合した上部層としてのCr分散Cr層によって、被削材との間にきわめて低い粘着性および反応性が確保されることから、特に粘性および粘着性の高いステンレス鋼や高マンガン鋼、さらに軟鋼などの難削材の高熱発生を伴なう高速切削加工でも、切刃部にチッピングの発生なく、すぐれた耐摩耗性を長期に亘って発揮するものである。 The coated cemented carbide tool of the present invention has a high-temperature hardness and heat resistance in which the lower layer (Al, Ti, B) N layer constituting the hard coating layer has excellent high-temperature strength, and the same adhesive bonding layer Since the Cr-dispersed Cr 2 O 3 layer as the upper layer firmly adhered and bonded by the CrN layer as the material ensures extremely low adhesiveness and reactivity with the work material, it is particularly viscous and adhesive. Even in high-speed cutting with high heat generation of difficult-to-cut materials such as high stainless steel, high manganese steel, and mild steel, it exhibits excellent wear resistance over a long period without chipping at the cutting edge. is there.

つぎに、この発明の被覆超硬工具を実施例により具体的に説明する。   Next, the coated carbide tool of the present invention will be specifically described with reference to examples.

原料粉末として、いずれも1〜3μmの平均粒径を有するWC粉末、TiC粉末、ZrC粉末、VC粉末、TaC粉末、NbC粉末、Cr3 2 粉末、TiN粉末、TaN粉末、およびCo粉末を用意し、これら原料粉末を、表1に示される配合組成に配合し、ボールミルで72時間湿式混合し、乾燥した後、100MPa の圧力で圧粉体にプレス成形し、この圧粉体を6Paの真空中、温度:1400℃に1時間保持の条件で焼結し、焼結後、切刃部分にR:0.03のホーニング加工を施してISO規格・CNMG120408のチップ形状をもったWC基超硬合金製の超硬基体A−1〜A−10を形成した。 WC powder, TiC powder, ZrC powder, VC powder, TaC powder, NbC powder, Cr 3 C 2 powder, TiN powder, TaN powder and Co powder all having an average particle diameter of 1 to 3 μm are prepared as raw material powders. These raw material powders are blended in the composition shown in Table 1, wet mixed by a ball mill for 72 hours, dried, and then pressed into a green compact at a pressure of 100 MPa. Medium, sintered at 1400 ° C for 1 hour, after sintering, WC-based carbide with honing of R: 0.03 on the cutting edge and chip shape of ISO standard CNMG120408 Alloy carbide substrates A-1 to A-10 were formed.

また、原料粉末として、いずれも0.5〜2μmの平均粒径を有するTiCN(質量比で、TiC/TiN=50/50)粉末、Mo2 C粉末、ZrC粉末、NbC粉末、TaC粉末、WC粉末、Co粉末、およびNi粉末を用意し、これら原料粉末を、表2に示される配合組成に配合し、ボールミルで24時間湿式混合し、乾燥した後、100MPaの圧力で圧粉体にプレス成形し、この圧粉体を2kPaの窒素雰囲気中、温度:1500℃に1時間保持の条件で焼結し、焼結後、切刃部分にR:0.03のホーニング加工を施してISO規格・CNMG120408のチップ形状をもったTiCN系超硬製の超硬基体B−1〜B−6を形成した。 Further, as raw material powders, TiCN (mass ratio, TiC / TiN = 50/50) powder, Mo 2 C powder, ZrC powder, NbC powder, TaC powder, WC, all having an average particle diameter of 0.5 to 2 μm. Prepare powder, Co powder, and Ni powder, mix these raw material powders into the composition shown in Table 2, wet mix for 24 hours with a ball mill, dry, and press-mold into green compact at 100 MPa pressure The green compact was sintered in a nitrogen atmosphere of 2 kPa at a temperature of 1500 ° C. for 1 hour. After sintering, the cutting edge portion was subjected to a honing process of R: 0.03 to meet ISO standards / TiCN-based cemented carbide substrates B-1 to B-6 having a chip shape of CNMG120408 were formed.

さらに、硬質被覆層の上部層形成用カソード電極(蒸発源)として、原料粉末として、平均粒径:0.8μmのCr粉末および同1.1μmのCr粉末を用意し、これら原料粉末を所定の配合組成に配合し、ボールミルで72時間湿式混合し、乾燥した後、100MPaの圧力で圧粉体にプレス成形し、この圧粉体を6PaのAr雰囲気中、1300〜1400℃の範囲内の所定の温度に1時間保持の条件で焼結することにより、Crを所定の割合で分散含有したCr分散Cr焼結体を調製した。 Furthermore, as a cathode electrode (evaporation source) for forming the upper layer of the hard coating layer, Cr 2 O 3 powder having an average particle diameter of 0.8 μm and Cr powder having a thickness of 1.1 μm are prepared as raw material powders. Was mixed in a predetermined composition, wet mixed in a ball mill for 72 hours, dried, and then pressed into a green compact at a pressure of 100 MPa. The green compact was in a range of 1300 to 1400 ° C. in an Ar atmosphere of 6 Pa. A Cr-dispersed Cr 2 O 3 sintered body in which Cr was dispersed and contained in a predetermined ratio was prepared by sintering at a predetermined temperature for 1 hour.

(a)ついで、上記の超硬基体A−1〜A−10およびB−1〜B−6のそれぞれを、アセトン中で超音波洗浄し、乾燥した状態で、図1に示される蒸着装置内の回転テーブル上の中心軸から半径方向に所定距離離れた位置に外周部にそって装着し、一方側のAIP装置のカソード電極(蒸発源)として密着接合層形成用金属Cr、他方側のSP装置のカソード電極(蒸発源)として上部層形成用Cr分散Cr焼結体を対向配置し、さらに前記回転テーブルに沿って、かつ前記金属CrおよびCr分散Cr焼結体のそれぞれから90度離れた位置の一方側にAIP装置のカソード電極(蒸発源)として下部層のAl最高含有点形成用Al−Ti−B合金、他方側に同じく下部層のAl最低含有点形成用Al−Ti−B合金を対向配置し、
(b)まず、装置内を排気して0.5Pa以下の真空に保持しながら、ヒーターで装置内を500℃に加熱した後、前記回転テーブル上で自転しながら回転する超硬基体に−1000Vの直流バイアス電圧を印加して、カソード電極の前記金属Crとアノード電極との間に100Aの電流を流してアーク放電を発生させ、もって超硬基体表面をCrボンバート洗浄し、
(c)ついで,装置内に反応ガスとして窒素ガスを導入して2Paの反応雰囲気とすると共に、前記回転テーブル上で自転しながら回転する超硬基体に−100Vの直流バイアス電圧を印加して、それぞれのカソード電極(前記Al最高含有点形成用Al−Ti−B合金およびAl最低含有点形成用Al−Ti−B合金)とアノード電極との間に100Aの電流を流してアーク放電を発生させ、もって前記超硬基体の表面に、層厚方向に沿って表3,4に示される目標組成のAl最高含有点とAl最低含有点とが交互に同じく表3,4に示される目標間隔で繰り返し存在し、かつ前記Al最高含有点から前記Al最低含有点、前記Al最低含有点から前記Al最高含有点へAl(Ti)含有量が連続的に変化する成分濃度分布構造を有し、かつ同じく表3,4に示される目標層厚を有する(Al,Ti,B)N層を硬質被覆層の下部層として蒸着形成し、
(d)上記の下部層形成用両Al−Ti−B合金のカソード電極とアノード電極との間のアーク放電を停止し、装置内の雰囲気を同じ4Paの窒素雰囲気に保持すると共に、超硬基体への直流バイアス電圧(−100V)も同じくしたままで、カソード電極の前記金属Crとアノード電極との間に120Aの電流を流してアーク放電を発生させ、もって同じく表3,4に示される目標層厚のCrN層を硬質被覆層の密着接合層として蒸着形成し、
(e)上記金属Crとアノード電極とのアーク放電を停止し、前記蒸着装置内の雰囲気を0.5PaのAr雰囲気とすると共に、前記SP装置のカソード電極(蒸発源)として配置したCr分散Cr焼結体に、スパッタ出力:3kWの条件でスパッタリングを開始し、同じく表3,4に示される目標層厚のCr分散Cr層を硬質被覆層の上部層として蒸着形成することにより、本発明被覆超硬工具としての本発明表面被覆超硬製スローアウエイチップ(以下、本発明被覆チップと云う)1〜16をそれぞれ製造した。
(A) Next, each of the above-mentioned carbide substrates A-1 to A-10 and B-1 to B-6 was ultrasonically cleaned in acetone and dried, and then in the vapor deposition apparatus shown in FIG. Attached along the outer peripheral portion at a predetermined distance in the radial direction from the central axis on the rotary table, a close contact bonding layer forming metal Cr as the cathode electrode (evaporation source) of the AIP device on one side, and the SP on the other side A Cr-dispersed Cr 2 O 3 sintered body for forming an upper layer is disposed oppositely as a cathode electrode (evaporation source) of the apparatus, and further along the rotary table and of the metal Cr and Cr-dispersed Cr 2 O 3 sintered body. Al-Ti-B alloy for forming the highest Al content point of the lower layer as the cathode electrode (evaporation source) of the AIP device on one side at a position 90 degrees away from each, and also for forming the lowest Al content point of the lower layer on the other side Al-Ti-B alloy Direction is arranged,
(B) First, the inside of the apparatus is evacuated and kept at a vacuum of 0.5 Pa or less, the interior of the apparatus is heated to 500 ° C. with a heater, and then rotated to a carbide substrate that rotates while rotating on the rotary table. A direct current bias voltage is applied, a current of 100 A is caused to flow between the metal Cr of the cathode electrode and the anode electrode to generate an arc discharge, and the carbide substrate surface is cleaned by Cr bombarding,
(C) Next, nitrogen gas is introduced as a reaction gas into the apparatus to form a reaction atmosphere of 2 Pa, and a DC bias voltage of −100 V is applied to a carbide substrate that rotates while rotating on the rotary table, An arc discharge is generated by flowing a current of 100 A between each cathode electrode (the Al-Ti-B alloy for forming the highest Al content point and the Al-Ti-B alloy for forming the lowest Al content point) and the anode electrode. Thus, on the surface of the carbide substrate, the Al highest content point and the Al lowest content point of the target composition shown in Tables 3 and 4 along the layer thickness direction alternately at the target intervals shown in Tables 3 and 4 as well. It has a component concentration distribution structure that repeatedly exists and the Al (Ti) content continuously changes from the Al highest content point to the Al lowest content point, from the Al lowest content point to the Al highest content point, and Has a target layer thickness shown in axial Table 3,4 (Al, Ti, B) N layer were vapor deposited as the lower layer of the hard coating layer,
(D) The arc discharge between the cathode electrode and the anode electrode of both the Al-Ti-B alloys for forming the lower layer is stopped, the atmosphere in the apparatus is maintained in the same nitrogen atmosphere of 4 Pa, and the carbide substrate While maintaining the same DC bias voltage (−100V) to the cathode electrode, a current of 120 A is passed between the metal Cr and the anode electrode of the cathode electrode to generate arc discharge. A CrN layer having a layer thickness is vapor-deposited as an adhesive bonding layer of a hard coating layer,
(E) Stop the arc discharge between the metal Cr and the anode electrode, make the atmosphere in the vapor deposition apparatus an Ar atmosphere of 0.5 Pa, and arrange the Cr-dispersed Cr as the cathode electrode (evaporation source) of the SP apparatus Sputtering is started on the 2 O 3 sintered body under the condition of sputtering output: 3 kW, and a Cr-dispersed Cr 2 O 3 layer having the target layer thickness shown in Tables 3 and 4 is formed as an upper layer of the hard coating layer. Thus, the surface-coated carbide throwaway tips (hereinafter referred to as the present invention-coated tips) 1 to 16 as the present invention coated carbide tools were produced, respectively.

また、比較の目的で、
(a)上記の超硬基体A1〜A10およびB1〜B6のそれぞれを、アセトン中で超音波洗浄し、乾燥した状態で、図2に示されるアークイオンプレーティング装置内の回転テーブル上に外周部にそって装着し、一方側のカソード電極(蒸発源)として、種々の成分組成をもったAl最低含有点形成用Al−Ti−B合金、他方側のカソード電極(蒸発源)として、種々の成分組成をもったAl最高含有点形成用Al−Ti−B合金を前記回転テーブルを挟んで対向配置し、またボンバート洗浄用金属Tiも装着し、
(b)まず、装置内を排気して0.5Pa以下の真空に保持しながら、ヒーターで装置内を500℃に加熱した後、前記回転テーブル上で自転しながら回転する超硬基体に−1000Vの直流バイアス電圧を印加して、カソード電極の前記金属Tiとアノード電極との間に100Aの電流を流してアーク放電を発生させ、もって超硬基体表面をTiボンバート洗浄し、
(c)ついで、装置内に反応ガスとして窒素ガスを導入して2Paの反応雰囲気とすると共に、前記回転テーブル上で自転しながら回転する超硬基体に−100Vの直流バイアス電圧を印加して、それぞれのカソード電極(前記Al最低含有点形成用Al−Ti−B合金およびAl最高含有点形成用Al−Ti−B合金)とアノード電極との間に100Aの電流を流してアーク放電を発生させ、もって前記超硬基体の表面に、層厚方向に沿って表5,6に示される目標組成のAl最低含有点とAl最高含有点とが交互に同じく表5,6に示される目標間隔で繰り返し存在し、かつ前記Al最高含有点から前記Al最低含有点、前記Al最低含有点から前記Al最高含有点へAl(Ti)含有量が連続的に変化する成分濃度分布構造を有し、かつ同じく表5,6に示される目標層厚の上記本発明被覆チップの下部層に相当する(Al,Ti,B)N層を硬質被覆層として蒸着することにより、従来被覆超硬工具としての従来表面被覆超硬製スローアウエイチップ(以下、従来被覆チップと云う)1〜16をそれぞれ製造した。
For comparison purposes,
(A) Each of the above-mentioned carbide substrates A1 to A10 and B1 to B6 is ultrasonically cleaned in acetone and dried, and the outer peripheral portion is placed on the rotary table in the arc ion plating apparatus shown in FIG. As a cathode electrode (evaporation source) on one side, Al-Ti-B alloy for forming Al minimum content point having various component compositions, and various cathode electrodes (evaporation source) on the other side An Al-Ti-B alloy for forming the highest Al content point having a component composition is disposed oppositely across the rotary table, and a bombard cleaning metal Ti is also mounted.
(B) First, the inside of the apparatus is evacuated and kept at a vacuum of 0.5 Pa or less, the interior of the apparatus is heated to 500 ° C. with a heater, and then rotated to a carbide substrate that rotates while rotating on the rotary table. The DC bias voltage is applied, and a current of 100 A is caused to flow between the metal Ti of the cathode electrode and the anode electrode to generate an arc discharge, thereby cleaning the surface of the carbide substrate by Ti bombardment,
(C) Next, nitrogen gas is introduced as a reaction gas into the apparatus to form a reaction atmosphere of 2 Pa, and a DC bias voltage of −100 V is applied to a carbide substrate that rotates while rotating on the rotary table, An arc discharge is generated by flowing a current of 100 A between each cathode electrode (the Al-Ti-B alloy for forming the lowest Al content point and the Al-Ti-B alloy for forming the highest Al content point) and the anode electrode. Thus, on the surface of the cemented carbide substrate, the Al minimum content point and the Al maximum content point of the target composition shown in Tables 5 and 6 along the layer thickness direction alternately at the target intervals shown in Tables 5 and 6 as well. It has a component concentration distribution structure that repeatedly exists and the Al (Ti) content continuously changes from the Al highest content point to the Al lowest content point, from the Al lowest content point to the Al highest content point, and As shown in Tables 5 and 6, the (Al, Ti, B) N layer corresponding to the lower layer of the coated chip of the present invention having the target layer thickness is vapor-deposited as a hard coating layer. Conventional surface coated carbide throw-away tips (hereinafter referred to as conventional coated tips) 1 to 16 were produced, respectively.

つぎに、上記の各種の被覆チップを、いずれも工具鋼製バイトの先端部に固定治具にてネジ止めした状態で、本発明被覆チップ1〜16および従来被覆チップ1〜16について、
被削材:JIS・SUS316の丸棒、
切削速度:350m/min.、
切り込み:1.5mm、
送り:0.3mm/rev.、
切削時間:10分、
の条件(切削条件A)でのステンレス鋼の乾式連続高速切削加工試験(通常の切削速度は180m/min.)、
被削材:JIS・S15Cの長さ方向等間隔4本縦溝入り丸棒、
切削速度:280m/min.、
切り込み:1.5mm、
送り:0.35mm/rev.、
切削時間:5分、
の条件(切削条件B)での軟鋼の乾式断続高速切削加工試験(通常の切削速度は150m/min.)、
被削材:JIS・SCMnH1の丸棒、
切削速度:250m/min.、
切り込み:2mm、
送り:0.3mm/rev.、
切削時間:10分、
の条件(切削条件C)での高マンガン鋼の乾式連続高速切削加工試験(通常の切削速度は150m/min.)を行い、いずれの切削加工試験でも切刃の逃げ面摩耗幅を測定した。この測定結果を表7に示した。
Next, in the state where each of the above various coated chips is screwed to the tip of the tool steel tool with a fixing jig, the present coated chips 1 to 16 and the conventional coated chips 1 to 16 are as follows.
Work material: JIS / SUS316 round bar,
Cutting speed: 350 m / min. ,
Incision: 1.5mm,
Feed: 0.3 mm / rev. ,
Cutting time: 10 minutes,
Dry continuous high-speed cutting test of stainless steel under the conditions (cutting condition A) (normal cutting speed is 180 m / min.),
Work material: JIS / S15C lengthwise equal length 4 vertical grooved round bars,
Cutting speed: 280 m / min. ,
Incision: 1.5mm,
Feed: 0.35 mm / rev. ,
Cutting time: 5 minutes
Dry interrupted high-speed cutting test of mild steel under the conditions (cutting condition B) (normal cutting speed is 150 m / min.),
Work material: JIS / SCMnH1 round bar,
Cutting speed: 250 m / min. ,
Cutting depth: 2mm,
Feed: 0.3 mm / rev. ,
Cutting time: 10 minutes,
The dry continuous high-speed cutting test (normal cutting speed is 150 m / min.) Of high manganese steel under the above conditions (cutting condition C) was performed, and the flank wear width of the cutting edge was measured in any cutting test. The measurement results are shown in Table 7.

Figure 2007021651
Figure 2007021651

Figure 2007021651
Figure 2007021651

Figure 2007021651
Figure 2007021651

Figure 2007021651
Figure 2007021651

Figure 2007021651
Figure 2007021651

Figure 2007021651
Figure 2007021651

Figure 2007021651
Figure 2007021651

原料粉末として、平均粒径:5.5μmを有する中粗粒WC粉末、同0.8μmの微粒WC粉末、同1.3μmのTaC粉末、同1.2μmのNbC粉末、同1.2μmのZrC粉末、同2.3μmのCr32粉末、同1.5μmのVC粉末、同1.0μmの(Ti,W)C[質量比で、TiC/WC=50/50]粉末、および同1.8μmのCo粉末を用意し、これら原料粉末をそれぞれ表8に示される配合組成に配合し、さらにワックスを加えてアセトン中で24時間ボールミル混合し、減圧乾燥した後、100MPaの圧力で所定形状の各種の圧粉体にプレス成形し、これらの圧粉体を、6Paの真空雰囲気中、7℃/分の昇温速度で1370〜1470℃の範囲内の所定の温度に昇温し、この温度に1時間保持後、炉冷の条件で焼結して、直径が8mm、13mm、および26mmの3種の超硬基体形成用丸棒焼結体を形成し、さらに前記の3種の丸棒焼結体から、研削加工にて、表7に示される組合せで、切刃部の直径×長さがそれぞれ6mm×13mm、10mm×22mm、および20mm×45mmの寸法、並びにいずれもねじれ角30度の4枚刃スクエア形状をもったWC基超硬合金製の超硬基体(エンドミル)C−1〜C−8をそれぞれ製造した。 As raw material powders, medium coarse WC powder having an average particle diameter of 5.5 μm, fine WC powder of 0.8 μm, TaC powder of 1.3 μm, NbC powder of 1.2 μm, ZrC of 1.2 μm Powder, 2.3 μm Cr 3 C 2 powder, 1.5 μm VC powder, 1.0 μm (Ti, W) C [by mass ratio, TiC / WC = 50/50] powder, and 1 Prepare 8 μm Co powder, mix these raw material powders with the composition shown in Table 8, add wax, ball mill in acetone for 24 hours, dry under reduced pressure, and press at a pressure of 100 MPa. The green compacts were press-molded, and these green compacts were heated to a predetermined temperature in the range of 1370 to 1470 ° C. at a rate of temperature increase of 7 ° C./min in a 6 Pa vacuum atmosphere. After holding at temperature for 1 hour, sintering under furnace cooling conditions 3 types of sintered carbide rod-forming bodies for forming a carbide substrate having diameters of 8 mm, 13 mm, and 26 mm were formed, and further, the three types of sintered rods for round bar were subjected to grinding, as shown in Table 7. Made of WC-base cemented carbide with a combination of 4 blade square shape with diameter and length of 6mm × 13mm, 10mm × 22mm, and 20mm × 45mm respectively, and a twist angle of 30 degrees. Carbide substrates (end mills) C-1 to C-8 were produced.

ついで、これらの超硬基体(エンドミル)C−1〜C−8の表面をアセトン中で超音波洗浄し、乾燥した状態で、同じく図1に示される蒸着装置に装入し、上記実施例1と同一の条件で、層厚方向に沿って表9に示される目標組成のAl最低含有点とAl最高含有点とが交互に同じく表9に示される目標間隔で繰り返し存在し、かつ前記Al最高含有点から前記Al最低含有点、前記Al最低含有点から前記Al最高含有点へAl(Ti)含有量が連続的に変化する成分濃度分布構造を有し、かつ同じく表9に示される目標層厚の(Al,Ti,B)N層からなる下部層と、同じく表9に示される目標層厚のCrN層からなる密着接合層およびCr分散Cr層からなる上部層で構成された硬質被覆層を蒸着形成することにより、本発明被覆超硬工具としての本発明表面被覆超硬製エンドミル(以下、本発明被覆エンドミルと云う)1〜8をそれぞれ製造した。 Subsequently, the surfaces of these carbide substrates (end mills) C-1 to C-8 were ultrasonically cleaned in acetone and dried, and then charged into the vapor deposition apparatus shown in FIG. And the Al minimum content point and the Al maximum content point of the target composition shown in Table 9 along the layer thickness direction alternately and repeatedly exist at the target interval shown in Table 9, and the Al maximum A target layer having a component concentration distribution structure in which the Al (Ti) content continuously changes from the content point to the Al minimum content point, from the Al minimum content point to the Al maximum content point, and also shown in Table 9 It is composed of a lower layer composed of a (Al, Ti, B) N layer having a thickness, an adhesive layer composed of a CrN layer having a target layer thickness shown in Table 9, and an upper layer composed of a Cr-dispersed Cr 2 O 3 layer. By evaporating and forming a hard coating layer, The present invention surface coating cemented carbide end mills of the coated cemented carbide (hereinafter, the present invention refers to the coating end mill) 1-8 were prepared, respectively.

また、比較の目的で、上記の超硬基体(エンドミル)C−1〜C−8の表面をアセトン中で超音波洗浄し、乾燥した状態で、同じく図2に示されるアークイオンプレーティング装置に装入し、上記実施例1と同一の条件で、層厚方向に沿って表10に示される目標組成のAl最低含有点とAl最高含有点とが交互に同じく表10に示される目標間隔で繰り返し存在し、かつ前記Al最高含有点から前記Al最低含有点、前記Al最低含有点から前記Al最高含有点へAl(Ti)含有量が連続的に変化する成分濃度分布構造を有し、かつ同じく表10に示される目標層厚の上記本発明被覆エンドミルの下部層に相当する(Al,Ti,B)N層を硬質被覆層として蒸着することにより、従来被覆超硬工具としての従来表面被覆超硬製エンドミル(以下、従来被覆エンドミルと云う)1〜8をそれぞれ製造した。   For the purpose of comparison, the surfaces of the above-mentioned carbide substrates (end mills) C-1 to C-8 are ultrasonically cleaned in acetone and dried, and the arc ion plating apparatus shown in FIG. In the same condition as in Example 1 above, the lowest Al content point and the highest Al content point of the target composition shown in Table 10 along the layer thickness direction are alternately at the target interval shown in Table 10 It has a component concentration distribution structure that repeatedly exists and the Al (Ti) content continuously changes from the Al highest content point to the Al lowest content point, from the Al lowest content point to the Al highest content point, and Similarly, a conventional surface coating as a conventional coated carbide tool is formed by depositing a (Al, Ti, B) N layer corresponding to the lower layer of the above-described coated end mill of the present invention having a target layer thickness shown in Table 10 as a hard coated layer. Carbide endumi (Hereinafter, conventional coating end mill called) was 1-8 were prepared, respectively.

つぎに、上記本発明被覆エンドミル1〜8および従来被覆エンドミル1〜8のうち、本発明被覆エンドミル1〜3および従来被覆エンドミル1〜3については、
被削材−平面寸法:100mm×250mm、厚さ:50mmのJIS・S15Cの板材、
切削速度:70m/min.、
溝深さ(切り込み):3mm、
テーブル送り:150mm/分、
の条件での軟鋼の乾式高速溝切削加工試験(通常の切削速度は40m/min.)、本発明被覆エンドミル4〜6および従来被覆エンドミル4〜6については、
被削材−平面寸法:100mm×250mm、厚さ:50mmのJIS・SUS316の板材、
切削速度:80m/min.、
溝深さ(切り込み):5mm、
テーブル送り:160mm/分、
の条件でのステンレス鋼の湿式(水溶性切削油使用)高速溝切削加工試験(通常の切削速度は40m/min.)、本発明被覆エンドミル7,8および従来被覆エンドミル7,8については、
被削材−平面寸法:100mm×250mm、厚さ:50mmのJIS・SCMnH1の板材、
切削速度:60m/min.、
溝深さ(切り込み):8mm、
テーブル送り:120mm/分、
の条件での高マンガン鋼の乾式高速溝切削加工試験(通常の切削速度は35m/min.)をそれぞれ行い、いずれの溝切削加工試験でも切刃部の外周刃の逃げ面摩耗幅が使用寿命の目安とされる0.1mmに至るまでの切削溝長を測定した。この測定結果を表9,10にそれぞれ示した。
Next, of the present invention coated end mills 1-8 and conventional coated end mills 1-8, the present invention coated end mills 1-3 and conventional coated end mills 1-3 are as follows:
Work material-planar dimensions: 100 mm x 250 mm, thickness: 50 mm JIS / S15C plate,
Cutting speed: 70 m / min. ,
Groove depth (cut): 3 mm,
Table feed: 150 mm / min,
With respect to the dry high-speed grooving test of mild steel under the conditions (normal cutting speed is 40 m / min.), The coated end mills 4 to 6 and the conventional coated end mills 4 to 6 of the present invention,
Work material-Plane dimensions: 100 mm x 250 mm, thickness: 50 mm JIS / SUS316 plate material,
Cutting speed: 80 m / min. ,
Groove depth (cut): 5 mm,
Table feed: 160 mm / min,
Stainless steel wet (using water-soluble cutting oil) high-speed grooving test (normal cutting speed is 40 m / min.), Coated end mills 7 and 8 of the present invention, and conventional coated end mills 7 and 8
Work material-planar dimensions: 100 mm × 250 mm, thickness: 50 mm JIS / SCMnH1 plate material,
Cutting speed: 60 m / min. ,
Groove depth (cut): 8 mm,
Table feed: 120 mm / min,
The high-manganese steel dry-type high-speed grooving test (normal cutting speed is 35 m / min.) Was performed under the above conditions. The cutting groove length up to 0.1 mm, which is a guideline, was measured. The measurement results are shown in Tables 9 and 10, respectively.

Figure 2007021651
Figure 2007021651

Figure 2007021651
Figure 2007021651

Figure 2007021651
Figure 2007021651

上記の実施例2で製造した直径が8mm(超硬基体C−1〜C−3形成用)、13mm(超硬基体C−4〜C−6形成用)、および26mm(超硬基体C−7、C−8形成用)の3種の丸棒焼結体を用い、この3種の丸棒焼結体から、研削加工にて、溝形成部の直径×長さがそれぞれ4mm×13mm(超硬基体D−1〜D−3)、8mm×22mm(超硬基体D−4〜D−6)、および16mm×45mm(超硬基体D−7、D−8)の寸法、並びにいずれもねじれ角30度の2枚刃形状をもったWC基超硬合金製の超硬基体(ドリル)D−1〜D−8をそれぞれ製造した。   The diameters produced in Example 2 above were 8 mm (for forming carbide substrates C-1 to C-3), 13 mm (for forming carbide substrates C-4 to C-6), and 26 mm (for carbide substrates C-). 7, for C-8 formation), and from these three types of round bar sintered bodies, the diameter x length of the groove forming portion is 4 mm x 13 mm (by grinding). Carbide substrates D-1 to D-3), 8 mm × 22 mm (Carbide substrates D-4 to D-6), and 16 mm × 45 mm (Carbide substrates D-7 and D-8), and all Carbide substrates (drills) D-1 to D-8 made of a WC-base cemented carbide having a two-blade shape with a twist angle of 30 degrees were produced.

ついで、これらの超硬基体(ドリル)D−1〜D−8の切刃に、ホーニングを施し、アセトン中で超音波洗浄し、乾燥した状態で、同じく図1に示される蒸着装置に装入し、上記実施例1と同一の条件で、層厚方向に沿って表11に示される目標組成のAl最低含有点とAl最高含有点とが交互に同じく表11に示される目標間隔で繰り返し存在し、かつ前記Al最高含有点から前記Al最低含有点、前記Al最低含有点から前記Al最高含有点へAl(Ti)含有量が連続的に変化する成分濃度分布構造を有し、かつ同じく表11に示される目標層厚の(Al,Ti,B)N層からなる下部層と、同じく表11に示される目標層厚のCrN層からなる密着接合層およびCr分散Cr層からなる上部層で構成された硬質被覆層を蒸着形成することにより、本発明被覆超硬工具としての本発明表面被覆超硬製ドリル(以下、本発明被覆ドリルと云う)1〜8をそれぞれ製造した。 Next, the cutting edges of these carbide substrates (drills) D-1 to D-8 are subjected to honing, ultrasonically cleaned in acetone, and dried, and then loaded into the vapor deposition apparatus shown in FIG. Then, under the same conditions as in Example 1, the lowest Al content point and the highest Al content point of the target composition shown in Table 11 along the layer thickness direction are repeatedly present at the target intervals shown in Table 11 alternately. And a component concentration distribution structure in which the Al (Ti) content continuously changes from the Al highest content point to the Al lowest content point, from the Al lowest content point to the Al highest content point, and 11 comprises a lower layer composed of an (Al, Ti, B) N layer having a target layer thickness shown in FIG. 11, a close contact bonding layer composed of a CrN layer having a target layer thickness also shown in Table 11, and a Cr-dispersed Cr 2 O 3 layer. Evaporate hard coating layer composed of upper layer By forming, the present invention surface-coated cemented carbide drills of the present invention coated cemented carbide (hereinafter, the present invention refers to the coating drills) 1-8 were prepared, respectively.

また、比較の目的で、上記の超硬基体(ドリル)D−1〜D−8の表面に、ホーニングを施し、アセトン中で超音波洗浄し、乾燥した状態で、同じく図2に示されるアークイオンプレーティング装置に装入し、上記実施例1と同一の条件で、層厚方向に沿って表12に示される目標組成のAl最低含有点とAl最高含有点とが交互に同じく表12に示される目標間隔で繰り返し存在し、かつ前記Al最高含有点から前記Al最低含有点、前記Al最低含有点から前記Al最高含有点へAl(Ti)含有量が連続的に変化する成分濃度分布構造を有し、かつ同じく表12に示される目標層厚の上記本発明被覆ドリルの下部層に相当する(Al,Ti,B)N層を硬質被覆層として蒸着形成することにより、従来被覆超硬工具としての従来表面被覆超硬製ドリル(以下、従来被覆ドリルと云う)1〜8をそれぞれ製造した。   For comparison purposes, the surfaces of the above-mentioned carbide substrates (drills) D-1 to D-8 are honed, ultrasonically cleaned in acetone, and dried, and the arc shown in FIG. In an ion plating apparatus, under the same conditions as in Example 1, the Al minimum content point and the Al maximum content point of the target composition shown in Table 12 along the layer thickness direction are alternately shown in Table 12 A component concentration distribution structure in which the Al (Ti) content continuously exists from the Al highest content point to the Al lowest content point, and the Al (Ti) content continuously changes from the Al lowest content point to the Al highest content point. And (Al, Ti, B) N layer corresponding to the lower layer of the above-described coated drill of the present invention having the target layer thickness shown in Table 12 is formed by vapor deposition as a hard coating layer. Conventional surface coating as a tool Cemented carbide drills (hereinafter, conventional coating drill called) was 1-8 were prepared, respectively.

つぎに、上記本発明被覆ドリル1〜8および従来被覆ドリル1〜8のうち、本発明被覆ドリル1〜3および従来被覆ドリル1〜3については、
被削材−平面寸法:100mm×250mm、厚さ:50mmのJIS・SUS316の板材、
切削速度:150m/min.、
送り:0.15mm/rev、
穴深さ:8mm、
の条件でのステンレス鋼の湿式高速穴あけ切削加工試験(通常の切削速度は80m/min.)、本発明被覆ドリル4〜6および従来被覆ドリル4〜6については、
被削材−平面寸法:100mm×250mm、厚さ:50mmのJIS・SCMnH1の板材、
切削速度:100m/min.、
送り:0.2mm/rev、
穴深さ:16mm、
の条件での高マンガン鋼の湿式高速穴あけ切削加工試験(通常の切削速度は60 m/min.)、本発明被覆ドリル7,8および従来被覆ドリル7,8については、
被削材−平面寸法:100mm×250mm、厚さ:50mmのJIS・S15Cの板材、
切削速度:50m/min.、
送り:0.25mm/rev、
穴深さ:32mm、
の条件での軟鋼の湿式高速穴あけ切削加工試験(通常の切削速度は30m/min.)、をそれぞれ行い、いずれの湿式高速穴あけ切削加工試験(水溶性切削油使用)でも先端切刃面の逃げ面摩耗幅が0.3mmに至るまでの穴あけ加工数を測定した。この測定結果を表11,12にそれぞれ示した。
Next, of the present invention coated drills 1 to 8 and the conventional coated drills 1 to 8, the present invention coated drills 1 to 3 and the conventional coated drills 1 to 3 are:
Work material-Plane dimensions: 100 mm x 250 mm, thickness: 50 mm JIS / SUS316 plate material,
Cutting speed: 150 m / min. ,
Feed: 0.15mm / rev,
Hole depth: 8mm,
For the wet high speed drilling test of stainless steel under the conditions (normal cutting speed is 80 m / min.), The present invention coated drills 4-6 and the conventional coated drills 4-6,
Work material-planar dimensions: 100 mm × 250 mm, thickness: 50 mm JIS / SCMnH1 plate material,
Cutting speed: 100 m / min. ,
Feed: 0.2mm / rev,
Hole depth: 16mm,
For the high-manganese steel wet high speed drilling test under the conditions (normal cutting speed is 60 m / min.), The present invention coated drills 7 and 8 and the conventional coated drills 7 and 8,
Work material-planar dimensions: 100 mm x 250 mm, thickness: 50 mm JIS / S15C plate,
Cutting speed: 50 m / min. ,
Feed: 0.25mm / rev,
Hole depth: 32mm,
Wet high-speed drilling test of mild steel under normal conditions (normal cutting speed is 30 m / min.), And any wet high-speed drilling test (using water-soluble cutting oil) is used to relieve the cutting edge surface. The number of drilling processes until the surface wear width reached 0.3 mm was measured. The measurement results are shown in Tables 11 and 12, respectively.

Figure 2007021651
Figure 2007021651

Figure 2007021651
Figure 2007021651

この結果得られた本発明被覆超硬工具としての本発明被覆チップ1〜16、本発明被覆エンドミル1〜8、および本発明被覆ドリル1〜8の硬質被覆層を構成する(Al,Ti,B)N層(下部層)およびCr分散Cr層(上部層)の組成、並びに従来被覆超硬工具としての従来被覆チップ1〜16、従来被覆エンドミル1〜8、および従来被覆ドリル1〜8の(Al,Ti,B)N層からなる硬質被覆層の組成を、透過型電子顕微鏡を用いてのエネルギー分散X線分析法により測定したところ、それぞれ目標組成と実質的に同じ組成を示した。 The hard coating layers of the present coated chips 1-16, the present coated end mills 1-8, and the present coated drills 1-8 as the present coated carbide tool obtained as a result (Al, Ti, B) ) Composition of N layer (lower layer) and Cr-dispersed Cr 2 O 3 layer (upper layer), as well as conventional coated tips 1-16 as conventional coated carbide tools, conventional coated end mills 1-8, and conventional coated drill 1 When the composition of the hard coating layer consisting of 8 (Al, Ti, B) N layers was measured by energy dispersive X-ray analysis using a transmission electron microscope, each showed substantially the same composition as the target composition. It was.

また、上記の硬質被覆層の構成層の平均層厚を走査型電子顕微鏡を用いて断面測定したところ、いずれも目標層厚と実質的に同じ平均値(5ヶ所の平均値)を示した。   Further, when the average layer thickness of the constituent layers of the hard coating layer was subjected to cross-sectional measurement using a scanning electron microscope, all showed the same average value (average value of five locations) as the target layer thickness.

表3〜12に示される結果から、本発明被覆超硬工具は、いずれも特に粘性および粘着性の高いステンレス鋼や高マンガン鋼、さらに軟鋼などの難削材の高熱発生を伴なう高速切削でも、硬質被覆層の下部層である(Al,Ti,B)N層がすぐれた高温硬さと耐熱性、さらにすぐれた高温強度を有し、かつ密着接合層としてのCrN層によって強固に密着したCr分散Cr層によって、前記被削材との間にきわめて低い粘着性および反応性が確保されることから、切刃部にチッピングの発生なく、すぐれた耐摩耗性を長期に亘って発揮するのに対して、硬質被覆層が(Al,Ti,B)N層のみで構成された従来被覆超硬工具においては、いずれも高熱発生を伴なう高速切削では被削材(難削材)と前記硬質被覆層との粘着性および反応性が一段と高くなり、これが原因で切刃部にチッピングが発生するようになり、比較的短時間で使用寿命に至ることが明らかである。 From the results shown in Tables 3 to 12, all of the coated carbide tools of the present invention are particularly high-speed cutting accompanied by high heat generation of difficult-to-cut materials such as highly viscous and sticky stainless steel, high manganese steel, and mild steel. However, the (Al, Ti, B) N layer, which is the lower layer of the hard coating layer, has excellent high-temperature hardness and heat resistance, and excellent high-temperature strength, and is firmly adhered by the CrN layer as an adhesive bonding layer. The Cr-dispersed Cr 2 O 3 layer ensures extremely low adhesion and reactivity with the work material, so that excellent wear resistance can be obtained over a long period of time without chipping at the cutting edge. In contrast, in the conventional coated carbide tools whose hard coating layer is composed only of (Al, Ti, B) N layers, all work materials (difficult to cut) are used in high-speed cutting with high heat generation. Material) and the hard coating layer Reactivity is further increased, which now chipping the cutting edge due, it is clear that lead to a relatively short time service life.

上述のように、この発明の被覆超硬工具は、特に各種の一般鋼や普通鋳鉄などの高速切削条件での切削加工は勿論のこと、特に高い発熱を伴なう上記の難削材の高速切削加工でもすぐれた耐チッピング性を発揮し、長期に亘ってすぐれた耐摩耗性を示すものであるから、切削加工装置のFA化、さらに切削加工の省力化および省エネ化、さらに低コスト化に十分満足に対応できるものである。   As described above, the coated carbide tool of the present invention is not only for cutting under high-speed cutting conditions such as various general steels and ordinary cast iron, but also for high-speed machining of the above difficult-to-cut materials with high heat generation. It exhibits excellent chipping resistance even in cutting processing and exhibits excellent wear resistance over a long period of time. Therefore, it is possible to use FA for cutting equipment, further reduce labor and energy, and further reduce costs. It can respond satisfactorily.

本発明被覆超硬工具を構成する硬質被覆層を形成するのに用いた蒸着装置を示し、(a)は概略平面図、(b)は概略正面図である。The vapor deposition apparatus used in forming the hard coating layer which comprises this invention coated carbide tool is shown, (a) is a schematic plan view, (b) is a schematic front view. 従来被覆超硬工具を構成する硬質被覆層を形成するのに用いたアークイオンプレーティング装置を示し、(a)は概略平面図、(b)は概略正面図である。The arc ion plating apparatus used for forming the hard coating layer which comprises a conventional coated carbide tool is shown, (a) is a schematic plan view, (b) is a schematic front view.

Claims (1)

炭化タングステン基超硬合金または炭窒化チタン基サーメットで構成された超硬基体の表面に、
(a)1〜5μmの平均層厚を有し、かつ、層厚方向にそって、Al最高含有点とAl最低含有点とが所定間隔をおいて交互に繰り返し存在し、かつ前記Al最高含有点から前記Al最低含有点、前記Al最低含有点から前記Al最高含有点へAlおよびTi含有量がそれぞれ連続的に変化する成分濃度分布構造を有し、
さらに、上記Al最高含有点が、組成式:(Al1-(X+Y)TiX)N(ただし、原子比で、Xは0.10〜0.35、Yは0.01〜0.1を示す)、
上記Al最低含有点が、組成式:(Al1-(E+F)Ti)N(ただし、原子比で、Eは0.40〜0.65、Fは0.01〜0.1を示す)、
を満足し、かつ隣り合う上記Al最高含有点とAl最低含有点の間隔が、0.01〜0.1μmであるAlとTiとB(ボロン)の複合窒化物層からなる下部層、
(b)0.1〜1.5μmの平均層厚を有する窒化クロム層からなる密着接合層、
(c)1〜5μmの平均層厚を有し、かつ酸化クロムの素地に、前記酸化クロムとの合量に占める割合で、0.1〜5原子%の金属クロムが分散分布した組織を有する金属クロム分散酸化クロム層からなる上部層、
以上(a)〜(c)で構成された硬質被覆層を形成してなる、難削材の高速切削で硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆超硬合金製切削工具。
On the surface of the cemented carbide substrate composed of tungsten carbide based cemented carbide or titanium carbonitride based cermet,
(A) It has an average layer thickness of 1 to 5 μm, and along the layer thickness direction, Al maximum content points and Al minimum content points are alternately present at predetermined intervals, and the Al maximum content A component concentration distribution structure in which the Al and Ti contents continuously change from the point to the Al minimum content point, from the Al minimum content point to the Al maximum content point,
Furthermore, the Al highest content point, the composition formula: (Al 1- (X + Y ) Ti X B Y) N ( provided that an atomic ratio, X is 0.10 to 0.35, Y is from 0.01 to 0. 1),
The Al minimum content point is the composition formula: (Al 1− (E + F) Ti E B F ) N (wherein, E is 0.40 to 0.65, F is 0.01 to 0.1) Show),
A lower layer composed of a composite nitride layer of Al, Ti, and B (boron), in which the distance between the Al highest content point and the Al lowest content point adjacent to each other is 0.01 to 0.1 μm,
(B) an adhesive bonding layer comprising a chromium nitride layer having an average layer thickness of 0.1 to 1.5 μm;
(C) It has an average layer thickness of 1 to 5 μm, and has a structure in which 0.1 to 5 atomic% of metal chromium is dispersed and distributed in the chromium oxide base in a proportion of the total amount with the chromium oxide. An upper layer composed of a chromium metal dispersed chromium oxide layer,
A surface-coated cemented carbide cutting tool that exhibits a chipping resistance with excellent hard coating layer by high-speed cutting of difficult-to-cut materials, comprising the hard coating layer composed of (a) to (c).
JP2005207377A 2005-07-15 2005-07-15 Cutting tool made of surface coated cemented carbide having coated layer exhibiting excellent chipping resistance in high-speed cutting work of hard-to-cut material Withdrawn JP2007021651A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005207377A JP2007021651A (en) 2005-07-15 2005-07-15 Cutting tool made of surface coated cemented carbide having coated layer exhibiting excellent chipping resistance in high-speed cutting work of hard-to-cut material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005207377A JP2007021651A (en) 2005-07-15 2005-07-15 Cutting tool made of surface coated cemented carbide having coated layer exhibiting excellent chipping resistance in high-speed cutting work of hard-to-cut material

Publications (1)

Publication Number Publication Date
JP2007021651A true JP2007021651A (en) 2007-02-01

Family

ID=37783064

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005207377A Withdrawn JP2007021651A (en) 2005-07-15 2005-07-15 Cutting tool made of surface coated cemented carbide having coated layer exhibiting excellent chipping resistance in high-speed cutting work of hard-to-cut material

Country Status (1)

Country Link
JP (1) JP2007021651A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4406678A4 (en) * 2022-06-15 2024-07-31 Sumitomo Electric Hardmetal Corp Cutting tool

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4406678A4 (en) * 2022-06-15 2024-07-31 Sumitomo Electric Hardmetal Corp Cutting tool

Similar Documents

Publication Publication Date Title
JP2007021650A (en) Cutting tool made of surface coated cemented carbide having coated layer exhibiting excellent chipping resistance in heavy cutting work of hard-to-cut material
JP2007030098A (en) Cutting tool made of surface coated cemented carbide having hard coarted layer exhibiting excellent chipping resistance in high-speed cutting material hard to cut
JP2007038378A (en) Surface-coated cemented-carbide cutting tool with hard coating layer capable of showing excellent chipping resistance in high speed cutting of difficult-to-cut material
JP4711059B2 (en) Cutting tool made of surface coated cemented carbide with excellent chipping resistance with hard coating layer in difficult-to-cut materials
JP2007038379A (en) Surface-coated cemented-carbide cutting tool with hard coating layer capable of showing excellent chipping resistance in heavy cutting of difficult-to-cut material
JP2007030100A (en) Cutting tool made of surface coated cemented carbide having hard coated layer exhibiting excellent chipping resistance in hard cutting of material hard to cut
JP2007021649A (en) Cutting tool made of surface coated cemented carbide having coated layer exhibiting excellent chipping resistance in high-speed cutting of hard-to-cut material
JP2007290090A (en) Surface coated cutting tool having hard coating layer exhibiting excellent chipping resistance in high-speed heavy cutting difficult-to-cut material
JP2006075912A (en) Method of manufacturing surface coated cemented carbide cutting tool with surface coating layer exhibiting excellent wear resistance and chipping resistance in high-speed cutting of high hardness steel
JP2007021651A (en) Cutting tool made of surface coated cemented carbide having coated layer exhibiting excellent chipping resistance in high-speed cutting work of hard-to-cut material
JP2007038343A (en) Surface coated cemented carbide cutting tool having hard coating layer exerting superior chipping resistance under high speed heavy cutting of hard-to-cut material
JP2008188739A (en) Surface-coated cutting tool in which hard coating layer shows excellent chipping resistance in heavy cutting of difficult-to-cut material
JP2007038341A (en) Surface coated cemented carbide cutting tool having hard coating layer exerting superior chipping resistance under high speed heavy cutting of hard-to-cut material
JP4310693B2 (en) Cutting tool made of surface-coated cemented carbide that provides excellent wear resistance with a hard coating layer in high-speed cutting of difficult-to-cut materials
JP2007144595A (en) Surface coated cutting tool having hard coating layer exhibiting excellent chipping resistance in heavy cutting of difficult-to-cut material
JP2007313582A (en) Surface-coated cutting tool having hard coating layer with excellent chipping resistance in heavy cutting difficult-to-cut material
JP2007021639A (en) Cutting tool made of surface coated cemented carbide having hard coated layer exhibiting excellent chipping resistance in cutting work of hard-to-cut material
JP2007021665A (en) Cutting tool made of surface coated cemented carbide having coated layer exhibiting excellent chipping resistance in heavy cutting work of hard-to-cut material
JP2007030099A (en) Cutting tool made of surface coated cemented carbide having hard coated layer exhibiting excellent chipping resistance in hard cutting of material hard to cut
JP2007038383A (en) Surface-coated cemented-carbide cutting tool with hard coating layer exerting excellent chipping resistance in heavy cutting of difficult-to-cut material
JP2007038377A (en) Surface-coated cemented-carbide cutting tool with hard coating layer capable of showing excellent chipping resistance in high speed cutting of difficult-to-cut material
JP4244378B2 (en) Surface coated cemented carbide cutting tool with excellent wear resistance with high surface coating layer in high speed cutting
JP2007038386A (en) Surface-coated cemented-carbide cutting tool with hard coating layer exerting excellent chipping resistance in heavy cutting of hard-to-cut-material
JP2007030067A (en) Cutting tool made of surface coated cemented carbide having hard coated layer exhibiting excellent chipping resistance in cutting material hard to cut
JP4771197B2 (en) Surface-coated cermet cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed cutting of difficult-to-cut materials

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20071226

A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20081007