JP2007021632A - Electrochemical machining method and device therefor - Google Patents

Electrochemical machining method and device therefor Download PDF

Info

Publication number
JP2007021632A
JP2007021632A JP2005205798A JP2005205798A JP2007021632A JP 2007021632 A JP2007021632 A JP 2007021632A JP 2005205798 A JP2005205798 A JP 2005205798A JP 2005205798 A JP2005205798 A JP 2005205798A JP 2007021632 A JP2007021632 A JP 2007021632A
Authority
JP
Japan
Prior art keywords
voltage pulse
workpiece
electrode
electrolytic
high voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005205798A
Other languages
Japanese (ja)
Other versions
JP4892718B2 (en
Inventor
Haruki Obara
治樹 小原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyama University
Original Assignee
Toyama University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyama University filed Critical Toyama University
Priority to JP2005205798A priority Critical patent/JP4892718B2/en
Publication of JP2007021632A publication Critical patent/JP2007021632A/en
Application granted granted Critical
Publication of JP4892718B2 publication Critical patent/JP4892718B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electrochemical machining method capable of improving machining accuracy. <P>SOLUTION: A cylindrical electrode 20 is fixed to an electrode mounting part 18 first. Next, the electrode 20 is connected to a cathode of a machining power source 40, and a workpiece 26 is connected to anode of the machining power source 40. An XY-axis motor 23, and a Z-axis motor 15 are respectively driven to move an XY table 22 and a Z-axis mechanism part 16. The electrode 20 and the workpiece 26 are opposedly disposed at a predetermined gap, and an electrolysis solution is supplied to the gap between the electrode 20 and the workpiece 26 by driving a pump 32. Aqueous solution of 0.5 wt.% sodium nitrate is used as the supplied electrolysis solution. Low voltage pulse having a voltage of 15 V and a pulse width of 1 μs is applied with 500 KHz cycle in such a state that the electrolysis solution is filled in the gap, and a high voltage pulse having a voltage of 75 V and a pulse width of 10 μs is applied with 1 KHz cycle to perform the electrochemical machining of the workpiece 26. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、電解加工方法および電解加工装置に関する。   The present invention relates to an electrolytic processing method and an electrolytic processing apparatus.

塩化ナトリウム(NaCl)や硝酸ナトリウム(NaNO)などの電解液中で電極(−極)・ワーク(+極)間に5〜20V程度の電圧を印加して電流を流し、電気化学反応によりワーク金属を溶出させて加工を行う電解加工方法が知られている(例えば、特許文献1参照)。電解加工では電極形状を転写した形状にワークが加工され、切削加工などでは加工することが困難な複雑な形状の加工を行うことができる。また、電解加工方法は、電極面積に応じて電流を増すことができるため量産性が高く、加工による残留応力の発生がなく、面粗さも小さい、などの特徴を持つ。
特開平09−285917号公報
In an electrolytic solution such as sodium chloride (NaCl) or sodium nitrate (NaNO 3 ), a voltage of about 5 to 20 V is applied between the electrode (−electrode) and the workpiece (+ electrode) to pass a current, and the workpiece is caused by an electrochemical reaction. There is known an electrolytic processing method for performing processing by eluting a metal (see, for example, Patent Document 1). In the electrolytic processing, the workpiece is processed into a shape obtained by transferring the electrode shape, and it is possible to perform a complicated shape that is difficult to be processed by cutting or the like. Further, the electrolytic processing method has features such as high productivity because it can increase current according to the electrode area, no generation of residual stress due to processing, and low surface roughness.
JP 09-285117 A

しかしながら、電解加工方法は、エッジ部分での形状だれが大きいなど、加工精度が悪く微細加工を行うことが困難である。印加電圧のパルス化や逆パルスを加えることにより加工精度を若干改善することができるが、十分ではない。そのため、加工精度の向上が望まれていた。   However, the electrolytic processing method is difficult to perform fine processing due to poor processing accuracy, such as large shape distortion at the edge portion. Machining accuracy can be slightly improved by pulsing the applied voltage or applying a reverse pulse, but this is not sufficient. Therefore, improvement of processing accuracy has been desired.

本発明は、上記問題点を解消する為になされたものであり、加工精度を向上することが可能な電解加工方法および電解加工装置を提供することを目的とする。   The present invention has been made to solve the above-described problems, and an object of the present invention is to provide an electrolytic processing method and an electrolytic processing apparatus capable of improving processing accuracy.

本発明に係る電解加工方法は、被加工物と電極との間に電解液を満たした状態で被加工物と電極とに電圧パルスを周期的に印加するとともに、被加工物に形成された不働態膜を破る、上記電圧パルスより高電圧の高電圧パルスを電圧パルスの周期とは異なる周期で印加して被加工物を加工する電解加工方法であって、電解液の濃度は、電圧パルスのみを印加したときに被加工物の電解加工速度が略ゼロとなるように調整されていることを特徴とする。   In the electrolytic processing method according to the present invention, a voltage pulse is periodically applied to the workpiece and the electrode in a state where the electrolytic solution is filled between the workpiece and the electrode, and the defect formed on the workpiece. An electrolytic machining method for machining a workpiece by applying a high voltage pulse higher than the above voltage pulse in a cycle different from the cycle of the voltage pulse, which breaks the working film, and the concentration of the electrolyte is only the voltage pulse It is characterized in that the electrolytic processing speed of the workpiece is adjusted to be substantially zero when the pressure is applied.

また、本発明に係る電解加工装置は、上記電解加工方法の実施に用いられる電解加工装置において、被加工物と電極との間に電解液を供給する電解液供給手段と、被加工物と電極とに電圧パルスを周期的に印加するとともに、被加工物に形成された不働態膜を破る、上記電圧パルスより高電圧の高電圧パルスを電圧パルスの周期とは異なる周期で印加する電源とを備えることを特徴とする。   Further, an electrolytic processing apparatus according to the present invention is an electrolytic processing apparatus used for carrying out the electrolytic processing method, wherein an electrolytic solution supply means for supplying an electrolytic solution between the workpiece and the electrode, the workpiece and the electrode A power source that periodically applies a high voltage pulse higher than the above voltage pulse, which breaks the passive film formed on the workpiece, at a cycle different from the cycle of the voltage pulse. It is characterized by providing.

本発明に係る電解加工方法または電解加工装置によれば、電解液の濃度が電圧パルスのみを印加したとき、すなわち高電圧パルスを印加しないときに不働態膜で覆われた被加工物の電解加工がほとんど進行しない濃度に調整されているため、間欠的に印加される高電圧パルスにより不働態膜が破られた箇所では電圧パルスによる電解加工が進行するが、不働態膜が破られない箇所では被加工物が不働態膜で保護されるため電解加工がほとんど進行しない。そのため高精度な電解加工が可能となる。   According to the electrolytic processing method or the electrolytic processing apparatus according to the present invention, the electrolytic processing of the workpiece covered with the passive film when the concentration of the electrolytic solution is applied with only the voltage pulse, that is, when the high voltage pulse is not applied. Is adjusted to a concentration that does not progress almost at all, so in places where the passive film is broken by the intermittently applied high voltage pulse, the electrochemical machining by the voltage pulse proceeds, but in places where the passive film is not broken. Since the workpiece is protected by the passive film, the electrolytic machining hardly proceeds. Therefore, highly accurate electrolytic processing becomes possible.

本発明に係る電解加工方法では、上記高電圧パルスの周期が、電圧パルスの周期に比べて長いことが好ましい。   In the electrolytic processing method according to the present invention, the period of the high voltage pulse is preferably longer than the period of the voltage pulse.

この場合、高電圧パルスは主として不働態膜の除去に利用され、低電圧パルスが主として電解加工の進行を決定する。そのため、電解加工の加工精度を向上させることが可能となる。   In this case, the high voltage pulse is mainly used for removing the passive film, and the low voltage pulse mainly determines the progress of the electrolytic processing. Therefore, it is possible to improve the processing accuracy of electrolytic processing.

本発明によれば、電圧パルスのみを印加したときに被加工物の電解加工速度が略ゼロとなるように濃度が調整された電解液を満たした状態で被加工物と電極とに電圧パルスを周期的に印加するとともに、被加工物に形成された不働態膜を破る高電圧パルスを電圧パルスと異なる周期で印加する構成としたので、電解加工の加工精度を向上することが可能となる。   According to the present invention, when only the voltage pulse is applied, the voltage pulse is applied to the work piece and the electrode in a state where the electrolytic solution whose concentration is adjusted to be substantially zero is filled. Since the high voltage pulse that is periodically applied and the high voltage pulse that breaks the passive film formed on the workpiece is applied with a period different from the voltage pulse, the machining accuracy of the electrolytic machining can be improved.

以下、図面を参照して本発明の好適な実施形態について詳細に説明する。図中、同一又は相当部分には同一符号を用いることとする。   DESCRIPTION OF EMBODIMENTS Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the drawings. In the figure, the same reference numerals are used for the same or corresponding parts.

まず、図1、2を用いて、本実施形態に係る電解加工装置1の構成を説明する。図1は、電解加工装置1の全体構成を示す図である。図2は、電解加工装置1に用いられる加工電源40の概略構成を示す図である。   First, the configuration of the electrolytic processing apparatus 1 according to the present embodiment will be described with reference to FIGS. FIG. 1 is a diagram showing an overall configuration of the electrolytic processing apparatus 1. FIG. 2 is a diagram showing a schematic configuration of a machining power source 40 used in the electrolytic machining apparatus 1.

電解加工装置1は、床などに載置されるベース12と、ベース12上に垂直に立設された支持部14とを備えている。支持部14の側部にはZ軸モータ15により昇降されるZ軸機構部16が設けられており、このZ軸機構部16には電極取り付け部18が固定されている。電極取り付け部18の下部には電極20が軸周りに回動可能に取り付けられている。   The electrolytic processing apparatus 1 includes a base 12 that is placed on a floor or the like, and a support portion 14 that stands vertically on the base 12. A Z-axis mechanism portion 16 that is moved up and down by a Z-axis motor 15 is provided on a side portion of the support portion 14, and an electrode attachment portion 18 is fixed to the Z-axis mechanism portion 16. An electrode 20 is attached to the lower portion of the electrode attachment portion 18 so as to be rotatable about an axis.

また、ベース12上にはXY軸モータ23が配置され、このXY軸モータ23上に水平面上で直行2方向に移動可能なXYテーブル22が配置されている。XYテーブル22は、XY軸モータ23により駆動される。XYテーブル22の上面には、ワーク(被加工物)26が固定された加工槽24が配置されている。XY軸モータ23およびZ軸モータ15は、図示しない電子制御装置により制御される。XYテーブル22が、XY軸モータ23により駆動され、水平方向に移動されることにより、電極20に対するワーク26の位置決めが行われる。また、Z軸機構部16が、Z軸モータ15により駆動され、上下方向に移動されることにより、電極20とワーク26とのギャップが調節される。   An XY axis motor 23 is disposed on the base 12, and an XY table 22 is disposed on the XY axis motor 23 and is movable in two orthogonal directions on a horizontal plane. The XY table 22 is driven by an XY axis motor 23. On the upper surface of the XY table 22, a processing tank 24 to which a work (workpiece) 26 is fixed is disposed. The XY axis motor 23 and the Z axis motor 15 are controlled by an electronic control device (not shown). The XY table 22 is driven by the XY axis motor 23 and moved in the horizontal direction, whereby the workpiece 26 is positioned with respect to the electrode 20. Further, the gap between the electrode 20 and the workpiece 26 is adjusted by the Z-axis mechanism 16 being driven by the Z-axis motor 15 and moved in the vertical direction.

タンク30には、硝酸ナトリウムや塩化ナトリウムなどの水溶液からなる電解液が貯留されている。タンク30内の電解液が循環路31に設けられたポンプ32によって加工槽24に供給され、ワーク26と電極20とが加工槽に溜められた電解液中に浸漬される。電解加工中、加工槽24に溜められた電解液はポンプ32により上記循環路31を通して循環され、その循環途中でフィルタ34によってスラッジなどが除去される。   The tank 30 stores an electrolytic solution made of an aqueous solution such as sodium nitrate or sodium chloride. The electrolytic solution in the tank 30 is supplied to the processing tank 24 by a pump 32 provided in the circulation path 31, and the workpiece 26 and the electrode 20 are immersed in the electrolytic solution stored in the processing tank. During the electrolytic processing, the electrolytic solution stored in the processing tank 24 is circulated through the circulation path 31 by the pump 32, and sludge and the like are removed by the filter 34 during the circulation.

ここで、従来の電解加工に用いられる電解液の濃度は通常10〜30重量%程度であるが、本実施形態では約1重量%〜0.04重量%程度、より好適には約0.5重量%程度の濃度の電解液を用いる。ここで、図4に電解液の濃度(または比抵抗)と電圧パルスと加工速度との関係を示す。図4の横軸は電解液の濃度(重量%)(または比抵抗(Ωm))であり、縦軸は加工速度(μm/s)である。   Here, the concentration of the electrolytic solution used in the conventional electrolytic processing is usually about 10 to 30% by weight, but in this embodiment, about 1% to 0.04% by weight, and more preferably about 0.5%. An electrolyte solution having a concentration of about% by weight is used. Here, FIG. 4 shows a relationship among the concentration (or specific resistance) of the electrolytic solution, the voltage pulse, and the machining speed. The horizontal axis in FIG. 4 is the concentration (% by weight) of the electrolytic solution (or specific resistance (Ωm)), and the vertical axis is the processing speed (μm / s).

図4に●(印加電圧15V)または▲(印加電圧5V)で示されるように、電圧パルスのみを印加した場合、電解液の濃度が低下するにしたがい加工速度が低下し、濃度が約1重量%〜0.04重量%程度の領域では、ワーク26の表面に形成された不働態膜により電解加工がほとんど進行しない。しかし、電圧パルスに加え後述する高電圧パルスを印加すると、図4に○または△で示されるように、加工速度が増大し、電解加工が進行する。   As indicated by ● (applied voltage 15 V) or ▲ (applied voltage 5 V) in FIG. 4, when only the voltage pulse is applied, the processing speed decreases as the concentration of the electrolyte decreases, and the concentration is about 1 weight. In the region of about% to 0.04% by weight, the electrolytic processing hardly proceeds due to the passive film formed on the surface of the workpiece 26. However, when a high voltage pulse, which will be described later, is applied in addition to the voltage pulse, the machining speed increases and electrolytic machining proceeds as indicated by ◯ or Δ in FIG.

電解加工装置1は加工電源40を備えている。電極20は加工電源40の−極に接続されており、ワーク26は加工電源40の+極に接続されている。加工電源40は、例えば5〜15V程度の電圧パルスを所定の周期(例えば、500KHz程度)で電極20とワーク26との間に印加するとともに、電圧パルスより高電圧(例えば、75〜100V程度)の高電圧パルスを電圧パルス(高電圧パルスと明確に区別するため、以下「低電圧パルス」という)よりも長い周期(例えば、20Hz〜1KHz程度)で印加する。   The electrolytic processing apparatus 1 includes a processing power source 40. The electrode 20 is connected to the negative pole of the machining power source 40, and the workpiece 26 is connected to the positive pole of the machining power source 40. The machining power supply 40 applies a voltage pulse of about 5 to 15 V, for example, between the electrode 20 and the workpiece 26 at a predetermined cycle (for example, about 500 KHz), and has a higher voltage (for example, about 75 to 100 V) than the voltage pulse. The high voltage pulse is applied with a period (for example, about 20 Hz to 1 KHz) longer than the voltage pulse (to be clearly distinguished from the high voltage pulse, hereinafter referred to as “low voltage pulse”).

図2に示されるように、加工電源40は、低電圧パルスを生成する低電圧パルス回路41と、高電圧パルスを生成する高電圧パルス回路42とが並列に接続されて構成されている。そのため、各電圧パルスのON・OFFを適切に制御することにより、図3に模式的に示されるように、低電圧パルス回路41で生成された低電圧パルスと、高電圧パルス回路42で生成された高電圧パルスとが重畳され、電極20とワーク26との間に印加される。なお、図3は、加工電源40の出力波形、すなわち電極20・ワーク26間に印加されるパルス波形を模式的に示したものである。   As shown in FIG. 2, the machining power supply 40 is configured by connecting in parallel a low voltage pulse circuit 41 that generates a low voltage pulse and a high voltage pulse circuit 42 that generates a high voltage pulse. Therefore, by appropriately controlling ON / OFF of each voltage pulse, the low voltage pulse generated by the low voltage pulse circuit 41 and the high voltage pulse circuit 42 are generated as schematically shown in FIG. The high voltage pulse is superimposed and applied between the electrode 20 and the workpiece 26. FIG. 3 schematically shows an output waveform of the machining power source 40, that is, a pulse waveform applied between the electrode 20 and the workpiece 26.

図2に戻り、より詳細に説明すると、低電圧パルス回路41は、アノード端子が電極20に接続された低電圧パルス回路保護用ダイオード43、その−極がダイオード43のカソード端子に接続された低電圧源44、ドレイン端子が低電圧源44の+端子に接続されるとともにソース端子がワーク26に接続され、スイッチング動作を行う第1パワーMOSFET45、および第1パワーMOSFET45のゲート端子に接続され第1パワーMOSFET45をスイッチングさせる信号を発生する第1パルスジェネレータ46などを有して構成されている。   Returning to FIG. 2, in more detail, the low voltage pulse circuit 41 includes a low voltage pulse circuit protection diode 43 whose anode terminal is connected to the electrode 20, and a low voltage pulse circuit whose negative electrode is connected to the cathode terminal of the diode 43. The voltage source 44 and the drain terminal are connected to the + terminal of the low voltage source 44 and the source terminal is connected to the work 26. The first power MOSFET 45 that performs a switching operation and the gate terminal of the first power MOSFET 45 are connected to the first terminal. A first pulse generator 46 for generating a signal for switching the power MOSFET 45 is included.

一方、高電圧パルス回路42は、その−極が電極20に接続された高電圧源47、その一端が高電圧源47の+極に接続された電流制限抵抗48、ドレイン端子が電流制限抵抗48の他端に接続されるとともにソース端子がワーク26に接続され、スイッチング動作を行う第2パワーMOSFET49、および第2パワーMOSFET49のゲート端子に接続され第2パワーMOSFET49をスイッチングさせる信号を発生する第2パルスジェネレータ50などを有して構成されている。   On the other hand, the high voltage pulse circuit 42 has a high voltage source 47 whose negative electrode is connected to the electrode 20, a current limiting resistor 48 whose one end is connected to the positive electrode of the high voltage source 47, and a current limiting resistor 48 whose drain terminal is connected. And a source terminal connected to the work 26, a second power MOSFET 49 for performing a switching operation, and a second power MOSFET 49 connected to the gate terminal of the second power MOSFET 49 for generating a signal for switching the second power MOSFET 49. It has a pulse generator 50 and the like.

次に、穴加工を行う場合を例にして、電解加工装置1の動作および電解加工方法について説明する。まず、円柱状の電極20を電極取り付け部18に固定する。次に、電極20を加工電源40の−極に接続するとともに、ワーク26を加工電源40の+極に接続する。続いて、XY軸モータ23、Z軸モータ15それぞれを駆動してXYテーブル22およびZ軸機構部16を移動し、電極20とワーク26とを所定のギャップ(例えば、0.1mm〜0.7mm)を置いて対向配置する。   Next, the operation of the electrolytic processing apparatus 1 and the electrolytic processing method will be described by taking the case of performing hole processing as an example. First, the cylindrical electrode 20 is fixed to the electrode mounting portion 18. Next, the electrode 20 is connected to the negative pole of the machining power source 40, and the workpiece 26 is connected to the positive pole of the machining power source 40. Subsequently, the XY-axis motor 23 and the Z-axis motor 15 are driven to move the XY table 22 and the Z-axis mechanism unit 16, and the electrode 20 and the workpiece 26 are separated by a predetermined gap (for example, 0.1 mm to 0.7 mm). ) To face each other.

ポンプ32を駆動して電極20とワーク26とのギャップに電解液を供給する。供給される電解液としては、例えば0.5重量%の硝酸ナトリウム水溶液などを用いる。そして、ギャップ間に電解液を満たした状態で、例えば電圧15V、パルス幅1μsの低電圧パルスを500KHz周期で印加するとともに、例えば電圧75V、パルス幅10μsの高電圧パルスを1KHz周期で印加してワーク26の電解加工を行う。   The pump 32 is driven to supply the electrolytic solution to the gap between the electrode 20 and the work 26. As the electrolytic solution to be supplied, for example, a 0.5 wt% aqueous sodium nitrate solution is used. Then, with the electrolyte filled between the gaps, for example, a low voltage pulse with a voltage of 15 V and a pulse width of 1 μs is applied with a cycle of 500 KHz, and a high voltage pulse with a voltage of 75 V and a pulse width of 10 μs is applied with a cycle of 1 KHz, for example. Electrolytic machining of the workpiece 26 is performed.

電解加工中は、加工電流が一定となるようにZ軸モータ15を駆動して電極20を下方に移動する。また、タンク30に貯留されている電解液をポンプ32によって加工部に圧送するとともに、加工槽24中の電解液をフィルタ34を介してタンク30に回収する。   During the electrolytic machining, the Z-axis motor 15 is driven to move the electrode 20 downward so that the machining current is constant. In addition, the electrolytic solution stored in the tank 30 is pumped to the processing portion by the pump 32, and the electrolytic solution in the processing tank 24 is collected in the tank 30 through the filter 34.

本実施形態によれば、電解液の濃度が低電圧パルスのみを印加したとき、すなわち高電圧パルスを印加しないときに不働態膜で覆われたワーク26の電解加工がほとんど進行しない濃度に調整されているため、間欠的に印加される高電圧パルスにより不働態膜が破られた箇所では低電圧パルスによる電解加工が進行するが、不働態膜が破られない箇所ではワーク26が不働態膜で保護されるため電解加工がほとんど進行しない。そのため高精度な電解加工が可能となる。   According to the present embodiment, the concentration of the electrolytic solution is adjusted to a concentration at which only the low voltage pulse is applied, that is, when the high voltage pulse is not applied, the electrolytic processing of the workpiece 26 covered with the passive film hardly proceeds. Therefore, although the electromachining by the low voltage pulse proceeds at the location where the passive film is broken by the intermittently applied high voltage pulse, the work 26 is the passive film at the location where the passive film is not broken. Since it is protected, the electrolytic processing hardly proceeds. Therefore, highly accurate electrolytic processing becomes possible.

また、本実施形態によれば、低電圧パルスが所定の周期(例えば、500KHz程度)で電極20とワーク26との間に印加されるとともに、高電圧パルスが低電圧パルスよりも長い周期(例えば、20Hz〜1KHz程度)で印加される。そのため、高電圧パルスは主として不働態膜の除去に利用され、低電圧パルスが主として電解加工の進行を決定する。その結果、電解加工の加工精度を向上させることが可能となる。   Further, according to the present embodiment, the low voltage pulse is applied between the electrode 20 and the work 26 at a predetermined cycle (for example, about 500 KHz), and the high voltage pulse is longer than the low voltage pulse (for example, , About 20 Hz to 1 KHz). Therefore, the high voltage pulse is mainly used for removing the passive film, and the low voltage pulse mainly determines the progress of the electrolytic processing. As a result, it is possible to improve the processing accuracy of electrolytic processing.

また、高電圧パルスの印加条件(パルス幅や電圧値など)によっては電極20とワーク26とのギャップ間に放電が発生することがあるが、本実施形態では、放電が生じない条件でも電解加工を行うことができ、放電は必ずしも必要ではない。本実施形態によれば、高電圧パルスのパルス周期を長くすること、または高電圧パルスのパルス幅を短くすることによって、ギャップ間の放電が抑制されるので、電極20の消耗を抑制または無くすことが可能となる。   Further, depending on the application conditions (pulse width, voltage value, etc.) of the high voltage pulse, discharge may occur between the gap between the electrode 20 and the workpiece 26. However, in this embodiment, electrolytic processing is performed even under conditions where no discharge occurs. The discharge is not necessarily required. According to the present embodiment, since the discharge between the gaps is suppressed by increasing the pulse period of the high voltage pulse or shortening the pulse width of the high voltage pulse, the consumption of the electrode 20 is suppressed or eliminated. Is possible.

従来の電解加工では、電解加工中に秒速6〜60mの電解液の高速噴流をギャップ間に送ることが必要であった。そのため、深い加工を行うときには、電極に多数の噴射穴を設ける必要があった。電極に噴射穴を設けることが困難な場合には、加工深さが制限された。しかしながら、本実施形態によれば、電解加工時に電解液の高速噴流をギャップ間に送る必要がないため、電極に噴射穴を設けることなく深穴の加工を行うことが可能となる。より具体的には、従来の電解加工の加工限界深さは1.8mm程度であるが、本実施形態の場合は約3.5mmの加工深さが得られた。   In the conventional electrolytic machining, it was necessary to send a high-speed jet of an electrolyte solution of 6 to 60 m / second between the gaps during the electrolytic machining. Therefore, when performing deep processing, it is necessary to provide a large number of injection holes in the electrode. When it was difficult to provide an injection hole in the electrode, the processing depth was limited. However, according to the present embodiment, since it is not necessary to send a high-speed jet of the electrolyte between the gaps during electrolytic processing, deep holes can be processed without providing injection holes in the electrodes. More specifically, the processing limit depth of the conventional electrolytic processing is about 1.8 mm, but in the present embodiment, a processing depth of about 3.5 mm was obtained.

以上、本発明者らによってなされた発明を実施形態に基づき具体的に説明したが、本発明は上記実施形態に限定されるものではない。例えば、加工電源40は、低電圧パルスおよび高電圧パルスを電極20とワーク26との間に印加することができればよく、その回路構成は本実施形態に限られない。   As mentioned above, although the invention made by the present inventors has been specifically described based on the embodiment, the present invention is not limited to the above embodiment. For example, the machining power source 40 only needs to be able to apply a low voltage pulse and a high voltage pulse between the electrode 20 and the workpiece 26, and the circuit configuration is not limited to this embodiment.

また、電解液やワーク26などの種類は上記実施形態に限られないことは言うまでもない。さらに、上述した電解液濃度、低電圧パルスおよび高電圧パルスの印加電圧、パルス幅や周期などは、本実施形態に限られることなく、電解液の種類、ワーク26の材質、要求加工精度や要求加工速度などに応じて適切に設定することが好ましい。   Needless to say, the types of the electrolytic solution and the workpiece 26 are not limited to the above embodiment. Furthermore, the above-described electrolyte concentration, applied voltage of low voltage pulse and high voltage pulse, pulse width, period, and the like are not limited to the present embodiment, but the type of electrolyte, the material of the workpiece 26, the required processing accuracy and requirements. It is preferable to set appropriately according to the processing speed or the like.

次に、本発明の内容を、実施例を用いて具体的に説明するが、本発明はこれらに限定されるものではない。   Next, the content of the present invention will be specifically described with reference to examples, but the present invention is not limited thereto.

(実施例1)
直径0.35mmのタングステン電極を用い、SUS板(SUS304)の穴加工を行った。電解液には0.5重量%の硝酸ナトリウム溶液を用いた。この濃度では、SUS板の表面に形成された不働態膜により電解加工がほとんど進行しない。
Example 1
Using a tungsten electrode having a diameter of 0.35 mm, a SUS plate (SUS304) was drilled. A 0.5 wt% sodium nitrate solution was used as the electrolyte. At this concentration, the electrolytic processing hardly proceeds due to the passive film formed on the surface of the SUS plate.

15Vの低電圧パルス(ON:OFF=1μs:1μs)を印加するとともに、1msごとに約75V、最大電流30A、パルス幅10μsの高電圧パルスを印加して、深さ約0.5mmの穴加工を行った。本実施例の加工断面形状を図5に示す。   Drilling a hole with a depth of about 0.5 mm by applying a low voltage pulse of 15 V (ON: OFF = 1 μs: 1 μs) and applying a high voltage pulse of about 75 V, a maximum current of 30 A and a pulse width of 10 μs every 1 ms. Went. The processed cross-sectional shape of the present example is shown in FIG.

(比較例1)
比較例1では、実施例1に対して高電圧パルスを印加せずに電解加工を行った。また、高電圧パルスを印加しない場合、0.5重量%の電解液濃度では電解加工が進行しないため、濃度5重量%の硝酸ナトリウム溶液を用いた。その他の条件は実施例1と同様とした。比較例1の加工断面形状を図6に示す。
(Comparative Example 1)
In Comparative Example 1, electrolytic processing was performed without applying a high voltage pulse to Example 1. Further, when no high voltage pulse was applied, electrolytic processing did not proceed at an electrolyte solution concentration of 0.5% by weight, so a sodium nitrate solution having a concentration of 5% by weight was used. Other conditions were the same as in Example 1. The processed cross-sectional shape of Comparative Example 1 is shown in FIG.

図5に示された実施例1の加工断面形状は、図6に示された比較例1の加工断面形状と比較して、開口部のだれや加工穴側面の広がりが格段に小さくなっている。このように、加工精度の向上が確認された。   The processed cross-sectional shape of Example 1 shown in FIG. 5 is significantly smaller than the processed cross-sectional shape of Comparative Example 1 shown in FIG. . Thus, the improvement of processing accuracy was confirmed.

また、副次的効果として、比較例1の加工面は黒色であるが、実施例1の加工面は金属光沢を有している。高電圧パルスの印加により、電流密度が高くなったことが金属光沢面が得られた理由と考えられる。   As a secondary effect, the processed surface of Comparative Example 1 is black, but the processed surface of Example 1 has a metallic luster. The reason why the metallic gloss surface was obtained is that the current density was increased by applying the high voltage pulse.

(比較例2)
比較例2では、濃度5重量%の硝酸ナトリウム溶液を用いた以外は、実施例1と同様にして電解加工を行った。比較例2の加工精度は比較例1の場合とほぼ同等であった。
(Comparative Example 2)
In Comparative Example 2, electrolytic processing was performed in the same manner as in Example 1 except that a sodium nitrate solution having a concentration of 5% by weight was used. The processing accuracy of Comparative Example 2 was almost the same as that of Comparative Example 1.

実施例1、比較例1および比較例2から、加工精度の向上には、電解液の濃度を高電圧パルスが印加されない場合にはほとんど電解加工が進行しない程度に設定すること、および高電圧パルスの印加が重要であることが確認された。   From Example 1, Comparative Example 1 and Comparative Example 2, in order to improve the processing accuracy, the concentration of the electrolytic solution is set to such an extent that the electrolytic processing hardly proceeds when the high voltage pulse is not applied, and the high voltage pulse It was confirmed that the application of is important.

(実施例2)
実施例2では、高電圧パルスの印加間隔を1ms毎から50ms毎に変更した以外は、実施例1と同様にして電解加工を行った。実施例2の加工断面形状を図7に示す。高電圧パルスを印加する際に電極20とワーク26とのギャップ間に放電が生じ電極20が消耗する。実施例1での電極消耗率は2.5%であった。この電極消耗のため、実施例1では、加工穴底面の角部がやや丸くなっている。実施例2では、高電圧パルスの印加間隔を1ms毎から50ms毎にすることにより、電極消耗が1%以下となり、加工穴底部の角部の形状がシャープになった。実施例2によれば、電極消耗を抑制するとともに加工精度をさらに向上できることが確認された。なお、加工速度はほとんど低下しなかった。
(Example 2)
In Example 2, electrolytic processing was performed in the same manner as in Example 1 except that the application interval of the high voltage pulse was changed from every 1 ms to every 50 ms. The processed cross-sectional shape of Example 2 is shown in FIG. When a high voltage pulse is applied, a discharge is generated between the gap between the electrode 20 and the workpiece 26 and the electrode 20 is consumed. The electrode consumption rate in Example 1 was 2.5%. Because of this electrode consumption, in Example 1, the corner of the bottom surface of the processed hole is slightly rounded. In Example 2, when the application interval of the high voltage pulse was changed from every 1 ms to every 50 ms, the electrode consumption was reduced to 1% or less, and the shape of the corner of the bottom of the processed hole became sharp. According to Example 2, it was confirmed that electrode consumption can be suppressed and processing accuracy can be further improved. The processing speed hardly decreased.

(実施例3)
高電圧パルスのパルス幅を6μs以下にすると電極20とワーク26とのギャップ間に放電が発生しなくなる。実施例3では、高電圧パルスのパルス幅を4μsとし、放電が観察されない状態で電解加工を行った。その他の条件は実施例1と同様とした。実施例3の加工断面形状を図8に示す。図8に示されるように、放電の有無にかかわらず加工が可能であることが確認できた。この理由は、高電圧パルスを印加すると放電が発生しなくてもワーク26の不働態膜が破られ、表面の電解電流密度が増加して気泡が発生し、不働態膜や陽極生成物を除去するためと考えられる。実施例3によれば、電極20をまったく消耗させることなく高精度な電解加工を行えることが確認された。
(Example 3)
When the pulse width of the high voltage pulse is 6 μs or less, no discharge is generated between the gap between the electrode 20 and the workpiece 26. In Example 3, the electrolytic processing was performed in a state where the pulse width of the high voltage pulse was 4 μs and no discharge was observed. Other conditions were the same as in Example 1. The processed cross-sectional shape of Example 3 is shown in FIG. As shown in FIG. 8, it was confirmed that processing was possible regardless of the presence or absence of electric discharge. The reason for this is that when a high-voltage pulse is applied, the passive film of the workpiece 26 is broken even if no discharge occurs, the electrolytic current density on the surface increases, bubbles are generated, and the passive film and the anode product are removed. It is thought to do. According to Example 3, it was confirmed that highly accurate electrolytic processing can be performed without consuming the electrode 20 at all.

実施形態に係る電解加工装置の全体構成を示す図である。It is a figure which shows the whole structure of the electrolytic processing apparatus which concerns on embodiment. 実施形態に係る電解加工装置に用いられる電源の概略構成を示す図である。It is a figure which shows schematic structure of the power supply used for the electrolytic processing apparatus which concerns on embodiment. 電極・ワーク間に印加される電圧パルスの波形を示す模式図である。It is a schematic diagram which shows the waveform of the voltage pulse applied between an electrode and a workpiece | work. 電解液の濃度と加工速度との関係を示す図である。It is a figure which shows the relationship between the density | concentration of electrolyte solution, and a processing speed. 実施例1の加工断面形状を示す図である。It is a figure which shows the process cross-sectional shape of Example 1. FIG. 比較例1の加工断面形状を示す図である。It is a figure which shows the process cross-sectional shape of the comparative example 1. 実施例2の加工断面形状を示す図である。It is a figure which shows the process cross-sectional shape of Example 2. FIG. 実施例3の加工断面形状を示す図である。It is a figure which shows the process cross-sectional shape of Example 3. FIG.

符号の説明Explanation of symbols

1…電解加工装置、12…ベース、14…支持部、15…Z軸モータ、16…Z軸機構部、18…電極取り付け部、20…電極、22…XYテーブル、23…XYモータ、24…加工槽、26…ワーク、30…タンク、31…循環路、32…ポンプ、34…フィルタ、40…加工電源、41…低電圧パルス回路、42…高電圧パルス回路。
DESCRIPTION OF SYMBOLS 1 ... Electrolytic processing apparatus, 12 ... Base, 14 ... Support part, 15 ... Z-axis motor, 16 ... Z-axis mechanism part, 18 ... Electrode attaching part, 20 ... Electrode, 22 ... XY table, 23 ... XY motor, 24 ... Processing tank, 26 ... work, 30 ... tank, 31 ... circulation path, 32 ... pump, 34 ... filter, 40 ... processing power supply, 41 ... low voltage pulse circuit, 42 ... high voltage pulse circuit.

Claims (3)

被加工物と電極との間に電解液を満たした状態で前記被加工物と前記電極とに電圧パルスを周期的に印加するとともに、前記被加工物に形成された不働態膜を破る、前記電圧パルスより高電圧の高電圧パルスを前記電圧パルスの周期とは異なる周期で印加して前記被加工物を加工する電解加工方法であって、
前記電解液の濃度は、前記電圧パルスのみを印加したときに前記被加工物の電解加工速度が略ゼロとなるように調整されていることを特徴とする電解加工方法。
Periodically applying a voltage pulse to the workpiece and the electrode in a state where an electrolyte is filled between the workpiece and the electrode, and breaking the passive film formed on the workpiece, An electrochemical machining method for machining the workpiece by applying a high voltage pulse having a voltage higher than the voltage pulse at a cycle different from the cycle of the voltage pulse,
The electrolytic processing method is characterized in that the concentration of the electrolytic solution is adjusted so that the electrolytic processing speed of the workpiece becomes substantially zero when only the voltage pulse is applied.
前記高電圧パルスの周期は、前記電圧パルスの周期に比べて長いことを特徴とする請求項1に記載の電解加工方法。   The electrolytic processing method according to claim 1, wherein a period of the high voltage pulse is longer than a period of the voltage pulse. 請求項1または2に記載の電解加工方法の実施に用いられる電解加工装置において、
被加工物と電極との間に電解液を供給する電解液供給手段と、
前記被加工物と前記電極とに電圧パルスを周期的に印加するとともに、前記被加工物に形成された不働態膜を破る、前記電圧パルスより高電圧の高電圧パルスを前記電圧パルスの周期とは異なる周期で印加する電源と、を備えることを特徴とする電解加工装置。

In the electrolytic processing apparatus used for implementation of the electrolytic processing method according to claim 1 or 2,
An electrolyte supply means for supplying an electrolyte between the workpiece and the electrode;
A voltage pulse is periodically applied to the workpiece and the electrode, and a high-voltage pulse higher than the voltage pulse that breaks the passive film formed on the workpiece is a period of the voltage pulse. And a power supply that applies at different periods.

JP2005205798A 2005-07-14 2005-07-14 Electrolytic processing method and electrolytic processing apparatus Active JP4892718B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005205798A JP4892718B2 (en) 2005-07-14 2005-07-14 Electrolytic processing method and electrolytic processing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005205798A JP4892718B2 (en) 2005-07-14 2005-07-14 Electrolytic processing method and electrolytic processing apparatus

Publications (2)

Publication Number Publication Date
JP2007021632A true JP2007021632A (en) 2007-02-01
JP4892718B2 JP4892718B2 (en) 2012-03-07

Family

ID=37783048

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005205798A Active JP4892718B2 (en) 2005-07-14 2005-07-14 Electrolytic processing method and electrolytic processing apparatus

Country Status (1)

Country Link
JP (1) JP4892718B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011065377A1 (en) * 2009-11-25 2011-06-03 国立大学法人富山大学 Discharge detection method for electrochemical machining apparatus, and electrochemical machining apparatus
CN102909445A (en) * 2012-10-31 2013-02-06 海宁市新艺机电有限公司 ECM (Electrochemical Machining) device and machining method of electrochemical machining narrow groove
JP2014223716A (en) * 2013-04-19 2014-12-04 国立大学法人東京農工大学 Electrolytic processing method, tool electrode for electrolytic processing, and electrolytic processing device
JP2016148134A (en) * 2014-10-27 2016-08-18 ヒューゴ ケルン ウント リーバース ゲーエムベーハー ウント ツェーオーカーゲー プラティネン−ウント フェデルンファブリッヒHugo Kern und Liebers GmbH & Co.KG Platinen− und Federnfabrik Needle or sinker of textile machine and manufacturing method of needle or sinker of textile machine
WO2017083079A1 (en) * 2015-11-10 2017-05-18 Westinghouse Electric Company Llc Modular electrochemical machining apparatus
CN114309839A (en) * 2020-09-30 2022-04-12 孙朝阳 Micro deep hole manufacturing process
CN116160074A (en) * 2023-01-12 2023-05-26 广东工业大学 Vein-like dynamic micro-electrochemical machining device and method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5372290A (en) * 1976-12-10 1978-06-27 Inoue Japax Res Inc Electric machining equipment
JPH09285917A (en) * 1996-04-18 1997-11-04 Denso Corp Electrochemical machining method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5372290A (en) * 1976-12-10 1978-06-27 Inoue Japax Res Inc Electric machining equipment
JPH09285917A (en) * 1996-04-18 1997-11-04 Denso Corp Electrochemical machining method

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011065377A1 (en) * 2009-11-25 2011-06-03 国立大学法人富山大学 Discharge detection method for electrochemical machining apparatus, and electrochemical machining apparatus
CN102909445A (en) * 2012-10-31 2013-02-06 海宁市新艺机电有限公司 ECM (Electrochemical Machining) device and machining method of electrochemical machining narrow groove
JP2014223716A (en) * 2013-04-19 2014-12-04 国立大学法人東京農工大学 Electrolytic processing method, tool electrode for electrolytic processing, and electrolytic processing device
JP2016148134A (en) * 2014-10-27 2016-08-18 ヒューゴ ケルン ウント リーバース ゲーエムベーハー ウント ツェーオーカーゲー プラティネン−ウント フェデルンファブリッヒHugo Kern und Liebers GmbH & Co.KG Platinen− und Federnfabrik Needle or sinker of textile machine and manufacturing method of needle or sinker of textile machine
WO2017083079A1 (en) * 2015-11-10 2017-05-18 Westinghouse Electric Company Llc Modular electrochemical machining apparatus
CN108349033A (en) * 2015-11-10 2018-07-31 西屋电气有限责任公司 Modular electrical chemical process equipment
CN108349033B (en) * 2015-11-10 2020-07-31 西屋电气有限责任公司 Modular electrochemical machining apparatus
CN111774680A (en) * 2015-11-10 2020-10-16 西屋电气有限责任公司 Modular electrochemical machining apparatus
CN114309839A (en) * 2020-09-30 2022-04-12 孙朝阳 Micro deep hole manufacturing process
CN116160074A (en) * 2023-01-12 2023-05-26 广东工业大学 Vein-like dynamic micro-electrochemical machining device and method
CN116160074B (en) * 2023-01-12 2024-04-09 广东工业大学 Vein-like dynamic micro-electrochemical machining device and method

Also Published As

Publication number Publication date
JP4892718B2 (en) 2012-03-07

Similar Documents

Publication Publication Date Title
JP4892718B2 (en) Electrolytic processing method and electrolytic processing apparatus
JP3581348B2 (en) Electrolytic discharge machining apparatus and machining method
Kuo et al. Wire electrochemical discharge machining (WECDM) of quartz glass with titrated electrolyte flow
Han et al. Effects of polarization on machining accuracy in pulse electrochemical machining
JP6195030B2 (en) Electrolytic processing apparatus and electrolytic processing method
Ho et al. Flow-jet-assisted electrochemical discharge machining for quartz glass based on machine vision
CN110561627B (en) Cutting processing device and method applied to boron carbide
JPS62255013A (en) Electro-chemical machining device
CN100418685C (en) Electric spark forming processing machine tool for processing non-conductive hard material and its processing method
CN102528187B (en) Reversed alignment electrochemical discharge machining method and device
CN106270842A (en) A kind of processing unit (plant) suppressing PET microfiber dispersion corrosion and method
CN111151831A (en) Method and device for bipolar electrodischarge machining of workpieces
WO2009147856A1 (en) Electric discharge machining apparatus and electric discharge machining method
KR100739298B1 (en) The apparatus for electrolytic polishing and mask thereused
WO2002102538A1 (en) Wire electric-discharge machining method and device
CN211072130U (en) Electrode for processing small hole in deep part of workpiece
KR20190047408A (en) Apparatus for electrolytic processing
US8956527B2 (en) Method for the electrochemical machining of a workpiece
CN108284259B (en) A kind of half immersion wire electrochemical micro-machining fixture and radial fliud flushing method
JP6969774B2 (en) Multi-tasking equipment
JPH11197950A (en) Small-diameter hole working device for printed circuit board
KR100564162B1 (en) Jet-type cnc small hole electric discharge machine in which work piece half submerged
Vaishya Review on Micromachining of Pyrex glass using Wire-ECDM
CN218575186U (en) Adjustable device for electrochemical deburring of inner hole of oil injector body
JP2005224887A (en) Electric discharge machining and device by electrical insulator sheathed electrode using electric discharge machining fluid

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20080609

Free format text: JAPANESE INTERMEDIATE CODE: A621

RD03 Notification of appointment of power of attorney

Effective date: 20080609

Free format text: JAPANESE INTERMEDIATE CODE: A7423

A977 Report on retrieval

Effective date: 20100810

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20100817

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101013

A131 Notification of reasons for refusal

Effective date: 20110419

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Effective date: 20110510

Free format text: JAPANESE INTERMEDIATE CODE: A523

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Effective date: 20111122

Free format text: JAPANESE INTERMEDIATE CODE: A01

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150