JP2007020986A - Top board for medical radiological equipment and x-ray ct apparatus - Google Patents

Top board for medical radiological equipment and x-ray ct apparatus Download PDF

Info

Publication number
JP2007020986A
JP2007020986A JP2005209619A JP2005209619A JP2007020986A JP 2007020986 A JP2007020986 A JP 2007020986A JP 2005209619 A JP2005209619 A JP 2005209619A JP 2005209619 A JP2005209619 A JP 2005209619A JP 2007020986 A JP2007020986 A JP 2007020986A
Authority
JP
Japan
Prior art keywords
top plate
plate
subject
surface plate
medical radiation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005209619A
Other languages
Japanese (ja)
Inventor
Takeshi Nishizawa
健 西澤
Yoshito Kuroda
義人 黒田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2005209619A priority Critical patent/JP2007020986A/en
Publication of JP2007020986A publication Critical patent/JP2007020986A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Apparatus For Radiation Diagnosis (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To improve the precision of an image and the function of an apparatus and to reduce the radiation exposed dose of a patient. <P>SOLUTION: This top board 10 for the medical radiological equipment includes an upper face board 12a for mounting a recumbent subject and a lower face board 12b disposed oppositely to the upper face board; and is used by making a driving member and/or a support member contact with the lower face board and being reciprocated in a cantilever state in the subject's height direction. This top board is characterized in that the upper face board and the lower face board are fiber-reinforced resin moldings satisfying a relation expressed by an expression (1), one side in the height direction is a radioscopic part irradiating the radiation for diagnosing the subject, the other side is a fixed non-radioscopic part for achieving the cantilever state, and at least the radioscopic part has an aluminium equivalent weight (an index of X-ray transmission) of 1 mm or less. C<SB>U</SB>/C<SB>L</SB><1 (1). In the expression, C<SB>U</SB>expresses subject's height directional elasticity coefficient EuO/cross-sectional elasticity coefficient Eu90 and C<SB>L</SB>expresses the subject's height directional elasticity coefficient ELO in the lower face board/cross-sectional elasticity coefficient EL90. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、例えばX線CT装置やX線撮影装置などの医療用放射線機器において、透視撮影する患者を移動するために用いる天板に関するものであり、放射線透過性が均一かつ良好な天板およびX線CT装置を供給するものである。  The present invention relates to a top plate used for moving a patient to be fluoroscopically imaged, for example, in a medical radiation apparatus such as an X-ray CT apparatus or an X-ray imaging apparatus. An X-ray CT apparatus is supplied.

X線CT装置やX線撮影装置など医療用放射線機器による患者の画像診断は、現代の医療分野では必要不可欠になっており、画像の高精度化や装置の高機能化、患者の放射線被爆量低減などが望まれている。これら要望を満足するため、患者が横たわる寝台である医療用放射線機器の天板においては、広範囲を一度に撮影するための長尺化と、患者位置精度を高めるための高剛性化・高強度化、優れた放射線透過性などが強く要求されている。例えばX線CT装置の場合、装置は、天板を上下・水平方向に移動させる駆動部、断層画像の構成に必要なデータを収集する走査ガントリ(撮影部)、制御部、電源ユニットから構成されるが、患者は、天板が両持ち状態で最も低い位置にあるとき乗り降りし、横たわった状態で走査ガントリの開口部を身長方向に通過しX線撮影される。従って、撮影時の天板は、駆動部から突き出た状態、つまり片持ち状態となり、天板には患者体重による曲げモーメントが作用することになる。このことから、上述した天板要求を満足するには、患者身長方向の曲げ剛性、曲げ強度を高めた天板設計が非常に重要となる。  Image diagnosis of patients using medical radiology equipment such as X-ray CT equipment and X-ray imaging equipment is indispensable in the modern medical field. Higher image accuracy, higher functionality of the device, and radiation exposure to patients Reduction is desired. In order to satisfy these demands, the top plate of medical radiation equipment, which is a bed on which the patient lies, is made longer to capture a wide area at once, and high rigidity and strength to improve patient position accuracy. There is a strong demand for excellent radiation transparency. For example, in the case of an X-ray CT apparatus, the apparatus includes a drive unit that moves the top and bottom and the horizontal direction, a scanning gantry (imaging unit) that collects data necessary for constructing a tomographic image, a control unit, and a power supply unit. However, the patient gets on and off when the top plate is at the lowest position in the both-sided state, and passes through the opening of the scanning gantry in the height direction in the lying state, and X-rays are taken. Accordingly, the top plate at the time of photographing is in a state of protruding from the drive unit, that is, a cantilever state, and a bending moment due to the patient weight acts on the top plate. For this reason, in order to satisfy the above-described requirements for the top plate, it is very important to design the top plate with increased bending rigidity and bending strength in the patient height direction.

一般に医療用放射線機器の天板は、プラスチック発泡体などをコア材とし、コア外側のスキン層に繊維強化樹脂(以下FRPと記す)を用いたサンドイッチ構造体で構成されている。特にスキン層は、アルミニウムや汎用樹脂、木材など一般材料に比べて、比強度・比弾性率が高く、放射線透過性にも優れている炭素繊維を強化繊維とした炭素繊維強化樹脂(以下CFRPと記す)を用いている場合が多い。かかる構成の天板において、曲げ剛性、曲げ強度を高めるため、使用材料の検討だけでなく、天板厚みの増大やCFRPスキン層厚みの増大など天板形状の検討も行われている。しかしながら、厚みを増大させると天板の放射線透過性が悪化するため、診断に際して放射線強度をより高く設定する必要が生じ、結果として患者の放射線被爆の問題が生じる。さらには、天板重量増大によるハンドリング不具合や、天板価格の上昇も生じる。  In general, a top plate of a medical radiation device is composed of a sandwich structure using a plastic foam or the like as a core material and using a fiber reinforced resin (hereinafter referred to as FRP) for a skin layer outside the core. In particular, the skin layer is a carbon fiber reinforced resin (hereinafter referred to as CFRP) made of carbon fiber, which has higher specific strength / specific elastic modulus and excellent radiation transmission than general materials such as aluminum, general-purpose resin, and wood. Are often used). In order to increase the bending rigidity and bending strength of the top plate having such a configuration, not only the materials used but also the top plate shape such as an increase in the top plate thickness and an increase in the CFRP skin layer thickness have been studied. However, if the thickness is increased, the radiation transparency of the top plate is deteriorated, so that it is necessary to set the radiation intensity higher in the diagnosis, resulting in a problem of radiation exposure of the patient. Furthermore, handling troubles due to an increase in the weight of the top plate and an increase in the top plate price also occur.

そこで、天板曲げ剛性、曲げ強度を低下させることなく、天板またはスキン層厚みを低減する手段の一つとして、患者を移動させる時、すなわち片持ち状態で天板に曲げモーメントが作用する時に、天板が凸側(引張側)となる上面側スキンを高い引張強度、引張弾性率を発現できる炭素繊維によるCFRPで構成し、凹側(圧縮側)となる下面側スキンを高い圧縮強度、圧縮弾性率を発現できる炭素繊維によるCFRPで構成することが提案されている(例えば、特許文献1)。この提案は、天板全体として見た場合の変形に着目し、CFRPスキン層の上下それぞれに適した炭素繊維を用いることにより、効率的に高剛性、高強度を達成しようとするものである。しかしながら、スキン層のみに着目すると、力学上明らかなように、凸側となる上面側スキンにおいても、内層側では圧縮応力が発生している。従って、引張強度、引張弾性率のみに着目して上面側スキン層の炭素繊維を選定することは、必ずしも天板またはスキン層厚みを最適化しているとは言えない。凹側となる下面側スキン層についても、同様である。   Therefore, when moving the patient as a means to reduce the thickness of the top plate or skin layer without reducing the bending strength and bending strength of the top plate, that is, when a bending moment acts on the top plate in a cantilevered state. The upper skin with the top plate on the convex side (tensile side) is made of CFRP with carbon fiber capable of expressing high tensile strength and tensile modulus, and the lower skin on the concave side (compression side) with high compressive strength, It has been proposed to use CFRP made of carbon fiber capable of expressing a compression modulus (for example, Patent Document 1). This proposal pays attention to deformation when viewed as the whole top plate, and attempts to achieve high rigidity and high strength efficiently by using carbon fibers suitable for the upper and lower sides of the CFRP skin layer. However, when focusing only on the skin layer, as is apparent from the mechanics, even in the upper surface side skin that is the convex side, compressive stress is generated on the inner layer side. Therefore, selecting the carbon fiber for the upper skin layer by paying attention only to the tensile strength and the tensile modulus cannot always be said to optimize the top plate or skin layer thickness. The same applies to the lower surface side skin layer which is the concave side.

天板またはスキン層厚みを低減する別の手段として、複数のFRP層からなるスキン層において、曲げモーメントが作用したときに、引張側となる上面側スキン層では、最もコア側に位置するFRP層に、そのFRP層の次に位置するFRP層よりも圧縮強度の高いFRP層を配置し、圧縮側となる下面側スキン層では、最もコア側に位置するFRP層に、そのFRP層の次に位置するFRP層よりも引張強度の大きいFRP層を配置することが提案されている(例えば、特許文献2)。この提案は、片持ち状態で天板に曲げモーメントが作用する時の上面側および下面側スキン層の変形を考慮し、コアに対する位置に応じて、スキン層を構成するFRP層の圧縮強度と引張強度を決定しており、天板またはスキン層厚み低減には非常に効果的である。しかしながら、上面側シェルに比べて下面側シェルの厚みが小さく、患者身長方向の剛性が低い場合、下面側シェルと接する駆動部材や支持部材の位置において、下面側シェルとコアが局所的に曲げられるため、往復移動を繰り返すにことにより下面シェルの面外せん断やコアの圧縮による疲労破壊が生じることがある。疲労破壊を防止し、長期間の繰り返しX線撮影において天板が機械的要求仕様を満足するには、下面シェルの厚みを増やす必要があるため、本提案も、スキン層の総厚みを最適化しているとは言い難い。
実開平5−62208号公報 特開2004−216021号公報
As another means for reducing the thickness of the top plate or the skin layer, in the skin layer composed of a plurality of FRP layers, when the bending moment is applied, the FRP layer located on the most core side in the upper side skin layer serving as the tension side In addition, an FRP layer having higher compressive strength than the FRP layer positioned next to the FRP layer is disposed. In the lower skin layer on the compression side, the FRP layer positioned closest to the core side is placed next to the FRP layer. It has been proposed to dispose an FRP layer having a higher tensile strength than the positioned FRP layer (for example, Patent Document 2). This proposal takes into account the deformation of the upper and lower skin layers when a bending moment acts on the top plate in a cantilever state, and depending on the position relative to the core, the compressive strength and tensile strength of the FRP layer constituting the skin layer The strength is determined, which is very effective for reducing the thickness of the top plate or skin layer. However, when the thickness of the lower surface side shell is smaller than that of the upper surface side shell and the rigidity in the patient's height direction is low, the lower surface side shell and the core are locally bent at the position of the drive member and the support member in contact with the lower surface side shell. Therefore, repeated reciprocation may cause fatigue failure due to out-of-plane shearing of the lower shell and core compression. This proposal also optimizes the total thickness of the skin layer because it is necessary to increase the thickness of the lower shell in order to prevent fatigue failure and to satisfy the mechanical requirements of the top plate in long-term repeated X-ray photography. It's hard to say.
Japanese Utility Model Publication No. 5-62208 Japanese Patent Laid-Open No. 2004-216021

本発明は、従来の天板の上述した問題点に鑑みてなされたもので、医療用放射線機器による患者の画像診断において、画像の高精度化や装置の高機能化、患者の放射線被爆量低減を図るため、放射線透過性が均一かつ良好な医療用放射線機器天板およびX線CT装置を供給することである。   The present invention has been made in view of the above-mentioned problems of the conventional top plate, and in image diagnosis of a patient using a medical radiological device, higher accuracy of the image, higher functionality of the device, and reduction of the radiation exposure amount of the patient. Therefore, it is to provide a medical radiation equipment top plate and an X-ray CT apparatus with uniform and good radiation transmission.

上記課題を解決するために、本発明の医療用放射線機器天板は、横臥状態の被検者を載せる上面板と、該上面板に対向配置した下面板を含み、駆動部材および/または支持部材を該下面板に接触させ前記被検者の身長方向に片持ち状態で往復移動させて使用するものであって、該上面板と該下面板は(1)式で表す関係が成り立つ繊維強化樹脂成形品であり、かつ、身長方向の片側が、被検者診断のために放射線を照射する放射線透視部、もう片側が、前記片持ち状態を実現するために固定する非透視部であり、少なくとも該放射線透視部ではX線透過性の指標であるアルミ当量が1mm以下であることを特徴とするものである。   In order to solve the above-mentioned problems, the medical radiation device top plate of the present invention includes an upper surface plate on which a subject in a lying position is placed, and a lower surface plate disposed opposite to the upper surface plate, and a driving member and / or a supporting member. In contact with the lower surface plate and can be reciprocated in a cantilevered state in the height direction of the subject, the upper surface plate and the lower surface plate being a fiber reinforced resin that satisfies the relationship represented by the formula (1) A molded article, and one side in the height direction is a radioscopic part that emits radiation for diagnosis of the subject, and the other side is a non-fluoroscopic part that is fixed to realize the cantilever state, at least The radiation fluoroscopic portion is characterized in that an aluminum equivalent which is an index of X-ray transmission is 1 mm or less.

U/CL < 1 … (1)
式中
U:上面板における、被検者の身長方向弾性率Eu0/断面方向弾性率Eu90
L:下面板における、被検者の身長方向弾性率EL0/断面方向弾性率EL90
なお、天板の放射線透過性を良好にするため、上面板と下面板はそれぞれ、連続した炭素繊維を強化繊維とした繊維強化樹脂成形品であることが好ましい。
C U / C L <1 (1)
In the formula, C U : the height elastic modulus Eu0 / cross-sectional elastic modulus Eu90 of the subject on the top plate
C L : Height elastic modulus EL0 / cross-sectional elastic modulus EL90 of the subject on the bottom plate
In order to improve the radiation transmittance of the top plate, the upper surface plate and the lower surface plate are each preferably a fiber reinforced resin molded product using continuous carbon fibers as reinforcing fibers.

また、天板および天板スキン層の厚みを低減するには、上面板、下面板それぞれの被検者の身長方向と断面方向の弾性率比CU、CLに(2)式で表す関係が成り立つことが好ましい。 Further, in order to reduce the thickness of the top plate and the top plate skin layer, the relationship expressed by the formula (2) to the elastic modulus ratios C U and C L of the subject in the height direction and the cross-sectional direction of the upper surface plate and the lower surface plate, respectively. Is preferably satisfied.

U/CL < 0.8 … (2)
上述した本発明の天板は、上面板の身長方向長さが2.0m以上3.5m以下であり、かつ、片持ち状態のスパンが上面板長さの70%の位置において、上面板全面に等分布荷重を作用させたときの破壊荷重が9800N以上である場合に、天板およびスキン層の厚みを効果的に低減できる。
C U / C L <0.8 (2)
In the above-described top plate of the present invention, the length of the top plate in the height direction is 2.0 m or more and 3.5 m or less, and the cantilever span is 70% of the top plate length. The thickness of the top plate and the skin layer can be effectively reduced when the breaking load when the evenly distributed load is applied to 9800 N or more.

さらに、アルミ当量の最小化を図る最も好ましい形態として、上面板と下面板が各断面方向の両端部で連結しており、少なくとも放射線透視部が中空構造であることが望ましい。   Further, as the most preferable form for minimizing the aluminum equivalent, it is desirable that the upper surface plate and the lower surface plate are connected at both ends in each cross-sectional direction, and at least the radioscopic portion has a hollow structure.

天板の放射線透視部が中空構造の場合には、非透視部に補強部材を配置していることが好ましい。  When the radiation see-through part of the top plate has a hollow structure, it is preferable that a reinforcing member is disposed in the non-see-through part.

なお、補強部材の少なくとも一部は、上面板と下面板の両方に連結しており、上面板に横臥した被検者の体重が、補強部材を介して下面板に伝播することが好ましい。  In addition, it is preferable that at least a part of the reinforcing member is connected to both the upper plate and the lower plate, and the weight of the subject lying on the upper plate is transmitted to the lower plate through the reinforcing member.

また、被検者の身長方向に片持ち状態で往復移動させて使用する場合、放射線透視部と非透視部の曲げ剛性に大きな差があると、放射線透視部と非透視部の境界部が駆動部材や支持部材を通過する際に、天板たわみに急激な変化を生じる可能性がある。たわみの急激な変化は、被検者の上下方向位置を変動させ、診断画像の画質を低下させるだけでなく、乗り心地の悪化も招き、被検者に不安感を与える。そこで、緩やかな天板たわみ変化を実現するため、非透視部の天板端部から放射線透視部に向かって、補強部材の被検者身長方向の曲げ剛性が、一定であるかあるいは減少していることが好ましい。   In addition, when used in a cantilevered state in the cantilever direction of the subject, if there is a large difference in the bending rigidity between the radioscopic part and the non-fluoroscopic part, the boundary between the radioscopic part and the non-fluoroscopic part is driven. When passing through a member or a support member, there is a possibility that a rapid change occurs in the deflection of the top plate. A sudden change in the deflection not only changes the vertical position of the subject and lowers the image quality of the diagnostic image, but also causes a deterioration in the ride comfort, giving the subject anxiety. Therefore, in order to realize a gradual change in the top plate deflection, the bending stiffness of the reinforcing member in the height direction of the subject is constant or decreased from the top plate end of the non-transparent part toward the radioscopic part. Preferably it is.

また、天板総重量の低減による医療用放射線機器への組立・メンテナンス性の向上を図るため、補強部材の材質にアルミニウムを用いていることが好ましい。別材質として、補強部材の材質に繊維強化樹脂を用いても良い。   Moreover, in order to improve the assembly / maintenance property to the medical radiation equipment by reducing the total weight of the top plate, it is preferable to use aluminum as the material of the reinforcing member. As another material, a fiber reinforced resin may be used as the material of the reinforcing member.

本発明は、例えばX線CT装置やX線撮影装置など医療用放射線機器において、被検者を移動するために用いる天板に関するものであり、放射線透過性が均一かつ良好な医療用放射線機器天板およびX線CT装置を供給するものである。本発明の天板およびX線CT装置を用いることにより、高精度な画像による診断や、被検者のX線被爆量が少ない安全な診断などを行うことができる。   The present invention relates to a top plate used for moving a subject in a medical radiology apparatus such as an X-ray CT apparatus and an X-ray imaging apparatus, for example. A plate and an X-ray CT apparatus are supplied. By using the top plate and the X-ray CT apparatus of the present invention, it is possible to perform diagnosis with high accuracy images, safe diagnosis with a small amount of X-ray exposure of the subject, and the like.

本発明の医療用放射線機器天板(以下天板と略す)は、横臥状態の被検者を載せ、該被検者の身長方向に片持ち状態で往復移動させて使用するものである。ここで、横臥状態とは、狭義の横臥のみではなく、仰臥、伏臥等も含む横たわっている状態全般を指す。かかる使用に供するため、天板の断面は、三日月状または、矩形や台形を基本とした形状を有する。  The medical radiation device top plate (hereinafter abbreviated as “top plate”) of the present invention is used by placing a subject in a lying state and reciprocating it in a cantilever state in the height direction of the subject. Here, the recumbent state refers not only to a recumbent in a narrow sense but also to the entire lying state including the supine, prone and the like. In order to provide such a use, the cross section of the top plate has a crescent shape or a shape based on a rectangle or a trapezoid.

上面板は、被検者の姿勢を安定な状態に保つため、被検者側の面が凹形の曲面であることが好ましい。なお、上面板には、強制的に被検者の姿勢を固定するためのベルトなどを取り付けても良い。  In order to keep the posture of the subject in a stable state, the upper surface plate preferably has a concave curved surface on the subject side. Note that a belt or the like for forcibly fixing the posture of the subject may be attached to the upper surface plate.

下面板は、上面板に対向配置され、身長方向に片持ち状態で往復移動させるときの、駆動部材および/または支持部材を接触させ支える機能を有する。なお、下面板と上面板は、直接連結しても、他の部材を介して連結しても良い。形状としては、断面が円弧や放物線となる様な曲面で直接上面板と連結する様な曲面板や、平面板の両端に上面板と連結する側面板を有する平面板を連結した複合面形状のものが挙げられるが、駆動部材や支持部材の形状単純化および取り付け部、接触部での上下方向位置安定化の観点から、平面の両端に上面板と連結する側面板を有する複合面形状であることが好ましい。下面板を複合面形状とする場合には、上面板と対向配置される平面板と側面板の厚み・積層構成を同様とした場合、成形条件の自由度が向上する点で好ましく、上面板と対向配置される平面板と側面板の厚み・積層構成をそれぞれ別設計した場合、駆動部材や支持部材から受ける反力の均一化にも対応できることから好ましい。  The lower surface plate is disposed to face the upper surface plate and has a function of contacting and supporting the driving member and / or the supporting member when reciprocating in a cantilever state in the height direction. The lower surface plate and the upper surface plate may be directly connected or may be connected via another member. As a shape, it is a curved surface plate that is directly connected to the upper surface plate with a curved surface whose cross section is an arc or a parabola, or a composite surface shape in which a flat plate having side plates connected to the upper surface plate at both ends of the flat plate is connected. Although it can be mentioned, from the viewpoint of simplification of the shape of the drive member and the support member and stabilization of the vertical position at the attachment portion and the contact portion, it is a composite surface shape having side plates connected to the upper surface plate at both ends of the plane. It is preferable. In the case where the lower surface plate has a composite surface shape, it is preferable in terms of improving the degree of freedom in molding conditions when the thickness and the laminated structure of the flat plate and the side plate arranged opposite to the upper surface plate are the same. When the thickness and the laminated structure of the flat plate and the side plate arranged opposite to each other are designed separately, it is preferable because it can cope with the uniform reaction force received from the drive member and the support member.

上面板と下面板は画像の高精度化や医療用放射線機器の高機能化、患者の放射線被爆量低減などの要望を満足できる強度剛性と放射線透過性を兼ね備えるため、CU/CLが1未満である繊維強化樹脂成形品(以下FRPと記す)であることが必要である。 Upper plate and the lower plate is high performance of high precision and medical radiographic equipment image, for combine strength and rigidity and radiolucent capable of satisfying demands such as radiation exposure dose reduction the patient, C U / C L is 1 It is necessary to be a fiber reinforced resin molded product (hereinafter referred to as FRP) which is less than the above.

ここで、CUは、上面板における、被検者の身長方向弾性率Eu0を、断面方向弾性率Eu90で除した値を、CLは、下面板における、被検者の身長方向弾性率EL0を、断面方向弾性率EL90で除した値を表す。CU/CLが1以上となると、上面板が断面方向に変形し易くなり、被検者体重による天板断面の変形(つぶれ)が問題となる。かかる観点からCU/CLが0.8未満であればより好ましい。ここで、弾性率は、長さ200mm×幅25mmのサンプルを上面板・下面板から切り出して試験片を製作し、JISに従い測定する。炭素繊維強化樹脂の場合、引張試験方法はJIS K7073、曲げ試験方法はJIS K7074に従う。但し、試験片厚みは、上面板と下面板のそれぞれの厚みとする。また、上面板、下面板が曲面である場合は、JISに準じた試験片サイズとする。サンプルを切り出す位置は、上面板は断面方向の中央部、下面板は曲面の場合は断面方向中央部から、平面板と側面板を含む複合面形状の場合は、上面板と対向する平面板の断面方向中央部とする。 Here, C U is the upper plate, the height direction modulus Eu0 of the subject, the value obtained by dividing the cross-sectional direction modulus Eu90, C L is the lower plate, the subject's height direction modulus EL0 Is a value obtained by dividing by the modulus of elasticity in the cross-section direction EL90. When C U / C L is 1 or more, the upper surface plate is easily deformed in the cross-sectional direction, and deformation (collapse) of the cross-section of the top plate due to the body weight of the subject becomes a problem. From this viewpoint, it is more preferable that C U / C L is less than 0.8. Here, the elastic modulus is measured in accordance with JIS by cutting a sample having a length of 200 mm and a width of 25 mm from a top plate and a bottom plate to produce a test piece. In the case of carbon fiber reinforced resin, the tensile test method conforms to JIS K7073 and the bending test method conforms to JIS K7074. However, the specimen thickness is the thickness of each of the upper surface plate and the lower surface plate. Moreover, when the upper surface plate and the lower surface plate are curved surfaces, the test piece size conforms to JIS. The sample is cut out from the center in the cross-section direction for the top plate, from the center in the cross-section if the bottom plate is curved, or from the plane plate facing the top plate in the case of a composite surface shape including a plane plate and side plates. The central part in the cross-sectional direction.

また、天板を被検者の身長方向で考えると、放射線透視部と非透視部の二つの領域に区分できる。放射線透視部は、診断するために放射線を照射する領域であり、用途にもよるが、天板の片側端部から天板全長の50〜70%を占めることが多い。透視範囲の拡大を目的に天板長尺化が進み、最近では放射線透視部長さが1.5m以上の天板も存在する。非透視部は、放射線透視部以外の天板領域のことであり、非透視部の天板端部側において、天板は医療用放射線機器の駆動部材に固定されている。  Further, when the top plate is considered in the height direction of the subject, it can be divided into two regions, a radioscopic portion and a non-fluoroscopic portion. The radioscopic part is a region that emits radiation for diagnosis, and depending on the application, it often occupies 50 to 70% of the total length of the top plate from one end of the top plate. The length of the top plate has been increased for the purpose of expanding the fluoroscopic range, and recently, there is a top plate having a radioscopic portion length of 1.5 m or more. The non-transparent portion is a top plate area other than the radioscopic portion, and the top plate is fixed to a driving member of a medical radiation device on the top plate end side of the non-fluoroscopic portion.

また、本発明の天板は、患者の放射線被爆量低減の観点から少なくとも該放射線透視部ではX線透過性の指標であるアルミ当量が1mm以下であることが必要である。アルミ当量とは、X線の透過性をアルミニウムの透過性と比較し、何mmのアルミニウム板の板厚に相当するかで示す指標である。  In addition, the top plate of the present invention needs to have an aluminum equivalent of 1 mm or less, which is an index of X-ray transmission, at least in the radioscopic part from the viewpoint of reducing the radiation exposure dose of the patient. The aluminum equivalent is an index indicating how many mm of the aluminum plate corresponds to the X-ray permeability compared with the aluminum permeability.

FRPは、異方性の設計と同時に、強化繊維とマトリクス樹脂により物性の設計ができることが特徴であるが、本発明においては、強度剛性と共に良好な放射線透過性を得るために、上面板と下面板はそれぞれ、連続した炭素繊維を強化繊維とすることが好ましい。   FRP is characterized in that the physical properties can be designed by reinforcing fibers and matrix resin simultaneously with the anisotropic design, but in the present invention, in order to obtain good radiation transmission as well as strength and rigidity, Each face plate preferably uses continuous carbon fibers as reinforcing fibers.

さらに本発明の天板は、上面板の身長方向長さが2.0m以上3.5m以下であり、かつ、片持ち状態のスパンが上面板長さの70%の位置において、上面板全面に等分布荷重を作用させたときの破壊荷重が9800N以上である場合に、天板およびスキン層の厚みを効果的に低減できるものであるが、アルミ当量の最小化を図るために、上面板と下面板が各断面方向の両端部で連結しており、少なくとも放射線透視部が中空構造である形態が最も好ましい。   Further, the top plate of the present invention has a height direction length of the upper surface plate of 2.0 m or more and 3.5 m or less, and the span of the cantilever state is 70% of the length of the upper surface plate. When the breaking load when the uniformly distributed load is applied is 9800 N or more, the thickness of the top plate and the skin layer can be effectively reduced. In order to minimize the aluminum equivalent, It is most preferable that the bottom plate is connected at both ends in each cross-sectional direction, and at least the radioscopic portion has a hollow structure.

以下、本発明一実施例を図面を用いて、具体的に説明する。なお、各図は、代表的な例を表すものであり、本発明は、これらに限定されるものではない。  Hereinafter, an embodiment of the present invention will be specifically described with reference to the drawings. Each figure represents a representative example, and the present invention is not limited to these.

図1は、医療用放射線機器における本発明の天板の動作例を示す概略図、図2は、一部破断部を有する、本発明の一実施形態である天板の斜視図、図3〜11に天板を身長方向および断面方向で切断した断面図、図12〜14に本発明の天板を製造するためのプロセスおよび設備の概略図を示す。   FIG. 1 is a schematic view showing an operation example of the top plate of the present invention in a medical radiation apparatus, FIG. 2 is a perspective view of the top plate according to an embodiment of the present invention, having a partially broken portion, and FIGS. Sectional drawing which cut | disconnected the top plate in the height direction and the cross-sectional direction to 11 is shown, and the schematic for the process and equipment for manufacturing the top plate of this invention to FIGS. 12-14 is shown.

本発明の天板10は、図1に示す様に、医療用放射線機器の駆動部20の移動部材21にボルト等により端部を固定した片持ち状態で、上面側に横臥状態の被検者30を載せ、被検者身長方向Xに往復移動させて使用する。このため天板10には、鉛直方向Z下向きの曲げモーメントが作用するが、鉛直方向Zの天板たわみを小さくすると共に、身長方向Xの往復移動を安定させるため、天板10の下面側は支持部材22により支持されていることが多い。一般に支持部材22には、金属製や樹脂製のロールが用いられている。   As shown in FIG. 1, the top plate 10 of the present invention is a subject in a cantilever state in which an end portion is fixed to a moving member 21 of a driving unit 20 of a medical radiation device with a bolt or the like, and lying on the upper surface side. 30 is used by reciprocating in the height direction X of the subject. For this reason, a downward bending moment in the vertical direction Z acts on the top plate 10, but in order to reduce the top plate deflection in the vertical direction Z and stabilize the reciprocation in the height direction X, the lower surface side of the top plate 10 is It is often supported by the support member 22. Generally, a metal or resin roll is used for the support member 22.

なお、天板10は、片側端部から天板全長の50〜70%程度を占め、被検者30を診断するために放射線を照射する放射線透視部10aと、放射線透視部10a以外の端部側で駆動部20の移動部材21に固定している非透視部10bの二つの領域に区分できる。近年では、放射線機器の高機能化に伴い広範囲の撮影が要求されており、天板10長さが2.0m以上3.5m以下、放射線透視部10a長さが1.5m以上であるものが主流となっている。   In addition, the top plate 10 occupies about 50 to 70% of the total length of the top plate from one side end portion, and a radioscopic portion 10a that irradiates radiation to diagnose the subject 30 and an end portion other than the radiographic portion 10a. It can be divided into two regions of the non-transparent part 10b fixed to the moving member 21 of the drive part 20 on the side. In recent years, radiography has been required to have a wide range of imaging with higher functionality, and the top plate 10 has a length of 2.0 m to 3.5 m and the radioscopic portion 10a has a length of 1.5 m or more. It has become mainstream.

かかる使用に対応するため、天板10は、厚みが20〜70mm程度、幅が300〜600mm程度とし、9800N以上の破壊強度を有すれば、被検者30の体重に対して4倍以上の強度安全率を採った場合でも、体重が250kgの被検者まで対応可能であり、事実上あらゆる体重の被検者に対しても対応することができることから好ましい。  In order to cope with such use, the top plate 10 has a thickness of about 20 to 70 mm, a width of about 300 to 600 mm, and has a breaking strength of 9800 N or more, which is four times or more the weight of the subject 30. Even when the strength safety factor is adopted, it is possible to cope with a subject having a weight of 250 kg, and it is possible to cope with subjects having virtually any weight.

図2に示すように、天板10は、コア11と、コア11の外側に位置し、コア11より剛性の高いスキン層12から構成されるサンドイッチ構造体が一般的である。スキン層12は、上面板12aと下面板12bだけでなく、図3に示すように、二つの側面板12c,12dにより、コア11全体を包含することが好ましい。側面板12c、12dは必ずしも必要ではないが、被検者30の体重による局所的な荷重により、コア11が局所的に変形、あるいは圧縮破壊するのを防止するため、天板10の断面方向Yにおいて、上面板12aと下面板12bを二つの側面板12c、12dで連結する方が良い。   As shown in FIG. 2, the top plate 10 is generally a sandwich structure that includes a core 11 and a skin layer 12 that is positioned outside the core 11 and has higher rigidity than the core 11. The skin layer 12 preferably includes the entire core 11 with two side plates 12c and 12d as shown in FIG. 3 as well as the upper plate 12a and the lower plate 12b. Although the side plates 12c and 12d are not necessarily required, the cross-sectional direction Y of the top plate 10 is used in order to prevent the core 11 from being locally deformed or compressed and broken by a local load due to the body weight of the subject 30. In this case, the upper surface plate 12a and the lower surface plate 12b are preferably connected by the two side surface plates 12c and 12d.

天板10のY方向断面は、矩形や台形を基本とした形状であるが、横たわる被検者30の姿勢を安定な状態に保つため、図3に示すように、上面板12aは凹形の曲面状であることが多い。上面板12a以外も曲面状である場合には、断面が三日月形状になる。なお、図3に示す複合面形状の場合には、下面板12bと側面板12c、12dを合わせて、断面が凹形状の下面板であると解釈する。  The cross-section in the Y direction of the top plate 10 is a shape based on a rectangle or a trapezoid, but in order to keep the posture of the subject 30 lying down in a stable state, as shown in FIG. Often curved. If the surface plate other than the upper surface plate 12a is also curved, the cross section has a crescent shape. In the case of the composite surface shape shown in FIG. 3, the lower surface plate 12b and the side surface plates 12c and 12d are combined to be interpreted as a lower surface plate having a concave cross section.

コア11は、高剛性・高強度の要求値を満足する範囲内で可能な限り低密度であることが好ましく、コア11の材質としては、ポリウレタンフォーム、ポリスチレンフォーム、ポリ塩化ビニルフォーム、アクリルフォーム、ポリメタクリルイミドフォーム、酢酸セルロースフォーム、エポキシフォーム、フェノールフォームなどのプラスチック発泡体を用いることができる。  The core 11 is preferably as low in density as possible within a range that satisfies the required values of high rigidity and high strength. The material of the core 11 is polyurethane foam, polystyrene foam, polyvinyl chloride foam, acrylic foam, Plastic foams such as polymethacrylimide foam, cellulose acetate foam, epoxy foam, and phenol foam can be used.

上述した通り、天板10には鉛直方向Z下向きの曲げモーメントが作用するが、医療用放射線機器の他部品との干渉や先端たわみによる被検者30の不安を考慮すると、剛性に関しては、「たわまない天板」が理想となる。しかしながら、天板たわみ低減のみを目的に、天板10厚みおよびスキン層12厚みを増大すると、天板10の放射線透過性が悪化する。このため、診断に際して放射線強度をより高く設定する必要が生じ、被検者30の放射線被爆量増加が問題となる。   As described above, a bending moment downward in the vertical direction Z acts on the top plate 10, but considering the anxiety of the subject 30 due to interference with other parts of the medical radiological device and deflection of the tip, The “top plate that does not flex” is ideal. However, if the thickness of the top plate 10 and the thickness of the skin layer 12 are increased only for the purpose of reducing the deflection of the top plate, the radiation transmittance of the top plate 10 is deteriorated. For this reason, it is necessary to set the radiation intensity higher in the diagnosis, and an increase in the radiation exposure amount of the subject 30 becomes a problem.

本発明の天板10は、アルミ当量が1mm以下であることが特徴の一つであるが、設計においては、剛性・強度と放射線透過性の両方を考慮する、すなわち、放射線透視部10a側(自由端側)の天板端部たわみが設計範囲内で、天板10厚みおよびスキン層12厚みを最小限にすることが非常に重要である。このため、スキン層12である上面板12aと下面板12b、側面板12c、12dは、異方性の設計が可能であるFRPであることが好ましい。  The top plate 10 of the present invention is characterized in that the aluminum equivalent is 1 mm or less. However, in designing, both rigidity / strength and radiation transparency are considered, that is, on the side of the radioscopic portion 10a ( It is very important to minimize the thickness of the top plate 10 and the thickness of the skin layer 12 within the design range of the deflection of the top plate end on the free end side. For this reason, it is preferable that the upper surface plate 12a, the lower surface plate 12b, and the side surface plates 12c and 12d which are the skin layers 12 are FRP in which an anisotropic design is possible.

FRPは、強化繊維とマトリクス樹脂を含んで構成されるが、強化繊維としては、炭素繊維(黒鉛繊維を含む)、アラミド繊維、高強度ポリエチレン繊維、ガラス繊維、ボロン繊維などの少なくとも1種類を用いることができる。なかでも、放射線透過性に優れている炭素繊維を用いることが好ましい。なお、これらの強化繊維は、平織、朱子織、綾織、すだれ織りなど織物や、ストランドなどの形態で用いることができる。   The FRP includes a reinforced fiber and a matrix resin. As the reinforced fiber, at least one of carbon fiber (including graphite fiber), aramid fiber, high-strength polyethylene fiber, glass fiber, and boron fiber is used. be able to. Among these, it is preferable to use carbon fibers that are excellent in radiolucency. These reinforcing fibers can be used in the form of woven fabric such as plain weave, satin weave, twill weave, weave weave, or strand.

マトリクス樹脂としては、エポキシ樹脂、不飽和ポリエステル樹脂、ビニルエステル樹脂、フェノール樹脂、ポリイミド樹脂などの熱硬化性樹脂や、ABS樹脂、ナイロン樹脂、ポリエーテルエーテルケトン樹脂、ポリオレフィン樹脂などの熱可塑性樹脂を用いることができる。なかでも、炭素繊維との接着性や成形性を考慮すると、エポキシ樹脂やビニルエステル樹脂を用いることが好ましい。   As matrix resin, thermosetting resin such as epoxy resin, unsaturated polyester resin, vinyl ester resin, phenol resin, polyimide resin, and thermoplastic resin such as ABS resin, nylon resin, polyether ether ketone resin, polyolefin resin, etc. Can be used. Among these, it is preferable to use an epoxy resin or a vinyl ester resin in view of the adhesiveness and moldability with the carbon fiber.

FRPの弾性率は、強化繊維の種類、特性、形態や、強化繊維とマトリクス樹脂の割合等によって設計することができるが、スキン層12厚みを最小化するには、天板10の身長方向Xの剛性(曲げ剛性)を高めることが効果的である。従って、上面板12aと下面板12bは身長方向Xの弾性率を高めた設計にすることが好ましい。   The elastic modulus of FRP can be designed according to the type, characteristics, and form of the reinforcing fiber, the ratio of the reinforcing fiber and the matrix resin, etc. In order to minimize the thickness of the skin layer 12, the height direction X of the top board 10 It is effective to increase the rigidity (bending rigidity). Therefore, it is preferable that the upper surface plate 12a and the lower surface plate 12b have a design in which the elastic modulus in the height direction X is increased.

CFRPの場合、炭素繊維含有率にもよるが、天板10のアルミ当量1mm以下を達成する
には、スキン層12厚みを1〜8mm範囲内で天板設計することが目安となる。しかしながら、図4に示す様に、下面板12bの厚みが小さく、曲げ剛性が低い場合、支持部材22位置において、下面板12bとコア11が局所的に変形する。この状態で、天板10が往復移動を繰り返すと、下面板12bは面外剪断力、コア11は圧縮力により疲労破壊し、天板10の機械的要求仕様を長期間にわたって満足できなくなる。したがって、図5に示す様に、下面板12bは厚みを増し、スキン層12全体の曲げ剛性の半分以上を負担する設計することが好ましい。下面板12bの曲げ剛性を高くすると、疲労破壊を防止するだけでなく、支持部材22位置での局所的な曲げ変形が小さくなり、天板10の滑らかな往復移動が得られるため、被検者30の不安感も低減できる。
In the case of CFRP, although it depends on the carbon fiber content, in order to achieve an aluminum equivalent of 1 mm or less of the top plate 10, it is a standard to design the top plate with the skin layer 12 thickness within the range of 1 to 8 mm. However, as shown in FIG. 4, when the thickness of the lower surface plate 12 b is small and the bending rigidity is low, the lower surface plate 12 b and the core 11 are locally deformed at the position of the support member 22. In this state, when the top plate 10 repeats reciprocating movement, the lower surface plate 12b is fatigued by the out-of-plane shearing force and the core 11 is fatigued by the compression force, and the mechanical requirement specifications of the top plate 10 cannot be satisfied for a long time. Therefore, as shown in FIG. 5, it is preferable that the lower surface plate 12b is designed so as to increase the thickness and bear more than half of the bending rigidity of the entire skin layer 12. Increasing the bending rigidity of the lower surface plate 12b not only prevents fatigue breakage, but also reduces local bending deformation at the position of the support member 22, and the smooth reciprocation of the top plate 10 is obtained. 30 anxiety can also be reduced.

しかしながら、下面板12bの厚みを増加させ、上面板12aの厚みを減少させすぎると、図6に示す様に、被検者30の体重による局所荷重で、上面板12aが局所変形したり、図中黒矢印の方向に天板10が断面変形したりすることがある。   However, if the thickness of the lower surface plate 12b is increased and the thickness of the upper surface plate 12a is decreased too much, as shown in FIG. 6, the upper surface plate 12a is locally deformed by the local load due to the body weight of the subject 30, The top plate 10 may be deformed in cross section in the direction of the middle black arrow.

したがって、スキン層12の厚みを最適化するには、先ず、天板10を一つの構造体と見なして、放射線透視部10a側(自由端側)の天板端部たわみが設計範囲内となるように、スキン層12の弾性率と厚みを身長方向Xと断面方向Yのそれぞれについて設計し、次に、下面板12bは、スキン層12全体の曲げ剛性の半分以上を負担するように設計する。そして、上面板12aは、下面板12bに比べて断面方向Yの剛性を高めることが重要である。すなわち、上面板12aと下面板12bの間に、(1)式の関係、好ましくは(2)式の関係が成り立つことが重要である。  Therefore, in order to optimize the thickness of the skin layer 12, first, the top plate 10 is regarded as one structure, and the deflection of the top plate end portion on the side of the radioscopic portion 10a (free end side) is within the design range. Thus, the elastic modulus and thickness of the skin layer 12 are designed in each of the height direction X and the cross-sectional direction Y, and then the lower surface plate 12b is designed to bear more than half of the bending rigidity of the entire skin layer 12. . And it is important for the upper surface plate 12a to increase the rigidity in the cross-sectional direction Y compared to the lower surface plate 12b. That is, it is important that the relationship of the formula (1), preferably the relationship of the formula (2) is established between the upper surface plate 12a and the lower surface plate 12b.

U/CL < 1 (1)
U/CL < 0.8 (2)
ここで、式中記号は次の通りである。
U:上面板12aにおける、身長方向Xの弾性率Eu0/断面方向Yの弾性率Eu90
L:下面板12bにおける、身長方向Xの弾性率EL0/断面方向Yの弾性率EL90
上述した関係を満足することにより、スキン層12の厚みは最適化が図れるが、天板10のアルミ当量は、スキン層12だけでなく、コア11にも影響を受ける。天板10の剛性・強度の要求値を満たすため、天板10の厚みは20〜70mm程度になっているが、その厚みの大半はコア11が占めている。従って、コア11、可能な限り低密度であり、放射線透過性に優れていることが好ましい。ゆえに、アルミ当量の最小化を図るには、上面板12aと下面板12bが各断面方向の両端部で連結、若しくは側面板12c、12dを介して両端部で連結しており、少なくとも放射線透視部10aが中空構造であることが最も好ましい形態となる。
C U / C L <1 (1)
C U / C L <0.8 (2)
Here, symbols in the formula are as follows.
C U : Elastic modulus Eu0 in the height direction X / elastic modulus Eu90 in the cross-sectional direction Y in the upper surface plate 12a
C L : Elastic modulus EL0 in the height direction X / elastic modulus EL90 in the cross-sectional direction Y in the bottom plate 12b
By satisfying the above relationship, the thickness of the skin layer 12 can be optimized, but the aluminum equivalent of the top plate 10 is affected not only by the skin layer 12 but also by the core 11. In order to satisfy the required values of rigidity and strength of the top plate 10, the thickness of the top plate 10 is about 20 to 70 mm, but the core 11 occupies most of the thickness. Therefore, it is preferable that the core 11 has as low a density as possible and has excellent radiation transparency. Therefore, in order to minimize the aluminum equivalent, the upper surface plate 12a and the lower surface plate 12b are connected at both ends in each cross-sectional direction, or are connected at both ends via the side plates 12c and 12d, and at least the radioscopic portion It is the most preferable form that 10a has a hollow structure.

なお、天板10には、図7に示す様に、その使われ方から最も突き出した状態、つまり支持部材22が非透視部10bにある時に、最大の曲げモーメントが作用する。従って、画像診断すなわちアルミ当量に関係のない非透視部10bは、補強部材13を配置し、天板10の剛性を高め、支持部材22が位置しても片持ち状態のスパンが短く、曲げモーメントが小さい放射線透視部10aのスキン層12は、厚みを小さくすることが好ましい。  As shown in FIG. 7, the top plate 10 is subjected to a maximum bending moment when it protrudes most from its usage, that is, when the support member 22 is in the non-transparent portion 10b. Therefore, the non-perspective portion 10b not related to the image diagnosis, that is, the aluminum equivalent, has the reinforcing member 13 disposed therein to increase the rigidity of the top plate 10, and the cantilever span is short even when the support member 22 is positioned, and the bending moment The skin layer 12 of the radioscopic part 10a having a small thickness is preferably made thin.

但し、天板10を中空構造にした場合、図8に示す様に、被検者30の体重は、上面板12aから、側面板12c、12dを介して下面板12bに伝わるため、下面板12bと補強部材13には引き剥す力が作用する。天板10が繰り返し往復移動している間に、下面板12bと補強部材13が離れると補強効果が得られなくなるため、天板10の曲げ剛性が著しく低下する。このため、補強部材13の少なくとも一部は、上面板12aと下面板12bの両方に連結していることが好ましい。  However, when the top plate 10 has a hollow structure, as shown in FIG. 8, the weight of the subject 30 is transmitted from the top plate 12a to the bottom plate 12b via the side plates 12c and 12d. And the peeling force acts on the reinforcing member 13. Since the reinforcing effect cannot be obtained if the lower surface plate 12b and the reinforcing member 13 are separated while the top plate 10 repeatedly moves back and forth, the bending rigidity of the top plate 10 is remarkably lowered. For this reason, it is preferable that at least a part of the reinforcing member 13 is connected to both the upper surface plate 12a and the lower surface plate 12b.

図9に示す例では、補強部材13がスキン層12で形成される空間を全て埋めているが、この場合、被検者30の体重が上面板12a、補強部材13、下面板12bに伝わるため、下面板12bと補強部材13の間に、引き剥す力が作用することはない。重要なのは、上面板12aから下面板12bへの力の伝播であり、補強部材13の形状としては、図10に示す様に、板状に突起が付いたものでも良い。   In the example shown in FIG. 9, the reinforcing member 13 fills all the space formed by the skin layer 12, but in this case, the weight of the subject 30 is transmitted to the upper surface plate 12a, the reinforcing member 13, and the lower surface plate 12b. The peeling force does not act between the bottom plate 12b and the reinforcing member 13. What is important is the propagation of force from the upper surface plate 12a to the lower surface plate 12b, and the reinforcing member 13 may have a plate-like protrusion as shown in FIG.

さらに、補強部材13は、図11に示す例の様に、天板10の非透視部10bの端部から放射線透視部10aに向かって、被検者30の身長方向Xの曲げ剛性が一定であるか、あるいは減少していることが好ましい。天板10を片持ち状態で往復移動させて使用する場合、放射線透視部10aと非透視部10bの曲げ剛性に大きな差があると、それらの境界部を駆動部材22が通過する際に、天板10のたわみに急激な変化を生じる可能性がある。つまり、被検者30の上下方向Zの位置が変動し、診断画像の画質が低下を招くだけでなく、乗り心地が悪化し被検者30に不安感を与えることを防止するためである。  Furthermore, the reinforcing member 13 has a constant bending rigidity in the height direction X of the subject 30 from the end of the non-perspective portion 10b of the top 10 toward the radioscopic portion 10a as in the example shown in FIG. Preferably it is present or reduced. When the top plate 10 is used while being reciprocated in a cantilevered state, if there is a large difference in bending rigidity between the radiation see-through portion 10a and the non-see-through portion 10b, when the driving member 22 passes through these boundaries, Abrupt changes in the deflection of the plate 10 can occur. That is, not only does the position of the subject 30 in the vertical direction Z fluctuate and the image quality of the diagnostic image is deteriorated, but also the riding comfort is prevented from deteriorating and giving the subject 30 anxiety.

なお、補強部材13は、曲げ剛性向上を図ることができれば、あらゆる材質のものでも良いが、天板10の重量や弾性率を考慮すると、アルミニウムや繊維強化樹脂を材質に設計することが好ましい。  The reinforcing member 13 may be made of any material as long as the bending rigidity can be improved. However, considering the weight and elastic modulus of the top plate 10, it is preferable to design aluminum or fiber reinforced resin.

上述した本発明の天板10は、FRPで一般に用いられている、引抜成形、オートクレーブ成形、プレス成形、ハンドレイアップ成形、RTM成形などの成形法を用いて製造することが可能である。例えば、図12に示す様に、コア11を所定の形状に機械加工する第1工程と、上面板12a、下面板12b、側面板12c、12dとなる強化繊維プリプレグをコア11に必要枚数巻きつける第2工程、最後に、金型40内で加熱・加圧しながらプリプレグ硬化させる第3工程から成形した後、仕上げ加工を行い、製造することができる。上述の成形時、前記上面板12a、下面板12b、側面板12c、12dを同時に、幅方向両端部を連結した状態で一体成形して得ることも可能であり、かかる成形法を採れば、接合部を減少することによる機械特性上の利点や、工程が減少できるための生産性の観点での利点などがあることから好ましい。  The top plate 10 of the present invention described above can be manufactured using a molding method such as pultrusion molding, autoclave molding, press molding, hand lay-up molding, RTM molding and the like generally used in FRP. For example, as shown in FIG. 12, the first step of machining the core 11 into a predetermined shape and the necessary number of reinforcing fiber prepregs to be the upper surface plate 12 a, the lower surface plate 12 b, the side surface plates 12 c and 12 d are wound around the core 11. After forming from the second step, and finally from the third step of prepreg curing while heating and pressurizing in the mold 40, finishing can be performed and manufactured. At the time of the above molding, the upper surface plate 12a, the lower surface plate 12b, and the side surface plates 12c and 12d can be obtained by integrally molding with both ends in the width direction being connected at the same time. This is preferable because there are advantages in terms of mechanical characteristics by reducing the number of parts and advantages from the viewpoint of productivity because the number of steps can be reduced.

また、コア11が不要である中空構造の場合は、先ず、パイプ状のスキン層12を成形し、非透視部10bに、別工程で製造した補強部材13を接着剤などで取付け、パイプ状の両端に別部品を取付けることで、天板10を製造することが可能である。この場合、コア11の機械加工の工程が省略できるため、コア11がある場合に比べて、製造時の加工コストは安くなくことが多い。  In the case of a hollow structure that does not require the core 11, first, a pipe-shaped skin layer 12 is formed, and a reinforcing member 13 manufactured in a separate process is attached to the non-perspective portion 10b with an adhesive or the like. The top plate 10 can be manufactured by attaching separate parts to both ends. In this case, since the machining process of the core 11 can be omitted, the machining cost at the time of manufacture is often not cheap compared to the case where the core 11 is present.

なお、スキン層12はFRPであるが、強化繊維に曲がりやうねりが存在すると強度剛性が低下し、設計値を満足できなくなる。このため、パイプ状のスキン層12を成形する方法としては引抜成形が最も好ましい。引抜成形の場合、強化繊維およびその織物に一定の張力を付与しながら成形できるため、他の成形方法に比べて、強化繊維の曲がりやうねりが小さく、設計値と同じ物性値のスキン層12が得ることができる。さらに、引抜成形は量産性が高く、加工コストの低減にも効果的である。  The skin layer 12 is made of FRP, but if the reinforcing fiber is bent or wavy, the strength rigidity is lowered and the design value cannot be satisfied. For this reason, pultrusion molding is the most preferable method for forming the pipe-shaped skin layer 12. In the case of pultrusion molding, molding can be performed while applying a certain tension to the reinforcing fiber and its woven fabric. Therefore, compared to other molding methods, the bending and undulation of the reinforcing fiber is small, and the skin layer 12 having the same physical properties as the design value is formed. Obtainable. Furthermore, pultrusion molding is highly mass-productive and effective in reducing processing costs.

図13に、引抜成形でパイプ状FRP成形品を成形する際の概略設備を示す。ロール状の強化繊維織物41をガイド42で位置規制しながら引き出し、樹脂バス43を通して織物41に樹脂を含浸し、金型46で樹脂を加熱硬化させる。なお、引抜き装置47のクランプ47aと47bの把持力と推進力および移動タイミングを制御することにより、連続的に成形を行い、カッター48で所定長さに切断することで、パイプ状のスキン層12を得ることができる。金型46は、図14に示す様に、上型46aと下型46bからなり、ヒーター49で温度制御でき、内部空間に相当する部分には、シリンダー44で支持された中子45が配置している。  FIG. 13 shows a schematic facility when a pipe-shaped FRP molded product is formed by pultrusion molding. The roll-shaped reinforcing fiber fabric 41 is pulled out while the position is regulated by the guide 42, the resin is impregnated into the fabric 41 through the resin bath 43, and the resin is heated and cured by the mold 46. In addition, by controlling the gripping force, the propulsive force, and the moving timing of the clamps 47a and 47b of the pulling device 47, the pipe-shaped skin layer 12 is continuously formed and cut into a predetermined length by the cutter 48. Can be obtained. As shown in FIG. 14, the mold 46 is composed of an upper mold 46a and a lower mold 46b, the temperature of which can be controlled by a heater 49, and a core 45 supported by a cylinder 44 is disposed in a portion corresponding to the internal space. ing.

以下に、本発明の実施例を具体的に説明する。但し、本発明の天板は、本実施例に限定されるものではない。   Examples of the present invention will be specifically described below. However, the top plate of the present invention is not limited to this embodiment.

長さ2m、幅0.47m、最大高さ0.034mである三日月型断面を有し、破壊荷重が9800N以上(天板上面の等分布荷重)、繰り返し往復移動耐久性40000回、アルミ当量1mm以下などの設計仕様を満足することを目的に、次の通り天板を製造した。   It has a crescent-shaped cross section with a length of 2 m, a width of 0.47 m, and a maximum height of 0.034 m, a breaking load of 9800 N or more (equally distributed load on the top surface of the top plate), repeated reciprocating durability of 40000 times, aluminum equivalent of 1 mm The top plate was manufactured as follows in order to satisfy the following design specifications.

強化繊維として炭素繊維を採用し、下記仕様の織物を用いて、引抜成形により三日月断面のCFRP中空構造体(スキン層)を成形した。なお、マトリックス樹脂には、ビニルエステル樹脂(日本ユピカ製ネオポール8250H)を用いた。
<織物基材A>
縦糸:炭素繊維
引張強度4900Mpa、引張弾性率230Gpa、フィラメント数24000本
横糸:ポリエステル繊維
引張強度1000Mpa
目付 742g/m2
すだれ織り
<織物基材B>
縦糸:炭素繊維
引張強度4900Mpa、引張弾性率230Gpa、フィラメント数24000本
横糸:炭素繊維
引張強度3530Mpa、引張弾性率230Gpa、フィラメント数12000本
目付 596g/m2
朱子織り
<織物基材C>
縦糸:炭素繊維
引張強度3530Mpa、引張弾性率230Gpa、フィラメント数6000本
横糸:炭素繊維
引張強度3530Mpa、引張弾性率230Gpa、フィラメント数6000本
目付 317g/m2
平織り
<織物基材D>
縦糸:炭素繊維
引張強度3530Mpa、引張弾性率230Gpa、フィラメント数3000本
横糸:炭素繊維
引張強度3530Mpa、引張弾性率230Gpa、フィラメント数3000本
目付 317g/m2
朱子織り
なお、上面板は、基材A:1枚、基材B:1枚、基材D:4枚を用いて、厚み2.9mm、身長方向弾性率68.2GPa、断面方向弾性率62.9Gpaとなるように、成形性と外観を考慮して積層設計を行った。
A carbon fiber was used as the reinforcing fiber, and a CFRP hollow structure (skin layer) having a crescent cross section was formed by pultrusion using a woven fabric having the following specifications. As the matrix resin, a vinyl ester resin (Neopol 8250H manufactured by Nippon Ipica) was used.
<Textile base material A>
Warp: Carbon fiber
Tensile strength 4900Mpa, tensile elastic modulus 230Gpa, 24,000 filaments Weft: Polyester fiber Tensile strength 1000Mpa
Weight per unit area 742g / m 2
Weave weave <woven fabric base B>
Warp: Carbon fiber
Tensile strength 4900 Mpa, tensile elastic modulus 230 Gpa, number of filaments 24000 Weft: carbon fiber Tensile strength 3530 Mpa, tensile elastic modulus 230 Gpa, number of filaments 12000 per unit weight 596 g / m 2
Satin weave <woven fabric base C>
Warp: Carbon fiber
Tensile strength 3530 Mpa, tensile elastic modulus 230 Gpa, 6,000 filaments Weft: carbon fiber Tensile strength 3530 Mpa, tensile elastic modulus 230 Gpa, 6,000 filaments per unit weight 317 g / m 2
Plain weave <woven fabric substrate D>
Warp: Carbon fiber Tensile strength: 3530 Mpa, tensile elastic modulus: 230 Gpa, number of filaments: 3000 Weft: Carbon fiber: Tensile strength: 3530 Mpa, tensile modulus of elasticity: 230 Gpa, number of filaments: 3000 per unit weight: 317 g / m 2
The satin weave In addition, the top plate uses a base material A: 1 base material, a base material B: 1 base material, and a base material D: 4 sheets, a thickness of 2.9 mm, a height direction elastic modulus of 68.2 GPa, and a cross-sectional direction elastic modulus of 62. The layer was designed in consideration of moldability and appearance so as to be .9 Gpa.

また、下面板は、基材A:2枚、基材B:2枚、基材C:1枚、基材D:1枚を用いて、厚み3.7mm、身長方向弾性率89.1GPa、断面方向弾性率43.2Gpaとなるように、成形性と外観を考慮して積層設計を行った。
したがって、
スキン層の総厚み 6.6mm
上面板の弾性率比 CU = 1.084、 下面板の弾性率比 CL = 2.063
U/CL = 0.525 < 0.8
となっている。
In addition, the bottom plate is composed of two base materials A, two base materials B, one base material C, and one base material D, and has a thickness of 3.7 mm, a height direction elastic modulus of 89.1 GPa, Laminate design was performed in consideration of formability and appearance so that the cross-sectional elastic modulus was 43.2 Gpa.
Therefore,
Total thickness of skin layer 6.6mm
Elastic modulus ratio C U = 1.084 of the top plate, Elastic modulus ratio C L = 2.063 of the bottom plate
C U / C L = 0.525 <0.8
It has become.

補強部材は長さ850mmとし、スキン層の全空間を埋めることができるように、三日月断面のCFRP成形品(曲げ弾性率7000MPa程度)とした。さらに、放射線透視部との境界側先端部を30°に斜め切断し、斜め切断部で天板方向の厚み、すなわち患者身長方向に曲げ弾性率が減少する形状とした。   The reinforcing member had a length of 850 mm and was a CFRP molded product having a crescent cross section (bending elastic modulus of about 7000 MPa) so that the entire space of the skin layer could be filled. Further, the front end portion on the boundary side with the radioscopic portion was obliquely cut at 30 °, and the thickness in the top plate direction, that is, the bending elastic modulus decreased in the patient height direction at the oblique cut portion.

上記CFRP中空構造体(スキン層)にエポキシ系接着剤を用いて補強部材を接着した後、射出成形した熱可塑樹脂成形品をCFRP中空構造体の両端部に接着、仕上げ加工を施し、天板を製造した。
[評価結果]
a)天板強度
天板を医療用放射線機器の駆動部の移動部材に取り付ける位置でボルト固定し、天板が最も突き出た状態に相当する1400mm位置に支持部材を配置した状態で片持ち状態を実現した。天板全長において作用する等分布荷重を増大させると、12817Nで支持部材と接触する下面板が破壊したが、設計仕様値9800Nを十分に上回ることを確認した。
b)往復移動耐久性
患者体重205kgを設定し、IEC(International Electrotechnical Commission)60601−1に準じた割合で天板に負荷させ、天板の往復移動を実施したところ、40000回繰り返し後にも、著しい破壊は観察できず、天板性能に問題ないことを確認した。
c)アルミ当量
一般に、X線の透過性は、アルミニウムの透過性と比較し、何mmの板厚に相当するかで示される場合が多く、JESRA(Japan Engineering Standards of Radiation Apparatus)類似条件である80kV、2mA、40secで測定を実施した。
After a reinforcing member is bonded to the CFRP hollow structure (skin layer) using an epoxy adhesive, an injection molded thermoplastic resin molded product is bonded to both ends of the CFRP hollow structure, and finish processing is performed. Manufactured.
[Evaluation results]
a) Strength of the top plate The top plate is bolted at a position where it is attached to the moving member of the drive unit of the medical radiation device, and the cantilever state is obtained with the support member disposed at a position of 1400 mm corresponding to the state where the top plate protrudes most. It was realized. When the equally distributed load acting on the entire length of the top plate was increased, the lower surface plate contacting the support member at 12817N was destroyed, but it was confirmed that the design specification value 9800N was sufficiently exceeded.
b) Endurance of reciprocating movement When the patient weight of 205 kg was set, the top board was loaded at a rate according to IEC (International Electrotechnical Commission) 60601-1, and the top board was reciprocated. Destruction was not observed and it was confirmed that there was no problem with the top plate performance.
c) Aluminum equivalent In general, the X-ray transmission is often indicated by the thickness of the plate, which is comparable to that of aluminum, and is similar to JESRA (Japan Engineering Standards of Radiation Apparatus). Measurements were performed at 80 kV, 2 mA, 40 sec.

放射線透視部のアルミ当量は0.82mmであり、設計仕様値1mm以下を満足していることを確認した。   The aluminum equivalent of the radioscopic part was 0.82 mm, and it was confirmed that the design specification value of 1 mm or less was satisfied.

本発明を用いると、医療用放射線機器による画像診断時に、患者を移動するために使用する天板において、強度剛性の要求仕様を満足し、かつX線透過性の指標であるアルミ当量を1mm以下にすることができる。従来技術の天板に比べて放射線透過性が良好であるため、高精度な画像による診断や、患者の放射線被爆量が少ない安全な診断を行うことが可能となる。  When the present invention is used, the top plate used for moving a patient at the time of image diagnosis by a medical radiological device satisfies the required specification of strength and rigidity, and the aluminum equivalent which is an index of X-ray permeability is 1 mm or less. Can be. Since the radiation transparency is better than that of a conventional top plate, it is possible to perform a diagnosis with high accuracy and a safe diagnosis with a small amount of radiation exposure of a patient.

医療用放射線機器における本発明の天板の動作例を示す概略図Schematic which shows the operation example of the top plate of this invention in medical radiology equipment 一部破断部を有する、本発明の一実施形態である天板の斜視図The perspective view of the top plate which is one Embodiment of this invention which has a partially broken part 本発明の実施例で得た天板の断面図Sectional drawing of the top plate obtained in the Example of this invention 本発明の実施例で得た天板を移動方向に切断した断面図Sectional drawing which cut | disconnected the top plate obtained in the Example of this invention in the moving direction 本発明の実施例で得た他の天板を移動方向に切断した断面図Sectional drawing which cut | disconnected the other top plate obtained in the Example of this invention in the moving direction 本発明の実施例で得た中空構造天板の断面図と負荷時の変形モデル図Sectional view of hollow structure top plate obtained in Example of the present invention and deformation model diagram under load 本発明の実施例で得た中空構造天板を移動方向に切断した断面図Sectional drawing which cut | disconnected the hollow structure top plate obtained in the Example of this invention in the moving direction 本発明の実施例で得た中空構造天板の非透視部断面図と荷重伝達モデル図Non-transparent section view and load transmission model diagram of hollow structure top plate obtained in an embodiment of the present invention 本発明の他の実施例で得た中空構造天板の非透視部断面図と荷重伝達モデル図Sectional view and load transmission model diagram of non-transparent part of hollow structure top plate obtained in another embodiment of the present invention 本発明の他の実施例で得た中空構造天板の非透視部断面図Non-transparent part sectional view of a hollow structure top plate obtained in another embodiment of the present invention 本発明の他の実施例で得た中空構造天板を移動方向に切断した断面図Sectional drawing which cut | disconnected the hollow structure top plate obtained in the other Example of this invention in the moving direction 本発明の天板を製造する一つの方法を示す工程図Process drawing which shows one method of manufacturing the top plate of this invention 本発明の天板を製造するための引抜成形設備の概略図Schematic of pultrusion equipment for manufacturing the top plate of the present invention 本発明の天板を製造するための引抜成形金型の概略図Schematic of pultrusion mold for manufacturing the top plate of the present invention

符号の説明Explanation of symbols

10 :天板
10a :放射線透視部
10b :非透視部
11 :コア
12 :スキン層
12a :上面板
12b :下面板
12c :側面板(右)
12d :側面板(左)
13 :補強部材
20 :駆動部
21 :移動部材
22 :支持部材
30 :被検者(患者)
40 :プレス成形金型
41 :強化繊維織物
42 :ガイド
43 :樹脂バス
44 :シリンダー
45 :中子
46 :引抜成形金型
46a :引抜成形金型の上型
46b :引抜成形金型の下型
47 :引抜き装置
47a :クランプ(上流)
47b :クランプ(下流)
48 :カッター
49 :ヒーター
DESCRIPTION OF SYMBOLS 10: Top plate 10a: Radioscopic part 10b: Non-permeable part 11: Core 12: Skin layer 12a: Upper surface plate 12b: Lower surface plate 12c: Side surface plate (right)
12d: Side plate (left)
13: Reinforcing member 20: Drive unit 21: Moving member 22: Support member 30: Subject (patient)
40: Press molding die 41: Reinforcing fiber fabric 42: Guide 43: Resin bath 44: Cylinder 45: Core 46: Pull-out molding die 46a: Upper die of the drawing mold 46b: Lower die 47 : Pulling device 47a: Clamp (upstream)
47b: Clamp (downstream)
48: Cutter 49: Heater

Claims (11)

横臥状態の被検者を載せる上面板と、該上面板に対向配置した下面板を含み、駆動部材および/または支持部材を該下面板に接触させ前記被検者の身長方向に片持ち状態で往復移動させて使用する医療用放射線機器天板であって、該上面板と該下面板は(1)式で表す関係が成り立つ繊維強化樹脂成形品であり、かつ、身長方向の片側が、被検者診断のために放射線を照射する放射線透視部、もう片側が、前記片持ち状態を実現するために固定する非透視部であり、少なくとも該放射線透視部ではX線透過性の指標であるアルミ当量が1mm以下であることを特徴とする医療用放射線機器天板。
U/CL < 1 (1)
式中
U:上面板における、被検者の身長方向弾性率Eu0/断面方向弾性率Eu90
L:下面板における、被検者の身長方向弾性率EL0/断面方向弾性率EL90
A top plate for placing a subject lying in a recumbent state, and a bottom plate placed opposite to the top plate; and a drive member and / or a support member in contact with the bottom plate in a cantilever state in the height direction of the subject A medical radiation device top plate used by reciprocating movement, wherein the upper surface plate and the lower surface plate are fiber-reinforced resin molded products that satisfy the relationship represented by the formula (1), and one side in the height direction is covered A radioscopic part that emits radiation for examiner diagnosis, and the other side is a non-fluoroscopic part that is fixed to realize the cantilever state, and at least the radioscopic part is an aluminum that is an index of X-ray permeability A medical radiation device top plate, wherein an equivalent is 1 mm or less.
C U / C L <1 (1)
In the formula, C U : the height elastic modulus Eu0 / cross-sectional elastic modulus Eu90 of the subject on the top plate
C L : Height elastic modulus EL0 / cross-sectional elastic modulus EL90 of the subject on the bottom plate
前記上面板と前記下面板がそれぞれ、連続した炭素繊維を強化繊維とした繊維強化樹脂成形品である請求項1に記載の医療用放射線機器天板。   The medical radiation equipment top plate according to claim 1, wherein each of the upper surface plate and the lower surface plate is a fiber-reinforced resin molded product using continuous carbon fibers as reinforcing fibers. 前記上面板、下面板それぞれの被検者の身長方向と断面方向の弾性率比CU、CLに(2)式で表す関係が成り立つ請求項1または2のいずれかに記載の医療用放射線機器天板。
U/CL < 0.8 (2)
The medical radiation according to any one of claims 1 and 2, wherein the relationship represented by the formula (2) is established between the elastic modulus ratios C U and C L in the height direction and the cross-sectional direction of the subject on each of the upper surface plate and the lower surface plate. Equipment top plate.
C U / C L <0.8 (2)
前記上面板の身長方向長さが2.0m以上3.5m以下であり、かつ、片持ち状態のスパンが該上面板長さの70%の位置において、該上面板全面に等分布荷重を作用させたときの破壊荷重が9800N以上である請求項1〜3のいずれかに記載の医療用放射線機器天板。   When the length in the height direction of the upper surface plate is 2.0 m or more and 3.5 m or less and the span in the cantilever state is 70% of the length of the upper surface plate, an evenly distributed load is applied to the entire upper surface plate. The medical radiation equipment top plate according to any one of claims 1 to 3, wherein a breaking load when it is applied is 9800 N or more. 前記上面板と前記下面板が各断面方向の両端部で連結しており、少なくとも前記放射線透視部が中空構造である請求項1〜4のいずれかに記載の医療用放射線機器天板。  The medical radiation equipment top plate according to any one of claims 1 to 4, wherein the upper surface plate and the lower surface plate are connected at both end portions in each cross-sectional direction, and at least the radiation fluoroscopic portion has a hollow structure. 前記非透視部に補強部材を配置している請求項1〜5のいずれかに記載の医療用放射線機器天板。  The medical radiation apparatus top plate according to any one of claims 1 to 5, wherein a reinforcing member is disposed in the non-transparent part. 前記補強部材の少なくとも一部が前記上面板と前記下面板の両方に連結している請求項6に記載の医療用放射線機器天板。   The medical radiation apparatus top plate according to claim 6, wherein at least a part of the reinforcing member is connected to both the upper surface plate and the lower surface plate. 非透視部の天板端部から放射線透視部に向かって、前記補強部材の被検者身長方向の曲げ剛性が、一定であるかあるいは減少している請求項6または7のいずれかに記載の医療用放射線機器天板。  The bending rigidity in the height direction of the subject of the reinforcing member is constant or decreased from the top plate end of the non-transparent part toward the radiologically transparent part. Medical radiation equipment top plate. 前記補強部材の材質にアルミニウムを用いている請求項6〜8のいずれかに記載の医療用放射線機器天板。   The medical radiation apparatus top plate according to any one of claims 6 to 8, wherein aluminum is used as a material of the reinforcing member. 前記補強部材の材質に繊維強化樹脂を用いている請求項6〜8のいずれかに記載の医療用放射線機器天板。   The medical radiation equipment top plate according to any one of claims 6 to 8, wherein a fiber reinforced resin is used as a material of the reinforcing member. 請求項1〜10のいずれかに記載の医療用放射線機器天板を用いたX線CT装置。   The X-ray CT apparatus using the medical radiation equipment top plate in any one of Claims 1-10.
JP2005209619A 2005-07-20 2005-07-20 Top board for medical radiological equipment and x-ray ct apparatus Pending JP2007020986A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005209619A JP2007020986A (en) 2005-07-20 2005-07-20 Top board for medical radiological equipment and x-ray ct apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005209619A JP2007020986A (en) 2005-07-20 2005-07-20 Top board for medical radiological equipment and x-ray ct apparatus

Publications (1)

Publication Number Publication Date
JP2007020986A true JP2007020986A (en) 2007-02-01

Family

ID=37782514

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005209619A Pending JP2007020986A (en) 2005-07-20 2005-07-20 Top board for medical radiological equipment and x-ray ct apparatus

Country Status (1)

Country Link
JP (1) JP2007020986A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008228755A (en) * 2007-03-16 2008-10-02 Toray Ind Inc Cantilevered member and top plate for radiation diagnostic apparatus using the same
JP2008228758A (en) * 2007-03-16 2008-10-02 Toray Ind Inc Top plate for x-ray diagnostic apparatus
WO2010089863A1 (en) * 2009-02-04 2010-08-12 サカイ・コンポジット株式会社 Process for producing tubular structure made of fiber-reinforced resin and tubular structure made of fiber-reinforced resin
WO2014080692A1 (en) * 2012-11-21 2014-05-30 コニカミノルタ株式会社 Portable-type radiography device
JP2019162201A (en) * 2018-03-19 2019-09-26 キヤノンメディカルシステムズ株式会社 X-ray computer tomographic apparatus

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008228755A (en) * 2007-03-16 2008-10-02 Toray Ind Inc Cantilevered member and top plate for radiation diagnostic apparatus using the same
JP2008228758A (en) * 2007-03-16 2008-10-02 Toray Ind Inc Top plate for x-ray diagnostic apparatus
WO2010089863A1 (en) * 2009-02-04 2010-08-12 サカイ・コンポジット株式会社 Process for producing tubular structure made of fiber-reinforced resin and tubular structure made of fiber-reinforced resin
JP4827206B2 (en) * 2009-02-04 2011-11-30 サカイ・コンポジット株式会社 Manufacturing method of cylindrical body made of fiber reinforced resin
WO2014080692A1 (en) * 2012-11-21 2014-05-30 コニカミノルタ株式会社 Portable-type radiography device
CN104797192A (en) * 2012-11-21 2015-07-22 柯尼卡美能达株式会社 Portable-type radiography device
JPWO2014080692A1 (en) * 2012-11-21 2017-01-05 コニカミノルタ株式会社 Portable radiographic imaging device
US9864078B2 (en) * 2012-11-21 2018-01-09 Konica Minolta, Inc. Portable type radiation image capturing apparatus
JP2019162201A (en) * 2018-03-19 2019-09-26 キヤノンメディカルシステムズ株式会社 X-ray computer tomographic apparatus
JP7043303B2 (en) 2018-03-19 2022-03-29 キヤノンメディカルシステムズ株式会社 X-ray computer tomography equipment

Similar Documents

Publication Publication Date Title
JP5098132B2 (en) Fiber reinforced resin sandwich panel
JP5126405B2 (en) Manufacturing method of sandwich panel made of fiber reinforced resin
JP6325193B2 (en) Carbon fiber reinforced composite material and method for producing the same
US4252594A (en) X-ray patient support stretcher and method for fabrication
JP2007020986A (en) Top board for medical radiological equipment and x-ray ct apparatus
JP2008207523A (en) Panel for x-ray cassette
US20150026889A1 (en) Surgical tables
JP6357834B2 (en) Fiber reinforced plastic laminate and method for producing the same
US10813603B2 (en) Couch panel and patient couch for medical imaging methods
US9282938B2 (en) Radiolucent patient table
JP6747590B2 (en) Imaging stand and method of manufacturing the same, imaging stand for mammography apparatus, method of manufacturing the same, and mammography apparatus
JP7439513B2 (en) Imaging table for mammography device, manufacturing method thereof, and mammography device
JP4178964B2 (en) Medical equipment top plate
JPWO2014010106A1 (en) Carbon fiber reinforced composite material and method for producing the same
Kuo et al. Processing and characterization of 3D woven and braided thermoplastic composites
JP2018051000A (en) Top board for radiology equipment and x-ray ct apparatus
JP2013202294A (en) Top plate for x-ray diagnostic apparatus
JP4333242B2 (en) Radiation diagnostic equipment top plate
CN210843120U (en) Bed board, inspection bed assembly and medical imaging equipment for computed tomography
KR101125019B1 (en) Bed for X-ray inspection and method for producing the same
GB2057830A (en) Surgical operating tables
CN210843121U (en) Bed board for X-ray photography, inspection bed assembly and equipment
JP2012192122A (en) Top board for medical equipment
JP7367590B2 (en) Top plate for X-ray imaging equipment
JPH1199151A (en) Patient lying device