JP2007020124A - Electric field communication system - Google Patents

Electric field communication system Download PDF

Info

Publication number
JP2007020124A
JP2007020124A JP2005202293A JP2005202293A JP2007020124A JP 2007020124 A JP2007020124 A JP 2007020124A JP 2005202293 A JP2005202293 A JP 2005202293A JP 2005202293 A JP2005202293 A JP 2005202293A JP 2007020124 A JP2007020124 A JP 2007020124A
Authority
JP
Japan
Prior art keywords
electric field
reactance
input
signal
communication system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005202293A
Other languages
Japanese (ja)
Other versions
JP4209872B2 (en
Inventor
Naoshi Minoya
直志 美濃谷
Mitsuru Shinagawa
満 品川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2005202293A priority Critical patent/JP4209872B2/en
Publication of JP2007020124A publication Critical patent/JP2007020124A/en
Application granted granted Critical
Publication of JP4209872B2 publication Critical patent/JP4209872B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electric field communication system which is capable of performing communication even in a high-noise environment. <P>SOLUTION: An electric field communication system comprises a first communication apparatus including a transmission section which comprises: a modulation/output means for modulating and outputting information with an AC signal having a predetermined frequency; a transmission electrode which induces an electric field; impedance between a field transmission medium proximate to the transmission electrode and an earth ground; and a reactance means which incurs resonance with stray capacitance between a ground of the modulation/output means and the earth ground, and in which a circuit ground is floated from the earth ground, and a second communication apparatus including a reception section which comprises: an input amplification means for detecting an electric field, modulating it into an electric signal and amplifying it; a low impedance reactance means connected between an input of the input amplifying means and the earth ground, impedance of reactance being lower than input impedance of the input amplifying means; a receiving electrode for transmitting, to the input amplifying section, an electric field based on information induced by the field transmission medium; and a demodulation/waveform shaping means for demodulating and waveform-shaping a signal from the input amplifying means. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、電界を電界伝達媒体に誘起し、この誘起した電界を検出して情報の送受信を行う通信で用いる電界通信システムに関する。   The present invention relates to an electric field communication system used in communication in which an electric field is induced in an electric field transmission medium, and the induced electric field is detected to transmit and receive information.

携帯端末の小型化および高性能化により、生体に装着可能なウェアラブルコンピュータが注目されてきている。従来、このようなウェアラブルコンピュータ間の情報通信として、コンピュータに電界通信トランシーバを接続して装着し、この電界通信トランシーバが誘起する電界を、電界伝達媒体である生体を介して伝達させることによって、情報の送受信を行う方法が提案されている。   Due to the miniaturization and high performance of portable terminals, wearable computers that can be attached to living bodies have been attracting attention. Conventionally, as information communication between such wearable computers, an electric field communication transceiver is connected and attached to a computer, and an electric field induced by the electric field communication transceiver is transmitted through a living body which is an electric field transmission medium, thereby There has been proposed a method for transmitting and receiving.

図13に従来の技術による電界通信システムを示す。携帯端末101の送信器107では小形コンピュータ108から出力された送信すべき情報(データ)を所定の周波数fの搬送波で変調し出力する。送信器107は大地グランドから離れており、回路グランド109と大地グランド間には浮遊容量Cg15が生じる。また、生体13と大地グランド間には浮遊容量Cb14が生じる。 FIG. 13 shows a conventional electric field communication system. The transmitter 107 of the portable terminal 101 modulates information (data) to be transmitted output from the small computer 108 with a carrier wave having a predetermined frequency f and outputs the modulated information. The transmitter 107 is away from the ground, and a stray capacitance C g 15 is generated between the circuit ground 109 and the ground. In addition, stray capacitance C b 14 is generated between the living body 13 and the ground.

従来の技術では、リアクタンス部110を変調・出力部111などの送信回路と、絶縁体113および送信電極112からなる送受信電極との間に挿入し、浮遊容量と共振現象により生体に印加される電圧信号を大きくして、電界通信を実現していた(例えば、特許文献1、2を参照)。
特開2004−153708号公報 United States Patent Application Publication, Pub.No.:US2004/0092296A1 Pub.Date:May 13, 2004
In the conventional technique, the reactance unit 110 is inserted between a transmission circuit such as the modulation / output unit 111 and a transmission / reception electrode including the insulator 113 and the transmission electrode 112, and a voltage applied to a living body due to stray capacitance and a resonance phenomenon. Electric field communication was realized by increasing the signal (see, for example, Patent Documents 1 and 2).
JP 2004-153708 A United States Patent Application Publication, Pub.No.:US2004/0092296A1 Pub.Date:May 13, 2004

電界伝達媒体である人体に電界を誘起し、その電界を検出することで通信を行う電界通信システムにおいては、生体に接触していない他の機器から放射された電界信号も検出してしまう。そのため、従来のシステムによる電界通信は携帯端末の送信器から印加される信号が大きくても、設置型装置の受信器で検出される放射源からの放射信号の強度が大きい場合には、携帯端末との通信が妨害されてしまう。   In an electric field communication system that performs communication by inducing an electric field in a human body that is an electric field transmission medium and detecting the electric field, an electric field signal radiated from another device that is not in contact with a living body is also detected. Therefore, in the electric field communication by the conventional system, even when the signal applied from the transmitter of the portable terminal is large, the intensity of the radiation signal from the radiation source detected by the receiver of the stationary apparatus is large. Communication with is interrupted.

また、通信への妨害が生じることを避けるために、雑音源である他の機器を受信器から離す必要があった。   Further, in order to avoid interference with communication, it is necessary to separate other devices that are noise sources from the receiver.

本発明は上記を鑑みてなされたものであり、その目的は、雑音の大きい環境下でも通信可能な電界通信システムを提供することにある。   The present invention has been made in view of the above, and an object thereof is to provide an electric field communication system capable of communication even in a noisy environment.

上記の目的を達成するために、請求項1に記載の本発明は、送信すべき情報に基づく電界を電界伝達媒体に誘起し、この誘起した電界を用いて情報の送信を行う一方で、前記電界伝達媒体に誘起された受信すべき情報に基づく電界を受信することによって通信を行う電界通信システムであって、所定の周波数を有する交流信号で送信すべき情報を変調し出力する変調・出力手段と、前記送信すべき情報に基づく電界の誘起を行う送信電極と、前記送信電極に近接した電界伝達媒体と大地グランド間のインピーダンスと、前記変調・出力手段のグランドと大地グランド間の浮遊容量と、の間で共振を誘起させるためのリアクタンス手段と、を備え、かつ回路グランドが大地グランドから浮遊している送信部を有する第1の通信手段と、前記受信すべき情報に基づく電界を検出して電気信号に変換し増幅する入力増幅手段と、前記入力増幅手段の入力インピーダンスより低いインピーダンスのリアクタンスからなり、前記入力増幅手段の入力と大地グランド間に接続された低インピーダンスリアクタンス手段と、前記電界伝達媒体に誘起された前記受信すべき情報に基づく電界を前記入力増幅部に伝達する受信電極と、前記入力増幅手段から出力された信号を復調して波形整形する復調・波形整形手段と、を備えた受信部を有する第2の通信手段と、を備える。   In order to achieve the above object, the present invention according to claim 1 induces an electric field based on information to be transmitted in an electric field transmission medium, and transmits information using the induced electric field, An electric field communication system which performs communication by receiving an electric field based on information to be received induced in an electric field transmission medium, and which modulates and outputs information to be transmitted with an AC signal having a predetermined frequency A transmission electrode for inducing an electric field based on the information to be transmitted, an impedance between the electric field transmission medium adjacent to the transmission electrode and the ground, and a stray capacitance between the ground of the modulation / output means and the ground Reacting means for inducing resonance between the first communication means having a transmitting section in which the circuit ground is floating from the ground, and the reception An input amplifying unit that detects an electric field based on power information, converts it into an electric signal and amplifies it, and a reactance having an impedance lower than the input impedance of the input amplifying unit, and is connected between the input of the input amplifying unit and the ground Low impedance reactance means, a receiving electrode for transmitting an electric field based on the information to be received induced in the electric field transmission medium to the input amplifier, and a signal output from the input amplifier for demodulating and shaping the waveform And a second communication unit having a receiving unit including a demodulation / waveform shaping unit.

また、請求項2に記載の本発明は、請求項1において、前記第2の通信手段の受信部は、入力インピーダンスが低いリアクタンス成分で構成され、前記受信すべき情報に基づく電界を検出して電気信号に変換し増幅する入力増幅手段と、前記電界伝達媒体に誘起された前記受信すべき情報に基づく電界を前記入力増幅部に伝達する受信電極と、前記入力増幅手段から出力された信号を復調して波形整形する復調・波形整形手段と、を備える。   According to a second aspect of the present invention, in the first aspect, the receiving unit of the second communication unit includes a reactance component having a low input impedance, and detects an electric field based on the information to be received. An input amplifying means for converting and amplifying the electric signal; a receiving electrode for transmitting an electric field based on the information to be received induced in the electric field transmission medium to the input amplifying section; and a signal output from the input amplifying means. Demodulation and waveform shaping means for demodulating and shaping the waveform.

また、請求項3に記載の本発明は、請求項1において、前記第2の通信手段の受信部は、前記受信すべき情報に基づく電界の勾配を検出して電気信号に変換し増幅する差動入力増幅手段と、前記電界伝達媒体に誘起された前記受信すべき情報に基づく電界を前記入力増幅部に伝達する第1の受信電極と、前記受信すべき情報に基づく電界を前記入力増幅部に伝達する第2の受信電極と、前記入力増幅手段の入力インピーダンスより低いインピーダンスを有するリアクタンスであって、前記第1の受信電極と大地グランド間に接続された第1の低インピーダンスリアクタンス手段と、前記入力増幅手段の入力インピーダンスより低いインピーダンスを有するリアクタンスであって、前記第2の受信電極と大地グランド間に接続された第2の低インピーダンスリアクタンス手段と、前記入力増幅手段から出力された信号を復調して波形整形する復調・波形整形手段と、を備える。   According to a third aspect of the present invention, in the first aspect, the receiving unit of the second communication unit detects a gradient of an electric field based on the information to be received, converts the electric field into an electric signal, and amplifies the difference. Dynamic input amplifying means, a first receiving electrode for transmitting an electric field based on the information to be received induced in the electric field transmission medium to the input amplifying unit, and an electric field based on the information to be received on the input amplifying unit A second receiving electrode transmitted to the first amplifying means, and a reactance having an impedance lower than an input impedance of the input amplifying means, the first low impedance reactance means connected between the first receiving electrode and the ground, A reactance having an impedance lower than an input impedance of the input amplifying means, the second low impedance connected between the second receiving electrode and the ground. Comprising a copy dance reactance means, and a demodulation and waveform shaping means for wave-shaping demodulates the signal output from the input amplifier means.

また、請求項4に記載の本発明は、請求項1において、前記第2の通信手段の受信部は、入力インピーダンスが低いリアクタンス成分で構成され、前記受信すべき情報に基づく電界の勾配を検出して電気信号に変換し増幅する差動入力増幅手段と、前記電界伝達媒体に誘起された前記受信すべき情報に基づく電界を前記入力増幅部に伝達する第1の受信電極と、前記受信すべき情報に基づく電界を前記入力増幅部に伝達する第2の受信電極と、前記入力増幅手段から出力された信号を復調して波形整形する復調・波形整形手段と、を備える。   According to a fourth aspect of the present invention, in the first aspect, the receiving unit of the second communication unit is configured with a reactance component having a low input impedance, and detects an electric field gradient based on the information to be received. Differential input amplifying means for converting and amplifying the electric signal, a first receiving electrode for transmitting an electric field based on the information to be received induced in the electric field transmission medium to the input amplifying unit, and the receiving A second receiving electrode that transmits an electric field based on power information to the input amplifying unit; and a demodulating / waveform shaping unit that demodulates and shapes a signal output from the input amplifying unit.

また、請求項5に記載の本発明は、請求項1〜4のうちのいずれかにおいて、前記第1の通信手段の送信部に備わるリアクタンス手段は、リアクタンス値を可変可能な可変リアクタンス手段であり、前記可変リアクタンス手段のリアクタンス値を可変して前記電界伝達媒体に印加される信号を最大にするリアクタンス制御手段を備えた送信部を有する第1の通信手段を備える。   According to a fifth aspect of the present invention, in any one of the first to fourth aspects, the reactance means provided in the transmission unit of the first communication means is a variable reactance means capable of changing a reactance value. And a first communication unit having a transmission unit including a reactance control unit that varies a reactance value of the variable reactance unit to maximize a signal applied to the electric field transmission medium.

また、請求項6に記載の本発明は、請求項5において、前記第1の通信手段の送信部に備わるリアクタンス制御手段は、前記通信のための送信信号の出力毎に前記可変リアクタンス手段のリアクタンス値を順次変化させるための制御を実行するリアクタンス制御手段である。   According to a sixth aspect of the present invention, in the fifth aspect, the reactance control means provided in the transmission unit of the first communication means is configured such that the reactance of the variable reactance means is output for each output of the transmission signal for the communication. Reactance control means for executing control for sequentially changing the value.

また、請求項7に記載の本発明は、請求項1〜4のうちのいずれかにおいて、前記第1の通信手段の送信部に備わるリアクタンス手段は、前記通信のための送信信号と共振するためのインダクタと、印加された電圧に応じて静電容量が変化する可変容量ダイオードと、を有する共振回路と、前記共振回路に入力された前記送信信号を前記可変容量ダイオードで整流して得られた直流電流に応じた電位差を前記可変容量ダイオードのアノードとカソード間に印加するための抵抗器と、を有する自己調整可変リアクタンス手段である。   According to a seventh aspect of the present invention, in any one of the first to fourth aspects, the reactance means provided in the transmission unit of the first communication means resonates with a transmission signal for the communication. Obtained by rectifying the transmission signal input to the resonance circuit with the variable capacitance diode, and a resonance circuit having a variable capacitance diode whose capacitance changes according to the applied voltage. Self-tuning variable reactance means having a resistor for applying a potential difference corresponding to a direct current between an anode and a cathode of the variable capacitance diode.

また、請求項8に記載の本発明は、請求項1〜7のうちのいずれかにおいて、前記低インピーダンスリアクタンス手段は、100pFよりも大きいキャパシタンスで構成されている。   According to an eighth aspect of the present invention, in any one of the first to seventh aspects, the low impedance reactance means is configured with a capacitance larger than 100 pF.

また、請求項9に記載の本発明は、請求項1〜7のうちのいずれかにおいて、前記低インピーダンスリアクタンス手段は、リアクタンスで構成され、そのサセプタンスBinはBin=−1/ωLinであって、−(ωC+−1/ωLin)>2ωC
in<1/(3ω
の関係式で決定される。
Further, the present invention according to claim 9 is the invention according to any one of claims 1 to 7, wherein the low impedance reactance means is constituted by reactance, and the susceptance B in is B in = −1 / ωL in . there, - (ωC b + -1 / ωL in)> 2ωC b
L in <1 / (3ω 2 C b )
It is determined by the relational expression.

本発明によれば、雑音の大きい環境下でも通信可能な電界通信システムを提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the electric field communication system which can communicate also in a noisy environment can be provided.

<第1の実施の形態>
図1に、電界通信システムの第1の実施の形態の構成図を示す。送信器10は電界伝達媒体である人体13に携帯されており、人体13を介してデータを受信器4へ送信する。人体13は大地グランドから浮遊しており、人体13と大地グランド間および回路グランド9と大地グランド間には浮遊容量Cb14、Cg15が存在する。受信器4の入力段には入力インピーダンスを低くするために、低インピーダンスリアクタンス部1が接続されている。
<First Embodiment>
FIG. 1 shows a configuration diagram of a first embodiment of an electric field communication system. The transmitter 10 is carried by a human body 13 that is an electric field transmission medium, and transmits data to the receiver 4 via the human body 13. The human body 13 is floating from the ground, and stray capacitances C b 14 and C g 15 exist between the human body 13 and the ground and between the circuit ground 9 and the ground. A low impedance reactance unit 1 is connected to the input stage of the receiver 4 in order to reduce the input impedance.

図示しない端末からのデータは送信器10内の変調・出力部8にて所定の周波数の搬送波で変調されて出力される。出力された信号は、リアクタンス部7と浮遊容量Cb14、Cg15および受信器4の低インピーダンスリアクタンス部1との直列共振により、効率よく受信器4へ伝達される。受信器4では伝達された信号を入力増幅部2および復調・波形整形部3で増幅・フィルタリング・復調・波長整形して元のデータに再生し、図示しないコンピュータへ出力する。 Data from a terminal (not shown) is modulated and output by a modulation / output unit 8 in the transmitter 10 with a carrier wave having a predetermined frequency. The output signal is efficiently transmitted to the receiver 4 by series resonance between the reactance unit 7, the stray capacitances C b 14 and C g 15, and the low impedance reactance unit 1 of the receiver 4. The receiver 4 amplifies / filters / demodulates / waveforms the transmitted signal by the input amplifier 2 and demodulation / waveform shaping unit 3 to reproduce the original data, and outputs it to a computer (not shown).

このシステムが他の機器(放射源)からの放射信号に曝されている場合の構成図を図2に示す。ここでは送信器10の変調・出力部8を出力抵抗Rs18、出力電圧Vs19の信号源に置き換えている。放射源20と受信電極(絶縁体5と受信電極6からなる)間には浮遊容量が存在し、図中ではCr21で表している。放射源20が受信器4に近づくと浮遊容量Cr21が大きくなり浮遊容量のインピーダンス(1/ωCr:ωは放射信号の各周波数)が小さくなるので、放射信号(雑音)が受信器4に入力されやすくなる。 FIG. 2 shows a configuration diagram when this system is exposed to a radiation signal from another device (radiation source). Here, the modulation / output unit 8 of the transmitter 10 is replaced with a signal source of an output resistance R s 18 and an output voltage V s 19. There is a stray capacitance between the radiation source 20 and the receiving electrode (consisting of the insulator 5 and the receiving electrode 6), which is represented by Cr 21 in the drawing. When the radiation source 20 approaches the receiver 4, the stray capacitance C r 21 increases and the impedance of the stray capacitance (1 / ωCr: ω is each frequency of the radiated signal) decreases, so that the radiated signal (noise) is transmitted to the receiver 4. It becomes easy to input.

図3に示す放射源20を考慮したシステムの等価回路を用いて、共振状態の送信器10から受信器4に入力される信号と放射信号を求める。放射源20からは送信器4の搬送波と同じ周波数の信号が出力されているとする。受信器4では大地グランドから受信電極の電位差Vinが信号として入力される。ここで送信器10から入力される信号をVin,sとし放射源20から入力される信号をVin,rとすると重ね合わせの原理からVinは次式で表される。 A signal and a radiation signal input to the receiver 4 from the transmitter 10 in a resonance state are obtained using an equivalent circuit of the system considering the radiation source 20 shown in FIG. It is assumed that a signal having the same frequency as the carrier wave of the transmitter 4 is output from the radiation source 20. The potential difference V in the receiver 4, received from the earth ground electrode is input as a signal. Here, if the signal input from the transmitter 10 is V in, s and the signal input from the radiation source 20 is V in, r , V in is expressed by the following equation from the principle of superposition.

in=Vin,s+Vin,r (1)
はじめに、送信器10から入力される信号を考察するために放射源Vr20を無視して考察する。この等価回路からVin,s

Figure 2007020124
V in = V in, s + V in, r (1)
First, in order to consider the signal input from the transmitter 10, the radiation source V r 20 is ignored. From this equivalent circuit, V in, s is
Figure 2007020124

と表される。ここで、Binは低インピーダンスリアクタンス部1のサセプタンス(インピーダンスの逆数の虚数部)である。送信器10のリアクタンス部のリアクタンスXv17が

Figure 2007020124
It is expressed. Here, B in is the susceptance of the low impedance reactance unit 1 (the imaginary part of the reciprocal of the impedance). The reactance X v 17 of the reactance part of the transmitter 10 is
Figure 2007020124

であるとき共振状態になり、Vin,sは最大となる。このとき、送信器10から受信器4に入力される信号は

Figure 2007020124
When it is, it will be in a resonance state and Vin , s will become the maximum. At this time, the signal input from the transmitter 10 to the receiver 4 is
Figure 2007020124

となる。さらに、共振状態での浮遊容量Cr21からみた電界通信システムのインピーダンスZ(図3中に示すZ)を求めると

Figure 2007020124
It becomes. Further, when the impedance Z (Z shown in FIG. 3) of the electric field communication system viewed from the stray capacitance C r 21 in the resonance state is obtained.
Figure 2007020124

となる。 It becomes.

次に、送信器10の信号を無視して放射源20から受信器4に入力される信号Vin,rを考察する。式(5)で表されるインピーダンスZより、Vin,rは以下の式で表される。

Figure 2007020124
Next, the signal V in, r input from the radiation source 20 to the receiver 4 ignoring the signal of the transmitter 10 will be considered. From the impedance Z expressed by the equation (5), V in, r is expressed by the following equation.
Figure 2007020124

式(6)に式(5)を代入して展開すると

Figure 2007020124
Substituting equation (5) into equation (6) and expanding
Figure 2007020124

となる。 It becomes.

以上で求めたVin,sとVin,rの比が信号対雑音比(S/N比)であり、これを大きくすれば放射信号に曝されても通信が可能となる。式(4)と(7)からVin,s/Vin,rは以下の式で表される。

Figure 2007020124
The ratio of V in, s and V in, r obtained above is a signal-to-noise ratio (S / N ratio). If this ratio is increased, communication is possible even if exposed to a radiation signal. Equation (4) and (7) from V in, s / V in, r is expressed by the following equation.
Figure 2007020124

ここでBinを大きくして式(8)の括弧内の分母の第1項を小さくし、抵抗Rs18を小さくすることにより、Vin,s/Vin,rを大きくすることができる。したがって、図1に示したように、インピーダンスの低いリアクタンス(大きなサセプタンスBin)が接続された受信器4を使用して送信器10で直列共振を起こすことにより、雑音源20が近接にある雑音の大きな環境下でも通信可能な電界通信システムを提供できる。 Here by increasing the B in reducing the first term of the denominator in the parentheses of formula (8), by reducing the resistance R s 18, may be V in, s / V in, the r to increase . Therefore, as shown in FIG. 1, by using a receiver 4 to which a reactance having a low impedance (a large susceptance B in ) is connected, a series resonance occurs in the transmitter 10, so that the noise source 20 is close to the noise. It is possible to provide an electric field communication system capable of communication even in a large environment.

図1の実施の形態では入力増幅部2に低インピーダンスリアクタンス部1を接続したが、入力インピーダンスが低いリアクタンス成分である電界センサや増幅器を初段に用いた入力増幅部を入力増幅部2と低インピーダンスリアクタンス部1の代わりに用いてもよい。また、低いインピーダンスのリアクタンスを実現するために、図4に示すように受信電極27の面積を広くしてもよい。さらに、図4のように大地グランドに接地または低いインピーダンスで接続された導体や高誘電率の物体28を人体13の近くに設置しても良い。   In the embodiment of FIG. 1, the low impedance reactance unit 1 is connected to the input amplification unit 2, but the input amplification unit using an electric field sensor or amplifier having a low reactance component as the input impedance is used as the input amplification unit 2 and the low impedance. The reactance unit 1 may be used instead. Further, in order to realize a low impedance reactance, the area of the receiving electrode 27 may be increased as shown in FIG. Further, as shown in FIG. 4, a conductor connected to the ground or connected with a low impedance or a high dielectric constant object 28 may be installed near the human body 13.

なお、低インピーダンスリアクタンス部1のインピーダンスはCよりも低くすれば大きな効果が期待できる。例えば、文献「"Personal Area Networks:Near-field intrabody communication" Thomas Zimmerman.Vol.35,No.3&4,1996-MIT Media Lab」によれば、人体13と大地グランド間の浮遊容量Cは約100pFであるため、低インピーダンスリアクタンス部1が容量Cinである場合にはBin=ωCinであるため100pFよりも大きな容量値であれば、大きな効果が期待できる。また、低インピーダンスリアクタンス部1はインダクティブな成分でもよく、この場合にはBin=−1/ωLinとなり、
−(ωC+−1/ωLin)>2ωC
in<1/(3ω
となる。したがって、信号の周波数を5MHzにした場合では3.4μHよりも低いインダクタンスであれば大きな効果が期待できる。
Furthermore, since the impedance of the low impedance reactance unit 1 is expected to provide more effective if lower than C b. For example, according to the document “Personal Area Networks: Near-field intrabody communication” Thomas Zimmerman. Vol. 35, No. 3 & 4, 1996-MIT Media Lab, the stray capacitance C b between the human body 13 and the ground is about 100 pF. Therefore, when the low-impedance reactance unit 1 has a capacitance C in , B in = ωC in. Therefore, if the capacitance value is larger than 100 pF, a great effect can be expected. Further, the low impedance reactance unit 1 may be an inductive component, and in this case, B in = −1 / ωL in ,
- (ωC b + -1 / ωL in)> 2ωC b
L in <1 / (3ω 2 C b )
It becomes. Therefore, when the signal frequency is 5 MHz, a great effect can be expected if the inductance is lower than 3.4 μH.

<第2の実施の形態>
図5に、電界通信システムの第2の実施の形態の構成図を示す。本システムでは、2個の受信電極を使用して入力される電気信号の勾配を検出する受信器を用いている。用いる2個の受信電極は、絶縁体5と受信電極6からなる受信電極<1>と、受信電極<2>30の2個である。
<Second Embodiment>
FIG. 5 shows a configuration diagram of the second embodiment of the electric field communication system. In this system, a receiver that detects the gradient of an electric signal input using two receiving electrodes is used. The two receiving electrodes used are the receiving electrode <1> composed of the insulator 5 and the receiving electrode 6 and the receiving electrode <2> 30.

放射される電気信号の勾配は放射源から離れるほど小さくなる。通信を行う人体13は受信器4に近接しているため、図5のシステムでは離れた場所にある放射源からの放射信号の影響を比較的受けずに通信を行うことができる。また、低インピーダンスを受信器に接続し送信器で直列共振を起こすことにより、上述の効果も期待できる。なお、低インピーダンスとして受信電極<1>には低インピーダンスリアクタンス部<1>33が接続され、受信電極<2>30には低インピーダンスリアクタンス部<2>34がそれぞれ接続されている。   The gradient of the radiated electrical signal decreases with distance from the radiation source. Since the human body 13 that performs communication is close to the receiver 4, in the system of FIG. 5, communication can be performed relatively unaffected by the radiation signal from the radiation source at a remote location. Moreover, the above-mentioned effect can be expected by connecting a low impedance to the receiver and causing series resonance in the transmitter. The low impedance reactance part <1> 33 is connected to the reception electrode <1> as a low impedance, and the low impedance reactance part <2> 34 is connected to the reception electrode <2> 30.

以上の効果により、雑音源が近接にある雑音の大きな環境下でも通信可能な電界通信システムを提供できる。   With the above effects, it is possible to provide an electric field communication system capable of communication even in a noisy environment where a noise source is in the vicinity.

<第3の実施の形態>
図6に、電界通信システムの第3の実施の形態の構成図を示す。送信器10に可変リアクタンス部35を用い、人体13に印加される電圧が最大になるよう電圧をモニタしながら可変リアクタンス部35のリアクタンス値を調整するリアクタンス制御部36を備える。浮遊容量Cb14、Cg15が周囲の環境等によって変化しても、本実施の形態では共振状態を維持することができる。
<Third Embodiment>
FIG. 6 shows a configuration diagram of the third embodiment of the electric field communication system. The transmitter 10 includes a reactance control unit 36 that adjusts the reactance value of the variable reactance unit 35 while monitoring the voltage so that the voltage applied to the human body 13 is maximized. Even if the stray capacitances C b 14 and C g 15 change depending on the surrounding environment or the like, the resonance state can be maintained in the present embodiment.

また、送信するデータがIDのような固定データである場合では、モニタしながらリアクタンスを調整するのではなく、リアクタンス値を順次変えながら送信しても良い。この方法を図7に示すタイミングチャートを用いて動作を説明する。   When the data to be transmitted is fixed data such as an ID, the reactance may not be adjusted while monitoring, but may be transmitted while sequentially changing the reactance value. The operation of this method will be described with reference to the timing chart shown in FIG.

この方法では、データの送信を図7のタイミングチャートに示すようにリアクタンス値を変えて行う。ここではリアクタンス値を(1)〜(5)の5段階に分割しており、固定データを5回送信している。   In this method, data is transmitted by changing the reactance value as shown in the timing chart of FIG. Here, the reactance value is divided into five stages (1) to (5), and fixed data is transmitted five times.

図8に示す人体13と大地グランド間の電圧Vbのリアクタンス値依存性のようにVbの振幅は共振により、あるリアクタンス値で最大となる。したがって、発信器の可変リアクタンスがあるリアクタンス値(図7では(3))になった場合に人体13に印加される信号は最大となる。 Like the reactance value dependency of the voltage V b between the human body 13 and the ground shown in FIG. 8, the amplitude of V b becomes maximum at a certain reactance value due to resonance. Therefore, when the variable reactance of the transmitter reaches a certain reactance value ((3) in FIG. 7), the signal applied to the human body 13 is maximized.

共振の起きるリアクタンス値は回路のグランドや人体13と大地グランド間の浮遊容量により変化するが、この変化が設定範囲内であればリアクタンスのいずれかの設定値で大きな信号を印加することができる。固定データを1回でも受信できればよい発信器のような応用では、リアクタンス値を確実に調整して逐次送信する方法だけでなく、リアクタンス値を予め設定したいくつかの値に順次変えてから固定データを送信しても通信は可能である。   The reactance value at which resonance occurs varies depending on the ground of the circuit and the stray capacitance between the human body 13 and the ground, but if this change is within the set range, a large signal can be applied at any set value of reactance. For applications such as transmitters that only need to receive fixed data once, not only is the method of adjusting reactance values reliably and sequentially transmitting them, but it is also possible to change the reactance values to several preset values before changing the fixed data. Communication is possible even if is transmitted.

<第4の実施の形態>
図9に、電界通信システムの第4の実施の形態の構成図を示す。本実施の形態では自己調整可変リアクタンス部を用いており、この自己調整可変リアクタンス部の構成例を図10に示す。
<Fourth embodiment>
FIG. 9 shows a configuration diagram of a fourth embodiment of the electric field communication system. In this embodiment, a self-adjusting variable reactance unit is used, and a configuration example of this self-adjusting variable reactance unit is shown in FIG.

自己調整可変リアクタンス部40の共振を起こす部分はインダクタ41と可変容量ダイオード42で構成される。容量<1>45と容量<2>43は直流成分を遮断するためのもので、交流信号に対しては短絡とみなせるとする。人体13と大地グランド間の電位差の交流成分をVbとし、自己調整可変リアクタンス部40の電位差の交流成分をVACとする。また可変容量ダイオード42に印加される電圧と流れる電流の直流成分をそれぞれVDC、IDとする。可変容量ダイオード42の電圧は逆バイアス方向を正としている。本実施の形態の自己調整可変リアクタンス部40が浮遊容量に対して変化し最適に近い値に収束する際の各電圧電流信号の変化を図11のグラフを用いて説明する。 The part of the self-adjusting variable reactance unit 40 that causes resonance is composed of an inductor 41 and a variable capacitance diode 42. Capacitance <1> 45 and capacitance <2> 43 are for cutting off the DC component, and can be regarded as a short circuit for the AC signal. The AC component of the potential difference between the human body 13 and the ground is defined as V b, and the AC component of the potential difference of the self-adjusting variable reactance unit 40 is defined as V AC . Further, the DC component of the voltage applied to the variable capacitance diode 42 and the flowing current is V DC and I D , respectively. The voltage of the variable capacitance diode 42 is positive in the reverse bias direction. The change of each voltage / current signal when the self-adjusting variable reactance unit 40 of the present embodiment changes with respect to the stray capacitance and converges to a value close to the optimum will be described with reference to the graph of FIG.

図11(a)には可変容量ダイオード42に振幅|VAC|の交流電圧が印加されたときに生じる電流の直流成分IDの関係を表したものである。逆バイアス電圧VDCが可変容量ダイオード42の両端に生じると可変容量ダイオード42が短絡となっている期間が短くなるため、同じVACに対してIDは小さくなる。 FIG. 11A shows the relationship of the DC component I D of the current generated when an AC voltage having an amplitude | V AC | is applied to the variable capacitance diode 42. When the reverse bias voltage V DC is generated at both ends of the variable capacitance diode 42, the period during which the variable capacitance diode 42 is short-circuited is shortened, so that ID becomes small with respect to the same V AC .

図11(b)にはIDが抵抗<1>44を流れたことによって生じる電位差(VDCと等価)のグラフ、同図(c)には可変容量ダイオード42の容量Cvの電圧VDC依存性を示す。また、図11(d)はVbの振幅|Vb|のCv依存性である。グラフ中の点は自己調整可変リアクタンス部40に交流信号を入力し始めてからの各電流電圧の変化を示している。容量Cvの初期値はVDC=0の時の値C1としている。また、|VAC|は|Vb|に比例する。 Graph of the potential difference (V DC equivalent) caused by flowing the I D resistance <1> 44 in FIG. 11 (b), the voltage V DC of the capacitance C v of the variable capacitance diode 42 in FIG. (C) Indicates dependency. Further, FIG. 11 (d) is the amplitude of V b | a C v dependence of | V b. The points in the graph indicate changes in each current voltage since the start of input of an AC signal to the self-adjusting variable reactance unit 40. The initial value of the capacity C v is a value C 1 when V DC = 0. | V AC | is proportional to | V b |.

交流信号が入力されると可変容量ダイオード42で整流されて直流電流IDを生じる(図11(a)の点(1))。これが抵抗<1>44を流れることにより直流電圧VDCを発生させ、これと同じ電位差が可変容量ダイオード42にも印加される。これにより容量Cvは減少し(図11(c)の点(1))、共振を起こす容量値に近づき|Vb|は大きくなる。|VAC|は|Vb|に比例するため、|VAC|は大きくなるが、VDCも大きくなっているため|VAC|とIDの関係は図11(a)の点(2)に移動する。 When an AC signal is input, it is rectified by the variable capacitance diode 42 to generate a DC current ID (point (1) in FIG. 11A). When this flows through the resistor <1> 44, a DC voltage V DC is generated, and the same potential difference is applied to the variable capacitance diode 42. As a result, the capacitance C v decreases (point (1) in FIG. 11C), approaches the capacitance value causing resonance, and | V b | increases. | V AC | is | proportional to, | | V b V AC | but increases, since the V DC also increases | V AC | and the point in relation FIG 11 (a) of the I D (2 )

この後も同じようにCvが減少し|VAC|は大きくなるが、VDCも大きくなるためIDの変化量は徐々に小さくなりゼロに収束する。IDの変化量がゼロになると|VAC|は一定となり、初期値に比べ共振での増幅に近づいている。以上の現象を利用して完全に共振状態にはならないがリアクタンス値を共振状態付近まで近づけることができる。 After this, C v similarly decreases and | V AC | increases, but V DC also increases, so that the amount of change in ID gradually decreases and converges to zero. When the amount of change in ID becomes zero, | V AC | becomes constant, and is closer to resonance amplification than the initial value. By utilizing the above phenomenon, the reactance value can be brought close to the resonance state, although the resonance state is not completely achieved.

以上の電界通信システムでは片方向通信であったが、双方向通信に用いるトランシーバの構成図を図12に示す。このトランシーバを設置型装置に取り付けて電界通信システムを構築する。   In the above electric field communication system, unidirectional communication is performed. FIG. 12 shows a configuration diagram of a transceiver used for bidirectional communication. An electric field communication system is constructed by attaching this transceiver to a stationary device.

このトランシーバには、送信のための変調・出力部51と、可変リアクタンス部53と、リアクタンス制御部54に加え、送受信を切り替えるスイッチ52を設けている。送信時にはスイッチ52のa1とb1を接続し、変調・出力部51の出力信号を可変リアクタンス部53を介して絶縁体59と電極60からなる送受信電極に出力する。   This transceiver is provided with a switch 52 for switching between transmission and reception in addition to a modulation / output unit 51 for transmission, a variable reactance unit 53, and a reactance control unit 54. At the time of transmission, a1 and b1 of the switch 52 are connected, and the output signal of the modulation / output unit 51 is output to the transmission / reception electrode composed of the insulator 59 and the electrode 60 through the variable reactance unit 53.

また、リアクタンス制御部54は出力される信号が最大になるように可変リアクタンス部53のリアクタンス値を調整する。受信時にはスイッチ52のa1とc1を接続し、送受信電極で受信した信号を低インピーダンスリアクタンス部57が接続された入力増幅部56に伝送する。このとき可変リアクタンス部53のリアクタンス値を最小に設定する。以上のトランシーバを使用すれば双方向通信も可能である。   In addition, the reactance control unit 54 adjusts the reactance value of the variable reactance unit 53 so that the output signal is maximized. At the time of reception, a1 and c1 of the switch 52 are connected, and a signal received by the transmission / reception electrode is transmitted to the input amplification unit 56 to which the low impedance reactance unit 57 is connected. At this time, the reactance value of the variable reactance unit 53 is set to the minimum. If the above transceiver is used, bidirectional communication is also possible.

電界通信システムの第1の実施の形態の基本構成を示す説明図である。It is explanatory drawing which shows the basic composition of 1st Embodiment of an electric field communication system. 放射源(雑音源)を考慮した電界通信システムの構成図である。It is a block diagram of the electric field communication system which considered the radiation source (noise source). 放射源(雑音源)を考慮した電界通信システムの等価回路である。It is the equivalent circuit of the electric field communication system which considered the radiation source (noise source). 第1の実施の形態の電界通信システムの変形例を示す図である。It is a figure which shows the modification of the electric field communication system of 1st Embodiment. 電界通信システムの第2の実施の形態を示す構成図である。It is a block diagram which shows 2nd Embodiment of an electric field communication system. 電界通信システムの第3の実施の形態を示す構成図である。It is a block diagram which shows 3rd Embodiment of an electric field communication system. 電界通信システムの第3の実施の形態の変形例の動作を示すタイミングチャートである。It is a timing chart which shows the operation | movement of the modification of 3rd Embodiment of an electric field communication system. 電界通信システムの第3の実施の形態の変形例における電圧信号|Vb|のリアクタンス依存性を示すグラフである。It is a graph which shows the reactance dependence of voltage signal | Vb | in the modification of 3rd Embodiment of an electric field communication system. 電界通信システムの第4の実施の形態を示す構成図である。It is a block diagram which shows 4th Embodiment of an electric field communication system. 電界通信システムの第4の実施の形態で使用する自己調整可変リアクタンス部の構成図である。It is a block diagram of the self-adjustment variable reactance part used in 4th Embodiment of an electric field communication system. 電界通信システムの第4の実施の形態で使用する自己調整可変リアクタンス部の動作を説明するためのグラフを(a)〜(d)に示す。Graphs for explaining the operation of the self-adjusting variable reactance unit used in the fourth embodiment of the electric field communication system are shown in (a) to (d). 電界通信システムで双方向通信を行うためのトランシーバの構成図である。It is a block diagram of the transceiver for performing two-way communication in an electric field communication system. 従来の技術による電界通信システムを説明する構成図である。It is a block diagram explaining the electric field communication system by a prior art.

符号の説明Explanation of symbols

1 低インピーダンスリアクタンス部
2 入力増幅部
3 復調・波形整形部
4 受信器
5、12 絶縁体
6 受信電極
7 リアクタンス部
8 復調・出力部
9 回路グランド
10 送信器
11 送信電極
13 人体(電界伝達媒体)
14 Cb14
15 C
16 Xin
17 X
18 R
19 V
20 V
21 C
DESCRIPTION OF SYMBOLS 1 Low impedance reactance part 2 Input amplification part 3 Demodulation and waveform shaping part 4 Receiver 5, 12 Insulator 6 Reception electrode 7 Reactance part 8 Demodulation and output part 9 Circuit ground 10 Transmitter 11 Transmission electrode 13 Human body (electric field transmission medium)
14 Cb14
15 C g
16 X in
17 X v
18 R s
19 V s
20 V r
21 Cr

Claims (9)

送信すべき情報に基づく電界を電界伝達媒体に誘起し、この誘起した電界を用いて情報の送信を行う一方で、前記電界伝達媒体に誘起された受信すべき情報に基づく電界を受信することによって通信を行う電界通信システムであって、
所定の周波数を有する交流信号で送信すべき情報を変調し出力する変調・出力手段と、
前記送信すべき情報に基づく電界の誘起を行う送信電極と、
前記送信電極に近接した電界伝達媒体と大地グランド間のインピーダンスと、前記変調・出力手段のグランドと大地グランド間の浮遊容量と、の間で共振を誘起させるためのリアクタンス手段と、を備え、かつ回路グランドが大地グランドから浮遊している送信部を有する第1の通信手段と、
前記受信すべき情報に基づく電界を検出して電気信号に変換し増幅する入力増幅手段と、
前記入力増幅手段の入力インピーダンスより低いインピーダンスのリアクタンスからなり、前記入力増幅手段の入力と大地グランド間に接続された低インピーダンスリアクタンス手段と、
前記電界伝達媒体に誘起された前記受信すべき情報に基づく電界を前記入力増幅部に伝達する受信電極と、
前記入力増幅手段から出力された信号を復調して波形整形する復調・波形整形手段と、を備えた受信部を有する第2の通信手段と、
を備えることを特徴とする電界通信システム。
By inducing an electric field based on information to be transmitted in the electric field transmission medium and transmitting information using the induced electric field, while receiving an electric field based on the information to be received induced in the electric field transmission medium. An electric field communication system for performing communication,
Modulation / output means for modulating and outputting information to be transmitted with an AC signal having a predetermined frequency;
A transmission electrode for inducing an electric field based on the information to be transmitted;
Reactance means for inducing resonance between the impedance between the electric field transmission medium adjacent to the transmission electrode and the ground, and the stray capacitance between the ground of the modulation / output means and the ground, and A first communication means having a transmitter in which the circuit ground is floating from the ground;
An input amplifying means for detecting an electric field based on the information to be received, converting it to an electric signal and amplifying it;
A low-impedance reactance means connected between an input of the input amplification means and a ground, comprising a reactance having an impedance lower than an input impedance of the input amplification means;
A receiving electrode for transmitting an electric field based on the information to be received, induced in the electric field transmission medium, to the input amplification unit;
Demodulation and waveform shaping means for demodulating and shaping the signal output from the input amplification means, second communication means having a receiving unit;
An electric field communication system comprising:
前記第2の通信手段の受信部は、
入力インピーダンスが低いリアクタンス成分で構成され、前記受信すべき情報に基づく電界を検出して電気信号に変換し増幅する入力増幅手段と、
前記電界伝達媒体に誘起された前記受信すべき情報に基づく電界を前記入力増幅部に伝達する受信電極と、
前記入力増幅手段から出力された信号を復調して波形整形する復調・波形整形手段と、
を備えることを特徴とする請求項1に記載の電界通信システム。
The receiving unit of the second communication means is
An input amplifying means comprising a reactance component having a low input impedance, detecting an electric field based on the information to be received, converting it to an electric signal, and amplifying;
A receiving electrode for transmitting an electric field based on the information to be received, induced in the electric field transmission medium, to the input amplification unit;
Demodulation / waveform shaping means for demodulating and shaping the signal output from the input amplification means;
The electric field communication system according to claim 1, comprising:
前記第2の通信手段の受信部は、
前記受信すべき情報に基づく電界の勾配を検出して電気信号に変換し増幅する差動入力増幅手段と、
前記電界伝達媒体に誘起された前記受信すべき情報に基づく電界を前記入力増幅部に伝達する第1の受信電極と、
前記受信すべき情報に基づく電界を前記入力増幅部に伝達する第2の受信電極と、
前記入力増幅手段の入力インピーダンスより低いインピーダンスを有するリアクタンスであって、前記第1の受信電極と大地グランド間に接続された第1の低インピーダンスリアクタンス手段と、
前記入力増幅手段の入力インピーダンスより低いインピーダンスを有するリアクタンスであって、前記第2の受信電極と大地グランド間に接続された第2の低インピーダンスリアクタンス手段と、
前記入力増幅手段から出力された信号を復調して波形整形する復調・波形整形手段と、
を備えることを特徴とする請求項1に記載の電界通信システム。
The receiving unit of the second communication means is
Differential input amplifying means for detecting a gradient of an electric field based on the information to be received, converting the electric field into an electric signal, and amplifying the electric signal;
A first receiving electrode for transmitting an electric field based on the information to be received induced in the electric field transmission medium to the input amplification unit;
A second receiving electrode for transmitting an electric field based on the information to be received to the input amplifier;
Reactance having an impedance lower than the input impedance of the input amplification means, the first low impedance reactance means connected between the first receiving electrode and the ground,
Reactance having an impedance lower than the input impedance of the input amplification means, the second low impedance reactance means connected between the second receiving electrode and the ground,
Demodulation / waveform shaping means for demodulating and shaping the signal output from the input amplification means;
The electric field communication system according to claim 1, comprising:
前記第2の通信手段の受信部は、
入力インピーダンスが低いリアクタンス成分で構成され、前記受信すべき情報に基づく電界の勾配を検出して電気信号に変換し増幅する差動入力増幅手段と、
前記電界伝達媒体に誘起された前記受信すべき情報に基づく電界を前記入力増幅部に伝達する第1の受信電極と、
前記受信すべき情報に基づく電界を前記入力増幅部に伝達する第2の受信電極と、
前記入力増幅手段から出力された信号を復調して波形整形する復調・波形整形手段と、
を備えることを特徴とする請求項1に記載の電界通信システム。
The receiving unit of the second communication means is
A differential input amplifying unit configured by reactance components having low input impedance, detecting a gradient of an electric field based on the information to be received, converting the detected electric field into an electric signal, and amplifying the electric signal;
A first receiving electrode for transmitting an electric field based on the information to be received induced in the electric field transmission medium to the input amplification unit;
A second receiving electrode for transmitting an electric field based on the information to be received to the input amplifier;
Demodulation / waveform shaping means for demodulating and shaping the signal output from the input amplification means;
The electric field communication system according to claim 1, comprising:
前記第1の通信手段の送信部に備わるリアクタンス手段は、
リアクタンス値を可変可能な可変リアクタンス手段であり、前記可変リアクタンス手段のリアクタンス値を可変して前記電界伝達媒体に印加される信号を最大にするリアクタンス制御手段を備えた送信部を有する第1の通信手段
を備えることを特徴とする請求項1〜4のうちのいずれかに記載の電界通信システム。
The reactance means included in the transmission unit of the first communication means is
First communication having variable reactance means capable of changing a reactance value, the transmitter having a reactance control means for changing a reactance value of the variable reactance means to maximize a signal applied to the electric field transmission medium. The electric field communication system according to any one of claims 1 to 4, further comprising: means.
前記第1の通信手段の送信部に備わるリアクタンス制御手段は、
前記通信のための送信信号の出力毎に前記可変リアクタンス手段のリアクタンス値を順次変化させるための制御を実行するリアクタンス制御手段である、
ことを特徴とする請求項5に記載の電界通信システム。
Reactance control means provided in the transmission unit of the first communication means,
Reactance control means for executing control for sequentially changing the reactance value of the variable reactance means for each output of the transmission signal for the communication,
The electric field communication system according to claim 5.
前記第1の通信手段の送信部に備わるリアクタンス手段は、
前記通信のための送信信号と共振するためのインダクタと、印加された電圧に応じて静電容量が変化する可変容量ダイオードと、を有する共振回路と、
前記共振回路に入力された前記送信信号を前記可変容量ダイオードで整流して得られた直流電流に応じた電位差を前記可変容量ダイオードのアノードとカソード間に印加するための抵抗器と、
を有する自己調整可変リアクタンス手段であることを特徴とする請求項1〜4のうちのいずれかに記載の電界通信システム。
The reactance means included in the transmission unit of the first communication means is
A resonance circuit comprising: an inductor for resonating with a transmission signal for communication; and a variable capacitance diode whose capacitance changes according to an applied voltage;
A resistor for applying a potential difference according to a direct current obtained by rectifying the transmission signal input to the resonance circuit with the variable capacitance diode between an anode and a cathode of the variable capacitance diode;
5. The electric field communication system according to claim 1, wherein the electric field communication system is a self-adjusting variable reactance unit.
前記低インピーダンスリアクタンス手段は、
100pFよりも大きいキャパシタンスで構成されていることを特徴とする請求項1〜7のうちのいずれかに記載の電界通信システム。
The low impedance reactance means includes
The electric field communication system according to claim 1, wherein the electric field communication system is configured with a capacitance larger than 100 pF.
前記低インピーダンスリアクタンス手段は、
リアクタンスで構成され、そのサセプタンスBinはBin=−1/ωLinであって、
−(ωC+−1/ωLin)>2ωC
in<1/(3ω
の関係式で決定されることを特徴とする請求項1〜7のうちのいずれかに記載の電界通信システム。
The low impedance reactance means includes
It is composed of reactance, and its susceptance B in is B in = −1 / ωL in ,
- (ωC b + -1 / ωL in)> 2ωC b
L in <1 / (3ω 2 C b )
The electric field communication system according to claim 1, wherein the electric field communication system is determined by the relational expression:
JP2005202293A 2005-07-11 2005-07-11 Electric field communication system Expired - Fee Related JP4209872B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005202293A JP4209872B2 (en) 2005-07-11 2005-07-11 Electric field communication system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005202293A JP4209872B2 (en) 2005-07-11 2005-07-11 Electric field communication system

Publications (2)

Publication Number Publication Date
JP2007020124A true JP2007020124A (en) 2007-01-25
JP4209872B2 JP4209872B2 (en) 2009-01-14

Family

ID=37756834

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005202293A Expired - Fee Related JP4209872B2 (en) 2005-07-11 2005-07-11 Electric field communication system

Country Status (1)

Country Link
JP (1) JP4209872B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007086422A1 (en) * 2006-01-25 2007-08-02 Nippon Telegraph And Telephone Corporation Receiver, transceiver and electric field communication system
JP2010252476A (en) * 2009-04-14 2010-11-04 Nippon Telegr & Teleph Corp <Ntt> Rectifying circuit
EP2282425A1 (en) * 2009-07-22 2011-02-09 Alps Electric Co., Ltd. Communication device and communication method
JP2012235374A (en) * 2011-05-06 2012-11-29 Nippon Telegr & Teleph Corp <Ntt> Stray capacitance measurement method
US10715189B2 (en) 2016-03-09 2020-07-14 Kyocera Corporation Electronic device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200093938A (en) * 2019-01-29 2020-08-06 삼성전자주식회사 Method for operating impedance of antenna and electronic device thereof

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007086422A1 (en) * 2006-01-25 2007-08-02 Nippon Telegraph And Telephone Corporation Receiver, transceiver and electric field communication system
US7801483B2 (en) 2006-01-25 2010-09-21 Nippon Telegraph And Telephone Corporation Receiver, transceiver, and electric field communication system
JP2010252476A (en) * 2009-04-14 2010-11-04 Nippon Telegr & Teleph Corp <Ntt> Rectifying circuit
EP2282425A1 (en) * 2009-07-22 2011-02-09 Alps Electric Co., Ltd. Communication device and communication method
US8509689B2 (en) 2009-07-22 2013-08-13 Alps Electric Co., Ltd. Communication device and communication method
JP2012235374A (en) * 2011-05-06 2012-11-29 Nippon Telegr & Teleph Corp <Ntt> Stray capacitance measurement method
US10715189B2 (en) 2016-03-09 2020-07-14 Kyocera Corporation Electronic device

Also Published As

Publication number Publication date
JP4209872B2 (en) 2009-01-14

Similar Documents

Publication Publication Date Title
JP4209872B2 (en) Electric field communication system
JP4478160B2 (en) Transmitter, electric field communication transceiver and electric field communication system
US8929563B2 (en) Wireless power transmission audio system and device on transmitting end and loudspeaker for use in such a system
JP6196003B2 (en) Body-coupled communication device
CN101689813A (en) systems and methods for impedance stabilization
KR102418955B1 (en) Human body communication system using adaptive channel apparatus
JP4460546B2 (en) Communication system, transmitter and receiver
JPWO2007086422A1 (en) Receiver, transceiver, and electric field communication system
US10483802B2 (en) Peak voltage detection in a differentially driven wireless resonant transmitter
JP4170337B2 (en) Electric field communication system
CN116918213A (en) Automatic gain control for communication demodulation in a wireless power transfer system
JP4814014B2 (en) Electric field detecting device, receiving device and filter amplifier
JP4191727B2 (en) Electric field communication system
JP2009213062A (en) Transmitter, communication system and communication method
JP4191702B2 (en) Transmitter and transceiver
KR102481724B1 (en) Wireless power transmitter
JP2007174367A (en) Signal detection circuit
JP2008288758A (en) Communication system, and transmitter
KR20170037308A (en) Wireless power transmitter
JP4430682B2 (en) Transmitter and transceiver
JP2004328352A (en) Receiver for ask signal
JP4460568B2 (en) Receiver, transceiver, and control method
US20230327490A1 (en) Device and method providing feedback in wireless power transfer
Sarkar et al. Split frequency and load-shift keying based bi-directional data transfer technique in wireless implantable medical devices
JP5657514B2 (en) Wireless communication system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070808

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080708

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080821

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081007

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081023

R150 Certificate of patent or registration of utility model

Ref document number: 4209872

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111031

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111031

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121031

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121031

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131031

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees