JP4191702B2 - Transmitter and transceiver - Google Patents

Transmitter and transceiver Download PDF

Info

Publication number
JP4191702B2
JP4191702B2 JP2005136545A JP2005136545A JP4191702B2 JP 4191702 B2 JP4191702 B2 JP 4191702B2 JP 2005136545 A JP2005136545 A JP 2005136545A JP 2005136545 A JP2005136545 A JP 2005136545A JP 4191702 B2 JP4191702 B2 JP 4191702B2
Authority
JP
Japan
Prior art keywords
reactance
electric field
variable
unit
self
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005136545A
Other languages
Japanese (ja)
Other versions
JP2006314053A (en
Inventor
直志 美濃谷
信太郎 柴田
満 品川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2005136545A priority Critical patent/JP4191702B2/en
Publication of JP2006314053A publication Critical patent/JP2006314053A/en
Application granted granted Critical
Publication of JP4191702B2 publication Critical patent/JP4191702B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Landscapes

  • Near-Field Transmission Systems (AREA)

Description

本発明は、電界を電界伝達媒体に誘起し、この誘起した電界を用いて情報の受信を行う送信器及びトランシーバに関する。   The present invention relates to a transmitter and a transceiver for inducing an electric field in an electric field transmission medium and receiving information using the induced electric field.

携帯端末の小型化および高性能化により、生体に装着可能なウェアラブルコンピュータが注目されてきている。従来、このようなウェアラブルコンピュータ間の情報通信として、コンピュータにトランシーバを接続して一体に構成し、このトランシーバが誘起する電界を、電界伝達媒体である生体の内部に伝達させることによって、情報の送受信を行う方法が提案されている。   Due to the miniaturization and high performance of portable terminals, wearable computers that can be attached to living bodies have been attracting attention. Conventionally, as information communication between such wearable computers, a transceiver is connected to a computer to form an integral structure, and an electric field induced by the transceiver is transmitted to the inside of a living body that is an electric field transmission medium, thereby transmitting and receiving information. A method of performing is proposed.

このような、大地グランドから浮遊した電界通信用のトランシーバでは、人体に電界を効率よく誘起するために、送受信電極と送信回路の間に可変リアクタンスを挿入し、人体や回路グランドと大地グランド間の浮遊容量との共振現象を利用している。可変リアクタンスを共振状態にするために、振幅モニタ部、制御信号発生部、電界検出光学部、信号処理部を用いてリアクタンス値を調整している。   In such a transceiver for electric field communication floating from the ground, in order to efficiently induce an electric field in the human body, a variable reactance is inserted between the transmission / reception electrode and the transmission circuit, and between the human body or the circuit ground and the ground ground. Resonance with stray capacitance is used. In order to bring the variable reactance into a resonance state, the reactance value is adjusted using an amplitude monitor unit, a control signal generation unit, an electric field detection optical unit, and a signal processing unit.

電界通信において誘起される電界を強くするために、トランシーバの出力に可変リアクタンスを挿入し、生体と大地グランドおよびトランシーバのグランドと大地グランドの浮遊容量と共振させる方法が取られる(例えば、特許文献1、2を参照)。   In order to strengthen the electric field induced in the electric field communication, a method is adopted in which a variable reactance is inserted into the output of the transceiver to resonate with the living body and the ground capacitance of the transceiver and the stray capacitance of the transceiver ground and the ground ground (for example, Patent Document 1). 2).

実際の応用では図11に示すように、I/O回路100と、送信回路101と、可変リアクタンス部102と、リアクタンス制御部103と、電極105と、絶縁層106とで送信器を構成し、生体104を電界伝達媒体として電界通信を行っている。   In an actual application, as shown in FIG. 11, a transmitter is constituted by the I / O circuit 100, the transmission circuit 101, the variable reactance unit 102, the reactance control unit 103, the electrode 105, and the insulating layer 106, Electric field communication is performed using the living body 104 as an electric field transmission medium.

こうした図11に示す送信器の構成では、変化する浮遊容量に対してリアクタンス制御部103を用いて図12に示す可変リアクタンス部102のリアクタンス値を逐次調整して共振を生じさせている。この時の調整開始からリアクタンス値が目標値になる時間は、調整開始の初期値目標値の差が小さい方が短くなる。   In the configuration of the transmitter shown in FIG. 11, the reactance value of the variable reactance unit 102 shown in FIG. The time when the reactance value becomes the target value from the start of adjustment at this time becomes shorter as the difference between the initial value target values at the start of adjustment is smaller.

なお、従来の可変リアクタンス部102の構成は、送信信号が入力される容量Q115と、制御信号が入力されるバッファ114と、固定電圧電源112と、インダクタ107と、可変容量ダイオード108と、容量R109と抵抗L110と、抵抗M111とからなる。
特開2004−153708号公報 United States Ptent Appplication Publication,Pub.No.:US2004/09226A1 Pub.Date:May13,2004
The configuration of the conventional variable reactance unit 102 includes a capacitor Q115 to which a transmission signal is input, a buffer 114 to which a control signal is input, a fixed voltage power source 112, an inductor 107, a variable capacitor diode 108, and a capacitor R109. And a resistor L110 and a resistor M111.
JP 2004-153708 A United States Ptent Appplication Publication, Pub.No.:US2004/09226A1 Pub.Date:May13,2004

しかしながら上述した従来技術では、初期値と目標値との差が不確定であったため、リアクタンス値調整終了までの時間が長くなる場合があった。リアクタンス値調整時間が長いと振幅モニタ部、制御信号発生部が動作している時間が長くなり、消費電力が大きくなってしまったり、あるいは通信に関係ない不要な電磁波を放射してしまうという問題があった。   However, in the above-described prior art, since the difference between the initial value and the target value is uncertain, the time until the end of the reactance value adjustment may be long. If the reactance value adjustment time is long, the time during which the amplitude monitor unit and the control signal generation unit are operating becomes long, resulting in increased power consumption or radiating unnecessary electromagnetic waves not related to communication. there were.

本発明は、上記の課題に鑑みてなされたもので、その目的とするところは、初期値と目標値との差を小さくして高速にリアクタンス値を調整することができ、不要な電磁波の放射を低減し、消費電力の小さい送信器およびトランシーバを提供することにある。   The present invention has been made in view of the above-described problems. The object of the present invention is to reduce the difference between the initial value and the target value and adjust the reactance value at high speed, and to emit unnecessary electromagnetic waves. It is to provide a transmitter and a transceiver with low power consumption and low power consumption.

課題を解決するために、請求項1に記載の本発明は、送信すべきデータに基づく電界を電界伝達媒体に誘起し、この誘起した電界を用いて前記データの送信を行うための送信器において、前記電界伝達媒体に印加される前記送信の電圧が最大となるようにリアクタンス値を変化させ、前記送信に係る発信器のグランドと大地グランド間の浮遊容量と前記電界伝達媒体と前記大地グランド間の浮遊容量との共振状態を制御するための自己調整・外部制御切替可変リアクタンス部及びリアクタンス制御部を有し、前記自己調整・外部制御切替可変リアクタンス部は、スイッチにより、自己調整可変リアクタンス部及び可変リアクタンス部に切替可能であって、前記自己調整可変リアクタンス部は、前記送信の信号と共振するためのインダクタと印加された電圧に応じて静電容量が変化する可変容量ダイオードを備えた共振回路と、前記共振回路に入力された前記送信の信号を前記可変容量ダイオードで整流して得られた直流電流に応じて電位差を生じ、この電位差を前記可変容量ダイオードのアノードとカソード間に印加する抵抗器と、を備え、送信信号が入力されると自身のリアクタンス値を共振状態の近くまで変化させ、前記リアクタンス制御部は、前記リアクタンス値が共振状態に近づいた後に印加されている送信信号の振幅が最大となるように前記リアクタンス値を設定する制御信号を出力し、前記可変リアクタンス部は、当該制御信号に基づいて前記リアクタンス値を共振状態に調整することを特徴とする。 In order to solve the problem, the present invention according to claim 1 is directed to a transmitter for inducing an electric field based on data to be transmitted in an electric field transmission medium and transmitting the data using the induced electric field. The reactance value is changed so that the voltage of the transmission applied to the electric field transmission medium is maximized, and the stray capacitance between the transmitter ground and the ground ground according to the transmission and between the electric field transmission medium and the ground ground A self-adjusting / external control switching variable reactance unit and a reactance control unit for controlling a resonance state with the stray capacitance of the self-adjusting / external control switching variable reactance unit, a switchable variable reactance section, the self-regulating variable reactance section, inductor and indicia for resonating with the signal of the transmission In accordance with a direct current obtained by rectifying the transmission signal input to the resonance circuit with the variable capacitance diode, and a resonance circuit including a variable capacitance diode whose capacitance changes in accordance with the applied voltage. A resistor that generates a potential difference and applies the potential difference between an anode and a cathode of the variable capacitance diode; when a transmission signal is input, the reactance value thereof is changed to a value close to a resonance state, and the reactance control unit Outputs a control signal for setting the reactance value so that the amplitude of the transmission signal applied after the reactance value approaches the resonance state is maximized, and the variable reactance unit is based on the control signal. The reactance value is adjusted to a resonance state.

また、請求項2に記載の本発明は、前記請求項1に記載の送信器と、電界伝達媒体に誘起された受信すべきデータに基づく電界を受信して受信データを得る受信器とを備えることを特徴とする。 The present invention according to claim 2 includes the transmitter according to claim 1 and a receiver that receives the electric field based on the data to be received induced in the electric field transmission medium and obtains received data. It is characterized by that.

また、請求項3に記載の本発明は、請求項2において、前記受信器に電界検出光学部を有することを特徴とする。 According to a third aspect of the present invention, in the second aspect, the receiver includes an electric field detection optical unit.

本発明によれば、初期値と目標値との差を小さくして高速にリアクタンス値を調整することができ、不要な電磁波の放射を低減し、消費電力の小さい送信器およびトランシーバを提供することができる。   According to the present invention, it is possible to provide a transmitter and a transceiver that can reduce a difference between an initial value and a target value and adjust a reactance value at high speed, reduce unnecessary electromagnetic wave radiation, and consume less power. Can do.

<第1の実施の形態>
図1に第1の実施の形態の送信器のブロック図を示す。この送信器は、I/O回路4と、送信回路3と、リアクタンス制御部2と、自己調整・外部制御切替リアクタンス制御部1と、送受信電極6と、絶縁体7とで構成され、生体5を電界伝達媒体として電界通信が可能である。この送信器では高速にリアクタンスを制御するために可変リアクタンス部に自己調整・外部制御切替可変リアクタンス部1を適用している。
<First Embodiment>
FIG. 1 is a block diagram of the transmitter according to the first embodiment. This transmitter includes an I / O circuit 4, a transmission circuit 3, a reactance control unit 2, a self-adjusting / external control switching reactance control unit 1, a transmission / reception electrode 6, and an insulator 7. Can be used for electric field communication. In this transmitter, in order to control reactance at high speed, a variable reactance unit 1 is applied to a variable reactance unit.

この自己調整・外部制御切替可変リアクタンス部1の内部構成を図2に示す。この図2には、送信信号入力を受ける容量A16と、制御信号入力を受けるバッファ18と、インダクタ14と、可変容量ダイオード13と、抵抗A20と、抵抗B21と、容量B15と、固定電圧電源12と、回路グランド19と、フィルタ11と、増幅器17とが示されている。   The internal configuration of the self-adjusting / external control switching variable reactance unit 1 is shown in FIG. In FIG. 2, a capacitor A16 that receives a transmission signal input, a buffer 18 that receives a control signal input, an inductor 14, a variable capacitance diode 13, a resistor A20, a resistor B21, a capacitor B15, and a fixed voltage power supply 12 A circuit ground 19, a filter 11, and an amplifier 17 are shown.

この自己調整・外部制御切替可変リアクタンス部1では、図2に示すようにスイッチA10にてa1とc1とを接続した場合には、制御信号によりリアクタンス値を変化させる可変リアクタンス部になる。一方、a1とb1を接続した場合では、VACの電圧を持つ送信信号が入力されると可変容量ダイオード13の整流作用によりVDC、Iが生じ、自身のリアクタンス値が変化して共振状態に近づく自己調整可変リアクタンス部になる。 This self-adjusting / external control switching variable reactance unit 1 is a variable reactance unit that changes a reactance value by a control signal when a1 and c1 are connected by a switch A10 as shown in FIG. On the other hand, in the case of connecting the a1 and b1, V DC by rectifying action of V AC of the transmission signal having a voltage input variable capacitance diode 13, occurs I D, resonant state reactance value of itself is changed It becomes a self-adjusting variable reactance section that approaches.

図3に示す自己調整動作を図4に示す。図4には浮遊容量に対して変化し最適に近い値に収束する際の各電圧電流信号の変化が示されている。   The self-adjusting operation shown in FIG. 3 is shown in FIG. FIG. 4 shows changes in each voltage / current signal when it changes with respect to the stray capacitance and converges to a value close to optimum.

まず、図4(a)には可変容量ダイオード13に振幅|VAC|の交流電圧が印加されたときに生じる電流の直流成分Iの関係を表したものである。逆バイアス電圧VDCが可変容量ダイオード13の両端に生じると可変容量ダイオード13が短絡となっている期間が短くなるため同じVACに対してIは小さくなる。 First, FIG. 4A shows the relationship of the DC component ID of the current generated when an AC voltage having an amplitude | V AC | is applied to the variable capacitance diode 13. I D for the same V AC for the period of the reverse bias voltage V DC is generated across the variable capacitance diode 13 variable-capacitance diode 13 is a short circuit is shortened decreases.

図4(b)にはIが抵抗A20と抵抗B21を流れたことによって生じる電位差(VDCと等価)のグラフ、同図4(c)には可変容量ダイオード13の容量Cの電圧VDC依存性を示す。また図4(d)はVの振幅|V|のC依存性である。 4B is a graph of a potential difference (equivalent to VDC ) generated when ID flows through the resistors A20 and B21, and FIG. 4C shows the voltage V of the capacitor CV of the variable capacitance diode 13. DC dependency is shown. The FIG. 4 (d) the amplitude of V b | a C V dependent | V b.

グラフ中の「1」〜「4」で示す点は可変リアクタンスに交流信号を入力し始めてからの各電流電圧の変化を示している。容量Cの初期値はVDC=0の時の値Cとしている。また、|VAC|は|V|に比例する。 Points indicated by “1” to “4” in the graph indicate changes in each current voltage after the AC signal is input to the variable reactance. The initial value of the capacitance C V is a value C 1 in the case of V DC = 0. | V AC | is proportional to | V b |.

交流信号が入力されると可変容量ダイオード13で整流され直流電流Iを生じる(図4(a)の点1)。これが抵抗A20と抵抗B21を流れることにより直流電圧VDCを発生させ、これと同じ電位差が可変容量ダイオード13にも印加される。これにより容量Cは減少し(図4(c)の点1)、共振を起す容量値に近づき|V|は大きくなる。 When an AC signal is input, it is rectified by the variable capacitance diode 13 to generate a DC current ID (point 1 in FIG. 4A). When this flows through the resistor A20 and the resistor B21, a DC voltage VDC is generated, and the same potential difference is also applied to the variable capacitance diode 13. As a result, the capacitance CV decreases (point 1 in FIG. 4C), approaches the capacitance value causing resonance, and | Vb | increases.

そして、|VAC|は|V|に比例するため、|VAC|は大きくなるが、VDCも大きくなっているため|VAC|とIの関係は図4(a)の点「2」に移動する。この後も同じようにCが減少し|VAC|は大きくなるが、VDCも大きくなるためIの変化量は徐々に小さくなりゼロに収束する。Iの変化量がゼロになると|VAC|は一定となり、共振状態での振幅に近づく。この変化の速さは抵抗A20と抵抗B21と容量A16と容量B15の大きさに依存する。 Since | V AC | is proportional to | V b |, | V AC | increases, but V DC also increases. Therefore , the relationship between | V AC | and ID is as shown in FIG. Move to “2”. After this, C V similarly decreases and | V AC | increases, but V DC also increases. Therefore, the amount of change in ID gradually decreases and converges to zero. When the amount of change in ID becomes zero, | V AC | becomes constant and approaches the amplitude in the resonance state. The speed of this change depends on the size of the resistor A20, the resistor B21, the capacitor A16, and the capacitor B15.

そして、リアクタンス制御部2により調整する場合では、自己調整・外部制御切替可変リアクタンス部1のリアクタンス値設定後に印加されている振幅が最大かどうかを判別し、最大でなければ振幅が大きくなる方にリアクタンス値を設定する動作を繰り返して共振状態に調整する。   In the case of adjustment by the reactance control unit 2, it is determined whether or not the amplitude applied after setting the reactance value of the self-adjustment / external control switching variable reactance unit 1 is maximum. The operation of setting the reactance value is repeated to adjust to the resonance state.

この場合のリアクタンス値を1度設定してから振幅が一定になるのに要する時間は抵抗A20と抵抗B21、容量A16と容量B15の大きさに依存する。この動作を何回も繰り返すリアクタンス部でリアクタンス値を共振状態の近くまで変化させた後、リアクタンス制御部2により共振状態に調整することにより高速にリアクタンス値を調整できる。   In this case, the time required for the amplitude to become constant after setting the reactance value once depends on the size of the resistors A20 and B21, and the capacitors A16 and B15. The reactance value can be adjusted at high speed by changing the reactance value close to the resonance state by the reactance unit that repeats this operation many times, and then adjusting the resonance state to the resonance state by the reactance control unit 2.

なお、自己調整可変リアクタンスにしたときのリアクタンス値をリアクタンス制御部2に出力するためにリアクタンスモニタ信号を出力するフィルタ11と増幅器17を付加している。以上の構成により高速にリアクタンス値を調整して不要な電磁波の放射を低減し、消費電力の小さい送信器を提供できる。   A filter 11 and an amplifier 17 for outputting a reactance monitor signal are added in order to output the reactance value when the self-adjustable variable reactance is set to the reactance control unit 2. With the above configuration, a reactance value can be adjusted at high speed to reduce unnecessary electromagnetic radiation, and a transmitter with low power consumption can be provided.

なお、図2では自己調整・外部制御切替可変リアクタンス部1のスイッチA10を可変容量ダイオード13のアノード側に接続していたが、図5のようにカソード側に接続してもよい。また、図6のように抵抗3を抵抗A20と抵抗B21の間に挿入し抵抗間のノードからモニタ信号を出力しても同じ効果が得られる。   In FIG. 2, the switch A10 of the self-adjusting / external control switching variable reactance unit 1 is connected to the anode side of the variable capacitance diode 13, but may be connected to the cathode side as shown in FIG. Further, the same effect can be obtained by inserting the resistor 3 between the resistors A20 and B21 and outputting a monitor signal from a node between the resistors as shown in FIG.

図7に第1の実施の形態の送信器を適用したトランシーバの構成のブロック図を示す。図1に示した構成に対して、受信した信号を増幅、フィルタ、復調してI/O回路4に出力する受信部23を付加している。   FIG. 7 shows a block diagram of a configuration of a transceiver to which the transmitter according to the first embodiment is applied. A receiving unit 23 is added to the configuration shown in FIG. 1 to amplify, filter, and demodulate the received signal and output it to the I / O circuit 4.

図8には別のトランシーバの構成のブロック図を示す。このトランシーバでは送受信の切替を行うスイッチB24を使用し、送信の場合ではa2とb2を接続して送信回路3と自己調整・外部制御切替可変リアクタンス部1を接続する。受信の場合ではb2とc2を接続して受信部23に受信した信号を入力する。このとき自己調整・外部制御切替可変リアクタンス部1のリアクタンス値を最小に設定する。 FIG. 8 shows a block diagram of another transceiver configuration. In this transceiver, a switch B24 for switching between transmission and reception is used. In the case of transmission, a2 and b2 are connected to connect the transmission circuit 3 and the self-adjusting / external control switching variable reactance unit 1. In the case of reception, b2 and c2 are connected and the received signal is input to the receiving unit 23. At this time, the reactance value of the self-adjusting / external control switching variable reactance unit 1 is set to the minimum.

なお、受信部23の入力段に光学的に電界を検出する電界検出光学部を用いてもよい。   An electric field detection optical unit that optically detects an electric field may be used for the input stage of the reception unit 23.

<第2の実施の形態>
図9に自己調整・外部制御切替可変リアクタンス部1の第2の実施の形態を示す。交流信号では各容量を短絡とみなせ可変容量ダイオードA29、可変容量ダイオードB28が直列に接続された構成となり、交流信号の電圧はそれぞれの各可変容量ダイオードA29と可変容量ダイオードB28に分割されて印加される。
<Second Embodiment>
FIG. 9 shows a second embodiment of the self-adjusting / external control switching variable reactance unit 1. In the AC signal, each capacitor is regarded as a short circuit, and a variable capacitance diode A29 and a variable capacitance diode B28 are connected in series. The voltage of the AC signal is divided and applied to each variable capacitance diode A29 and variable capacitance diode B28. The

従って共振状態になって交流信号の電圧が大きくなってもそれぞれの可変容量ダイオードに印加される電圧は半分になり、可変容量ダイオードが1個のときに比べ可変容量ダイオードの印加電圧の制限による共振の抑制が生じにくくなる。   Therefore, even if the voltage of the AC signal increases in the resonance state, the voltage applied to each variable capacitance diode is halved, and resonance occurs due to the limitation of the voltage applied to the variable capacitance diode as compared with a single variable capacitance diode. Is less likely to occur.

本実施の形態では可変容量ダイオードを可変容量ダイオードA29と可変容量ダイオードB28の計2個で用いているが、2個以上でもかまわない。これに対し、低周波である制御信号では各容量を開放とみなせ各可変容量ダイオードはバッファアンプ18から見て並列に接続されている。このため制御信号の電圧は分割されることなくそのままの大きさで印加される。本実施の形態では印加電圧が耐電圧よりも大きくなったことによる共振の抑制を防ぎ、かつ容量の可変範囲を減少させない回路構成となっている。   In the present embodiment, a total of two variable capacitance diodes, variable capacitance diode A29 and variable capacitance diode B28, are used, but two or more may be used. On the other hand, in the control signal having a low frequency, each capacitor can be regarded as open, and each variable capacitance diode is connected in parallel as viewed from the buffer amplifier 18. Therefore, the voltage of the control signal is applied as it is without being divided. In this embodiment, the circuit configuration prevents the suppression of resonance due to the applied voltage becoming higher than the withstand voltage and does not reduce the variable range of the capacitance.

<第3の実施の形態>
図10に自己調整・外部制御切替可変リアクタンス部の第3の実施の形態を示す。可変容量ダイオードの電流電圧特性は非対称でありアノードの電位が高いときには半導体の特性で決まる所定の値より大きい時は短絡になり、交流信号の振幅が抑制される。
<Third Embodiment>
FIG. 10 shows a third embodiment of the self-adjusting / external control switching variable reactance unit. The current-voltage characteristics of the variable capacitance diode are asymmetric. When the anode potential is high, a short circuit occurs when the anode potential is higher than a predetermined value determined by the semiconductor characteristics, and the amplitude of the AC signal is suppressed.

これを防ぐために高周波の交流信号に対して可変容量ダイオードA29、可変容量ダイオードB28、可変容量ダイオードC31、可変容量ダイオードD32を直列かつ逆方向にも接続している。この構成により一方の可変容量ダイオードが短絡となっても逆方向の可変容量ダイオードは短絡になっていないため交流信号の振幅が抑制されることはない。   In order to prevent this, the variable capacitance diode A29, the variable capacitance diode B28, the variable capacitance diode C31, and the variable capacitance diode D32 are connected in series and in the reverse direction with respect to the high-frequency AC signal. With this configuration, even if one of the variable capacitance diodes is short-circuited, the reverse-direction variable capacitance diode is not short-circuited, so that the amplitude of the AC signal is not suppressed.

以上において説明した実施の形態によれば、初期値と目標値との差を小さくして高速にリアクタンス値を調整することができ、不要な電磁波の放射を低減し、消費電力の小さい送信器およびトランシーバを提供することができる。   According to the embodiments described above, the reactance value can be adjusted at high speed by reducing the difference between the initial value and the target value, the emission of unnecessary electromagnetic waves is reduced, and a transmitter with low power consumption and A transceiver can be provided.

実施の形態に係る送信器の全体構成図を示す。The whole block diagram of the transmitter which concerns on embodiment is shown. 実施の形態に係る自己調整・外部性御切替可変リアクタンス部の構成図を示す。The block diagram of the self-adjustment / externality control switching variable reactance part which concerns on embodiment is shown. 実施の形態に係る自己調整可変リアクタンス部の構成図を示す。The block diagram of the self-adjustment variable reactance part which concerns on embodiment is shown. 実施の形態に係る自己調整可変リアクタンス部の動作の説明図を示す。An explanatory view of operation of a self-adjustment variable reactance part concerning an embodiment is shown. 実施の形態に係る自己調整・外部制御切替可変リアクタンス部の変形例の構成図を示す。The block diagram of the modification of the self-adjustment / external control switching variable reactance part which concerns on embodiment is shown. 実施の形態に係る自己調整・外部制御切替可変リアクタンス部の変形例の構成図を示す。The block diagram of the modification of the self-adjustment / external control switching variable reactance part which concerns on embodiment is shown. 実施の形態に係るトランシーバの構成図を示す。The block diagram of the transceiver which concerns on embodiment is shown. 実施の形態に係るトランシーバの他の構成図を示す。The other block diagram of the transceiver which concerns on embodiment is shown. 実施の形態に係る自己調整・外部制御切替可変リアクタンス部の変形例の構成図を示す。The block diagram of the modification of the self-adjustment / external control switching variable reactance part which concerns on embodiment is shown. 実施の形態に係る自己調整・外部制御切替可変リアクタンス部の変形例の構成図を示す。The block diagram of the modification of the self-adjustment / external control switching variable reactance part which concerns on embodiment is shown. 従来の技術による送信回路の構成図を示す。The block diagram of the transmission circuit by a prior art is shown. 従来の技術による可変リアクタンス部の構成図を示す。The block diagram of the variable reactance part by a prior art is shown.

符号の説明Explanation of symbols

1 自己調整・外部制御切替可変リアクタンス部
2 リアクタンス制御部
3 送信回路
4 I/O回路
10 スイッチA
11 フィルタ
12 固定電源
13 可変容量ダイオード
14 インダクタ
15 容量B
16 容量A
17 増幅器
18 バッファ
20 抵抗A
21 抵抗B
1 Self-adjustment / external control switching variable reactance part 2 Reactance control part 3 Transmitter circuit 4 I / O circuit 10 Switch A
11 Filter 12 Fixed Power Supply 13 Variable Capacitance Diode 14 Inductor 15 Capacitance B
16 capacity A
17 Amplifier 18 Buffer 20 Resistance A
21 Resistance B

Claims (3)

送信すべきデータに基づく電界を電界伝達媒体に誘起し、この誘起した電界を用いて前記データの送信を行うための送信器において、
前記電界伝達媒体に印加される前記送信の電圧が最大となるようにリアクタンス値を変化させ、前記送信に係る発信器のグランドと大地グランド間の浮遊容量と前記電界伝達媒体と前記大地グランド間の浮遊容量との共振状態を制御するための自己調整・外部制御切替可変リアクタンス部及びリアクタンス制御部を有し、
前記自己調整・外部制御切替可変リアクタンス部は、スイッチにより、自己調整可変リアクタンス部及び可変リアクタンス部に切替可能であって、
前記自己調整可変リアクタンス部は、
前記送信の信号と共振するためのインダクタと印加された電圧に応じて静電容量が変化する可変容量ダイオードを備えた共振回路と、
前記共振回路に入力された前記送信の信号を前記可変容量ダイオードで整流して得られた直流電流に応じて電位差を生じ、この電位差を前記可変容量ダイオードのアノードとカソード間に印加する抵抗器と、を備え、送信信号が入力されると自身のリアクタンス値を共振状態の近くまで変化させ、
前記リアクタンス制御部は、前記リアクタンス値が共振状態に近づいた後に印加されている送信信号の振幅が最大となるように前記リアクタンス値を設定する制御信号を出力し、
前記可変リアクタンス部は、当該制御信号に基づいて前記リアクタンス値を共振状態に調整することを特徴とする送信器。
In a transmitter for inducing an electric field based on data to be transmitted in an electric field transmission medium and transmitting the data using the induced electric field,
The reactance value is changed so that the voltage of the transmission applied to the electric field transmission medium is maximized, and the stray capacitance between the transmitter ground and the ground ground for transmission is between the electric field transmission medium and the ground ground. A self-adjusting / external control switching variable reactance unit and a reactance control unit for controlling the resonance state with the stray capacitance,
The self-adjusting / external control switching variable reactance unit can be switched to a self-adjusting variable reactance unit and a variable reactance unit by a switch,
The self-adjusting variable reactance unit is
A resonance circuit including an inductor for resonating with the transmission signal and a variable capacitance diode whose capacitance changes according to an applied voltage;
A resistor that generates a potential difference according to a direct current obtained by rectifying the transmission signal input to the resonance circuit with the variable capacitance diode, and that applies the potential difference between an anode and a cathode of the variable capacitance diode; When the transmission signal is input, the reactance value of the device is changed to near the resonance state,
The reactance control unit outputs a control signal for setting the reactance value so that an amplitude of a transmission signal applied after the reactance value approaches a resonance state is maximized,
The variable reactance unit adjusts the reactance value to a resonance state based on the control signal .
前記請求項1に記載の送信器と、The transmitter of claim 1;
電界伝達媒体に誘起された受信すべきデータに基づく電界を受信して受信データを得る受信器とを備えることを特徴とするトランシーバ。A transceiver comprising: a receiver that receives an electric field based on data to be received induced in an electric field transmission medium to obtain received data.
前記受信器に電界検出光学部を有することを特徴とする請求項2に記載のトランシーバ。The transceiver according to claim 2, wherein the receiver includes an electric field detection optical unit.
JP2005136545A 2005-05-09 2005-05-09 Transmitter and transceiver Expired - Fee Related JP4191702B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005136545A JP4191702B2 (en) 2005-05-09 2005-05-09 Transmitter and transceiver

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005136545A JP4191702B2 (en) 2005-05-09 2005-05-09 Transmitter and transceiver

Publications (2)

Publication Number Publication Date
JP2006314053A JP2006314053A (en) 2006-11-16
JP4191702B2 true JP4191702B2 (en) 2008-12-03

Family

ID=37535362

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005136545A Expired - Fee Related JP4191702B2 (en) 2005-05-09 2005-05-09 Transmitter and transceiver

Country Status (1)

Country Link
JP (1) JP4191702B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4191727B2 (en) * 2005-12-13 2008-12-03 日本電信電話株式会社 Electric field communication system
JP4170337B2 (en) * 2005-12-20 2008-10-22 日本電信電話株式会社 Electric field communication system
JP4430682B2 (en) * 2007-03-19 2010-03-10 日本電信電話株式会社 Transmitter and transceiver
JP6850717B2 (en) * 2017-11-28 2021-03-31 日本電信電話株式会社 Anomaly detection sensor and anomaly detection system

Also Published As

Publication number Publication date
JP2006314053A (en) 2006-11-16

Similar Documents

Publication Publication Date Title
JP4478160B2 (en) Transmitter, electric field communication transceiver and electric field communication system
KR102358764B1 (en) Harvesting power from ambient energy in an electronic device
US10170996B2 (en) Diode conduction sensor
JP6568300B2 (en) Device, system and method for regulating output power using synchronous rectifier control
US20120208459A1 (en) Near field communication device
US20130112747A1 (en) Near field communications reader
JP4170337B2 (en) Electric field communication system
JP4191702B2 (en) Transmitter and transceiver
WO2015105116A1 (en) Non-contact communication device and antenna resonance frequency control method
JP5066982B2 (en) Control device
WO2017059540A1 (en) Wireless power and data transmission system for wearable and implantable devices
JP2023529096A (en) energy harvesting system
JP4384515B2 (en) hearing aid
JP2017506446A (en) Low Voltage Crystal Oscillator (XTAL) Driver with Feedback Control Duty Cycling for Ultra Low Power
US20180309406A1 (en) Wireless communication apparatus and method
CN105897169B (en) Frequency multiplier
JP4209872B2 (en) Electric field communication system
US20110051475A1 (en) Regulator circuitry for reducing ripple resulted from line voltage transmitting to secondary side of power transformer
JP7477347B2 (en) Wireless power transmission device and wireless power transmission system
JP4430682B2 (en) Transmitter and transceiver
JP3991006B2 (en) ASK signal receiver
JP6545104B2 (en) Resonance type power transmission device
KR102328809B1 (en) Apparatus for transmiting power wirelessly and control method thereof
JP6884274B2 (en) Limiter circuit
JP2004242302A (en) Data transmitting/receiving apparatus for remote control of hearing aid

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060914

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080520

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080718

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080902

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080918

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110926

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees