JP2007019160A - Manufacturing method of silicon carbide single crystal - Google Patents

Manufacturing method of silicon carbide single crystal Download PDF

Info

Publication number
JP2007019160A
JP2007019160A JP2005197590A JP2005197590A JP2007019160A JP 2007019160 A JP2007019160 A JP 2007019160A JP 2005197590 A JP2005197590 A JP 2005197590A JP 2005197590 A JP2005197590 A JP 2005197590A JP 2007019160 A JP2007019160 A JP 2007019160A
Authority
JP
Japan
Prior art keywords
silicon carbide
single crystal
carbide single
crystal
source gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005197590A
Other languages
Japanese (ja)
Inventor
Ryochi Shintani
良智 新谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2005197590A priority Critical patent/JP2007019160A/en
Publication of JP2007019160A publication Critical patent/JP2007019160A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method capable of obtaining a desired 4H silicon carbide single crystal by controlling the transformation of crystal polymorph. <P>SOLUTION: The manufacturing method of a silicon carbide single crystal is to subject a silicon carbide single crystal to vapor phase epitaxy by bringing Si containing stock gas and C containing stock gas to reaction on a seed crystal substrate. In the method, the seed crystal is a 15R silicon carbide single crystal, and the 4H silicon carbide single crystal is subjected to vapor phase epitaxy by bringing the Si containing stock gas and the C containing stock gas to reaction at a temperature of 1,700°C or higher with a C/Si ratio of 1.0 or less. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、所望の4H形炭化珪素単結晶を簡便にかつ確実に製造することができる方法に関する。   The present invention relates to a method capable of easily and reliably producing a desired 4H-type silicon carbide single crystal.

炭化珪素は、熱的、化学的に非常に安定であり、耐熱性及び機械的強度に優れていることから、耐環境性半導体材料として用いられている。また、炭化珪素は結晶多形構造を有することが知られている。この結晶多形とは、化学組成が同じであっても多数の異なる結晶構造をとる現象であり、結晶構造においてSiとCとが結合した分子を一単位として考えた場合に、この単位構造分子が結晶のc軸方向([0001]方向)に積層する際の周期構造が異なることにより生ずる。   Silicon carbide is used as an environmentally resistant semiconductor material because it is very stable thermally and chemically and has excellent heat resistance and mechanical strength. Silicon carbide is known to have a crystalline polymorphic structure. This crystal polymorphism is a phenomenon that takes many different crystal structures even if the chemical composition is the same. When the molecule in which the Si and C are bonded in the crystal structure is considered as one unit, this unit structure molecule Is caused by the difference in the periodic structure when stacked in the c-axis direction ([0001] direction) of the crystal.

代表的な結晶多形としては、2H、3C、4H、6H及び15Rがある。ここで最初の数字は積層の繰り返し周期を示し、アルファベットは結晶系を表し、Hは六方晶系を、Rは菱面体晶系を、そしてCは立方晶系を表す。各結晶構造はそれぞれ物理的、電気的特性が異なり、その違いを利用して各種用途への応用が考えられている。半導体デバイス用としては6H、4H、15R形が用いられており、4H形は6H形に比べてパワーデバイス用として望ましい特性を有しているため、最近パワーデバイス用半導体結晶材料として注目されている。   Representative crystal polymorphs include 2H, 3C, 4H, 6H and 15R. Here, the first number represents the repetition period of the lamination, the alphabet represents the crystal system, H represents the hexagonal system, R represents the rhombohedral system, and C represents the cubic system. Each crystal structure has different physical and electrical characteristics, and application to various uses is considered using the difference. 6H, 4H, and 15R types are used for semiconductor devices. Since the 4H type has desirable characteristics for power devices compared to the 6H type, it has recently been attracting attention as a semiconductor crystal material for power devices. .

ところで従来、炭化珪素単結晶の成長方法としては、気相成長法、アチソン法、及び溶液成長法等の各種方法が知られているが、半導体デバイス用の大型の単結晶を製造する方法としては、改良レリー法とよばれる昇華再結晶法が主に用いられている(例えば、特許文献1参照)。   Conventionally, as a method for growing a silicon carbide single crystal, various methods such as a vapor phase growth method, an atchison method, and a solution growth method are known. As a method for manufacturing a large single crystal for a semiconductor device, A sublimation recrystallization method called an improved Lerry method is mainly used (see, for example, Patent Document 1).

この昇華再結晶法は、炭化珪素粉末を原料として、準閉鎖空間内で原料から昇華したSiとCからなる蒸気が、不活性ガス中を拡散して輸送され、原料より低温に設定された種結晶上で過飽和となって凝結するという現象を利用した方法である。   This sublimation recrystallization method uses silicon carbide powder as a raw material, and a vapor composed of Si and C sublimated from the raw material in a semi-closed space is transported by diffusing in an inert gas and set at a lower temperature than the raw material. This is a method that utilizes the phenomenon of supersaturation and condensation on the crystal.

特開平7−330493号公報JP 7-330493 A

しかしながら、上記の昇華再結晶法により製造した単結晶にはマイクロパイプ欠陥と呼ばれる中空貫通状の欠陥が存在することが知られている。また、さらに昇華再結晶法では、種結晶が4H形であればその上に4H形の単結晶を容易に成長させることができるが、4H形の単結晶は入手困難であり、入手が比較的容易な6H形又は15R形の炭化水素単結晶を種結晶として用いて、4H形の炭化珪素単結晶を成長させる方法が必要である。   However, it is known that a single crystal produced by the above-described sublimation recrystallization method has a hollow penetrating defect called a micropipe defect. Further, in the sublimation recrystallization method, if the seed crystal is in the 4H form, a 4H form single crystal can be easily grown on the seed crystal, but the 4H form single crystal is difficult to obtain and is relatively difficult to obtain. There is a need for a method of growing a 4H-type silicon carbide single crystal using an easy 6H-type or 15R-type hydrocarbon single crystal as a seed crystal.

本発明は、このような問題を解消し、昇華再結晶法と比べてプロセス制御、欠陥制御が比較的容易なCVD法を用い、種結晶として15R形炭化珪素単結晶又は6H形炭化珪素単結晶を用いて、所望の結晶構造の4H形炭化珪素単結晶を得ることができる方法を提供することを目的とする。   The present invention solves such problems, uses a CVD method in which process control and defect control are relatively easy as compared with a sublimation recrystallization method, and uses a 15R type silicon carbide single crystal or a 6H type silicon carbide single crystal as a seed crystal. It is an object to provide a method capable of obtaining a 4H-type silicon carbide single crystal having a desired crystal structure using

上記問題点を解決するために1番目の発明によれば、種結晶基板上でSi含有原料ガスとC含有原料ガスを反応させて炭化珪素単結晶を気相成長させることを含む炭化珪素単結晶の製造方法において、前記種結晶が15R形炭化珪素単結晶であり、Si含有原料ガスとC含有原料ガスを1700℃以上の温度において、C/Si比1.0以下で反応させて4H形炭化珪素単結晶を気相成長させることを特徴とする。   In order to solve the above problems, according to a first invention, a silicon carbide single crystal including vapor-phase growth of a silicon carbide single crystal by reacting a Si-containing source gas and a C-containing source gas on a seed crystal substrate. In this manufacturing method, the seed crystal is a 15R-type silicon carbide single crystal, and a Si-containing source gas and a C-containing source gas are reacted at a temperature of 1700 ° C. or more at a C / Si ratio of 1.0 or less to form a 4H-type silicon carbide single crystal. The crystal is grown in a vapor phase.

上記問題点を解決するために2番目の発明によれば、種結晶基板上でSi含有原料ガスとC含有原料ガスを反応させて炭化珪素単結晶を気相成長させることを含む炭化珪素単結晶の製造方法において、前記種結晶が6H形炭化珪素単結晶であり、種結晶基板に窒素原子をイオン注入して原子間に格子歪みを与えた後、表層部に形成したアモルファス層を除去し、次いでSi含有原料ガスとC含有原料ガスを1700℃以上の温度において、C/Si比1.0以下で反応させて4H形炭化珪素単結晶を気相成長させることを特徴とする。   In order to solve the above problems, according to a second invention, a silicon carbide single crystal including vapor-phase growth of a silicon carbide single crystal by reacting a Si-containing source gas and a C-containing source gas on a seed crystal substrate. In the manufacturing method, the seed crystal is a 6H-type silicon carbide single crystal, nitrogen atoms are ion-implanted into the seed crystal substrate to give lattice distortion between the atoms, and then the amorphous layer formed on the surface layer portion is removed, Next, the Si-containing raw material gas and the C-containing raw material gas are reacted at a temperature of 1700 ° C. or higher at a C / Si ratio of 1.0 or lower to cause 4H-type silicon carbide single crystal to vapor-phase grow.

本発明によれば、CVD法により結晶を成長させているため、昇華再結晶法に比べて低温で実施することができ、結晶成長のプロセス制御、欠陥制御が容易であり、入手が比較的容易な15R形又は6H形炭化水素単結晶から4H形炭化水素単結晶を簡便に勝つ確実に作ることができる。   According to the present invention, since the crystal is grown by the CVD method, it can be carried out at a lower temperature than the sublimation recrystallization method, the crystal growth process control and defect control are easy, and the acquisition is relatively easy. From the 15R type or 6H type hydrocarbon single crystal, the 4H type hydrocarbon single crystal can be easily and reliably made.

以下、本発明の炭化珪素単結晶の製造方法を具体的に説明する。まず、本発明の炭化珪素単結晶の製造方法に用いる製造装置の構成について図1を参照して説明する。この製造装置は水平に配置した反応管を備え、この反応管1内には試料台2が支持棒3により配置されている。反応管1の外側には枝管4、5を介して冷却水が供給され、さらに外周部にはコイル6が巻回され、このコイル6に高周波電流を流すことにより試料台2を誘導加熱することができる。反応管1の片側には、ガス流入口となる枝管7が設けられ、反応管1の他端はフランジ8にシールされ、フランジ8にはガスの出口となる枝管9が設けられている。   Hereinafter, the method for producing a silicon carbide single crystal of the present invention will be specifically described. First, the structure of the manufacturing apparatus used for the manufacturing method of the silicon carbide single crystal of this invention is demonstrated with reference to FIG. This manufacturing apparatus includes a reaction tube arranged horizontally, and a sample stage 2 is arranged in the reaction tube 1 by a support bar 3. Cooling water is supplied to the outside of the reaction tube 1 through branch tubes 4 and 5, and a coil 6 is wound around the outer periphery, and the sample stage 2 is induction-heated by flowing a high-frequency current through the coil 6. be able to. A branch pipe 7 serving as a gas inlet is provided on one side of the reaction tube 1, the other end of the reaction tube 1 is sealed by a flange 8, and a branch pipe 9 serving as a gas outlet is provided on the flange 8. .

この製造装置を用いて炭化珪素単結晶を製造する方法について説明する。まず、反応管1内の試料台2上に種結晶10を載せ、反応管1内を排気してキャリアガス(例えば水素ガス)で置換し、コイルに高周波電流を流して試料台2を加熱し、種結晶10の温度を1700℃以上、好ましくは1750〜2000℃に昇温させる。次いで枝管7からSi含有原料ガスとC含有原料ガス、並びにキャリヤガスを供給し、種結晶10上で反応させて、炭化珪素単結晶を気相成長させる。Si含有原料ガスとしては、SiH2Cl2、SiH4、SiHCl3等を用いることができ、C含有原料ガスとしては、C22、C38、CH4等を用いることができ、またキャリヤガスとしては水素、Ar等を用いることができる。Si含有原料ガスとC含有原料ガスの比率は、C/Si比で1.0以下とする。 A method for producing a silicon carbide single crystal using this production apparatus will be described. First, the seed crystal 10 is placed on the sample stage 2 in the reaction tube 1, the inside of the reaction tube 1 is evacuated and replaced with a carrier gas (for example, hydrogen gas), and a high-frequency current is passed through the coil to heat the sample stage 2. The temperature of the seed crystal 10 is raised to 1700 ° C. or higher, preferably 1750 to 2000 ° C. Next, a Si-containing source gas, a C-containing source gas, and a carrier gas are supplied from the branch pipe 7 and reacted on the seed crystal 10 to vapor-phase grow a silicon carbide single crystal. SiH 2 Cl 2 , SiH 4 , SiHCl 3 or the like can be used as the Si-containing source gas, and C 2 H 2 , C 3 H 8 , CH 4 or the like can be used as the C-containing source gas, As the carrier gas, hydrogen, Ar, or the like can be used. The ratio of the Si-containing source gas to the C-containing source gas is 1.0 or less in terms of the C / Si ratio.

本発明の方法において、種結晶として、比較的入手が容易な15R形又は6H形炭化珪素単結晶を用いることができる。種結晶として15R炭化珪素単結晶を用いた場合、上記の方法により多形変態させ、4H形炭化珪素単結晶を得ることができる。ここで温度が1700℃未満では4H形に変態せず、またC/Si比が1.0より高いと3C形に変態してしまう。   In the method of the present invention, a 15R-type or 6H-type silicon carbide single crystal that is relatively easily available can be used as a seed crystal. When a 15R silicon carbide single crystal is used as a seed crystal, polymorph transformation can be performed by the above method to obtain a 4H type silicon carbide single crystal. Here, when the temperature is lower than 1700 ° C., it does not transform into 4H type, and when the C / Si ratio is higher than 1.0, it transforms into 3C type.

一方、種結晶として6H形炭化珪素単結晶を用いた場合、上記方法では多形変態せず、6H形炭化珪素単結晶が形成し、4H形炭化珪素単結晶を得ることができない。ところが、6H形炭化珪素単結晶の原子間に格子歪みを与え、表層部に形成したアモルファス層を除去するという前処理を施すことにより、この6H形炭化珪素単結晶を多形変態させ、4H形炭化珪素単結晶を得ることができる。原子間に格子歪みを与えるには、イオン注入装置を用いて、例えばCよりも原子半径の小さな窒素原子を注入することにより行われる。アモルファス層の除去はドライエッチング等の通常のエッチング処理により行われる。   On the other hand, when a 6H type silicon carbide single crystal is used as a seed crystal, the above method does not cause polymorphic transformation and a 6H type silicon carbide single crystal is formed, and a 4H type silicon carbide single crystal cannot be obtained. However, the 6H type silicon carbide single crystal is subjected to a pretreatment that gives lattice strain between atoms of the 6H type silicon carbide single crystal and removes the amorphous layer formed on the surface layer portion, thereby transforming the 6H type silicon carbide single crystal into a polymorphic form. A silicon carbide single crystal can be obtained. In order to give lattice distortion between atoms, for example, nitrogen atoms having an atomic radius smaller than C are implanted by using an ion implantation apparatus. The removal of the amorphous layer is performed by a normal etching process such as dry etching.

従来の昇華再結晶法を用いれば、15R形種結晶から4H形単結晶に多形変態できることもあるが、この多形変態はC面上においてのみみられ、Si面上には生じない。これに対し、本願発明によれば、C面のみならず、Si面においても多形変態を行うことができる。さらに、昇華再結晶法では得られた単結晶にマイクロパイプ欠陥が生じやすいが、本願発明の方法では、昇華再結晶法よりもより低温において結晶成長が可能であり、得られた単結晶にマイクロパイプ欠陥が発生することを抑制することができる。   If a conventional sublimation recrystallization method is used, a polymorphic transformation from a 15R-type seed crystal to a 4H-type single crystal may be achieved, but this polymorphic transformation is observed only on the C plane and does not occur on the Si plane. On the other hand, according to the present invention, polymorphic transformation can be performed not only on the C plane but also on the Si plane. Furthermore, although the sublimation recrystallization method tends to cause micropipe defects in the obtained single crystal, the method of the present invention allows crystal growth at a lower temperature than the sublimation recrystallization method. It is possible to suppress the occurrence of pipe defects.

実施例1
種結晶として15R形炭化珪素単結晶基板(polarity:C面)を用い、この基板をアルコールで超音波洗浄し、HF水溶液でエッチングし、純水で流水洗浄した後、乾燥させた。図1に示す装置の試料台(BN製)上にこの種結晶を載せ、高周波誘導加熱により加熱した。加熱温度は支持棒の設置した熱電対で測定し、温度制御した。キャリヤガスとしては水素ガスを用い、C含有原料ガスとしてはC22を水素ガスで希釈したものを用い、Si含有原料ガスとしてはSiH2Cl2を水素ガスで希釈したものを用いた。温度1750℃において、C/Si比=0.5で単結晶を成長させた。
Example 1
A 15R type silicon carbide single crystal substrate (polarity: C plane) was used as a seed crystal. This substrate was ultrasonically cleaned with alcohol, etched with an HF aqueous solution, washed with running pure water, and then dried. This seed crystal was placed on a sample stage (manufactured by BN) of the apparatus shown in FIG. 1 and heated by high frequency induction heating. The heating temperature was measured with a thermocouple provided with a support rod, and the temperature was controlled. Hydrogen gas was used as the carrier gas, C 2 H 2 diluted with hydrogen gas was used as the C-containing source gas, and SiH 2 Cl 2 diluted with hydrogen gas was used as the Si-containing source gas. A single crystal was grown at a temperature of 1750 ° C. with a C / Si ratio = 0.5.

得られた単結晶の薄膜について、薄膜X線回折装置(Philips X' Pert MRD)を用い、逆格子空間マッピングによるSiC結晶多形の評価を行った。測定光学系の入射側はX線レンズを、受光側は0.27°コリメータを用いた。このX線回折の結果を図2から4に示す。図2は、種結晶である15R形炭化珪素単結晶の測定結果を示す。図3は、4H形炭化珪素単結晶の測定結果を示し、4H(101)で2θ=34.84の代表的なピーク位置を示す。図4は、実施例1で得られた単結晶の結果を示し、2θ=34.87でピークがあることにより、4H形炭化珪素単結晶が生成したことがわかる。   The obtained single crystal thin film was evaluated for SiC crystal polymorphism by reciprocal space mapping using a thin film X-ray diffractometer (Philips X 'Pert MRD). An X-ray lens was used on the incident side of the measurement optical system, and a 0.27 ° collimator was used on the light receiving side. The results of this X-ray diffraction are shown in FIGS. FIG. 2 shows the measurement results of a 15R-type silicon carbide single crystal that is a seed crystal. FIG. 3 shows the measurement results of 4H type silicon carbide single crystal, and shows a representative peak position of 2θ = 34.84 in 4H (101). FIG. 4 shows the result of the single crystal obtained in Example 1, and it can be seen that a 4H-type silicon carbide single crystal was formed by having a peak at 2θ = 34.87.

実施例2
種結晶の試料を15R形炭化珪素単結晶のpolarityをC面からSi面に代えることを除き、実施例1と同様にして結晶成長させた。図5に示す結果から明らかなように、Si面においても4H形炭化珪素単結晶が生成したことがわかった。
Example 2
A seed crystal sample was grown in the same manner as in Example 1 except that the polarity of the 15R type silicon carbide single crystal was changed from the C plane to the Si plane. As is apparent from the results shown in FIG. 5, it was found that a 4H type silicon carbide single crystal was formed also on the Si surface.

比較例1
種結晶の試料を15R形炭化珪素単結晶から6H形炭化珪素単結晶に代えることを除き、実施例1と同様にして結晶成長させた。生成した単結晶は、種結晶と同じ6H形であった。
Comparative Example 1
Crystal growth was performed in the same manner as in Example 1 except that the seed crystal sample was changed from the 15R type silicon carbide single crystal to the 6H type silicon carbide single crystal. The produced single crystal was in the same 6H form as the seed crystal.

実施例3
C/Si比=1.0で反応させることを除き、実施例1と同様にして結晶成長させた。15R形炭化珪素単結晶上に4H形炭化珪素単結晶が生成した。
Example 3
Crystal growth was performed in the same manner as in Example 1 except that the reaction was performed at a C / Si ratio of 1.0. A 4H type silicon carbide single crystal was formed on the 15R type silicon carbide single crystal.

比較例2
C/Si比=1.5で反応させることを除き、実施例1と同様にして結晶成長させた。15R形炭化珪素単結晶上に3C形炭化珪素単結晶が生成した。
Comparative Example 2
Crystal growth was performed in the same manner as in Example 1 except that the reaction was performed at a C / Si ratio of 1.5. A 3C type silicon carbide single crystal was formed on the 15R type silicon carbide single crystal.

実施例4
加熱温度を1700℃にすることを除き、実施例1と同様にして結晶成長させた。15R形炭化珪素単結晶上に4H形炭化珪素単結晶が生成した。
Example 4
Crystals were grown in the same manner as in Example 1 except that the heating temperature was 1700 ° C. A 4H type silicon carbide single crystal was formed on the 15R type silicon carbide single crystal.

比較例3
加熱温度を1600℃にすることを除き、実施例1と同様にして結晶成長させた。15R形炭化珪素単結晶上にSiが生成した。
Comparative Example 3
Crystals were grown in the same manner as in Example 1 except that the heating temperature was 1600 ° C. Si was formed on the 15R silicon carbide single crystal.

実施例5
種結晶の試料として6H形炭化珪素単結晶を用いた。400keVイオン注入装置を用いて窒素原子を1E14/cm2注入した。その後、表層部の0.5μmの厚みをドライエッチング装置で研磨した。実施例1と同様の条件で結晶成長させ、4H形炭化珪素単結晶が生成していることがわかった。
Example 5
A 6H silicon carbide single crystal was used as a seed crystal sample. Nitrogen atoms were implanted at 1E14 / cm 2 using a 400 keV ion implanter. Thereafter, the thickness of the surface layer portion of 0.5 μm was polished with a dry etching apparatus. Crystal growth was performed under the same conditions as in Example 1, and it was found that a 4H-type silicon carbide single crystal was produced.

本発明の炭化珪素単結晶の製造方法に用いる製造装置の構成を示す略図である。1 is a schematic diagram showing the configuration of a manufacturing apparatus used in the method for manufacturing a silicon carbide single crystal of the present invention. 15R形炭化珪素単結晶のX線回折の測定結果を示すグラフである。It is a graph which shows the measurement result of the X-ray diffraction of a 15R type silicon carbide single crystal. 4H形炭化珪素単結晶のX線回折の測定結果を示すグラフである。It is a graph which shows the measurement result of the X-ray diffraction of 4H type silicon carbide single crystal. 本発明の方法により得られた炭化珪素単結晶のX線回折の測定結果を示すグラフである。It is a graph which shows the measurement result of the X-ray diffraction of the silicon carbide single crystal obtained by the method of this invention. 本発明の方法により得られた炭化珪素単結晶のX線回折の測定結果を示すグラフである。It is a graph which shows the measurement result of the X-ray diffraction of the silicon carbide single crystal obtained by the method of this invention.

符号の説明Explanation of symbols

1 反応管
2 試料台
3 支持棒
4 枝管
5 枝管
6 コイル
7 枝管
8 フランジ
9 枝管
10 種結晶
DESCRIPTION OF SYMBOLS 1 Reaction tube 2 Sample stand 3 Support rod 4 Branch tube 5 Branch tube 6 Coil 7 Branch tube 8 Flange 9 Branch tube 10 Seed crystal

Claims (2)

種結晶基板上でSi含有原料ガスとC含有原料ガスを反応させて炭化珪素単結晶を気相成長させることを含む炭化珪素単結晶の製造方法であって、前記種結晶が15R形炭化珪素単結晶であり、Si含有原料ガスとC含有原料ガスを1700℃以上の温度において、C/Si比1.0以下で反応させて4H形炭化珪素単結晶を気相成長させることを特徴とする、炭化珪素単結晶の製造方法。   A method for producing a silicon carbide single crystal comprising reacting a Si-containing source gas and a C-containing source gas on a seed crystal substrate to vapor-phase grow a silicon carbide single crystal, wherein the seed crystal is a 15R-type silicon carbide single crystal. A silicon carbide characterized in that a 4H silicon carbide single crystal is vapor-phase grown by reacting a Si-containing source gas and a C-containing source gas at a temperature of 1700 ° C. or higher at a C / Si ratio of 1.0 or lower. A method for producing a single crystal. 種結晶基板上でSi含有原料ガスとC含有原料ガスを反応させて炭化珪素単結晶を気相成長させることを含む炭化珪素単結晶の製造方法であって、前記種結晶が6H形炭化珪素単結晶であり、種結晶基板に窒素原子をイオン注入して原子間に格子歪みを与えた後、表層部に形成したアモルファス層を除去し、次いでSi含有原料ガスとC含有原料ガスを1700℃以上の温度において、C/Si比1.0以下で反応させて4H形炭化珪素単結晶を気相成長させることを特徴とする、炭化珪素単結晶の製造方法。   A method for producing a silicon carbide single crystal comprising reacting a Si-containing source gas and a C-containing source gas on a seed crystal substrate to vapor-phase grow a silicon carbide single crystal, wherein the seed crystal is a 6H-type silicon carbide single crystal. The crystal is a crystal, and nitrogen atoms are ion-implanted into the seed crystal substrate to give lattice distortion between the atoms. Then, the amorphous layer formed on the surface layer is removed, and then the Si-containing source gas and the C-containing source gas are heated to 1700 ° C. or higher. A method for producing a silicon carbide single crystal, wherein the 4H-type silicon carbide single crystal is vapor-phase grown by reacting at a temperature of C / Si at a ratio of 1.0 or less.
JP2005197590A 2005-07-06 2005-07-06 Manufacturing method of silicon carbide single crystal Pending JP2007019160A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005197590A JP2007019160A (en) 2005-07-06 2005-07-06 Manufacturing method of silicon carbide single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005197590A JP2007019160A (en) 2005-07-06 2005-07-06 Manufacturing method of silicon carbide single crystal

Publications (1)

Publication Number Publication Date
JP2007019160A true JP2007019160A (en) 2007-01-25

Family

ID=37756079

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005197590A Pending JP2007019160A (en) 2005-07-06 2005-07-06 Manufacturing method of silicon carbide single crystal

Country Status (1)

Country Link
JP (1) JP2007019160A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008260650A (en) * 2007-04-11 2008-10-30 Toyota Motor Corp METHOD OF GROWING SiC SINGLE CRYSTAL EPITAXIAL THIN FILM
US8948579B2 (en) 2008-01-18 2015-02-03 Jin-Hee Lee Infrared radiation cooker
JP2015510691A (en) * 2012-01-30 2015-04-09 クラッシック ダブリュビージー セミコンダクターズ エービーClassic WBG Semiconductors AB Silicon carbide crystal growth in a CVD reactor using a chlorination chemistry system.

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008260650A (en) * 2007-04-11 2008-10-30 Toyota Motor Corp METHOD OF GROWING SiC SINGLE CRYSTAL EPITAXIAL THIN FILM
US8948579B2 (en) 2008-01-18 2015-02-03 Jin-Hee Lee Infrared radiation cooker
JP2015510691A (en) * 2012-01-30 2015-04-09 クラッシック ダブリュビージー セミコンダクターズ エービーClassic WBG Semiconductors AB Silicon carbide crystal growth in a CVD reactor using a chlorination chemistry system.

Similar Documents

Publication Publication Date Title
KR100870680B1 (en) Process for producing high quality large size silicon carbide crystals
JP4818754B2 (en) Method for producing silicon carbide single crystal ingot
JP4585359B2 (en) Method for producing silicon carbide single crystal
JP2008074662A (en) Apparatus for producing silicon carbide single crystal
JP2006321681A (en) Method for producing silicon carbide single crystal
KR100287793B1 (en) SINGLE CRYSTAL SiC AND PROCESS FOR PREPARING THE SAME
JP2004099340A (en) Seed crystal for silicon carbide single crystal growth, silicon carbide single crystal ingot and method of manufacturing the same
WO2013088948A1 (en) METHOD FOR GROWING SiC CRYSTAL AND SiC CRYSTAL SUBSTRATE
WO2012086238A1 (en) Seed material for liquid phase epitaxial growth of monocrystalline silicon carbide, and method for liquid phase epitaxial growth of monocrystalline silicon carbide
JP5614387B2 (en) Silicon carbide single crystal manufacturing method and silicon carbide single crystal ingot
JP6119453B2 (en) Method for producing silicon carbide single crystal
JP2007019160A (en) Manufacturing method of silicon carbide single crystal
JP2007197274A (en) Method for manufacturing silicon carbide single crystal
WO2012086237A1 (en) Unit for liquid phase epitaxial growth of monocrystalline silicon carbide, and method for liquid phase epitaxial growth of monocrystalline silicon carbide
JP2012197190A (en) METHOD FOR PRODUCING SELF-STANDING SUBSTRATE, AlN SELF-STANDING SUBSTRATE AND GROUP III NITRIDE SEMICONDUCTOR DEVICE
JP4673528B2 (en) Silicon carbide single crystal ingot and method for producing the same
JP4850807B2 (en) Crucible for growing silicon carbide single crystal and method for producing silicon carbide single crystal using the same
JP2005239465A (en) Silicon carbide single crystal production device
JP2000034199A (en) Production of silicon carbide single crystal
JP5793816B2 (en) Seed material for liquid crystal epitaxial growth of single crystal silicon carbide and liquid crystal epitaxial growth method of single crystal silicon carbide
JP2011201755A (en) Method for producing single crystal silicon carbide
JP2002293694A (en) Silicon carbide single crystal ingot and method of manufacturing for the same
KR100705561B1 (en) Growing method of SiC single crystal
JP5724124B2 (en) Feed material for epitaxial growth of single crystal silicon carbide and epitaxial growth method of single crystal silicon carbide
JP5707614B2 (en) Single crystal silicon carbide liquid phase epitaxial growth unit and single crystal silicon carbide liquid phase epitaxial growth method