JP2005239465A - Silicon carbide single crystal production device - Google Patents

Silicon carbide single crystal production device Download PDF

Info

Publication number
JP2005239465A
JP2005239465A JP2004049661A JP2004049661A JP2005239465A JP 2005239465 A JP2005239465 A JP 2005239465A JP 2004049661 A JP2004049661 A JP 2004049661A JP 2004049661 A JP2004049661 A JP 2004049661A JP 2005239465 A JP2005239465 A JP 2005239465A
Authority
JP
Japan
Prior art keywords
silicon carbide
single crystal
crucible
crystal
raw material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004049661A
Other languages
Japanese (ja)
Inventor
Satoru Tottori
悟 鳥取
Kosuke Hoshikawa
浩介 星河
Eiji Fukuda
英司 福田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2004049661A priority Critical patent/JP2005239465A/en
Publication of JP2005239465A publication Critical patent/JP2005239465A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a production device which simply and stably grows a 4H-type silicon carbide single crystal with good crystal qualities. <P>SOLUTION: In the silicon carbide single crystal production device, a raw material for growing a silicon carbide single crystal is housed in a graphite-made crucible; the crucible has a seed-crystal-fixing part which fixes a seed crystal for growing the silicon carbide single crystal and is set at a position facing the raw material; and the raw material is sublimated under heating to grow the silicon carbide single crystal on the seed crystal. The crystal growth is performed by adding 2.0-3.5 wt% scandium to the raw material. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は昇華法による炭化珪素単結晶インゴットの製造技術に関する。特に、4H型炭化珪素単結晶を効率的に製造する技術に関するものである。   The present invention relates to a technique for producing a silicon carbide single crystal ingot by a sublimation method. In particular, the present invention relates to a technique for efficiently producing a 4H type silicon carbide single crystal.

炭化珪素(SiC)は、大きな熱伝導率、低い誘電率、広いバンドギャップを有し、熱的、機械的に安定した特性を持っている。従って、炭化珪素を用いた半導体素子は、従来のシリコンを用いた半導体素子よりも高い性能を持つ。その利用範囲は、高温の環境で使用される耐環境デバイス材料、耐放射線デバイス材料、電力制御用パワーデバイス材料、高周波デバイス材料などが期待されている。この炭化珪素の結晶は、珪素(Si)と炭素(C)原子単位層の細密充填構造を考えたときの原子の積み重なりの違いにより、200種類以上の結晶多形(ポリタイプ)が存在する。これらの結晶多形の中で、4H型炭化珪素は、電子移動度、バンドギャップ、絶縁破壊電界が他の結晶多形よりも大きい。従って、最も利用価値が高い。ところが、4H型炭化珪素は、結晶成長時における発生確率が低く、且つ安定して成長させることが難しい。   Silicon carbide (SiC) has a large thermal conductivity, a low dielectric constant, a wide band gap, and has thermally and mechanically stable characteristics. Therefore, a semiconductor element using silicon carbide has higher performance than a semiconductor element using conventional silicon. The range of use is expected to be environment-resistant device materials, radiation-resistant device materials, power device materials for power control, high-frequency device materials, etc. used in high-temperature environments. This silicon carbide crystal has more than 200 types of crystal polymorphs (polytypes) due to the difference in stacking of atoms when considering a close packed structure of silicon (Si) and carbon (C) atomic unit layers. Among these crystal polymorphs, 4H-type silicon carbide has a higher electron mobility, band gap, and breakdown electric field than other crystal polymorphs. Therefore, it has the highest utility value. However, 4H-type silicon carbide has a low probability of occurrence during crystal growth and is difficult to grow stably.

一方、炭化珪素単結晶の成長方法としては、昇華法(改良レーリー法)が知られている。これは炭化珪素原料を加熱昇華させ、この炭化珪素原料に対向させて配置した炭化珪素種結晶基板上に炭化珪素単結晶を成長させる方法である。しかし、前述のように4H型炭化珪素は発生確率が低いので、昇華法においても4H型炭化珪素が成長する確率が低いという問題があった。   On the other hand, a sublimation method (modified Rayleigh method) is known as a method for growing a silicon carbide single crystal. In this method, a silicon carbide raw material is heated and sublimated, and a silicon carbide single crystal is grown on a silicon carbide seed crystal substrate disposed to face the silicon carbide raw material. However, as described above, since the generation probability of 4H type silicon carbide is low, there is a problem that the probability of growth of 4H type silicon carbide is low even in the sublimation method.

そのため、4H型炭化珪素を成長させる方法が、幾つか提案されている。例えば、種結晶基板上に、高濃度(3×1018〜6×1020atoms/cm3)の窒素を添加した3mm以下の4H型バッファー層を形成し、その後、所望のキャリア密度の4H型炭化珪素を成長させる方法が開示されている(特許文献1)。また、別の方法として、シリコン単結晶基板上に不純物として第3の元素をドーピングして3C型炭化珪素を成長させ、その後、シリコン基板を除去し、2000℃以上の熱処理を行い、4H型炭化珪素単結晶を製造する方法が開示されている(特許文献2)。さらには、成長初期に、種結晶基板上に成長する炭化珪素に低濃度のスカンジウムをドーピングすることが4H型SiC単結晶の成長に有効であるとの報告がある。
特開平10−067600号公報 特開平11−268995号公報 Journal of Crystal Growth 52 (1981) 146-150
Therefore, several methods for growing 4H-type silicon carbide have been proposed. For example, a 4H type buffer layer of 3 mm or less to which high concentration (3 × 10 18 to 6 × 10 20 atoms / cm 3 ) nitrogen is added is formed on a seed crystal substrate, and then a 4H type having a desired carrier density is formed. A method for growing silicon carbide is disclosed (Patent Document 1). As another method, 3C type silicon carbide is grown by doping a third element as an impurity on a silicon single crystal substrate, and then the silicon substrate is removed, and a heat treatment at 2000 ° C. or higher is performed to perform 4H type carbonization. A method for producing a silicon single crystal is disclosed (Patent Document 2). Furthermore, it has been reported that doping silicon carbide grown on a seed crystal substrate with a low concentration of scandium in the early stage of growth is effective for the growth of 4H type SiC single crystal.
Japanese Patent Laid-Open No. 10-0667600 Japanese Patent Laid-Open No. 11-26895 Journal of Crystal Growth 52 (1981) 146-150

しかしながら特許文献1の発明においては、成長初期に3mm以下のバッファー層を作成する工程が余分に必要であり、製造プロセスのコスト増加を招く。   However, in the invention of Patent Document 1, an extra step of forming a buffer layer of 3 mm or less is necessary at the initial stage of growth, which causes an increase in manufacturing process cost.

また、特許文献2の発明では、シリコン単結晶基板を用いているが、シリコンの融点が1414℃であるため、炭化珪素原料を昇華させるために2000℃以上の加熱が必要な昇華法は用いることができない。従って、1400℃程度でシラン(SiH4)とプロパン(C38)を反応させて種結晶基板上に炭化珪素の結晶成長を行う公知のCVD法(化学気相成長法)を用いなければならない。しかし、CVD法による炭化珪素の結晶成長速度は、数μm/hour程度であり、数100μm/hour以上の結晶成長速度が得られる昇華法に比べて非常に遅く、所望の膜厚(約20μm)の炭化珪素を得るために非常に長時間の結晶成長を行う必要がある。更に、その後に行うシリコン単結晶基板を除去する工程、及び2000℃以上の熱処理を行う工程が余分に必要であり、製造プロセスのコスト増加を招く。更に、この方法により得られた4H型炭化珪素単結晶膜を種結晶として用いて、昇華法により成長を行っても、4H型炭化珪素の発生確率が、炭化珪素の他の結晶多形に比べて低いため、4H型炭化珪素単結晶は安定して成長しない。 In the invention of Patent Document 2, a silicon single crystal substrate is used. However, since the melting point of silicon is 1414 ° C., a sublimation method that requires heating at 2000 ° C. or higher to sublimate the silicon carbide raw material is used. I can't. Therefore, unless a known CVD method (chemical vapor deposition method) is used in which silane (SiH 4 ) and propane (C 3 H 8 ) are reacted at about 1400 ° C. to grow silicon carbide on the seed crystal substrate. Don't be. However, the crystal growth rate of silicon carbide by the CVD method is about several μm / hour, which is very slow compared to the sublimation method that can obtain a crystal growth rate of several hundred μm / hour or more, and a desired film thickness (about 20 μm). It is necessary to perform crystal growth for a very long time in order to obtain silicon carbide. Furthermore, an extra step of removing the silicon single crystal substrate and a step of performing a heat treatment at 2000 ° C. or higher are necessary, which increases the cost of the manufacturing process. Further, even when the 4H type silicon carbide single crystal film obtained by this method is used as a seed crystal and grown by the sublimation method, the generation probability of 4H type silicon carbide is higher than that of other crystalline polymorphs of silicon carbide. Therefore, the 4H type silicon carbide single crystal does not grow stably.

また、非特許文献1では、昇華法を用いた炭化珪素単結晶の成長の際に、必要な成長条件や炭化珪素原料にドープすべきスカンジウムの添加量を明示しておらず、概念的な手法を示唆しているだけである。   In addition, Non-Patent Document 1 does not clearly indicate the necessary growth conditions and the amount of scandium to be doped into a silicon carbide raw material when growing a silicon carbide single crystal using a sublimation method. It only suggests.

本発明は、上記のような実状を鑑みてなされたものであり、昇華法において、結晶品質の良い4H型炭化珪素を簡便に安定して成長する方法を提供することが目的である。   The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a method for easily and stably growing 4H-type silicon carbide having good crystal quality in the sublimation method.

本発明の炭化珪素単結晶製造装置は、炭化珪素単結晶を成長させるための原料を坩堝内に収容し、前記原料に対向する位置に種結晶を固定する種結晶固定部を前記坩堝内に持ち、上記原料を加熱昇華させて上記種結晶上に炭化珪素単結晶を成長させる炭化珪素単結晶製造装置において、前記原料にスカンジウムを2.0から3.5重量%添加したことを特徴としたものである。   The silicon carbide single crystal manufacturing apparatus of the present invention contains a raw material for growing a silicon carbide single crystal in a crucible, and has a seed crystal fixing portion in the crucible for fixing a seed crystal at a position facing the raw material. A silicon carbide single crystal manufacturing apparatus for growing a silicon carbide single crystal on the seed crystal by heating and sublimating the raw material, wherein scandium is added to the raw material in an amount of 2.0 to 3.5% by weight. It is.

本発明の炭化珪素単結晶の成長方法によれば、他の結晶多形が混入すること無く、結晶性の良い4H型炭化珪素を、安定して成長させることができる。なお、特許文献1の課題に、重金属不純物を結晶に添加することはデバイス作成の観点から好ましくないとの記載があるが、スカンジウムは炭化珪素の結晶にほとんど取り込まれないので(半導体SiC技術と応用:松波弘之編著,日刊工業新聞社,ISBN4−526−05096−2に記載)、添加されたスカンジウムが、リーク電流の原因となりデバイス特性を劣化させることは無い。   According to the method for growing a silicon carbide single crystal of the present invention, 4H type silicon carbide having good crystallinity can be stably grown without mixing other crystal polymorphs. In addition, although the subject of patent document 1 mentions that adding a heavy metal impurity to a crystal | crystallization is not preferable from a viewpoint of device preparation, since scandium is hardly taken in into the crystal | crystallization of silicon carbide (semiconductor SiC technology and application) : Written by Hiroyuki Matsunami, published by Nikkan Kogyo Shimbun, ISBN 4-526-05096-2), added scandium causes leakage current and does not deteriorate device characteristics.

以下に、本発明の炭化珪素単結晶の成長方法の実施の形態を図面と共に詳細に説明する。   Hereinafter, embodiments of a method for growing a silicon carbide single crystal of the present invention will be described in detail with reference to the drawings.

図1は、本発明の炭化珪素単結晶の成長に用いる成長装置の概略図である。坩堝1内にスカンジウムを添加した炭化珪素原料2を収容し、坩堝上蓋3内側の凸部に種結晶基板4を固定する。この単結晶基板の成長面には、4H型炭化珪素結晶の(000−1)カーボン面を用いる。もし、成長面に(0001)シリコン面を用いると、6H型炭化珪素の成長が支配的で、4H型炭化珪素の成長が全く見られないためである。このため、4H型炭化珪素単結晶の成長を行う場合、種結晶基板の成長面には、(000−1)カーボン面を用いる必要がある。   FIG. 1 is a schematic view of a growth apparatus used for growing a silicon carbide single crystal of the present invention. The silicon carbide raw material 2 added with scandium is accommodated in the crucible 1, and the seed crystal substrate 4 is fixed to the convex portion inside the crucible upper lid 3. The growth surface of this single crystal substrate is a (000-1) carbon surface of 4H type silicon carbide crystal. If a (0001) silicon surface is used as the growth surface, the growth of 6H type silicon carbide is dominant, and the growth of 4H type silicon carbide is not observed at all. For this reason, when growing a 4H-type silicon carbide single crystal, it is necessary to use a (000-1) carbon surface as the growth surface of the seed crystal substrate.

前記炭化珪素原料2を収容する前記坩堝1は、炭化珪素の昇華に必要な2000℃以上の温度を用いる。従って、その温度に耐える材質でなければならず、例えば黒鉛製の坩堝が用いられる。また、温度の4乗に比例して輻射熱が失われるため、2000℃以上の高温では、坩堝1および坩堝上蓋3を断熱材5で覆う必要がある。この断熱材5で覆った坩堝1及び坩堝上蓋3を、石英製の反応管6内に配置する。この反応管6は、二重管構造になっており、結晶成長中には、冷却水7を流して冷却している。また反応管6の上部にガス導入口8が、下部にはガス排気口9が設けられている。   The crucible 1 that houses the silicon carbide raw material 2 uses a temperature of 2000 ° C. or higher necessary for sublimation of silicon carbide. Therefore, the material must be able to withstand the temperature, and for example, a graphite crucible is used. Further, since radiant heat is lost in proportion to the fourth power of the temperature, it is necessary to cover the crucible 1 and the crucible upper lid 3 with the heat insulating material 5 at a high temperature of 2000 ° C. or higher. The crucible 1 and the crucible upper lid 3 covered with the heat insulating material 5 are arranged in a reaction tube 6 made of quartz. The reaction tube 6 has a double tube structure, and is cooled by flowing cooling water 7 during crystal growth. A gas inlet 8 is provided at the upper part of the reaction tube 6, and a gas outlet 9 is provided at the lower part.

その後、反応管6内部を不活性ガスで置換するが、不活性ガスは、コスト、高純度などの面から、アルゴン(Ar)が適している。この不活性ガス置換は、まずガス排気口9から反応管6内を高真空排気し、その後、ガス導入口8から不活性ガスを常圧まで充填する。反応管6内部を十分にアルゴンガス置換するために、この工程を数回繰り返した方が良い。   Thereafter, the inside of the reaction tube 6 is replaced with an inert gas, and argon (Ar) is suitable as the inert gas in terms of cost, high purity, and the like. In this inert gas replacement, first, the inside of the reaction tube 6 is evacuated to a high vacuum from the gas exhaust port 9, and then the inert gas is filled from the gas inlet 8 to normal pressure. In order to sufficiently replace the inside of the reaction tube 6 with argon gas, it is better to repeat this process several times.

その後、反応管6の周囲にらせん状に巻かれたコイル10に高周波電流を流すことにより、坩堝1および坩堝上蓋3を高周波加熱し昇温する。昇温時には、反応管6内部は、数10kPa程度の圧力にしておく必要がある。これは、低温時(所望の結晶成長温度以下)における炭化珪素原料2の昇華を防ぎ、結晶成長を開始させないようにするためである。   Thereafter, by applying a high-frequency current to the coil 10 spirally wound around the reaction tube 6, the crucible 1 and the crucible upper lid 3 are heated at a high frequency to raise the temperature. When raising the temperature, the inside of the reaction tube 6 needs to be kept at a pressure of about several tens of kPa. This is to prevent sublimation of the silicon carbide raw material 2 at low temperatures (below the desired crystal growth temperature) and prevent crystal growth from starting.

加熱時の温度制御は、反応管6上下部に設けられている石英製の温度測定用窓11、及び断熱材5の上下部に設けられた温度測定用の穴を通して、放射温度計12で、坩堝1下部の中心点(図1中のA点)、及び坩堝上蓋3上部の中心点(図1中のB点)の温度を測定し、高周波電源(図示せず)にフィードバックをかけ、コイル10に流す高周波電流を制御して行っている。このようにして、所望の温度まで昇温した後、徐々に圧力を下げて結晶成長を開始させる。   The temperature control at the time of heating is performed by a radiation thermometer 12 through a temperature measuring window 11 made of quartz provided in the upper and lower portions of the reaction tube 6 and a temperature measuring hole provided in the upper and lower portions of the heat insulating material 5. Measure the temperature at the center point (point A in FIG. 1) at the bottom of the crucible 1 and the center point (point B in FIG. 1) at the top of the crucible upper lid 3 and apply feedback to a high-frequency power source (not shown). 10 is carried out by controlling the high-frequency current flowing through 10. Thus, after raising the temperature to a desired temperature, the pressure is gradually reduced to start crystal growth.

炭化珪素の結晶成長速度は、炭化珪素原料2の温度(坩堝下部温度に比例する)、坩堝内の温度勾配および成長圧力により決まる。炭化珪素原料2の温度と坩堝内の温度勾配が大きく、且つ、成長圧力が低いほど成長速度が速くなる。しかし、成長速度が速過ぎると、成長する炭化珪素単結晶の結晶性は悪くなる。反対に、成長速度が遅くなると、結晶性は良いが成長が遅くなり、工業的な実用性は無い。従って、成長速度は、0.1〜1.0mm/hourの範囲内にするのが好ましい。また、結晶成長中の成長圧力は0.6〜4.0kPa、坩堝1下部温度は2200〜2350℃、坩堝内の温度勾配は5〜15℃/cmの範囲が良い。   The crystal growth rate of silicon carbide is determined by the temperature of the silicon carbide raw material 2 (proportional to the crucible lower temperature), the temperature gradient in the crucible, and the growth pressure. The growth rate increases as the temperature of the silicon carbide raw material 2 and the temperature gradient in the crucible increase and the growth pressure decreases. However, if the growth rate is too high, the crystallinity of the growing silicon carbide single crystal will deteriorate. On the other hand, when the growth rate is slow, the crystallinity is good, but the growth is slow and there is no industrial practicality. Therefore, the growth rate is preferably in the range of 0.1 to 1.0 mm / hour. Further, the growth pressure during crystal growth is preferably 0.6 to 4.0 kPa, the crucible 1 lower temperature is 2200 to 2350 ° C., and the temperature gradient in the crucible is 5 to 15 ° C./cm.

坩堝内の温度勾配は、坩堝1下部中心点Aと坩堝上蓋3上部中心点Bの温度から次のように定義している。   The temperature gradient in the crucible is defined as follows from the temperatures of the crucible 1 lower center point A and the crucible upper lid 3 upper center point B.

坩堝内の温度勾配=(A点の温度−B点の温度)÷坩堝の高さ
炭化珪素単結晶の成長終了時は、成長開始時とは逆の手順を行う。すなわち、反応管6内の圧力を数10kPaまで徐々に昇圧して、炭化珪素原料2からの原料の昇華を止め、その後、坩堝1下部温度を常温までゆっくりと降温する。
Temperature gradient in crucible = (temperature of point A−temperature of point B) ÷ crucible height At the end of the growth of the silicon carbide single crystal, the reverse procedure to that at the start of growth is performed. That is, the pressure in the reaction tube 6 is gradually increased to several tens of kPa to stop the sublimation of the raw material from the silicon carbide raw material 2, and then the lower temperature of the crucible 1 is slowly lowered to room temperature.

以上の装置を用いた本発明のより具体的な実施例を、図1を用いて説明する。まず、坩堝1内にスカンジウムを0〜4.0重量%添加した9種類の炭化珪素原料2(試料1〜9)を入れ、該炭化珪素原料2に対向するように坩堝上蓋3内側の凸部に種結晶基板4を固定した。該単結晶基板4の結晶成長面には、4H型炭化珪素の(000−1)カーボン面を用いた。その後、前記炭化珪素原料2及び種結晶基板4を配置した坩堝1及び坩堝上蓋3を断熱材5で覆い、石英製の反応管6内に配置した。   A more specific embodiment of the present invention using the above apparatus will be described with reference to FIG. First, nine kinds of silicon carbide raw materials 2 (samples 1 to 9) to which 0 to 4.0 wt% of scandium is added are put in the crucible 1, and the convex portion inside the crucible upper lid 3 so as to face the silicon carbide raw material 2. A seed crystal substrate 4 was fixed to the substrate. The crystal growth surface of the single crystal substrate 4 was a (000-1) carbon surface of 4H type silicon carbide. Thereafter, the crucible 1 and the crucible upper lid 3 on which the silicon carbide raw material 2 and the seed crystal substrate 4 were placed were covered with a heat insulating material 5 and placed in a reaction tube 6 made of quartz.

然る後、ガス排気口9からロータリーポンプ及びターボ分子ポンプを用いて、反応管6内部を、10-7kPa台まで高真空排気を行い、その後、ガス導入口8からアルゴンガスを常圧まで充填した。反応管6内部のアルゴンガス置換を十分に行うために、この工程を3回繰り返し、最後のアルゴンガス導入の際に、反応管6内部の圧力を80KPaに調整した。 Thereafter, the inside of the reaction tube 6 is evacuated to a high pressure of 10 −7 kPa using a rotary pump and a turbo molecular pump from the gas exhaust port 9, and then argon gas is supplied from the gas inlet 8 to normal pressure. Filled. In order to sufficiently replace the argon gas inside the reaction tube 6, this process was repeated three times, and the pressure inside the reaction tube 6 was adjusted to 80 KPa when the last argon gas was introduced.

その後、反応管6の周囲にらせん状に巻かれたコイル10に高周波電流を流すことにより、坩堝1及び坩堝上蓋3の加熱を行った。加熱時の温度制御は、反応管6上下部に設けられている石英製の温度測定用窓11、及び断熱材5の上下部に設けられた温度測定用の穴を通して、放射温度計12で、坩堝1下部の中心点(図1中のA点)、及び坩堝上蓋3上部の中心点(図1中のB点)の温度を測定し、高周波電源(図示せず)にフィードバックをかけ、コイル10に流す高周波電流を制御して行った。   Thereafter, the crucible 1 and the crucible upper lid 3 were heated by flowing a high-frequency current through a coil 10 wound spirally around the reaction tube 6. The temperature control at the time of heating is performed by a radiation thermometer 12 through a temperature measuring window 11 made of quartz provided in the upper and lower portions of the reaction tube 6 and a temperature measuring hole provided in the upper and lower portions of the heat insulating material 5. The temperature at the center point (point A in FIG. 1) at the bottom of the crucible 1 and the center point (point B in FIG. 1) at the top of the crucible upper lid 3 are measured, and feedback is applied to a high-frequency power source (not shown) This was carried out by controlling the high-frequency current flowing through 10.

このようにして、坩堝1下部中心点Aの温度を常温から2250℃まで2時間30分かけて、ゆっくりと昇温し、その後、反応管内の圧力を80kPaから4kPaまで1時間かけて減圧して結晶成長を開始させた。この際、坩堝内の温度勾配を10℃/cmとなるようにコイル10と坩堝1の位置を調整してある。この状態で40時間の結晶成長を行った。   In this way, the temperature at the lower center point A of the crucible 1 was slowly raised from room temperature to 2250 ° C. over 2 hours and 30 minutes, and then the pressure in the reaction tube was reduced from 80 kPa to 4 kPa over 1 hour. Crystal growth was started. At this time, the positions of the coil 10 and the crucible 1 are adjusted so that the temperature gradient in the crucible becomes 10 ° C./cm. In this state, crystal growth was performed for 40 hours.

成長終了時は、成長開始時とは逆に、反応管6内の圧力を80kPaまで1時間かけて昇圧して、炭化珪素原料2からの原料の昇華を止め、その後、常温までゆっくりと冷却した。   At the end of growth, contrary to the start of growth, the pressure in the reaction tube 6 was increased to 80 kPa over 1 hour to stop the sublimation of the raw material from the silicon carbide raw material 2 and then slowly cooled to room temperature. .

上記のようにして、得られた炭化珪素単結晶の結晶多形をラマン分光法で測定し判別した。その結果を表1に示す。
As described above, the polymorphism of the obtained silicon carbide single crystal was measured and determined by Raman spectroscopy. The results are shown in Table 1.

Figure 2005239465
Figure 2005239465

表1の結果より明らかなように、試料1の炭化珪素原料2を用いた場合は、全て6H型の炭化珪素単結晶が得られた。また、試料2〜4の炭化珪素原料2を用いた場合は、4H型と6H型が混在した炭化珪素単結晶が得られた。試料5〜8の炭化珪素原料2を用いた場合は、全て4H型の炭化珪素単結晶が得られた。試料9の炭化珪素原料2を用いた場合には、4H型の炭化珪素結晶が得られたが、多結晶のものが混在し、全てが単結晶となり良質な炭化珪素結晶は得られなかった。   As is clear from the results in Table 1, when the silicon carbide raw material 2 of Sample 1 was used, 6H-type silicon carbide single crystals were all obtained. Moreover, when the silicon carbide raw material 2 of the samples 2-4 was used, the silicon carbide single crystal in which 4H type and 6H type were mixed was obtained. When the silicon carbide raw material 2 of samples 5 to 8 was used, 4H type silicon carbide single crystals were obtained in all cases. When the silicon carbide raw material 2 of the sample 9 was used, 4H type silicon carbide crystals were obtained, but polycrystals were mixed, all became single crystals, and good quality silicon carbide crystals were not obtained.

以上の結果から、結晶性の良い4H型炭化珪素単結晶を成長させるためには、前記炭化珪素原料2へ2.0〜3.5重量%の範囲でスカンジウムを添加すれば良いことが分かる。   From the above results, it is understood that scandium may be added to the silicon carbide raw material 2 in the range of 2.0 to 3.5 wt% in order to grow a 4H type silicon carbide single crystal having good crystallinity.

本発明にかかる炭化珪素単結晶製造装置は、余分な工程を追加することなく、4H型の炭化珪素単結晶を選択的に製造できる製造装置として有用である。   The silicon carbide single crystal manufacturing apparatus according to the present invention is useful as a manufacturing apparatus capable of selectively manufacturing a 4H type silicon carbide single crystal without adding an extra step.

実施例に使用した炭化珪素単結晶の成長装置の図Diagram of silicon carbide single crystal growth equipment used in the examples

符号の説明Explanation of symbols

1 坩堝
2 炭化珪素原料
3 坩堝上蓋
4 種結晶基板
5 断熱材
6 反応管
7 冷却水
8 ガス導入口
9 ガス排気口
10 コイル
11 温度測定用窓
12 放射温度計
DESCRIPTION OF SYMBOLS 1 Crucible 2 Silicon carbide raw material 3 Crucible top cover 4 Seed crystal substrate 5 Heat insulating material 6 Reaction tube 7 Cooling water 8 Gas inlet 9 Gas exhaust 10 Coil 11 Temperature measurement window 12 Radiation thermometer

Claims (3)

炭化珪素単結晶を成長させるための原料を坩堝内に収容し、前記原料に対向する位置に種結晶を固定する種結晶固定部を前記坩堝内に持ち、上記原料を加熱昇華させて上記種結晶上に炭化珪素単結晶を成長させる炭化珪素単結晶製造装置において、前記原料にスカンジウムを2.0から3.5重量%添加したことを特徴とする炭化珪素単結晶製造装置。 A raw material for growing a silicon carbide single crystal is housed in a crucible, and a seed crystal fixing portion for fixing a seed crystal at a position facing the raw material is provided in the crucible, and the raw material is heated and sublimated to form the seed crystal. A silicon carbide single crystal manufacturing apparatus for growing a silicon carbide single crystal thereon, wherein 2.0 to 3.5 wt% of scandium is added to the raw material. 前記種結晶の成長面が4H型炭化珪素の(000−1)カーボン面であることを特徴とする請求項1に記載の炭化珪素単結晶製造装置。 2. The silicon carbide single crystal manufacturing apparatus according to claim 1, wherein the growth surface of the seed crystal is a (000-1) carbon surface of 4H type silicon carbide. 前記炭化珪素結晶を成長させるための成長圧力は0.6乃至4kPaとし、前記原料を収容した坩堝下部の温度が2200乃至2350℃であり、且つ前記坩堝内の温度勾配が5〜15℃/cmであることを特徴とする請求項1に記載の炭化珪素単結晶製造装置。 The growth pressure for growing the silicon carbide crystal is 0.6 to 4 kPa, the temperature of the lower part of the crucible containing the raw material is 2200 to 2350 ° C., and the temperature gradient in the crucible is 5 to 15 ° C./cm. The silicon carbide single crystal manufacturing apparatus according to claim 1, wherein:
JP2004049661A 2004-02-25 2004-02-25 Silicon carbide single crystal production device Pending JP2005239465A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004049661A JP2005239465A (en) 2004-02-25 2004-02-25 Silicon carbide single crystal production device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004049661A JP2005239465A (en) 2004-02-25 2004-02-25 Silicon carbide single crystal production device

Publications (1)

Publication Number Publication Date
JP2005239465A true JP2005239465A (en) 2005-09-08

Family

ID=35021600

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004049661A Pending JP2005239465A (en) 2004-02-25 2004-02-25 Silicon carbide single crystal production device

Country Status (1)

Country Link
JP (1) JP2005239465A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011178622A (en) * 2010-03-02 2011-09-15 Sumitomo Electric Ind Ltd Silicon carbide crystal, and method and apparatus for producing the same, and crucible
JP2015013761A (en) * 2013-07-03 2015-01-22 住友電気工業株式会社 Silicon carbide single crystal substrate and method of manufacturing the same
WO2019130873A1 (en) 2017-12-27 2019-07-04 信越半導体株式会社 Method for manufacturing silicon carbide single crystal
WO2019171901A1 (en) 2018-03-08 2019-09-12 信越半導体株式会社 Production method for silicon carbide single crystal
WO2019176447A1 (en) 2018-03-16 2019-09-19 信越半導体株式会社 Production method and production device of silicon carbide single crystal
WO2019176444A1 (en) 2018-03-13 2019-09-19 信越半導体株式会社 Method for producing silicon carbide single crystal
WO2019176446A1 (en) 2018-03-15 2019-09-19 信越半導体株式会社 Production method of silicon carbide single crystal
WO2019244580A1 (en) 2018-06-20 2019-12-26 信越半導体株式会社 Device for growing silicon carbide single crystal and method for producing silicon carbide single crystal
WO2021149598A1 (en) * 2020-01-24 2021-07-29 日本碍子株式会社 Biaxially-oriented sic composite substrate and composite substrate for semiconductor device

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011178622A (en) * 2010-03-02 2011-09-15 Sumitomo Electric Ind Ltd Silicon carbide crystal, and method and apparatus for producing the same, and crucible
JP2015013761A (en) * 2013-07-03 2015-01-22 住友電気工業株式会社 Silicon carbide single crystal substrate and method of manufacturing the same
WO2019130873A1 (en) 2017-12-27 2019-07-04 信越半導体株式会社 Method for manufacturing silicon carbide single crystal
US11149357B2 (en) 2017-12-27 2021-10-19 Shin-Etsu Handotai Co., Ltd. Method for manufacturing a silicon carbide single crystal by adjusting the position of a hole in a top of the growth container relative to the off angle of the silicon carbide substrate
KR20200101928A (en) 2017-12-27 2020-08-28 신에쯔 한도타이 가부시키가이샤 Method for producing silicon carbide single crystal
WO2019171901A1 (en) 2018-03-08 2019-09-12 信越半導体株式会社 Production method for silicon carbide single crystal
KR20200128007A (en) 2018-03-08 2020-11-11 신에쯔 한도타이 가부시키가이샤 Method for producing silicon carbide single crystal
KR20200128680A (en) 2018-03-13 2020-11-16 신에쯔 한도타이 가부시키가이샤 Method for producing silicon carbide single crystal
US11225729B2 (en) 2018-03-13 2022-01-18 Shin-Etsu Handotai Co., Ltd. Method for manufacturing a silicon carbide single crystal by adjusting the position of a hole in a top of the growth container relative to the off angle of the silicon carbide substrate
WO2019176444A1 (en) 2018-03-13 2019-09-19 信越半導体株式会社 Method for producing silicon carbide single crystal
KR20200130815A (en) 2018-03-15 2020-11-20 신에쯔 한도타이 가부시키가이샤 Method for producing silicon carbide single crystal
WO2019176446A1 (en) 2018-03-15 2019-09-19 信越半導体株式会社 Production method of silicon carbide single crystal
KR20200130284A (en) 2018-03-16 2020-11-18 신에쯔 한도타이 가부시키가이샤 Silicon carbide single crystal manufacturing method and manufacturing apparatus
WO2019176447A1 (en) 2018-03-16 2019-09-19 信越半導体株式会社 Production method and production device of silicon carbide single crystal
WO2019244580A1 (en) 2018-06-20 2019-12-26 信越半導体株式会社 Device for growing silicon carbide single crystal and method for producing silicon carbide single crystal
KR20210021469A (en) 2018-06-20 2021-02-26 신에쯔 한도타이 가부시키가이샤 Silicon carbide single crystal growth device and silicon carbide single crystal manufacturing method
WO2021149598A1 (en) * 2020-01-24 2021-07-29 日本碍子株式会社 Biaxially-oriented sic composite substrate and composite substrate for semiconductor device

Similar Documents

Publication Publication Date Title
JP5304792B2 (en) Method and apparatus for producing SiC single crystal film
JP5657109B2 (en) Semi-insulating silicon carbide single crystal and growth method thereof
JP4853449B2 (en) SiC single crystal manufacturing method, SiC single crystal wafer, and SiC semiconductor device
JP4585359B2 (en) Method for producing silicon carbide single crystal
JP5727017B2 (en) Method for graphene growth
JP2010515661A (en) Induced diameter SiC sublimation growth using multilayer growth guide
EP2940196B1 (en) Method for producing n-type sic single crystal
WO2006070480A1 (en) Silicon carbide single crystal, silicon carbide single crystal wafer, and process for producing the same
JP4460236B2 (en) Silicon carbide single crystal wafer
JP3590485B2 (en) Single crystal silicon carbide ingot and method for producing the same
JP2005239465A (en) Silicon carbide single crystal production device
JP5131262B2 (en) Silicon carbide single crystal and method for producing the same
JP5167947B2 (en) Method for producing silicon carbide single crystal thin film
US7767021B2 (en) Growing method of SiC single crystal
JP3590464B2 (en) Method for producing 4H type single crystal silicon carbide
JP2018140903A (en) Method for manufacturing silicon carbide single crystal ingot
JP4673528B2 (en) Silicon carbide single crystal ingot and method for producing the same
JP4987784B2 (en) Method for producing silicon carbide single crystal ingot
JP2006232669A (en) Low nitrogen concentration graphite material, low nitrogen concentration carbon fiber reinforced carbon composite material, low nitrogen concentration expanded graphite sheet
JP4157326B2 (en) 4H type silicon carbide single crystal ingot and wafer
JP5793816B2 (en) Seed material for liquid crystal epitaxial growth of single crystal silicon carbide and liquid crystal epitaxial growth method of single crystal silicon carbide
JP4585137B2 (en) Method for producing silicon carbide single crystal ingot
JP5428706B2 (en) Method for producing SiC single crystal
JP2003137694A (en) Seed crystal for growing silicon carbide single crystal, silicon carbide single crystal ingot and method of producing the same
JP2011201756A (en) Method for producing single crystal silicon carbide