JP2007017377A - Fluorescent flaw detector and fluorescent flaw detecting method - Google Patents

Fluorescent flaw detector and fluorescent flaw detecting method Download PDF

Info

Publication number
JP2007017377A
JP2007017377A JP2005201464A JP2005201464A JP2007017377A JP 2007017377 A JP2007017377 A JP 2007017377A JP 2005201464 A JP2005201464 A JP 2005201464A JP 2005201464 A JP2005201464 A JP 2005201464A JP 2007017377 A JP2007017377 A JP 2007017377A
Authority
JP
Japan
Prior art keywords
fluorescent
subject
fluorescence
visible
still images
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005201464A
Other languages
Japanese (ja)
Other versions
JP4618502B2 (en
Inventor
Teruyuki Shima
輝行 島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP2005201464A priority Critical patent/JP4618502B2/en
Publication of JP2007017377A publication Critical patent/JP2007017377A/en
Application granted granted Critical
Publication of JP4618502B2 publication Critical patent/JP4618502B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a fluorescent flaw detector capable of inspecting the whole surface a specimen having a complicated shape of in a short time without causing a dead angle, capable of detecting a fine flaw at a high S/N ratio without being affected by the fluorescence from a region other than the specimen and capable of easily specifying the size of the detected flaw and the position on the specimen, and a fluorescent flaw detecting method. <P>SOLUTION: The fluorescent flaw detector 10 is equipped with a revolving device 11, a darkroom device 14, a black light 16, a white stroboscope 18, a long path filter 20, a photographing camera 22 and an image processor 24. The specimen 1 stationarily placed at an inspection position by revolving the specimen 1 is irradiated with near ultraviolet rays 2 for fluorescent flaw detection in a darkroom and photographed from a plurality of positions through the long path filter 20 to acquire a plurality of fluorescent stationary images 5. Further, the same specimen 1 is irradiated with visible light 3 and the specimen 1 is photographed from a plurality of the positions to acquire a plurality of visible stationary images 6. Further, the fluorescent stationary images 5 and the visible stationary images 6 are respectively superposed one upon another by image processing to display a plurality of superposed images 7. Furthermore, a fluorescent part is extracted to calculate the position and size of the fluorescent part. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、複雑な形状をした被検体(検査対象物)の全面を、死角の発生を防いで全面検査が可能であり、微細な傷を高いS/N比で検出し、かつ検出した傷の大きさと被検体上の位置を検出する蛍光探傷装置および蛍光探傷方法に関する。   The present invention is capable of inspecting the entire surface of a subject (inspection object) having a complicated shape by preventing the generation of blind spots, detecting fine scratches with a high S / N ratio, and detecting the detected scratches. The present invention relates to a fluorescence flaw detection apparatus and a fluorescence flaw detection method for detecting the size of the object and the position on the subject.

金属材料やセラミックス等の非破壊検査法として、蛍光浸透探傷試験が知られている。蛍光浸透探傷試験は、試験体の表面に存在する微細な傷(又は疵)に毛細管現象を利用して蛍光剤を浸透させ、これに近紫外線を照射して蛍光剤を発光させて観察し、傷等の欠陥を肉眼で検査するものである。   As a nondestructive inspection method for metal materials and ceramics, a fluorescence penetrant test is known. In the fluorescence penetrant flaw detection test, the fine scratches (or wrinkles) present on the surface of the specimen are infiltrated with the fluorescent agent using the capillary phenomenon, and this is irradiated with near ultraviolet rays to cause the fluorescent agent to emit light. Inspects for defects such as scratches with the naked eye.

また、これに類似した非破壊検査法として、蛍光磁粉探傷試験が知られている。蛍光磁粉探傷試験は、強磁性体の試験体を磁化し、蛍光磁粉を表面に適用して、割れなどの傷の部分に吸着された蛍光磁粉を、近紫外線を照射して蛍光磁粉を発光させて観察し、傷等を肉眼で検査するものである。
以下、蛍光浸透探傷試験と蛍光磁粉探傷試験の両方を総称して、「蛍光探傷試験」と呼ぶ。
Further, as a nondestructive inspection method similar to this, a fluorescent magnetic particle flaw detection test is known. The fluorescent magnetic particle flaw detection test magnetizes a ferromagnetic specimen, applies the fluorescent magnetic powder to the surface, and irradiates the fluorescent magnetic powder adsorbed on the scratched part such as cracks to emit near fluorescent light. And inspecting the wounds etc. with the naked eye.
Hereinafter, both the fluorescent penetrant test and the fluorescent magnetic particle test are collectively referred to as a “fluorescent test”.

上述した蛍光探傷試験は、一般的に、(1)浸透処理、(2)洗浄処理、(3)現像処理、(4)検査の各工程からなる。しかし、このうち検査工程は、肉眼による目視検査であるため、経験に左右されやすく、かつ手間と時間がかかる問題点がある。そこで、蛍光探傷試験において、画像処理を用いて欠陥を抽出する手段が提案されている(例えば特許文献1〜4)。
また、検査工程以外の浸透処理、洗浄処理、現像処理を連続的に処理する手段として特許文献5が開示されている。
The above-described fluorescent flaw detection test generally includes the steps of (1) penetration treatment, (2) cleaning treatment, (3) development treatment, and (4) inspection. However, since the inspection process is a visual inspection with the naked eye, there is a problem that it is easily influenced by experience and takes time and effort. Therefore, means for extracting defects using image processing has been proposed in the fluorescence flaw detection test (for example, Patent Documents 1 to 4).
Further, Patent Document 5 is disclosed as means for continuously performing permeation processing, cleaning processing, and development processing other than the inspection process.

特許文献1の方法は、少なくとも1つの対象被検材を選択するステップと、選択した分析法に基づいて表面欠陥を標示できるようにする指示薬を使用して被検材を前処理するステップと、選択した指示薬に適した適切な照明下に対象被検材を露光するステップと、アーチファクトを除去するよう該画像を処理して検出感度と選択した分析法によって生じる背景ノイズとを決定するステップと、有効パラメータを求め、各有効パラメータについて検出感度を最大にすると共に背景ノイズを最小にできるパラメータ値を決定するステップとを含むものである。   The method of Patent Document 1 includes the steps of selecting at least one target specimen, pre-treating the specimen using an indicator that enables the display of surface defects based on the selected analysis method, Exposing the target specimen under appropriate illumination suitable for the selected indicator; processing the image to remove artifacts to determine detection sensitivity and background noise caused by the selected analytical method; Determining effective parameters, and determining parameter values that maximize detection sensitivity and minimize background noise for each effective parameter.

特許文献2の方法は、図6に示す装置を用いて、磁化された鋼片の表面に蛍光磁粉を付着させ、該蛍光磁粉に励起光を照射して発せられる蛍光を撮像して疵を探傷する方法において、疵種類に応じて異なる複数の輝度の規準値と、疵種の弁別に使用する特徴量の範囲を限定するための閾値とを予め設定し、各規準値に基づいて撮像信号を2値化した複数の2値化画像を作成し、該2値化画像から所定の特徴量を算出し、該特徴量と予め設定された前記閾値とに基づいて所定の演算を行い、この演算結果に基づいて疵種を弁別するものである。   The method of Patent Document 2 uses the apparatus shown in FIG. 6 to attach fluorescent magnetic powder to the surface of a magnetized steel piece, and irradiate the fluorescent magnetic powder with excitation light to image the emitted fluorescence to detect flaws. In this method, a plurality of luminance reference values that differ depending on the type of eyelids and a threshold value for limiting the range of the feature amount used for the type of discrimination are set in advance, and the imaging signal is determined based on each criterion value. A plurality of binarized images are created, a predetermined feature amount is calculated from the binarized image, a predetermined calculation is performed based on the feature amount and the preset threshold value, and this calculation is performed. Based on the result, the species is discriminated.

特許文献3の装置は、蛍光磁粉が付着された被検査材の表面に紫外線を照射する照射手段と、該表面を撮像して画像信号を出力する撮像装置と、該画像信号の信号強度を傷判断閾値を比較して前記表面の傷の有無を判断する傷判断手段とを有する蛍光磁粉式自動探傷装置において、前記被検査材の表面各部における前記紫外線の入射条件および前記蛍光磁粉から発せられた光の前記撮像装置に対する入射条件の相違に拘わらず、略同一条件で傷の有無を判断できるように予め定められた該表面各部で異なる傷判断閾値を記憶している記憶手段を備え、前記傷判断手段は該傷判断閾値と対応する部分の画像信号の信号強度とを比較して傷の有無を判断するものである。   The apparatus of Patent Document 3 includes an irradiating unit that irradiates ultraviolet rays onto the surface of a material to be inspected to which fluorescent magnetic powder is attached, an imaging apparatus that images the surface and outputs an image signal, and the signal strength of the image signal is damaged. In the fluorescent magnetic powder type automatic flaw detection apparatus having a scratch judgment means for judging the presence or absence of a scratch on the surface by comparing judgment thresholds, the ultraviolet light incident conditions and the fluorescent magnetic powder emitted from each surface portion of the inspection object A storage means for storing different scratch determination thresholds for each part of the surface that is determined in advance so that the presence or absence of a scratch can be determined under substantially the same condition regardless of the difference in the incidence condition of light on the imaging device; The judging means judges the presence or absence of a flaw by comparing the flaw judgment threshold with the signal intensity of the image signal of the corresponding part.

特許文献4の装置は、図7の模式図に示すように、鋼材53の表層部を磁化する磁化器51,52と、鋼材の表面に磁粉液を散布する噴射ノズル55と、鋼材の被検査面を照明するブラックライト57と、被検査面を撮影ずるITVカメラ58と、ITVカメラの出力信号を画像処理して疵の有無を判別する画像処理装置59とで構成した表面疵自動検査装置において、鋼材53の被検査面に斜めから断続的に可視光を照射する光源部63と、光源部の発光とITVカメラの画像取り込みタイミングを同期させる制御装置64とを具備し、ブラックライト57で照明した時の画像と光源部63の照明を付加した時の画像とから表面疵を検査するものである。   As shown in the schematic diagram of FIG. 7, the apparatus of Patent Document 4 includes magnetizers 51 and 52 that magnetize a surface layer portion of a steel material 53, an injection nozzle 55 that sprays magnetic powder liquid on the surface of the steel material, and a steel material to be inspected. In a surface wrinkle automatic inspection apparatus constituted by a black light 57 that illuminates a surface, an ITV camera 58 that images a surface to be inspected, and an image processing device 59 that performs image processing on an output signal of the ITV camera to determine the presence or absence of wrinkles A light source 63 that irradiates visible light intermittently on the surface to be inspected of the steel 53, and a control device 64 that synchronizes the light emission of the light source and the image capture timing of the ITV camera, and is illuminated with a black light 57. The surface flaws are inspected from the image when the light is applied and the image when the illumination of the light source unit 63 is added.

特許文献5の装置は、図8の模式図に示すように、複数のワーク61を一定のピッチPで吊り下げて間欠的に水平循環させる水平循環チェーンコンベア62と、該水平循環チェーンコンベアの下部に位置しワークにそれぞれ所定の処理を行うための複数の処理装置64と、該処理装置を上下動させる昇降装置66とを備え、各処理装置の作動を停止し、各処理装置を下降させて、水平循環チェーンコンベアを一定ピッチP移動し、水平循環チェーンコンベアを停止して、各処理装置を上昇させて各処理を行うものである。   As shown in the schematic diagram of FIG. 8, the apparatus of Patent Document 5 includes a horizontal circulation chain conveyor 62 that suspends a plurality of works 61 at a constant pitch P and intermittently horizontally circulates, and a lower part of the horizontal circulation chain conveyor. And a plurality of processing devices 64 for performing predetermined processing on the workpiece, and an elevating device 66 for moving the processing device up and down, stopping the operation of each processing device and lowering each processing device. The horizontal circulation chain conveyor is moved by a constant pitch P, the horizontal circulation chain conveyor is stopped, and each processing apparatus is raised to perform each processing.

特許第3095958号公報、「浸透探傷による分析方法を自動的に特性化・最適化・検査する方法および装置」Japanese Patent No. 3095958, “Method and apparatus for automatically characterizing, optimizing and inspecting analysis method by penetrant flaw detection” 特許第3440569号公報、「磁粉探傷方法およびその装置」Japanese Patent No. 3440569, “Magnetic particle flaw detection method and apparatus” 特開平06−201656号公報、「蛍光磁粉式自動探傷装置」Japanese Patent Application Laid-Open No. 06-201656, “Fluorescent Magnetic Powder Automatic Flaw Detector” 特開平10−282063号公報、「表面疵自動検査装置」Japanese Patent Laid-Open No. 10-282063, “Surface Flaw Automatic Inspection Device” 特開2003−98110号公報、「連続浸透探傷装置」Japanese Patent Application Laid-Open No. 2003-98110, “Continuous Penetration Flaw Detector”

例えば、航空機用のタービン翼やコンプレッサー翼を被検体とする場合、検査領域は例えば、最大約100mm×100mmであり、検査対象となる傷は、例えば、長手方向約0.25mm以上となる。なお、この検査領域と傷の大きさは例示であり、それ以上の領域、或いはそれ以下の傷を対象とする場合もある。   For example, when a turbine blade or a compressor blade for an aircraft is used as a subject, the inspection area is, for example, a maximum of about 100 mm × 100 mm, and the scratch to be inspected is, for example, about 0.25 mm or more in the longitudinal direction. Note that the inspection area and the size of the flaw are merely examples, and a flaw larger than or smaller than that may be targeted.

蛍光探傷試験において、このような被検体を肉眼により目視検査した場合、従来、上述した検査工程だけでも被検体1個につき約2分間以上の検査時間を要していた。そのため、検査能率が低く、量産に合わせて全数検査することができない問題点があった。   In a fluorescent flaw detection test, when such an object is visually inspected with the naked eye, conventionally, an inspection time of about 2 minutes or more is required for each object even in the above-described inspection process alone. Therefore, the inspection efficiency is low, and there is a problem that it is impossible to inspect all the products in accordance with mass production.

また、画像処理を用いてこの検査工程を自動化しようとする場合、被検体表面で発光する蛍光が微弱であるため、蛍光以外の可視光を可能な限り除去して撮影する必要がある。すなわち、外光が入ってこない暗室内で、紫外光を被検体に照射して撮影する。このように可視光が除去された環境下では、蛍光部を明確に撮影することができるが、被検体の形状を明確に撮影することは困難である。そのため、蛍光を発している傷等の欠陥部が被検体のどこに位置するかの判断が難しかった。
また、被検体の形状を同時に撮影するため可視光による照明を用いると、微細な傷の検出が困難または不可能になる問題点があった。
Further, when trying to automate this inspection process using image processing, since fluorescence emitted from the surface of the subject is weak, it is necessary to take an image while removing visible light other than fluorescence as much as possible. That is, imaging is performed by irradiating the subject with ultraviolet light in a dark room where no external light enters. In such an environment where visible light is removed, the fluorescent part can be clearly imaged, but it is difficult to image the shape of the subject clearly. For this reason, it is difficult to determine where a defective portion such as a flaw that emits fluorescence is located on the subject.
In addition, if illumination using visible light is used to simultaneously photograph the shape of the subject, there is a problem that it is difficult or impossible to detect fine scratches.

さらに、自動搬送装置等を用いて被検体を検査領域に搬送する場合、被検体以外にも蛍光剤が付着することがある。このような場合、撮影した画像上に被検体以外の領域(背景部や非検査領域)の蛍光を検出してしまい、S/N比が低下して微細な傷の検出が困難になる。   Furthermore, when the subject is transported to the examination region using an automatic transport device or the like, the fluorescent agent may adhere to other than the subject. In such a case, fluorescence in a region other than the subject (background portion or non-inspection region) is detected on the photographed image, and the S / N ratio is lowered, making it difficult to detect fine scratches.

また、被検体がタービン翼等のように複雑な形状をしている場合、死角の発生により欠陥を見落すおそれがあった。また、このような複雑な形状をした被検体では、欠陥の正確な寸法を計測できない問題点があった。   Further, when the subject has a complicated shape such as a turbine blade, a defect may be overlooked due to the generation of blind spots. In addition, the subject having such a complicated shape has a problem in that an accurate dimension of the defect cannot be measured.

本発明は上述した問題点を解決するために創案されたものである。すなわち、本発明の目的は、複雑な形状をした被検体(検査対象物)の全面を、死角の発生を防いで短時間に全面検査ができ、被検体以外の領域(背景部や非検査領域)からの蛍光の影響を受けずに被検体の微細な傷を高いS/N比で容易に検出でき、かつ検出した傷の大きさと被検体上の位置を容易に特定できる蛍光探傷装置および蛍光探傷方法を提供することにある。   The present invention has been developed to solve the above-described problems. That is, the object of the present invention is to allow the entire surface of a subject (inspection object) having a complicated shape to be inspected in a short time while preventing the generation of blind spots. ) And a fluorescence flaw detector capable of easily detecting a fine flaw of a subject with a high S / N ratio without being influenced by the fluorescence from the light source, and easily identifying the detected flaw size and position on the subject. It is to provide a flaw detection method.

本発明によれば、所定の検査位置において蛍光剤又は蛍光磁粉を表面に浸透又は吸着させた被検体を保持し所定の軸心を中心に旋回可能な旋回装置と、
前記検査位置の被検体を囲み内部を微細な蛍光を撮影可能な低照度下に維持する暗室装置と、
前記検査位置の被検体に蛍光探傷用の近紫外線を照射するブラックライトと、
前記検査位置の被検体に可視光を照射する白色ストロボと、
前記近紫外線をカットし蛍光及び可視光を通すロングパスフィルタと、
該ロングパスフィルタを通して前記検査位置の被検体を複数の位置から時間をずらして撮影し、近紫外線照射時の蛍光静止画像と可視光照射時の可視静止画像をそれぞれ取得する複数の撮影カメラと、
前記複数の蛍光静止画像と複数の可視静止画像をそれぞれ重ね合わせて複数の重合せ画像を表示する画像処理装置とを備えた、ことを特徴とする蛍光探傷装置が提供される。
According to the present invention, a swiveling device capable of holding a subject having a fluorescent agent or fluorescent magnetic powder permeated or adsorbed on a surface at a predetermined examination position and capable of swiveling around a predetermined axis;
A darkroom apparatus that surrounds the subject at the examination position and maintains the inside under low illuminance capable of photographing fine fluorescence;
A black light that irradiates the subject at the inspection position with near ultraviolet rays for fluorescence testing;
A white strobe for irradiating the subject at the examination position with visible light;
A long-pass filter that cuts off the near-ultraviolet light and passes fluorescence and visible light;
A plurality of imaging cameras for imaging the subject at the examination position through the long pass filter while shifting the time from a plurality of positions, and acquiring a fluorescence still image at the time of near ultraviolet irradiation and a visible still image at the time of visible light irradiation,
There is provided a fluorescence flaw detector comprising: an image processing device that displays a plurality of superimposed images by superimposing the plurality of fluorescence still images and a plurality of visible still images.

本発明の好ましい実施形態によれば、前記画像処理装置は、複数の可視静止画像から被検体の検査領域を3次元位置計測により特定し、前記複数の蛍光静止画像から検査領域以外の画像を消去する。   According to a preferred embodiment of the present invention, the image processing device specifies an examination region of a subject from a plurality of visible still images by three-dimensional position measurement, and erases an image other than the examination region from the plurality of fluorescent still images. To do.

また、前記画像処理装置は、前記蛍光静止画像をモフォロジ処理を中心とする高輝度領域抽出処理して蛍光部分を特定し、蛍光部分の位置と大きさを算出する、ことが好ましい。   Further, it is preferable that the image processing apparatus specifies a fluorescent part by performing a high-luminance region extraction process centering on morphology processing on the fluorescent still image, and calculates a position and a size of the fluorescent part.

また本発明によれば、蛍光剤又は蛍光磁粉を表面に浸透又は吸着させた被検体を所定の検査位置に静置する静置ステップと、
暗室内で、検査位置の被検体に蛍光探傷用の近紫外線を照射し、ロングパスフィルタを通して複数の位置から被検体をそれぞれ撮影し、複数の蛍光静止画像を取得する蛍光静止画像撮影ステップと、
前記ステップと時間をずらして、検査位置の被検体に可視光を照射し、前記複数の位置からロングパスフィルタを通して被検体をそれぞれ撮影し、複数の可視静止画像を取得する可視静止画像撮影ステップと、
前記複数の蛍光静止画像と複数の可視静止画像を画像処理によりそれぞれ重ね合わせて複数の重合せ画像を表示する画像処理ステップと、
被検体を所定の軸心を中心に旋回させる旋回ステップとを備えた、ことを特徴とする蛍光探傷方法が提供される。
Further, according to the present invention, a stationary step of allowing a subject having permeated or adsorbed a fluorescent agent or fluorescent magnetic powder to a surface to be placed at a predetermined examination position;
Irradiating near-ultraviolet rays for fluorescent flaw detection to a subject at an examination position in a dark room, photographing each subject from a plurality of positions through a long pass filter, and obtaining a plurality of fluorescence still images, and
Shifting the step and time, irradiating the subject at the examination position with visible light, photographing each subject through a long pass filter from the plurality of positions, and obtaining a plurality of visible still images,
An image processing step of displaying a plurality of superimposed images by superimposing the plurality of fluorescent still images and a plurality of visible still images respectively by image processing;
There is provided a fluorescent flaw detection method comprising a turning step of turning a subject around a predetermined axis.

本発明の好ましい実施形態によれば、複数の可視静止画像から被検体の検査領域を3次元位置計測により特定し、前記複数の蛍光静止画像から検査領域以外の画像を消去する。   According to a preferred embodiment of the present invention, an examination region of a subject is specified from a plurality of visible still images by three-dimensional position measurement, and images other than the examination region are erased from the plurality of fluorescent still images.

また、前記蛍光静止画像をモフォロジ処理を中心とする高輝度領域抽出処理して蛍光部分を特定し、蛍光部分の位置と大きさを算出する、ことが好ましい。   Further, it is preferable that the fluorescent still image is subjected to high-luminance region extraction processing centering on morphology processing to identify a fluorescent portion, and the position and size of the fluorescent portion are calculated.

上述した本発明の装置及び方法によれば、被検体を所定の検査位置で旋回し、暗室内で時間をずらして複数の位置から複数の蛍光静止画像と複数の可視静止画像を撮影し、複数の蛍光静止画像と複数の可視静止画像を画像処理によりそれぞれ重ね合わせて複数の重合せ画像を表示するので、旋回、撮影、画像表示の繰り返しで、被検体の全面を短時間に容易に蛍光探傷検査できる。   According to the apparatus and method of the present invention described above, a subject is swung at a predetermined examination position, a plurality of fluorescent still images and a plurality of visible still images are photographed from a plurality of positions at different times in a dark room, Fluorescent still images and multiple visible still images are superimposed on each other by image processing to display multiple superimposed images, so that the entire surface of the subject can be easily detected in a short time by repeating swiveling, imaging, and image display. Can be inspected.

また、複雑な形状をした被検体(検査対象物)であっても、旋回させてその全面を検査するので、死角の発生を防ぐことができ、検査対象物の全面検査が可能となる。   Moreover, even if the subject (inspection object) has a complicated shape, the entire surface is inspected by turning, so that the generation of blind spots can be prevented, and the entire inspection object can be inspected.

また、暗室内で、検査位置で旋回した被検体に蛍光探傷用の近紫外線を照射し、ロングパスフィルタを通して被検体を撮影し、蛍光静止画像を取得するので、蛍光に適した露光時間で蛍光のみを高いS/N比で容易に検出できる。   Also, in the darkroom, the subject swung at the examination position is irradiated with near ultraviolet rays for fluorescent flaw detection, and the subject is photographed through a long-pass filter to obtain a fluorescence still image. Can be easily detected with a high S / N ratio.

さらに、複数の可視静止画像から被検体の検査領域を特定し、前記複数の蛍光静止画像から検査領域以外の画像を消去することにより、被検体以外の領域(背景部や非検査領域)からの蛍光の影響を皆無にできるので、被検体の微細な傷を一層高いS/N比で容易に検出できる。   Furthermore, by specifying the examination region of the subject from the plurality of visible still images and erasing the image other than the examination region from the plurality of fluorescent still images, the region from the region other than the subject (background portion or non-examination region) Since it is possible to eliminate the influence of fluorescence, fine scratches on the subject can be easily detected with a higher S / N ratio.

さらに、前記蛍光静止画像をモフォロジ処理を中心とする高輝度領域抽出処理して蛍光部分を特定し、蛍光部分の位置と大きさを算出するので、検出した傷の大きさと被検体上の位置を容易に特定できる。   Further, the fluorescent still image is subjected to high-intensity region extraction processing centered on morphology processing to identify the fluorescent portion, and the position and size of the fluorescent portion are calculated. Easy to identify.

以下、本発明の好ましい実施形態を図面を参照して説明する。なお、各図において共通する部分には同一の符号を付し、重複した説明を省略する。   Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings. In addition, the same code | symbol is attached | subjected to the common part in each figure, and the overlapping description is abbreviate | omitted.

図1は、被検体である動翼(A)とベーン(B)の模式図であり、この例では、航空機用コンプレッサーの動翼とベーンを示している。
航空機用コンプレッサーには、それぞれ10種類前後の動翼とベーンが用いられ、それぞれ大きさ、形状が異なっている。また、蛍光探傷検査を必要とする箇所は、通常、翼先端の背側及び腹側であるが、これに限定されず、それ以外の部分を検査することもある。
なお、本発明の被検体は、上述したような航空機用部品に限定されず、自動車部品等、蛍光探傷検査を必要とするあらゆる被検体を対象とすることができる。
FIG. 1 is a schematic diagram of moving blades (A) and vanes (B) that are subjects, and in this example, the moving blades and vanes of an aircraft compressor are shown.
Aircraft compressors use about 10 types of moving blades and vanes, each having a different size and shape. In addition, the places requiring the fluorescent flaw detection are usually the back side and the ventral side of the tip of the wing, but are not limited to this, and other parts may be inspected.
The subject of the present invention is not limited to the aircraft parts as described above, and can be any subject such as an automobile part that requires a fluorescent flaw detection test.

以下、本発明の被検体1の検査領域が最大約100mm×100mmであり、長手方向約0.25mm以上の傷を検査対象とする場合について説明する。なお、この検査領域と傷の大きさは例示であり、それ以上の領域、或いはそれ以下の傷にも同様に適用することができる。   Hereinafter, a case where the inspection area of the subject 1 of the present invention is about 100 mm × 100 mm at the maximum and a wound having a longitudinal direction of about 0.25 mm or more is to be inspected will be described. In addition, this inspection area | region and the magnitude | size of a damage | wound are illustrations, It can apply similarly to the area | region beyond it, or a wound below it.

図2は、本発明による蛍光探傷装置の全体構成図である。この図に示すように、本発明の蛍光探傷装置10は、旋回装置11、搬送装置12、暗室装置14、ブラックライト16、白色ストロボ18、ロングパスフィルタ20、撮影カメラ22及び画像処理装置24を備える。   FIG. 2 is an overall configuration diagram of a fluorescence flaw detector according to the present invention. As shown in this figure, the fluorescence flaw detector 10 of the present invention includes a swivel device 11, a transport device 12, a darkroom device 14, a black light 16, a white strobe 18, a long pass filter 20, a photographing camera 22, and an image processing device 24. .

被検体1は、図示しない前工程において、上述した浸透処理、洗浄処理、及び現像処理を行い、蛍光剤又は蛍光磁粉を表面に浸透又は吸着させた状態となっている。蛍光剤は、蛍光浸透探傷試験用の蛍光剤、蛍光磁粉は蛍光磁粉探傷試験用の蛍光磁粉である。従って、本発明は、蛍光浸透探傷試験と蛍光磁粉探傷試験に適用することができる。   The subject 1 is in a state in which the permeation process, the cleaning process, and the development process described above are performed in the previous process (not shown), and the fluorescent agent or the fluorescent magnetic powder is permeated or adsorbed on the surface. The fluorescent agent is a fluorescent agent for fluorescent penetrant testing, and the fluorescent magnetic powder is fluorescent magnetic powder for fluorescent magnetic particle testing. Therefore, the present invention can be applied to the fluorescence penetration test and the fluorescent magnetic particle test.

旋回装置11は、蛍光剤又は蛍光磁粉を表面に浸透又は吸着させた被検体1の一部を保持し、所定の軸心を中心に旋回可能な装置である。例えば、被検体1がタービン又はコンプレッサーの動翼であり、検査領域が翼部である場合、検査領域でない動翼の固定部を保持し、鉛直軸Zを中心に旋回するのがよい。またこの旋回装置11は、旋回角度を数値制御でき、旋回位置を出力するようになっている。
なおこの構成は必須ではなく、水平軸或いはその他の軸を中心に旋回してもよく、また数値制御を行わずに任意に旋回角度(例えば、180度、90度、60度、30度等)を設定して停止する構成であってもよい。
The swivel device 11 is a device that holds a part of the subject 1 having a fluorescent agent or fluorescent magnetic powder permeated or adsorbed on the surface thereof and is capable of swiveling around a predetermined axis. For example, when the subject 1 is a moving blade of a turbine or a compressor and the inspection region is a blade portion, it is preferable to hold the fixed portion of the moving blade that is not the inspection region and turn around the vertical axis Z. The turning device 11 can numerically control the turning angle, and outputs the turning position.
Note that this configuration is not essential, and it may be swiveled around a horizontal axis or other axes, and may be arbitrarily turned without performing numerical control (for example, 180 degrees, 90 degrees, 60 degrees, 30 degrees, etc.) It may be configured to set and stop.

搬送装置12は、例えばベルトコンベア又はローラコンベアであり、蛍光剤を表面に浸透させた被検体1を旋回装置11に保持した状態で、所定の検査位置まで搬入し、搬出する。またこの搬送装置12は、所定の検査位置を検出する位置検出センサ13を備え、検査位置で被検体1を一時停止させる。一時停止の時間は、後述する旋回と撮影に要する時間である。
なお、本発明において、搬送装置12は必須ではなく、被検体1を所定の検査位置に手で運んで静置してもよい。
The transport device 12 is, for example, a belt conveyor or a roller conveyor, and loads and unloads the subject 1 in which the fluorescent agent is permeated to the surface to a predetermined inspection position while being held by the turning device 11. The transport device 12 includes a position detection sensor 13 that detects a predetermined examination position, and temporarily stops the subject 1 at the examination position. The pause time is a time required for turning and photographing described later.
In the present invention, the transport device 12 is not essential, and the subject 1 may be moved to a predetermined examination position by hand and allowed to stand.

蛍光4はそれほど強い光を発しないため、撮影の際、ある程度の露光時間(例えば1/30秒以上)が必要となる。露光時間が1/30秒、分解能が0.10mm/画素の場合、被検体1の画像のブレを1画素以内に納めるためには、搬送又は旋回の速度を3.0mm/秒以下、つまり停止状態にする必要がある(0.10mm/画素÷1/30秒)。
従って、高精度の静止画像を2枚撮影するため、例えば0.5秒間程度完全に停止するのがよい。しかし、完全停止は必須ではなく、高精度の静止画像を撮影できる限りで、低速(例えば数mm/s)で移動してもよい。
また、CCDの感度を高める、蛍光強度を高める、対象とする傷を大きくする、等の手段により、露光時間を短くし、搬送又は旋回を連続してできるようにしてもよい。
Since the fluorescent light 4 does not emit so strong light, a certain amount of exposure time (for example, 1/30 second or more) is required for photographing. When the exposure time is 1/30 seconds and the resolution is 0.10 mm / pixel, the conveyance or turning speed is 3.0 mm / second or less, that is, to stop the blurring of the image of the subject 1 within 1 pixel. It needs to be in a state (0.10 mm / pixel ÷ 1/30 seconds).
Therefore, in order to capture two high-accuracy still images, for example, it is preferable to stop completely for about 0.5 seconds. However, complete stop is not essential, and movement may be performed at a low speed (for example, several mm / s) as long as a highly accurate still image can be taken.
Further, the exposure time may be shortened by means such as increasing the sensitivity of the CCD, increasing the fluorescence intensity, or increasing the target scratch, and the conveyance or turning may be performed continuously.

検査位置は、例えばベルトコンベア又はローラコンベア上に位置し、1m角程度の画像撮影エリアを有し、このエリアを暗室化できるようになっている。
また、本発明による蛍光探傷検査の結果、欠陥候補があると判断された被検体1は、図示しない別のラインに搬送され、目視検査などより詳細な検査を受けるようになっているのがよい。
The inspection position is located on, for example, a belt conveyor or a roller conveyor, and has an image photographing area of about 1 m square, and this area can be darkened.
In addition, as a result of the fluorescence flaw inspection according to the present invention, the subject 1 determined to have a defect candidate is preferably transported to another line (not shown) and subjected to a more detailed inspection such as a visual inspection. .

暗室装置14は、検査位置の被検体1を囲み、内部を微細な蛍光を撮影可能な低照度下に維持する。暗室装置14は、遮光布で覆った柔構造の暗幕でも、遮光板で囲んだ剛構造の暗箱でもよい。
また被検体1を暗室装置14内に搬入し、搬出できるように、スリット、開閉ドア等を備え、撮影カメラ22による撮影時に内部を撮影可能な低照度下に維持するようになっている。撮影可能な低照度は、微弱な蛍光4を検出できるように、可能な限り完全な暗闇であるのがよい。
The dark room device 14 surrounds the subject 1 at the examination position, and maintains the inside under a low illuminance at which fine fluorescence can be imaged. The dark room device 14 may be a flexible dark curtain covered with a light shielding cloth or a rigid dark box surrounded by a light shielding plate.
In addition, a slit, an opening / closing door, and the like are provided so that the subject 1 can be carried into and out of the dark room apparatus 14, and the interior is maintained at a low illuminance that allows photographing inside the photographing camera 22. The low illuminance that can be photographed should be as dark as possible so that the weak fluorescence 4 can be detected.

ブラックライト16は、検査位置で停止した被検体1に蛍光探傷用の近紫外線2を照射する。ブラックライト16は、波長315〜400nmの近紫外線2を放射する紫外線照射装置である。
このブラックライト16は、連続的に近紫外線2を放射するのが好ましいが、撮影時のみ放射してもよい。また、この例では、被検体1の影を防止するため、左右に2つ設けているが、1灯でも3灯以上でもよい。
また、露光時間を短くして、搬送又は旋回を連続して行う場合には、通常の写真撮影用のストロボと同様に、極短時間(1/1000秒以下)の照射時間にするのが好ましい。
The black light 16 irradiates the subject 1 stopped at the inspection position with near ultraviolet rays 2 for fluorescent flaw detection. The black light 16 is an ultraviolet irradiation device that emits near ultraviolet rays 2 having a wavelength of 315 to 400 nm.
The black light 16 preferably radiates near ultraviolet rays 2 continuously, but may radiate only during photographing. In this example, two are provided on the left and right to prevent the shadow of the subject 1, but one or three or more lamps may be used.
In addition, when the exposure time is shortened and the conveyance or turning is performed continuously, it is preferable to set the irradiation time to an extremely short time (1/1000 second or less) as in the case of a normal stroboscope. .

蛍光剤に近紫外線2を放射すると、蛍光4を発する。この蛍光4の波長は蛍光剤の特性や外部条件(洗浄液条件や経時変化など)によって変化するが、ピークは500〜550nmの間にある。   When near ultraviolet rays 2 are emitted to the fluorescent agent, fluorescence 4 is emitted. The wavelength of the fluorescence 4 varies depending on the characteristics of the fluorescent agent and external conditions (such as cleaning solution conditions and changes with time), but the peak is between 500 and 550 nm.

白色ストロボ18は、検査位置で停止した被検体1に可視光3を照射する。白色ストロボ18は、通常の写真撮影用のストロボであり、極短時間(1/1000秒以下)の照射時間であるのが好ましい。
またこの例では、被検体1の影を防止するため、白色ストロボ18を左右に2つ設けているが、1灯でも3灯以上でもよい。
The white strobe 18 irradiates the subject 1 stopped at the examination position with the visible light 3. The white stroboscope 18 is a stroboscope for normal photography and preferably has an irradiation time of an extremely short time (1/1000 second or less).
In this example, two white strobes 18 are provided on the left and right sides in order to prevent the shadow of the subject 1, but one or three or more may be used.

ロングパスフィルタ20は、波長450〜500nm程度以下の近紫外線2をカットし蛍光4及び可視光3を通す光学フィルタである。
通常の蛍光探傷試験では、紫外線フィルタとして、特定の波長のみを透過するバンドパスフィルタを用いる。しかし、本発明では、ストロボ照明を用いたときに部品の外形が判別できる画像(可視静止画像)を撮影する必要がある。そのため、本発明では、ブラックライト16の反射光を通さないような光学フィルタを使用して、蛍光領域を明確に撮影する。
The long pass filter 20 is an optical filter that cuts near ultraviolet rays 2 having a wavelength of about 450 to 500 nm or less and passes fluorescence 4 and visible light 3.
In a normal fluorescence inspection test, a bandpass filter that transmits only a specific wavelength is used as an ultraviolet filter. However, in the present invention, it is necessary to capture an image (visible still image) that allows the external shape of a component to be determined when using strobe illumination. Therefore, in the present invention, the fluorescent region is clearly photographed using an optical filter that does not allow the reflected light of the black light 16 to pass.

撮影カメラ22は、少なくとも1台以上を用いる。この例では、旋回装置11の旋回軸(この例では鉛直軸)を挟んで軸に垂直な方向(この例では水平方向)に間隔を隔て、2台の撮影カメラ22を用いている。各撮影カメラ22は、それぞれ、ロングパスフィルタ20を通して検査位置に停止した被検体1をそれぞれ同一位置からストロボONとストロボOFFの2枚を時間をずらして撮影し、近紫外線照射時の蛍光静止画像5と可視光照射時の可視静止画像6をそれぞれ取得する。従って、複数の位置から撮影したストロボOFFとストロボONに対応する複数の蛍光静止画像5と複数の可視静止画像6が取得される。
なおこの例では、搬送装置12の片側に2台の撮影カメラ22を備えているが、搬送装置12の両側に4台以上の撮影カメラ22を備えて、被検体1の両面を同時に検査するようにしてもよい。
さらに、被検体1を三方以上から同時に2台ずつのカメラで撮影するようにしてもよい。
At least one photographing camera 22 is used. In this example, two photographing cameras 22 are used with an interval in a direction perpendicular to the axis (horizontal direction in this example) across the turning axis (vertical axis in this example) of the turning device 11. Each photographing camera 22 photographs the subject 1 stopped at the examination position through the long pass filter 20 from the same position, strobe ON and strobe OFF, while shifting the time, and the fluorescence still image 5 at the time of near-ultraviolet irradiation. And a visible still image 6 at the time of visible light irradiation are acquired. Therefore, a plurality of fluorescent still images 5 and a plurality of visible still images 6 corresponding to the strobe OFF and the strobe ON captured from a plurality of positions are acquired.
In this example, two imaging cameras 22 are provided on one side of the transfer device 12, but four or more imaging cameras 22 are provided on both sides of the transfer device 12 so that both surfaces of the subject 1 are inspected simultaneously. It may be.
Further, the subject 1 may be photographed with two cameras at a time from three or more sides.

各撮影カメラ22の視野は、被検体1の検査領域に合わせて、一辺100mm程度に設定する。また、画素数は、視野角100mmに対して長手0.25mmという非常に小さな蛍光領域を抽出する必要がある。
例えば仮に観察対象物の位置で0.10mm/画素となるようにするには、CCDの有効画素数が1000×1000画素以上必要となる(100mm÷0.1mm/画素=1000画素)。
The field of view of each imaging camera 22 is set to about 100 mm on a side according to the examination area of the subject 1. In addition, it is necessary to extract a very small fluorescent region having a length of 0.25 mm with respect to a viewing angle of 100 mm.
For example, in order to obtain 0.10 mm / pixel at the position of the observation object, the number of effective pixels of the CCD needs to be 1000 × 1000 pixels or more (100 mm ÷ 0.1 mm / pixel = 1000 pixels).

このことからビデオ信号(水平信号線480本)を出力するアナログビデオカメラではなく、CCDの有効画素数が1000×1000画素以上のデジタルビデオカメラを使用する。   For this reason, a digital video camera having a CCD effective pixel number of 1000 × 1000 pixels or more is used instead of an analog video camera that outputs video signals (480 horizontal signal lines).

絞りと露光時間は、蛍光領域が明確な画像を撮影するには、絞りを絞って被写界深度を深くし、露光時間を長くとって蛍光を長く受光することが望ましい。しかし、実際の検査ラインでは搬送システムとの兼ね合いで撮影時間=露光時間が制限される。従って、絞りと露光時間は運用条件に合わせて調整できるように、絞りと露光時間を変更可能なカメラおよびレンズを使用するのがよい。   In order to capture an image with a clear fluorescent region, it is desirable that the aperture is reduced to increase the depth of field and the exposure time is increased to receive the fluorescence longer. However, in an actual inspection line, photographing time = exposure time is limited in consideration of the transport system. Therefore, it is preferable to use a camera and a lens that can change the aperture and the exposure time so that the aperture and the exposure time can be adjusted according to the operating conditions.

レンズは、視野角100mmとし、かつカメラ自身の影が映らないよう部品からカメラを300mm以上離す場合、レンズの焦点距離は20mm以上であれば良い。従ってレンズは、焦点距離が20mm〜50mm程度のものを使用するのがよい。   When the lens has a viewing angle of 100 mm and the camera is separated from the component by 300 mm or more so that the shadow of the camera itself is not reflected, the focal length of the lens may be 20 mm or more. Therefore, it is preferable to use a lens having a focal length of about 20 mm to 50 mm.

画像処理装置24は、複数の蛍光静止画像5と複数の可視静止画像6をそれぞれ重ね合わせて複数の重合せ画像7を表示する。画像処理装置24は、中央処理装置(CPU)、記憶装置25、入出力装置(例えばキーボード、画像表示装置26)、通信制御装置27を備えたコンピュータであるのがよい。
画像処理装置24は、複数の可視静止画像6から3次元位置計測により被検体1の検査領域を3次元的に特定し、複数の蛍光静止画像6から検査領域以外の画像を消去する。
さらに、この画像処理装置24は、蛍光静止画像5をモフォロジ処理を中心とする高輝度領域抽出処理して蛍光部分を特定し、蛍光部分の3次元位置計測により蛍光部分の位置と大きさを算出するようになっている。
なお、本発明は、前記の複数静止画像を用いたステレオ視による3次元位置計測手法に限定されるものではなく、他の3次元位置計測手法を用いてもよい。例えば、予め記憶した検査領域の被検体形状をテンプレート画像として旋回させ、パターンマッチングによりテンプレート画像と相似形となる可視静止画像8上の検査領域を特定してもよい。
The image processing device 24 displays a plurality of superimposed images 7 by superimposing a plurality of fluorescent still images 5 and a plurality of visible still images 6. The image processing device 24 may be a computer including a central processing unit (CPU), a storage device 25, an input / output device (for example, a keyboard, an image display device 26), and a communication control device 27.
The image processing device 24 three-dimensionally specifies the examination region of the subject 1 from the plurality of visible still images 6 by three-dimensional position measurement, and erases images other than the examination regions from the plurality of fluorescent still images 6.
Further, this image processing device 24 identifies the fluorescent part by extracting the fluorescent still image 5 with a high luminance area centered on the morphology process, and calculates the position and size of the fluorescent part by measuring the three-dimensional position of the fluorescent part. It is supposed to be.
Note that the present invention is not limited to the above-described three-dimensional position measurement method by stereo viewing using a plurality of still images, and other three-dimensional position measurement methods may be used. For example, the object shape of the examination area stored in advance may be rotated as a template image, and the examination area on the visible still image 8 that is similar to the template image may be specified by pattern matching.

図3は、本発明による蛍光探傷方法の全体フロー図である。この図に示すように、本発明の蛍光探傷方法は、静置ステップS1、蛍光静止画像撮影ステップS2、可視静止画像撮影ステップS3、画像処理ステップS4、旋回スッテップS5及び評価ステップS6を有する。   FIG. 3 is an overall flow diagram of the fluorescence flaw detection method according to the present invention. As shown in this figure, the fluorescence flaw detection method of the present invention has a stationary step S1, a fluorescent still image photographing step S2, a visible still image photographing step S3, an image processing step S4, a turning step S5, and an evaluation step S6.

静置ステップS1では、蛍光剤又は蛍光磁粉を表面に浸透又は吸着させた被検体1を所定の検査位置に静置する。   In the stationary step S1, the subject 1 in which a fluorescent agent or fluorescent magnetic powder has permeated or adsorbed on the surface is left at a predetermined examination position.

蛍光静止画像撮影ステップS2では、暗室内で、検査位置で停止した被検体1に蛍光探傷用の近紫外線2を照射し、ロングパスフィルタ20を通して複数の位置から被検体1をそれぞれ撮影し、複数の蛍光静止画像5を取得する。
このステップ中は、白色ストロボ18はOFF(消灯)を維持する。
In the fluorescence still image photographing step S2, the subject 1 stopped at the examination position is irradiated with near ultraviolet rays 2 for fluorescent flaw detection in the dark room, and the subject 1 is photographed from a plurality of positions through the long pass filter 20, respectively. A fluorescent still image 5 is acquired.
During this step, the white strobe 18 remains off (extinguishes).

可視静止画像撮影ステップS3では、蛍光静止画像撮影ステップS2と時間をずらして、検査位置で停止した被検体1に可視光3を照射し、蛍光静止画像撮影ステップS2と同じ複数の位置からロングパスフィルタ20を通して被検体1をそれぞれ撮影し、複数の可視静止画像6を取得する。
このステップ中は、ブラックライト16はON(点灯)のままでも、OFF(消灯)してもよい。
In the visible still image capturing step S3, the time is shifted from that of the fluorescent still image capturing step S2, the visible light 3 is irradiated to the subject 1 stopped at the examination position, and the long pass filter is applied from the same plurality of positions as in the fluorescent still image capturing step S2. The subject 1 is photographed through 20 to obtain a plurality of visible still images 6.
During this step, the black light 16 may remain on (turned on) or may be turned off (off).

画像処理ステップS4では、複数の蛍光静止画像5と複数の可視静止画像6を画像処理によりそれぞれ重ね合わせて複数の重合せ画像7を表示する。   In the image processing step S4, a plurality of superimposed images 7 are displayed by superimposing a plurality of fluorescent still images 5 and a plurality of visible still images 6 by image processing.

画像処理ステップS4は、高輝度領域抽出処理S41、3次元位置計測S42、検査領域特定S43、重合せ画像表示S44、検査領域以外の画像消去S45、および蛍光部分の大きさ算出S46の各ステップを有する。   The image processing step S4 includes steps of a high brightness area extraction process S41, a three-dimensional position measurement S42, an inspection area specification S43, a superimposed image display S44, an image erasing S45 other than the inspection area, and a fluorescent part size calculation S46. Have.

高輝度領域抽出処理S41の中心となるモフォロジ処理では、図4に示すように、位置と明るさの関係を示す原画像(A)をグレースケールで読み込み、これから最小値フィルタ(B)と最大値フィルタ(C)を作製し、原画像との差分(D)を求めて、周囲と比較して明るい部分、すなわち蛍光静止画像5の蛍光部分4aを特定する。   In the morphology process which is the center of the high luminance area extraction process S41, as shown in FIG. 4, the original image (A) indicating the relationship between the position and the brightness is read in gray scale, and the minimum value filter (B) and the maximum value are read from this. A filter (C) is produced, a difference (D) from the original image is obtained, and a brighter portion than the surroundings, that is, the fluorescent portion 4a of the fluorescent still image 5 is specified.

3次元位置計測S42では、複数の可視静止画像6から3次元位置計測により被検体1の検査領域を特定する(S43)。
すなわち、被検体1の同一点(例えば翼先端の両端部)が、複数の位置から撮影した複数の可視静止画像6に表示されている場合、複数の撮影カメラ22の位置と画像上の位置から、その位置の3次元位置を計算することができる。また、被検体1は、旋回装置11に保持されており、被検体1の表面位置は、旋回装置11の周辺位置に限定される。従って、旋回装置11の周辺位置を検査領域と特定することにより、これから外れる位置の画像を消去することができる。
In the three-dimensional position measurement S42, the examination region of the subject 1 is specified by the three-dimensional position measurement from the plurality of visible still images 6 (S43).
That is, when the same point (for example, both ends of the blade tip) of the subject 1 is displayed on the plurality of visible still images 6 photographed from a plurality of positions, the positions of the plurality of photographing cameras 22 and the positions on the image are used. The three-dimensional position of the position can be calculated. In addition, the subject 1 is held by the turning device 11, and the surface position of the subject 1 is limited to the peripheral position of the turning device 11. Therefore, by specifying the peripheral position of the swivel device 11 as the inspection area, it is possible to erase an image at a position outside the swivel device 11.

次いで前記複数の蛍光静止画像5と複数の可視静止画像6を画像処理によりそれぞれ重ね合わせて複数の重合せ画像7を表示し(S44)、蛍光静止画像5から検査領域以外の画像を消去する(S45)。なお重合せ画像表示S44は、ステップS45の後に行ってもよい。   Next, the plurality of fluorescent still images 5 and the plurality of visible still images 6 are overlapped by image processing to display a plurality of superimposed images 7 (S44), and images other than the examination region are erased from the fluorescent still images 5 (S44). S45). Note that the superimposed image display S44 may be performed after step S45.

さらに、蛍光部分4aの3次元位置計測により蛍光部分4aの位置と大きさを算出する(S46)。   Further, the position and size of the fluorescent portion 4a are calculated by measuring the three-dimensional position of the fluorescent portion 4a (S46).

旋回ステップS5では、被検体を所定の軸心を中心に旋回させる。
この旋回は、死角が発生しないように、数値制御又はその他の手段(リミットスイッチ等)により、任意に旋回角度(例えば、180度、90度、60度、30度等)を設定するのがよい。
In the turning step S5, the subject is turned around a predetermined axis.
For this turning, it is preferable to arbitrarily set a turning angle (for example, 180 degrees, 90 degrees, 60 degrees, 30 degrees, etc.) by numerical control or other means (such as a limit switch) so that a blind spot does not occur. .

この旋回の後、上述したステップS1〜S4を繰り返し、死角ができないように、検査対象物の全面を検査する。各検査結果はすべて、記憶装置に記憶し、全面を検査した後、評価ステップS6に移る。この繰り返し数は、少なくとも2回(旋回角度180度の場合)行うのがよい。   After this turning, the above-described steps S1 to S4 are repeated, and the entire surface of the inspection object is inspected so that no blind spot is formed. All the inspection results are stored in the storage device, and after the entire surface is inspected, the process proceeds to evaluation step S6. This number of repetitions is preferably performed at least twice (when the turning angle is 180 degrees).

評価ステップS6では、画像処理ステップS4で得られた複数の重合せ画像7および蛍光部分の大きさを画像表示及びプリントアウトし、予め定めた閾値と比較して、被検体1の合否を判断する。
なお、この画像表示は、異なる位置から撮影した画像の重合せ画像をそれぞれ別個に表示しても、複数の重合せ画像を順次旋回させながら表示してもよい。
この蛍光探傷検査の結果、欠陥候補があると判断された被検体は、図示しない別のラインに搬送され、目視検査などの、より詳細な検査を受ける。
In the evaluation step S6, the size of the plurality of superimposed images 7 and fluorescent portions obtained in the image processing step S4 is displayed and printed out, and compared with a predetermined threshold value to determine whether or not the subject 1 is acceptable. .
Note that this image display may be performed by separately displaying superimposed images of images taken from different positions or by sequentially rotating a plurality of superimposed images.
As a result of this fluorescence inspection, the object determined to have a defect candidate is transported to another line (not shown) and subjected to a more detailed inspection such as a visual inspection.

図5は、本発明による蛍光探傷方法の模式図である。
この図に示すように、本発明の方法では、被検体1を所定の軸心Z(例えば鉛直軸)を中心に旋回させる旋回装置11(ターンテーブルや、吊り下げ運搬時のアームの回転機構など)を用いて、旋回させながら撮影を行うことで死角を減らす。また、複数のカメラ22を用いて3次元位置計測により蛍光部分の位置と大きさを算出する。
FIG. 5 is a schematic diagram of the fluorescence flaw detection method according to the present invention.
As shown in this figure, in the method of the present invention, a swiveling device 11 (turntable, a rotating mechanism of an arm during hanging transportation, etc.) for turning a subject 1 around a predetermined axis Z (for example, a vertical axis). ) To reduce the blind spot by shooting while turning. Further, the position and size of the fluorescent part are calculated by three-dimensional position measurement using a plurality of cameras 22.

従って、死角の発生を防ぐことができ、検査対象物の全面検査が可能となる。また、欠陥の実寸法を正確に計測でき、検査精度が向上する。   Therefore, the generation of blind spots can be prevented, and the entire inspection object can be inspected. Moreover, the actual dimension of the defect can be accurately measured, and the inspection accuracy is improved.

なお、本発明は上述した実施形態に限定されず、本発明の要旨を逸脱しない範囲で種々変更できることは勿論である。   In addition, this invention is not limited to embodiment mentioned above, Of course, it can change variously in the range which does not deviate from the summary of this invention.

被検体である動翼とベーンの模式図である。It is a schematic diagram of the moving blade and vane which are subjects. 本発明による蛍光探傷装置の全体構成図である。1 is an overall configuration diagram of a fluorescence flaw detector according to the present invention. 本発明による蛍光探傷方法の全体フロー図である。It is a whole flowchart of the fluorescence flaw detection method by this invention. 本発明におけるモフォロジ処理の説明図である。It is explanatory drawing of the morphology process in this invention. 本発明による蛍光探傷方法の模式図である。It is a schematic diagram of the fluorescence inspection method by this invention. 特許文献2の装置の模式図である。It is a schematic diagram of the apparatus of patent document 2. FIG. 特許文献4の装置の模式図である。It is a schematic diagram of the apparatus of patent document 4. 特許文献5の装置の模式図である。FIG. 11 is a schematic diagram of an apparatus disclosed in Patent Document 5.

符号の説明Explanation of symbols

1 被検体(検査対象物)、2 近紫外線、3 可視光、
4 蛍光、4a 蛍光部分、5 蛍光静止画像、
6 可視静止画像、7 重合せ画像、
10 蛍光探傷装置、11 旋回装置、12 搬送装置、13 位置検出センサ、
14 暗室装置(暗幕、暗箱)、16 ブラックライト、18 白色ストロボ、
20 ロングパスフィルタ、22 撮影カメラ、
24 画像処理装置(コンピュータ)、25 記憶装置、
26 画像表示装置、27 通信制御装置
1 subject (test object), 2 near UV, 3 visible light,
4 fluorescence, 4a fluorescence part, 5 fluorescence still image,
6 visible still images, 7 superimposed images,
DESCRIPTION OF SYMBOLS 10 Fluorescence flaw detector, 11 Turning apparatus, 12 Conveyance apparatus, 13 Position detection sensor,
14 Darkroom device (dark curtain, dark box), 16 black light, 18 white strobe,
20 long pass filter, 22 camera,
24 image processing device (computer), 25 storage device,
26 image display device, 27 communication control device

Claims (6)

所定の検査位置において蛍光剤又は蛍光磁粉を表面に浸透又は吸着させた被検体を保持し所定の軸心を中心に旋回可能な旋回装置と、
前記検査位置の被検体を囲み内部を微細な蛍光を撮影可能な低照度下に維持する暗室装置と、
前記検査位置の被検体に蛍光探傷用の近紫外線を照射するブラックライトと、
前記検査位置の被検体に可視光を照射する白色ストロボと、
前記近紫外線をカットし蛍光及び可視光を通すロングパスフィルタと、
該ロングパスフィルタを通して前記検査位置の被検体を複数の位置から時間をずらして撮影し、近紫外線照射時の蛍光静止画像と可視光照射時の可視静止画像をそれぞれ取得する複数の撮影カメラと、
前記複数の蛍光静止画像と複数の可視静止画像をそれぞれ重ね合わせて複数の重合せ画像を表示する画像処理装置とを備えた、ことを特徴とする蛍光探傷装置。
A swiveling device capable of holding a specimen having a fluorescent agent or fluorescent magnetic powder permeated or adsorbed on the surface at a predetermined examination position and capable of swiveling around a predetermined axis;
A darkroom apparatus that surrounds the subject at the examination position and maintains the inside under low illuminance capable of photographing fine fluorescence;
A black light that irradiates the subject at the inspection position with near ultraviolet rays for fluorescence testing;
A white strobe for irradiating the subject at the examination position with visible light;
A long-pass filter that cuts off the near-ultraviolet light and passes fluorescence and visible light;
A plurality of imaging cameras for imaging the subject at the examination position through the long pass filter while shifting the time from a plurality of positions, and acquiring a fluorescence still image at the time of near ultraviolet irradiation and a visible still image at the time of visible light irradiation,
An fluorescence flaw detector comprising: an image processing device that displays a plurality of superimposed images by superimposing the plurality of fluorescence still images and a plurality of visible still images.
前記画像処理装置は、複数の可視静止画像から被検体の検査領域を3次元位置計測により特定し、前記複数の蛍光静止画像から検査領域以外の画像を消去する、ことを特徴とする請求項1に記載の蛍光探傷装置。   The image processing apparatus identifies an examination region of a subject from a plurality of visible still images by three-dimensional position measurement, and erases an image other than the examination region from the plurality of fluorescent still images. The fluorescent flaw detector described in 1. 前記画像処理装置は、前記蛍光静止画像をモフォロジ処理を中心とする高輝度領域抽出処理して蛍光部分を特定し、蛍光部分の位置と大きさを算出する、ことを特徴とする請求項2に記載の蛍光探傷装置。 3. The image processing apparatus according to claim 2, wherein the fluorescent still image is subjected to high-intensity region extraction processing centered on morphology processing, a fluorescent portion is specified, and a position and a size of the fluorescent portion are calculated. The fluorescent flaw detector described. 蛍光剤又は蛍光磁粉を表面に浸透又は吸着させた被検体を所定の検査位置に静置する静置ステップと、
暗室内で、検査位置の被検体に蛍光探傷用の近紫外線を照射し、ロングパスフィルタを通して複数の位置から被検体をそれぞれ撮影し、複数の蛍光静止画像を取得する蛍光静止画像撮影ステップと、
前記ステップと時間をずらして、検査位置の被検体に可視光を照射し、前記複数の位置からロングパスフィルタを通して被検体をそれぞれ撮影し、複数の可視静止画像を取得する可視静止画像撮影ステップと、
前記複数の蛍光静止画像と複数の可視静止画像を画像処理によりそれぞれ重ね合わせて複数の重合せ画像を表示する画像処理ステップと、
被検体を所定の軸心を中心に旋回させる旋回ステップとを備えた、ことを特徴とする蛍光探傷方法。
A stationary step in which a subject infiltrated or adsorbed with a fluorescent agent or fluorescent magnetic powder is placed at a predetermined examination position; and
Irradiating near-ultraviolet rays for fluorescent flaw detection to a subject at an examination position in a dark room, photographing each subject from a plurality of positions through a long pass filter, and obtaining a plurality of fluorescence still images, and
Shifting the step and time, irradiating the subject at the examination position with visible light, photographing each subject through a long pass filter from the plurality of positions, and obtaining a plurality of visible still images,
An image processing step of displaying a plurality of superimposed images by superimposing the plurality of fluorescent still images and a plurality of visible still images respectively by image processing;
A fluorescence flaw detection method comprising: a turning step of turning a subject around a predetermined axis.
複数の可視静止画像から被検体の検査領域を3次元位置計測により特定し、前記複数の蛍光静止画像から検査領域以外の画像を消去する、ことを特徴とする請求項4に記載の蛍光探傷方法。   5. The fluorescence inspection method according to claim 4, wherein an inspection region of a subject is specified from a plurality of visible still images by three-dimensional position measurement, and images other than the inspection region are erased from the plurality of fluorescent still images. . 前記蛍光静止画像をモフォロジ処理を中心とする高輝度領域抽出処理して蛍光部分を特定し、蛍光部分の位置と大きさを算出する、ことを特徴とする請求項5に記載の蛍光探傷方法。
6. The fluorescence flaw detection method according to claim 5, wherein the fluorescent still image is subjected to high-luminance region extraction processing centered on morphology processing, a fluorescent portion is identified, and the position and size of the fluorescent portion are calculated.
JP2005201464A 2005-07-11 2005-07-11 Fluorescence flaw detector and fluorescent flaw detection method Active JP4618502B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005201464A JP4618502B2 (en) 2005-07-11 2005-07-11 Fluorescence flaw detector and fluorescent flaw detection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005201464A JP4618502B2 (en) 2005-07-11 2005-07-11 Fluorescence flaw detector and fluorescent flaw detection method

Publications (2)

Publication Number Publication Date
JP2007017377A true JP2007017377A (en) 2007-01-25
JP4618502B2 JP4618502B2 (en) 2011-01-26

Family

ID=37754655

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005201464A Active JP4618502B2 (en) 2005-07-11 2005-07-11 Fluorescence flaw detector and fluorescent flaw detection method

Country Status (1)

Country Link
JP (1) JP4618502B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008286602A (en) * 2007-05-16 2008-11-27 Mec Kk Method of analyzing silane coupling agent coating
JP2008309603A (en) * 2007-06-14 2008-12-25 Ihi Corp Fluorescent flaw detection method and its device
JP2012083285A (en) * 2010-10-14 2012-04-26 Daido Steel Co Ltd Exterior appearance inspection method and exterior appearance inspection device
CN103293166A (en) * 2013-06-28 2013-09-11 申雅密封件有限公司 Fluorescent image detection device of vehicle sealing piece coating
KR20160110156A (en) 2015-03-11 2016-09-21 마크텍 가부시키가이샤 Ultraviolet light flaw detection light unit, and ultraviolet light flaw detection apparatus
CN111129995A (en) * 2020-01-08 2020-05-08 深圳供电局有限公司 Transformer substation cooperative intelligent inspection system and application method thereof
CN111220581A (en) * 2018-11-27 2020-06-02 通用电气公司 Fluorescence penetrant inspection system and method
JP2021025878A (en) * 2019-08-05 2021-02-22 電子磁気工業株式会社 Magnetic particle flaw inspection device and magnetic particle flaw inspection method
CN112858333A (en) * 2021-02-23 2021-05-28 珠海迪沃航空工程有限公司 Curved surface three-dimensional defect detection method applied to turbine blade of aircraft engine
CN113358739A (en) * 2021-06-30 2021-09-07 常州工学院 Magnetic particle inspection detection device based on binocular image fusion technology
CN115046697A (en) * 2022-06-17 2022-09-13 西南交通大学 Method for detecting seal front edge of hydraulic conduit joint
CN113358739B (en) * 2021-06-30 2024-07-09 常州工学院 Magnetic particle inspection detection device based on binocular image fusion technology

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59218939A (en) * 1983-05-27 1984-12-10 Mitsubishi Electric Corp Testing device of bottle or the like
JPS6382358A (en) * 1986-09-26 1988-04-13 Sumitomo Metal Ind Ltd Magnetic powder-based flaw detection
JPH0224543A (en) * 1988-07-13 1990-01-26 Shokuhin Sangyo Onrain Sensor Gijutsu Kenkyu Kumiai Visual inspection method of bottle
JPH03221860A (en) * 1990-01-27 1991-09-30 Toyota Motor Corp Inspecting device for magnetic powder flaw detection
JPH04223262A (en) * 1990-12-25 1992-08-13 Nippon Denji Sokki Kk Processing method of image in fluorescent magnetic powder flaw detection
JPH09318560A (en) * 1996-05-27 1997-12-12 Ikegami Tsushinki Co Ltd Visual inspection apparatus for can
JPH10282063A (en) * 1997-04-08 1998-10-23 Nippon Steel Corp Automatic inspection apparatus for surface flaw
JP2000076446A (en) * 1998-08-27 2000-03-14 Ishikawajima Harima Heavy Ind Co Ltd Automatic welding defect detecting method in radiographic inspection
JP2001008923A (en) * 1999-07-02 2001-01-16 Fuji Photo Film Co Ltd Method and device for detecting abnormal shade
JP2001194316A (en) * 1999-10-26 2001-07-19 Hitachi Ltd Method and device for non-destructive inspection
JP2003279499A (en) * 2002-03-25 2003-10-02 Inspeck Kk Pattern inspection device
JP2004226212A (en) * 2003-01-22 2004-08-12 Nippon Sheet Glass Co Ltd Method and device for detecting pinhole defect and contamination defect on transparent object
JP2005283599A (en) * 2005-05-26 2005-10-13 Hitachi Ltd Defect inspection method, defect inspection device and defect inspection support method

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59218939A (en) * 1983-05-27 1984-12-10 Mitsubishi Electric Corp Testing device of bottle or the like
JPS6382358A (en) * 1986-09-26 1988-04-13 Sumitomo Metal Ind Ltd Magnetic powder-based flaw detection
JPH0224543A (en) * 1988-07-13 1990-01-26 Shokuhin Sangyo Onrain Sensor Gijutsu Kenkyu Kumiai Visual inspection method of bottle
JPH03221860A (en) * 1990-01-27 1991-09-30 Toyota Motor Corp Inspecting device for magnetic powder flaw detection
JPH04223262A (en) * 1990-12-25 1992-08-13 Nippon Denji Sokki Kk Processing method of image in fluorescent magnetic powder flaw detection
JPH09318560A (en) * 1996-05-27 1997-12-12 Ikegami Tsushinki Co Ltd Visual inspection apparatus for can
JPH10282063A (en) * 1997-04-08 1998-10-23 Nippon Steel Corp Automatic inspection apparatus for surface flaw
JP2000076446A (en) * 1998-08-27 2000-03-14 Ishikawajima Harima Heavy Ind Co Ltd Automatic welding defect detecting method in radiographic inspection
JP2001008923A (en) * 1999-07-02 2001-01-16 Fuji Photo Film Co Ltd Method and device for detecting abnormal shade
JP2001194316A (en) * 1999-10-26 2001-07-19 Hitachi Ltd Method and device for non-destructive inspection
JP2003279499A (en) * 2002-03-25 2003-10-02 Inspeck Kk Pattern inspection device
JP2004226212A (en) * 2003-01-22 2004-08-12 Nippon Sheet Glass Co Ltd Method and device for detecting pinhole defect and contamination defect on transparent object
JP2005283599A (en) * 2005-05-26 2005-10-13 Hitachi Ltd Defect inspection method, defect inspection device and defect inspection support method

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008286602A (en) * 2007-05-16 2008-11-27 Mec Kk Method of analyzing silane coupling agent coating
JP2008309603A (en) * 2007-06-14 2008-12-25 Ihi Corp Fluorescent flaw detection method and its device
JP2012083285A (en) * 2010-10-14 2012-04-26 Daido Steel Co Ltd Exterior appearance inspection method and exterior appearance inspection device
CN103293166A (en) * 2013-06-28 2013-09-11 申雅密封件有限公司 Fluorescent image detection device of vehicle sealing piece coating
KR20160110156A (en) 2015-03-11 2016-09-21 마크텍 가부시키가이샤 Ultraviolet light flaw detection light unit, and ultraviolet light flaw detection apparatus
CN111220581A (en) * 2018-11-27 2020-06-02 通用电气公司 Fluorescence penetrant inspection system and method
JP2021025878A (en) * 2019-08-05 2021-02-22 電子磁気工業株式会社 Magnetic particle flaw inspection device and magnetic particle flaw inspection method
JP7132894B2 (en) 2019-08-05 2022-09-07 電子磁気工業株式会社 Magnetic particle flaw detector and magnetic particle flaw detection method
CN111129995A (en) * 2020-01-08 2020-05-08 深圳供电局有限公司 Transformer substation cooperative intelligent inspection system and application method thereof
CN111129995B (en) * 2020-01-08 2021-06-29 深圳供电局有限公司 Transformer substation cooperative intelligent inspection system and application method thereof
CN112858333A (en) * 2021-02-23 2021-05-28 珠海迪沃航空工程有限公司 Curved surface three-dimensional defect detection method applied to turbine blade of aircraft engine
CN113358739A (en) * 2021-06-30 2021-09-07 常州工学院 Magnetic particle inspection detection device based on binocular image fusion technology
CN113358739B (en) * 2021-06-30 2024-07-09 常州工学院 Magnetic particle inspection detection device based on binocular image fusion technology
CN115046697A (en) * 2022-06-17 2022-09-13 西南交通大学 Method for detecting seal front edge of hydraulic conduit joint

Also Published As

Publication number Publication date
JP4618502B2 (en) 2011-01-26

Similar Documents

Publication Publication Date Title
JP4618502B2 (en) Fluorescence flaw detector and fluorescent flaw detection method
JP5218723B2 (en) Fluorescence flaw detection method and fluorescence flaw detection apparatus
JP4618501B2 (en) Fluorescence flaw detector and fluorescent flaw detection method
RU2665806C2 (en) Method and device for investigating inspection system used for detecting surface defects
US11300508B2 (en) Apparatus and method for extracting low intensity photonic signals
KR20160090359A (en) Surface defect detection method and surface defect detection device
JP5505247B2 (en) Appearance inspection method and appearance inspection apparatus
JP4045742B2 (en) Nondestructive inspection method and apparatus
JP4739044B2 (en) Appearance inspection device
KR20120069047A (en) Inspection system and method for blind fablic
CN211179500U (en) Multi-light source optical detection system
JP2010048602A (en) Printed board inspection device and printed board inspection method
JP2010276538A (en) Detection method of crack defect
JP2008286791A (en) Surface defect inspection method and apparatus
JP6321709B2 (en) Surface wrinkle inspection method
JPWO2018168510A1 (en) Cylindrical surface inspection device and cylindrical surface inspection method
JP6605772B1 (en) Defect inspection apparatus and defect inspection method
JP2009236760A (en) Image detection device and inspection apparatus
JP2018205199A (en) Foreign matter inspection device and method
JPH04223262A (en) Processing method of image in fluorescent magnetic powder flaw detection
JP4074837B2 (en) Method and apparatus for detecting the marking position of a steel piece
JPH10103938A (en) Method and apparatus for visual examination of cast product
JP2008134074A (en) Tire inspection method
JP2001349843A (en) Method for detecting surface discontinuity of round bar
JP4619748B2 (en) Defect detection method for multilayer flat plate inspection object having optical transparency

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080528

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100803

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100907

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100930

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101013

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131105

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4618502

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131105

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250