JP2007017184A - 測位信号を送信するための装置、その装置を備える測位システムおよび測位信号を送信するシステム - Google Patents

測位信号を送信するための装置、その装置を備える測位システムおよび測位信号を送信するシステム Download PDF

Info

Publication number
JP2007017184A
JP2007017184A JP2005196322A JP2005196322A JP2007017184A JP 2007017184 A JP2007017184 A JP 2007017184A JP 2005196322 A JP2005196322 A JP 2005196322A JP 2005196322 A JP2005196322 A JP 2005196322A JP 2007017184 A JP2007017184 A JP 2007017184A
Authority
JP
Japan
Prior art keywords
signal
transmitting
positioning signal
positioning
data
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005196322A
Other languages
English (en)
Other versions
JP4848146B2 (ja
Inventor
Hideyuki Torimoto
秀幸 鳥本
Ivan Petrovski
イワン・ペトロフスキー
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Funai Electric Co Ltd
GNSS Technologies Inc
Original Assignee
Funai Electric Co Ltd
GNSS Technologies Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Funai Electric Co Ltd, GNSS Technologies Inc filed Critical Funai Electric Co Ltd
Priority to JP2005196322A priority Critical patent/JP4848146B2/ja
Priority to EP20060013647 priority patent/EP1742077B1/en
Priority to DE200660006620 priority patent/DE602006006620D1/de
Priority to US11/480,795 priority patent/US7817090B2/en
Publication of JP2007017184A publication Critical patent/JP2007017184A/ja
Application granted granted Critical
Publication of JP4848146B2 publication Critical patent/JP4848146B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S1/00Beacons or beacon systems transmitting signals having a characteristic or characteristics capable of being detected by non-directional receivers and defining directions, positions, or position lines fixed relatively to the beacon transmitters; Receivers co-operating therewith
    • G01S1/02Beacons or beacon systems transmitting signals having a characteristic or characteristics capable of being detected by non-directional receivers and defining directions, positions, or position lines fixed relatively to the beacon transmitters; Receivers co-operating therewith using radio waves
    • G01S1/08Systems for determining direction or position line
    • G01S1/20Systems for determining direction or position line using a comparison of transit time of synchronised signals transmitted from non-directional antennas or antenna systems spaced apart, i.e. path-difference systems
    • G01S1/22Systems for determining direction or position line using a comparison of transit time of synchronised signals transmitted from non-directional antennas or antenna systems spaced apart, i.e. path-difference systems the synchronised signals being frequency modulations on carrier waves and the transit times being compared by measuring difference of instantaneous frequencies of received carrier waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/03Cooperating elements; Interaction or communication between different cooperating elements or between cooperating elements and receivers
    • G01S19/04Cooperating elements; Interaction or communication between different cooperating elements or between cooperating elements and receivers providing carrier phase data
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/03Cooperating elements; Interaction or communication between different cooperating elements or between cooperating elements and receivers
    • G01S19/10Cooperating elements; Interaction or communication between different cooperating elements or between cooperating elements and receivers providing dedicated supplementary positioning signals
    • G01S19/11Cooperating elements; Interaction or communication between different cooperating elements or between cooperating elements and receivers providing dedicated supplementary positioning signals wherein the cooperating elements are pseudolites or satellite radio beacon positioning system signal repeaters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/38Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
    • G01S19/39Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/42Determining position
    • G01S19/43Determining position using carrier phase measurements, e.g. kinematic positioning; using long or short baseline interferometry
    • G01S19/44Carrier phase ambiguity resolution; Floating ambiguity; LAMBDA [Least-squares AMBiguity Decorrelation Adjustment] method

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Position Fixing By Use Of Radio Waves (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

【課題】 位置情報の算出精度が高められる信号を送信できる装置を提供する。
【解決手段】 測位のための信号を送信する送信装置200は、恒温層によって水晶振動子の温度を一定に保ちつつ周囲の温度の変化による出力周波数の変化が最も少なくなるように発振する恒温層付水晶発振器(OCXO)210と、OCXO210からのの信号に応じて変調された搬送波を出力する電圧制御振器(VCO)220と、乗算器240,260と、送信装置200が搭載された人工衛星を識別するコードパターンを乗算器240に出力するコードジェネレータ230と、航法メッセージを格納するメモリ250と、アップコンバータ270と、送信部280と、アンテナ290とを含む。
【選択図】 図2

Description

本発明は信号を送信する技術に関し、より特定的には、測位信号を送信するための装置、その装置を備える測位システムおよび測位信号を送信するシステムとその方法に関する。
GPS(Global Positioning System)、GLONASS(Global Navigation Satellite System)、ガリレオ(GALILEO)その他の衛星航法システムは、当該システムの利用者に対して、信号を送信する衛星までの距離を測定するために、SS(Spread Spectrum)信号を供給する。4つあるいはそれ以上の衛星までの距離を用いて、利用者は、位置を決定することができる。衛星航法システムのためのSS信号は、擬似ノイズコードにより変調された搬送波を含む。コードの長さは、C/A(Coarse and Access)コードについて約300mであり、P(PrecisionまたはProtect)コードについて約30mである。搬送波の波長は、いわゆるL1帯の電波については約19cmであり、L2帯の電波については約24cmである。コードデータは、独特のパターンを有しており、利用者の受信装置は、装置自身から衛星までのチップの数によって表わされた正確な距離を測定することができる。搬送波は、それ自身繰り返し送信され、当該利用者の受信装置は、いわゆる単独測位の場合には、装置自身から衛星までの波の数を見い出すことはできない。
以上、本発明についての従来技術を、出願人の知得した一般的な技術情報に基づいて説明したが、出願人の記憶する範囲において、出願前までに先行技術文献情報として開示すべき情報を出願人は有していない。
コードを用いた測位は、受信装置の内部で生成されるレプリカと称される信号と、受信信号とを、明確にマッチングすることにより、実現される。利用者の受信装置は、波長あるいはコード長の約100分の1までの精度により、衛星までの距離を計測することができる。いわゆるスタンドアロンで用いられる、単独測位のための受信装置は、コードデータのみにより測位することができる。したがって、この場合、測位の精度は、数m程度に制限される。測位のために搬送波の位相を用いるためには、利用者は、他の受信装置による測定値へのアクセスを有し、衛星までの波長の不明確な数を見出すために特別な処理を適用し、そして波長を追跡しつづける必要がある。もし、衛星からの信号が遮断された場合には、利用者は、上記の処理を最初から実行し直す必要がある。
そのため、今日、単独測位を実行する利用者は、衛星から送信されるコードに基づく測定値が精度に関して限界を有しつつ、当該測位を実行している。
一方、いわゆるリアルタイムキネマティック(real time kinematic,RTK)モードにおいては、基準点を用いることにより、利用者は、搬送波の位相を用いた測位を実行することができる。しかしながら、このような方法を利用するためには、利用者は、最小限5個の衛星を視認可能である必要があり、少なくとも4個の衛星までの距離を遮られることなく計測し続ける必要がある。
アンビギュイティの解消のための処理は、今日でもなお信頼性に欠け、有効な技術が提供されていない。そのため、衛星航法システムの利用者は、搬送波の位相に基づいて算出された位置が正確であるか否かを、確信をもって知ることができない。
本発明は、上述の問題点を解決するためになされたものであって、その目的は、測位の精度が高められる信号を送信できる装置を提供することである。
本発明の他の目的は、いわゆる単独測位における多重解の不確定さを少なくすることができる信号を送信できる、測位信号を送信するための装置を提供することである。
本発明は、測位の精度が高められる信号を送信できる装置を備える測位システムを提供することである。
本発明の他の目的は、測位のための信号とともに誤差を補正する情報を送信するシステムを提供することである。
上記の課題を解決するために、この発明のある局面に従うと、測位信号を送信するための装置が提供される。この装置は、符号化の対象となるデータを格納する記憶手段と、信号の送信元を識別するためのコードに基づいて記憶手段に格納されているデータを符号化することにより、測位信号を生成する符号化手段と、周期性を有する信号を生成する生成手段と、符号化手段により生成された測位信号に基づいて周期性を有する信号を変調する変調手段と、搬送波を生成する発振手段と、変調手段の変調により生成された信号に基づいて搬送波を変調する搬送波変調手段と、搬送波変調手段により生成された搬送波に基づいて測位信号を送信する送信手段とを備える。
好ましくは、測位信号の波形は、矩形である。生成手段は鋸波形の信号を出力する。
好ましくは、装置は、人工衛星に搭載されている。
好ましくは、符号化の対象となるデータは、人工衛星の軌道情報を含む。
好ましくは、測位信号を送信するための装置は、軌道情報を受信する受信手段と、記憶手段に、受信手段により受信された軌道情報を書き込む書込手段とをさらに備える。
好ましくは、測位信号を送信するための装置は、時刻を計測する計時手段をさらに備える。符号化手段は、時刻が含まれる測位信号を生成する。
好ましくは、生成手段は、発振器を含む。
この発明の他の局面に従うと、測位システムが提供される。このシステムは、上記のいずれかに記載の測位信号を送信するための装置と、上記装置により送信された測位信号に基づいて測位を実行する受信機とを備える。受信機は、複数の装置の各々により送信された信号をそれぞれ受信する受信手段と、各信号の送信元を識別する識別手段と、各測位信号により変調された信号と同一の信号を発生する発振手段と、識別手段により識別された各々の送信元について、受信手段により受信された信号と、発振手段により発生された信号とに基づいて、測位信号を取得する取得手段と、取得手段により取得された測位信号に基づいて、受信機の位置情報を算出する算出手段と、位置情報を出力する出力手段とを含む。
好ましくは、発振手段は、周期性を有する信号を生成する信号生成手段を含む。
好ましくは、周期性を有する信号の周期は、受信された信号の送信元を識別するためのコードにおける2ビットに相当する長さを下回る。
この発明のさらに他の局面に従うと、測位信号を送信するシステムが提供される。このシステムは、測位信号を送信する複数の送信装置を備える。各送信装置は、符号化の対象となるデータを格納する記憶手段と、時刻を計測する計時手段と、測位信号に含まれる情報を補正するための補正情報を受信する受信手段とを含む。補正情報は、送信装置の位置を表わす情報を補正するための位置補正データと、時刻を補正するための時刻補正データと、測位信号が伝播する領域の特性を表わす情報を補正するための特性補正データとを有する。各送信装置は、記憶手段に、受信手段により受信された補正情報を書き込む書込手段と、測位信号の送信元を識別するためのコードに基づいて記憶手段に格納されているデータを符号化することにより、測位信号を生成する符号化手段と、周期性を有する信号を生成する生成手段と、符号化手段により生成された測位信号に基づいて周期性を有する信号を変調する変調手段と、搬送波を生成する発振手段と、変調手段の変調により生成された信号に基づいて搬送波を変調する搬送波変調手段と、搬送波変調手段により生成された搬送波に基づいて測位信号を送信する送信手段とを含む。
好ましくは、各送信装置は、複数の人工衛星の各々に搭載されている。
好ましくは、測位信号を送信するシステムは、各送信装置に補正情報を送信する補正情報送信装置をさらに備える。補正情報送信装置は、補正情報の入力を受ける入力手段と、補正情報を格納する記憶手段と、予め定められた条件が成立した場合に、補正情報を送信する送信制御手段とを含む。
好ましくは、補正情報送信装置は、補正情報の更新を検知する検知手段をさらに含む。送信制御手段は、補正情報の更新が検知された場合に補正情報を送信する。
好ましくは、補正情報送信装置は、時刻を計測する計時手段をさらに含む。送信制御手段は、予め定められた時刻に補正情報を送信する。
好ましくは、送信制御手段は、記憶手段から、補正情報を読み出す読出手段と、読み出された補正情報に基づいて送信用のデータを生成する生成手段と、生成されたデータを無線送信する送信手段とを含む。
本発明に係る装置によると、測位信号は、変調された信号によって変調される。当該装置からの信号は、その変調された信号を含む。このような信号を受信する装置は、当該測位信号の位相レベルで一致する信号を取得することができる。したがって、このような信号によると、受信する装置は、自己の位置情報をより正確に算出することができる。
本発明に係る測位システムによると、測位信号を送信するための装置は、変調された信号によって変調された測位信号を送信する。このような信号の受信機は、当該測位信号の位相レベルで一致する信号を取得することができる。したがって、このような信号によると、受信する装置は、自己の位置情報をより正確に算出することができる。
本発明に係る測位信号を送信するシステムによると、当該信号の複数の送信装置は、当該信号を送信する前に取得した誤差情報を、当該信号と共にそれぞれ送信する。このような信号の受信装置は、測位のための信号と共に誤差情報を取得することができる。したがって、当該受信装置は、自己の位置情報を算出する際に、誤差情報を考慮することにより、精度が高められた位置情報を算出することができる。
以下、図面を参照しつつ、本発明の実施の形態について説明する。以下の説明では、同一の部品には同一の符号を付してある。それらの名称および機能も同じである。したがって、それらについての詳細な説明は繰り返さない。
<第1の実施の形態>
図1を参照して、本発明の実施の形態に係る送信装置を備えた衛星測位システムについて説明する。図1は、そのシステムの構成を概略的に表わす図である。このシステムは、人工衛星102に搭載された送信装置200−1と、人工衛星104に搭載された送信装置200−2と、人工衛星106に搭載された送信装置200−3とを含む。各送信装置は、後述するように測位のための信号を送信する。この信号は、いわゆるスペクトラム拡散信号と称される。この信号は、たとえばGPS信号である。しかしながら、その信号はGPS信号に限られない。なお、以下では説明の明確化のため、いわゆるGPSを一例として説明するが、本発明は、他の衛星測位システムにも適用可能である。加えて、本発明は、地上に設置されたシステムとして、衛星以外の測位システムにも適用可能である。
人工衛星102,104,106は、たとえば通信衛星であるが、その他の衛星であってもよい。たとえば現在日本国において検討されている準天頂衛星システムを構成する衛星であってもよい。このシステムを構成する衛星によると、少なくとも1機は常時日本国の天頂付近に見えるように航行するため、たとえば高層ビルが林立する都市部においても天頂付近を航行する衛星からの信号は受信されやすくなる。なお、準天頂衛星システムに相当する他のシステムが他国において実現される場合には、当該他のシステムを構成する衛星であってもよい。
送信装置200−1,200−2,200−3(以下総称するときは送信装置200)は、自己を識別するためのコード(いわゆる擬似雑音符号(PRN))を用いて符号化することにより生成された搬送波C(1)、C(2)、C(3)をそれぞれ発信する。各搬送波は、地上においてその信号を受信する機能を有するGPS受信装置400によって受信される。
ここで、搬送波C(1)、C(2)、C(3)は、それぞれ、2つの搬送波を総称するものとする。すなわち、各搬送波は、L1帯(L1 band)とL2帯(L2 band)とを含む。各搬送波は、擬似雑音符号によるスペクトラム拡散通信方式により送信される。この場合、それぞれの衛星から発信される搬送波は、同一の周波数により送信されても、混信することがない。
GPSシステムに関連する本発明の一実施例において、各搬送波には、2種類の測位のための信号、たとえば、C/AコードとPコードとが乗せられる。しかしながら、当該信号は、C/AコードとPコードとに限られない。たとえばL1帯の搬送波は、C/Aコードと航法メッセージとPコードとを乗せている。L2帯の搬送波は、Pコードのみを乗せている。L1帯の搬送波は、たとえば直交変調により、変調される。すなわち、当該搬送波は、90度の位相差が生じるように、2つに分けられる。たとえば、一方がサイン波とされ、他方が90度ずれたサイン波とされる。この場合、分けられた各搬送波は相互に独立になる。前者をC/Aコードと航法メッセージとによって、後述するPSK(Phase Shift Keying)変調を実行し、後者の搬送波を、Pコードによって変調することにより、各搬送波は、干渉することなく、送信装置200から送信される。L2帯の搬送波の場合には、Pコードのみが搬送されるため、上記のような直交変調を行なう必要はなくなる。
ここで、航法メッセージとは、GPSにおいて測位のための計算等に必要とされる衛星の軌道情報であるエフェメリス(ephemeris、放送暦)その他のデータをいう。軌道情報には、エフェメリスに加えて、当該衛星以外の全衛星の概略の軌道情報であるアルマナック(almanac)が含まれる。エフェメリスは、地上の管制局によって頻繁に更新される情報であり、したがってその精度は高い。一方、アルマナックは概略値であることから頻繁に更新されることは少なく、したがって長期にわたって変更されることはない。
航法メッセージは、軌道関係の情報に加えて、電離層の補正のためのパラメータ、衛星に搭載される時計の補正値、衛星自身の動作の状態を表わすヘルス情報等を含む。ヘルス情報は、当該衛星の動作の状態あるいは航法メッセージの状態を表わす8ビットの情報と、アルマナックデータとともにGPSを構成する全衛星の動作の状態を表わす6ビットの情報とを含む。
航法メッセージは、C/Aコード、Pコードに比べるとビット率の低いデジタルデータ(50bps)である。一例として、航法メッセージの基本的な構成は、1500ビットのメインフレームである。この場合、メインフレームを受信するためには、30秒を必要とする。メインフレームは、軌道情報を含む。したがって、軌道情報は、30秒ごとに送信されることになる。
メインフレームは、300ビットからなる、5つのサブフレームを含む。第4番目と第5番目のサブフレームは、順次、その内容(いわゆるページ)が代わる。当該内容は、25ページから構成される。したがって、各サブフレームの内容は、25回で元に戻ることになる。メインフレームを25回受信することにより、全体の内容を受信することができる。したがって、たとえばメインフレームを受信するために必要な時間が30秒である場合には、全体の内容を受信するためには、12.5分(=30秒×25)が必要とされる。
図2を参照して、本発明の実施の形態に係る送信装置200について説明する。図2は、送信装置200のハードウェア構成を表わすブロック図である。
送信装置200は、恒温槽付き水晶発振器(以下OCXO(Oven Controller Crystal Oscillator))210と、電圧制御発振器(以下VCO(Voltage Controlled Oscillator))220と、コードジェネレータ230と、乗算器240,260と、航法メッセージを格納するメモリ250と、送信部280と、アンテナ290とを含む。
OCXO210は、恒温槽によって水晶振動子の温度を一定に保ちつつ周囲の温度の変化による出力周波数の変化が最も少なくなるように発振する。OCXO210からの信号は、VCO220に入力される。VCO220は、OCXO210からのの信号(たとえば周波数を変更するための電圧)に応じて変調された搬送波を出力する。VCO220からの搬送波は、乗算器240に入力される。
コードジェネレータ230は、送信装置200を識別するためのコードパターンを乗算器240に出力する。乗算器240は、VCO220からの信号(搬送波)とコードジェネレータ230からのコードパターンとに基づいて、送信のための信号を生成する。生成された信号は、乗算器260に入力される。
乗算器260は、乗算器240からの信号とメモリ250に格納されている航法メッセージとに基づいて空間伝送用の信号を生成する。乗算器260から出力される信号は、送信部280に入力される。送信部280は、ハイパワーアンプ(図示しない)を含み、入力された信号の出力を高めて発信する。その信号はアンテナ290を介して宇宙空間に放送される。
図3を参照して、OCXO210により出力される信号について説明する。図3(A)は、OCXO210がいわゆる鋸歯を出力する場合におけるその波形を表わす図である。図3(B)は、OCXO210が正弦波を出力する場合におけるその波形を表わす図である。
図3(A)に示されるように、OCXO210から出力される信号は、たとえば周波数1260MHzから1300MHzの間を2分の1周期T(FM)に亘って連続的に変化する。図3(B)に示されるように、正弦波が出力される場合には、その正弦波は、図3(A)に示される周波数の間を周期T(FM)に亘って変化する。このような波形を有する信号がOCXO210からVCO220に入力されると、VCO220により出力される搬送波は変調される。
以下、GPS信号を送信する送信装置200からの信号の形式について説明する。上述のように、衛星測位システムを構成する全ての衛星は、同一の周波数で信号を送信する。このときの送信方式の一例として、スペクトラム拡散通信方式が使用されているため、同一の周波数の信号が送信されても混信が防止される。
すなわち、L1帯の搬送波は、C/Aコードと航法メッセージとを含むデジタルデータの符号が反転するときに、当該搬送波の位相が逆転するように変調される(PSK変調)。このようにして搬送波の位相が急に反転されると、電波のスペクトル幅が広がる。これにより、送信装置200からの単位周波数あたりの電力が小さくなるため、各衛星に搭載されている衛星からの電波が混在していても、相互に干渉しなくなる。
ここで図4を参照して、本発明の実施の形態に係る送信装置200において生成される搬送波について説明する。図4は、OCXO210からの信号により変調された搬送波の波形を概念的に表わす図である。
VCO220は、OCXO210から信号が入力される前は、予め設定された発信信号を出力する。ここでOCXO210からの制御信号が入力されると、VCO220は、図3(A)あるいは図3(B)に示されるような信号を出力する。このような信号は、乗算器240に入力される。
VCO220から出力された信号が乗算器240に入力されると、乗算器240は、その信号と、コードジェネレータ230からのデータ、すなわち送信装置200を識別するためのデータあるいは送信装置200が搭載されている人工衛星を識別するためのデータとを用いて、たとえばスペクトラム拡散通信方式に基づいて符号化する。これにより、コードが変調され、同一ビットを表わす信号において位相の変化が生成される(図4における曲線)。乗算器260は、変調されたデータと航法メッセージとを乗算する。乗算器260による乗算により生成された信号は、送信装置200のアンテナから放射される。このような信号が受信機によって受信されると、当該受信機は、後述するように、コードのマッチングに加えて、搬送波の位相を特定する処理を実行する。
次に、図5を参照して、本実施の形態に係る送信装置200の制御構造について説明する。図5は、送信装置200が実行する処理の手順を表わすフローチャートである。
ステップS510にて、OCXO210は、VCO220からの信号の周期を変更するための信号(たとえば電圧)を出力する。ステップS520にて、VCO220は、OCXO210からの信号に基づいて変調された信号を生成し、そして乗算器240に対して出力する。
ステップS530にて、乗算器240は、VCO220からの信号をコードジェネレータ230からのコードに基づいて変調する。ステップS540にて、乗算器260は、乗算器240から出力される信号とメモリ250に格納されている航法メッセージとに基づいて信号をさらに変調する。変調された信号は、送信部280に対して送出される。ステップS550にて、送信部280は、アンテナ290を介して、その信号を宇宙空間に発信する。
このようにして、送信装置200から送信された信号は、利用者の受信機によって受信される。当該受信機は、たとえばGPS機能を有する携帯電話、GPS専用端末その他のGPS信号を受信可能な装置である。
受信機は、受信しようとしている衛星のC/Aコードパターン(いわゆるレプリカ(replica))を発生して、そのタイミングを調整する。すなわちコード同期が取られる。この同期は、たとえばDLL(Delay Lock Loop)回路によって実現される。このコードパターンと衛星から送られたコードとが同期した時、位相が頻繁に反転していた電波は、その波形が一様なサイン波となり、航法メッセージを復調することができる。このとき、当該受信機の内部において発生しているC/Aコードのタイミングが、当該受信機によって測定された衛星からの電波(C/Aコード)の到達時刻となる。このような同期は、C/Aコードパターンが既知であるために可能になる。
ここで、図6を参照して、本実施の形態に係る送信装置200により送信された測位のための信号を受信可能なGPS受信機400について説明する。図6は、GPS受信機400のハードウェア構成を表わすブロック図である。図6に示されるように、GPS受信機400は、たとえば公知のマルチコリレータ技術により実現される。
GPS受信機400は、アンテナ402と、ローノイズ増幅器404と、ダウンコンバータ406と、中間増幅器408と、ADC(Analog to Digital Converter)410と、OCXO420と、VCO422と、遅延回路424と、複数の並列コリレータ回路430−1,430−2,...430−nと、CPU(Central Processing Unit)450と、メモリ460と、ディスプレイ470とを含む。遅延回路424は、複数の遅延部424−1,424−2,...,424−nを含む。当該遅延部の各々は、並列コリレータ回路の各々に対応する。遅延部424−1,424−2,...,424−nの各々は、VCO422から出力されるアナログ信号に基づいてデジタルデータを生成する。生成されるこれらのデータは、他のデータとの間に予め定められた遅延を有する。デジタルデータは、並列コリレータ回路430−nに入力される。たとえば、遅延部424−1から出力されるデータは、ADC410からのデジタルデータとの間の相関係数を計算するために、並列コリレータ回路430−1に入力される。
メモリ460は、たとえばフラッシュメモリにより実現され、外部から入力された放送暦、さらには、位置を特定するための演算処理を実行するソフトウェア等を格納している。メモリ460に格納される情報は、たとえばインターネットのような通信回線を介して、当該情報を予め有している情報提供者あるいはシステム開発者から取得される場合がある。あるいは、GPS信号から取得される場合もある。より詳しくは、GPS受信機400がたとえばGPS機能を有する携帯電話機である場合には、上記の情報は、当該電話機の使用者あるいは製造者によりGPS受信機400に格納可能である。
測位信号は、アンテナ402により受信される。その信号は、ローノイズ増幅器404に入力される。ローノイズ増幅器404は、ノイズをカットし、フィルタ処理された信号を増幅し、そして増幅された信号をダウンコンバータ406に対して出力する。ダウンコンバータ406は、その信号を中間周波数信号に変換し、中間増幅器408に対して出力する。中間増幅器408は、入力された中間周波数信号を増幅してADC410に対して出力する。ADC410は、入力信号をサンプリングし、デジタル信号に変換する。デジタル信号は、並列コリレータ回路430に入力される。
一方、OCXO420は、VCO422が発生する搬送波を変調するための信号を生成して、VCO422に対して出力する。この信号は、たとえば図3に示されるように、鋸波あるいは周期的に変化する信号であるが、これらに限られない。すなわち、局部発振信号を変調するための信号は、OCXO420からの信号がVCO220により生成される信号のレプリカ信号である限り、VCO422から出力される発振信号の位相を連続的に変化させることができる信号であればよい。
VCO422は、OCXO420からの信号に基づいて変調された搬送波を発生する。発生された信号は、遅延回路424に入力される。遅延回路424は、入力される搬送波の信号に基づいて、考えられる位相の遅延の全てを表わす信号を生成し、並列コリレータ回路430に対して出力する。当該遅延は、衛星から送信される測位信号に含まれるコードの1チップ以内である。
並列コリレータ回路430は、測位信号の伝播に関し生じ得る遅延を検出するための処理を、同時に実行可能なように並列に配列された複数のコリレータ432−1〜432−nを含む。各コリレータは、ハードウェアにより実現されている。また、当該コリレータは、演算処理を実行するプロセッサと、相関を算出するためのプログラムとを用いてソフトウェア的に実現されてもよい。各コリレータは、複数の人工衛星102,104,106からの測位信号の可能な伝播遅延時間に各々対応している。したがって、前述の信号が並列コリレータ回路430に入力された後、各コリレータは、局所的に発生されるPRNコードとの相関を取るための処理を実行することにより、複数の衛星から送信された測位信号の伝播遅延時間(局所的に発生するPRNコードに対する当該信号の位相遅れに相当)を平行して計算することができる。
並列コリレータ回路430からの出力は、インテグレータ434−1において、たとえば、PRNコードの1周期ごとに、同相成分(いわゆる「I成分」)および直交成分(いわゆる「Q成分」)について位相をそろえて(コヒーレントに)複数のPRNコードの期間にわたって累算される。各インテグレータ434−1〜434−nからの各々の出力は、演算器(図示しない)において、平方処理され、そして絶対値が取り出される。取り出された出力は、累算器(図示しない)によって、ノンコヒーレントに累算される。当該累算器での累算処理の後、信号中のノイズが抑制され、上記位相遅れに相当するコリレータの出力がピークとして観測され、メモリ460に格納される。
すなわち、図1に示される例によると、搬送波C(1)〜C(3)について、並列コリレータ回路430により相関を計算した場合、3つの人工衛星102,104,106からの信号が並列に計算されることにより、各信号に応じたピークが検出される。
これにより、特定の人工衛星102,104,106からの測位信号の位相遅れ、すなわち、測位信号の伝搬遅延時間がわかる。また、メモリ460に予め格納されている情報に基づいて、各人工衛星についての軌道情報は導出できる。ここで受信された信号に基づく軌道情報から特定される衛星の位置の組み合わせは、有限個である。したがって、従来のたとえばGPS信号処理と同様にして、GPS受信機400の位置を特定するための演算が可能になる。この演算は、後述するように、たとえばCPU450によって実行される。
ここで、ある局面における並列コリレータ回路430の動作の一例をさらに詳細に説明すると、以下の通りである。
中間周波数のIF入力サンプルがADC410において、数値制御オッシレータ(以下、NCOと称す。)からの出力と積算され、I成分およびQ成分が分離される。続いて、ADC410の出力は、相関処理を行なうのに適したサンプルレートで、リサンプラー(図示しない)でリサンプリングされる。このリサンプリングのレートは、第2のNCO(図示しない)により決定される。第2のNCOの出力は、到来信号について、GPS受信機400の粗い位置情報と上記放送暦とから予め期待される擬似距離に基づいてプログラムされている。
リサンプラーの出力は、受信した測位信号と見通せる位置にある人工衛星102,104,106に対する参照波形(PRNコード)の組との間の畳み込み(convolution)を計算するコリレータ432−1〜432−nに入力される。各チャネルは、複数の遅延器(図示しない)を含む。演算ロジックブロック(図示しない)は、入力データの全特徴期間と所望の衛星に対する完全なPRNコード列との間の相関を計算する。ここで、「全特徴期間(エポック)」とは、たとえば、PRNコードの1周期に相当する期間であり、PRNコードの1周期が1024チップ(ビット)であるとき、1チップあたり2サンプルがあるときは、2046サンプルの期間に相当する。
並列コリレータ回路430が作動する各クロック周期において、特定の1つの遅延時間に対する新たな相関値の計算結果が生成され、メモリ460に格納される。したがって、全特徴期間の終了後には、メモリ460には、全ての可能な遅延に対する相関結果の完全な組が格納されていることになる。この相関結果列は、PRNコード生成器において局所的に生成された参照波形と入力信号との間の畳み込みである。
このようにして、インテグレータ434−1〜434−nと累算器(図示しない)における累算処理という、2つの時間平均化処理により、検出感度の向上が図られる。
上述のような並列コリレータ回路430の構成により、後述するように、測位信号の一態様であるGPS信号の主フレームは30秒の期間を有するにも関わらず、各衛星からの遅延時間は、たとえば、1秒以下で特定することができる。したがって、受信された当該GPS信号から直接に航法メッセージを抽出する必要のある方式に比べて、高速に位置の算出処理を行なうことができる。
図6を再び参照して、CPU450は、メモリ460に格納されている情報と並列コリレータ回路430から出力される情報とに基づいて、受信装置400の位置を特定するための演算処理を実行する。この処理は周知であるため、ここではその説明は繰り返さない。また、CPU450は、ディスプレイ470に画像を表示するためのデータを生成する処理を実行する。この処理は、たとえば、算出された位置情報と別途取得される画像データとに基づいて表示用のデータを生成する処理である。表示用のデータは、VRAM(Video Random Access Memory)(図示しない)に格納される。ディスプレイ470は、そのデータに基づいて画像を表示する。
図7を参照して、本実施の形態に係る送信装置200から測位のための信号を受信可能な受信装置の制御構造について説明する。図7は、その装置の一態様であるGPS受信機400が実行する処理の手順を表わすフローチャートである。
ステップS710にて、GPS受信機400は、アンテナ402を介して測位のための信号を受信する。ステップS720にて、GPS受信機400は、並列コリレータ回路430において、受信された信号とコードとをマッチングする。ステップS730にて、GPS受信機400は、並列コリレータ回路430において、内部で生成されたレプリカコードと受信されたコードとをマッチングする。
ステップS740にて、GPS受信機400は、並列コリレータ回路430において、搬送波の位相を特定する。すなわち、GPS受信機400は、送信装置200において変調された測位信号と同じ波形の信号を発生し、その信号の位相をずらせた信号を有限個生成し、いわゆるマルチコリレータ技術を用いて、位相が完全に一致する信号を検出する。これにより、測位信号は、その信号の位相レベルで、すなわちコードを構成するビット内の位相レベルで特定される。
ステップS750にて、GPS受信機400は、CPU450に対して位置情報を算出させる。ステップS760にて、GPS受信機400は、ディスプレイ470に位置情報を出力させる。
そこで、本実施の形態に係る送信装置のように、上述のように、搬送波を変調することにより、特定されたコードの搬送波に関し、位相レベルで不確定さを解消することができる。
以上のようにして、本実施の形態に係る送信装置200は、コードと乗算される信号を変調する。この変調は、局部発振信号の周波数を連続的に変更するようにして行なわれる。たとえば変調前の信号に対して、鋸波形の信号あるいは周期的に変動する信号(図3)を与えることにより、このような変調が実現される(図4)。
送信装置200がGPSとして実現される場合には、航法メッセージ、C/Aコード、あるいはPコードと、VOC220からの信号とが、乗算される。乗算された信号は、その後送信される。乗算された信号が送信装置200から送信されると、その信号を受信するGPS受信機400は、同様にして変調された信号(いわゆるレプリカ信号)を内部で発生させ、その信号と受信された信号とをマッチングさせる。
このようにして、特定の人工衛星に搭載されている送信装置200から送信されたC/Aコードのコードパターンが特定されると、GPS受信機400は、いわゆるマルチコリレータ技術を用いて、搬送波の位相を遅延させた複数の信号を用いて、搬送波の位相を検出する。このようにすると、多重解の不確定さを特定のコードパターンを有するC/Aコードのレベルから、当該C/Aコードの位相レベルにまで少なくすることができる。これにより、多重解の不確定さを少なくすることができる、測位のための信号を送信する装置を提供することができる。
また、不確定さが少なくなるため、いわゆる単独測位においても測定値の精度を高めることができる。その結果、たとえば参照地点との間で同時に測位を行なうことなく、GPS受信機400は、正確な位置情報を算出することができる。すなわち、GPS受信機400は、4つの衛星からの信号を用いて3次元の位置情報を取得することができる。あるいは、GPS受信機400は、3つの衛星からの信号を用いて2次元の位置情報を取得することができる。
なお、本実施の形態に係る送信装置200からの信号を受信するGPS受信機400は、上述の態様に限られない。すなわち、GPS受信機400は、以前に取得した同一の衛星からのPRN信号を格納しておいてもよい。この信号は、当該受信機と人工衛星との間におけるドップラー効果による周波数の変移を表わす情報、時刻情報のずれを表わす情報等を含む。このような信号を用いることにより、受信機と人工衛星との間における相対速度を考慮しつつ、単独測位を実現することができる。
すなわち、GPSの利用者の受信機が移動している場合も静止している場合も、当該受信機と人工衛星との間の相対速度が生じる。したがって、人工衛星からの信号には、いわゆるドップラー効果に基づく周波数の変移が生じる。周波数の変移は、高周波の搬送波程大きくなる。当該変移Δfは、算式Δf=fρ’/cとして表わされる。したがって、当該変移を用いて、人工衛星から信号を受信した後に前述の処理を実行する際、当該変移を用いてデータを補正することにより、誤差の発生を抑制することができる。
<第2の実施の形態>
以下、本発明の第2の実施の形態について説明する。本実施の形態に係る送信装置は、メモリに格納されているデータを補正するデータを受信する機能とそのデータに基づいて補正されたデータを生成する機能とを有する点で、前述の第1の実施の形態と異なる。
図8を参照して、本実施の形態に係るシステムについて説明する。図8は、測位のための信号と誤差を補正する情報とを送信可能な送信装置1000−1,1000−2,1000−3を含むシステム900の概略の構成を表わすブロック図である。なお前述の第1の実施の形態における構成と同一の構成には、同一の参照番号を付してある。それらの機能および作用も同じである。したがって、ここではそれらについての説明は繰り返さない。
システム900は、人工衛星102に搭載された送信装置1000−1と、人工衛星104に搭載された送信装置1000−2と、人工衛星106に搭載された送信装置1000−3とを含む。以下、各送信装置を総称する場合は、送信装置1000という。システム900は、さらに、誤差を補正するための情報を送信装置1000に送信可能な参照サーバ1100を含む。参照サーバ1100は、通信回線(図示しない)に接続されている。
図9を参照して、本実施の形態に係る送信装置1000について説明する。図9は、送信装置1000のハードウェア構成を表わすブロック図である。なお前述の第1の実施の形態における構成と同一の構成には、同一の参照番号を付してある。それらの機能および作用も同じである。したがって、ここではそれらについての説明は繰り返さない。
送信装置1000は、図2に示される構成に加えて、アンテナ1010と、受信部1020と、取得部1030と、メモリ1040と、乗算器1060とを含む。受信部1020は、アンテナ1010を介して、参照サーバ1100から送信された、補正のためのデータが含まれる信号を受信する。受信された信号は、取得部1030に入力される。取得部1030には、その信号から補正のためのデータを抽出して、メモリ1040の所定の領域に順次格納する。補正のためのデータは、後述するように、たとえば軌道情報補正データ、時刻補正データ、電離層補正データ等を含む。これらのデータは、受信部1020により受信された都度、メモリ1040の所定の領域に格納される。
乗算器1060は、メモリ250に格納されている航法メッセージと、メモリ1040に格納されている補正のためのデータと、乗算器240から出力される搬送波とに基づいて、送信用の信号を生成し、生成した信号を送信部280に送出する。送信部280は、前述の処理と同様にして、アンテナ290を介して、その信号を発信する。
図10を参照して、本実施の形態に係る参照サーバ1100について説明する。図10は、参照サーバ1100のハードウェア構成を表わすブロック図である。参照サーバ1100は、たとえばデータの演算機能と通信機能とを有するコンピュータ等によって実現される。
参照サーバ1100は、制御部1110と、入力部1120と、クロック1130と、通信部1140と、ハードディスク1150と、送信部1160と、アンテナ1170とを含む。ハードディスク1150は、領域1152〜1158を含む。
制御部1110は、たとえばCPU(Central Processing Unit)により実現される。制御部1110は、データの演算機能と通信機能とを実現するための処理を制御する。制御部1110は、入力部1120あるいは通信部1140を介して入力されたデータをハードディスク1150の所定の領域に格納する。制御部1110は、クロック1130からの時刻情報に基づいて定期的に、あるいはハードディスク1150におけるデータの更新の検知に応答して、補正のためのデータを生成し、そのデータを送信する。
入力部1120は、キーボード、マウスその他の装置により実現される。クロック1130は、時刻情報を取得し、制御部1110に出力する。制御部1110は、その時刻に基づいて、たとえば周期的な送信処理を実行し、あるいはハードディスク1150におけるデータの定期的な更新処理を実行する。
通信部1140は、インターネットその他の通信回線(図示しない)に接続され、定期的にあるいはリアルタイムで、測位のために必要な情報の入力を受ける。入力されたデータは、ハードディスク1150に格納される。当該情報は、人工衛星102,104,106の軌道情報(エフェメリス、アルマナック)、軌道情報を補正するためのデータ、時刻情報を補正するためのデータ、電離層情報を補正するためのデータ等を含む。
ハードディスク1150は、各領域に上記の各データを格納する。たとえばエフェメリスは、領域1152に格納される。軌道情報の補正データは、領域1154に格納される。時刻補正データは、領域1156に格納される。電離層補正データは、領域1158に格納される。なお、各データが格納される場合には、クロック1130からの時刻情報に関連付けられてもよい。このようにすると、更新された情報の履歴が合わせて保存されるため、データ異常時の分析等を効率的に実行することができる。
送信部1160は、制御部1110からの指令に基づいて、生成された信号の出力を高めて、その信号を発信する。この信号は、アンテナ1170を介して放射される。
次に、図11を参照して、参照サーバ1100の制御構造について説明する。図11は、参照サーバ1100の制御部1110が実行する処理の手順を表わすフローチャートである。この処理は、人工衛星に向けて補正のためのデータを送信する処理である。この処理は、たとえば一定時間ごとに実行される場合もあれば、ハードディスク1150における各情報のいずれかが更新される都度実行される場合もある。ここでは、データが更新された場合について説明する。
ステップS1210にて、参照サーバ1100の制御部1110は、外部からの補正用のデータの入力を受ける。ステップS1220にて、制御部1110は、ハードディスク1150の所定の領域に、入力された補正用データを格納する。ステップ1230にて、制御部1110は、ハードディスク1150から、補正用データを読み出す。ステップS1240にて、制御部1110は、各人工衛星に送信するためのデータを生成する。ステップS1250にて、制御部1110は、送信部1160を介して、生成したデータを送信する。これにより、地上に設置された参照サーバ1100から、予め定められた軌道を航行する人工衛星102,104,106に、補正用のデータが送信される。
ここで、図12を参照して、参照サーバ1100から送信される補正用データの構造について説明する。図12は、補正用データ1300のパケット構成を概念的に表わす図である。
補正用データ1300は、領域1310〜1360を含む。送信ヘッダは、領域1310に格納されている。エフェメリスデータは、領域1320に格納されている。軌道情報の補正データは、領域1330に格納されている。時刻補正データは、領域1340に格納されている。電離層補正データは、領域1350に格納されている。フレームチェックシーケンスデータ(FCS)は、領域1360に格納されている。なお、参照サーバ1100から送信されるデータの構成は、図12に示されるものに限られない。たとえば、軌道情報として、エフェメリスデータに加えて、アルマナックが含まれていてもよい。
図13を参照して、本実施の形態に係る送信装置1000の制御構造について説明する。図13は、送信装置1000が補正のためのデータを、参照サーバ1100から受信する処理の手順を表わすフローチャートである。なお、この処理は測位のための信号を送信する処理とは独立して実行される。
ステップS1410にて、送信装置1000は、アンテナ1010を介して参照サーバ1100によって送信された信号を受信する。参照サーバ1100は、たとえば地上の管制局に設置されている。ステップS1420にて、送信装置1000は、取得部1030によって、受信した信号に含まれるデータを取得し、メモリ1040の所定の領域に格納する。このとき、受信された時刻が、各データに関連付けられて格納される。このようにして、送信装置1000は、測位のために用いられるデータを補正するためのデータを取得することができる。
図14を参照して、本実施の形態に係る送信装置1000の制御構造についてさらに説明する。図14は、測位信号を送信するために送信装置1000が実行する処理の手順を表わすフローチャートである。なお、前述した各処理と同一の処理には同一のステップ番号を付してある。したがって、ここではそれらについての説明は繰り返さない。
ステップS1540にて、送信装置1000の乗算器1060は、メモリ1040に格納されている補正のためのデータとメモリ250に格納されている航法メッセージとに基づいて乗算器240からの信号を変調して、送信部280に対して送出する。出力された信号は、前述の処理と同様にしてアンテナ290を介して宇宙空間に発信される。このようにして放射された信号は、測位のための信号に加えて補正用のデータを含むため、以下に説明するように、その信号を受信する受信機は、そのデータを用いて測定値を補正することができるため、測定値に含まれる誤差が小さくなる。その結果、算出された位置情報の精度が良好になる。
図15を参照して、本実施の形態に係る送信装置1000により送信された信号を受信可能なGPS受信機の構成について説明する。図15は、当該GPS受信機が備えるCPU450の機能的構成を表わすブロック図である。これらの機能は、たとえばメモリ460に格納されているプログラムが実行されることにより実現される。なお、このようなGPS受信機は、たとえば図6に示される構成において、CPU450を搭載することによって、実現される。
CPU450は、データの入出力を行なう入出力部1610と、入力されたデータから補正のためのデータを取得する抽出部1620と、抽出されたデータに基づいて位置情報を較正する較正部1630とを含む。
並列コリレータ回路430(図6)から出力された信号は、入出力部1610を介してCPU450に入力される。入力されたデータは、測位のための演算処理に用いられる補正用のデータを含む。抽出部1620は、入力されたデータから、その補正用のデータを取り出す。較正部1630は、その補正用のデータを用いて、第1の実施の形態において取得されたコードを補正する。CPU450は、その補正されたコードを用いて、GPS受信機400の位置情報を算出する。このようにすると、GPS受信機400は、誤差が少ない位置情報を取得することができる。
図16を参照して、本実施の形態に係るGPS受信機400の制御構造について説明する。図16は、CPU450が実行する処理の手順を表わすフローチャートである。なお、図7に示される処理と同一の処理には同一のステップ番号を付してある。したがって、ここでは、それらについての説明は繰り返さない。
ステップS1750にて、CPU450は、並列コリレータ回路430からの信号に基づいて、その信号に含まれる補正のためのデータを抽出する。ステップS1760にて、CPU450は、その抽出されたデータと並列コリレータ回路430により取得された位置データとに基づいて補正後の位置データを算出する。ステップS760にて、CPU450は、ディスプレイ470に対してその位置データを出力させる。
以上のようにして、本実施の形態に係る送信装置1000によると、管制局その他の外部から取得した補正のためのデータは、予め格納されている。送信装置1000は、そのデータを航法メッセージ、C/Aコード等とともに送信する。このような信号を受信するGPS受信機400は、位置情報の算出に際し、当該補正のためのデータを用いる。算出される位置情報は、そのデータに関連する誤差が除去されたものとなる。したがって、GPS受信機400と人工衛星との間の相対速度に基づく誤差が除去された位置情報が算出される。これにより、高精度な測位のための信号を送信することができる送信装置を提供することができる。
今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
本発明の実施の形態に係る送信装置を備えた衛星測位システムの構成を概略的に表わす図である。 本発明の第1の実施の形態に係る送信装置200のハードウェア構成を表わすブロック図である。 送信装置200において生成される鋸波の波形を表わす図である。 本発明の第1の実施の形態に係る送信装置200において生成される信号の波形を概念的に表わす図である。 本発明の第1の実施の形態に係る送信装置200が実行する処理の手順を表わすフローチャートである。 送信装置200により送信された測位のための信号を受信可能なGPS受信機400のハードウェア構成を表わすブロック図である。 送信装置200から測位のための信号を受信するGPS受信機400が実行する処理の手順を表わすフローチャートである。 本発明の第2の実施の形態に係るシステム900の概略の構成を表わすブロック図である。 本発明の第2の実施の形態に係る送信装置1000のハードウェア構成を表わすブロック図である。 本発明の第2の実施の形態に係る参照サーバ1100のハードウェア構成を表わすブロック図である。 本発明の第2の実施の形態に係る参照サーバ1100の制御部1110が実行する処理の手順を表わすフローチャートである。 参照サーバ1100から送信される補正用データのパケット構成を概念的に表わす図である。 本発明の第2の実施の形態に係る送信装置1000が実行する処理の手順を表わすフローチャート(その1)である。 本発明の第2の実施の形態に係る送信装置1000が実行する処理の手順を表わすフローチャート(その2)である。 送信装置1000により送信された信号を受信可能なGPS受信機が備えるCPU450の機能的構成を表わすブロック図である。 GPS受信機が備えるCPU450が実行する処理の手順を表わすフローチャートである。
符号の説明
102,104,106 人工衛星、200,200−1,200−2,200−3,1000 送信装置、210,420 OCXO、220,422 VCO、230 コードジェネレータ、240,260,1060 乗算器、250,460,1030 メモリ、280,1160 送信部、290,402,1010,1170 アンテナ、400 GPS受信機、404 ローノイズ増幅器、406 ダウンコンバータ、408 中間増幅器、410 ADC、424 遅延回路、430 並列コリレータ回路、432−1〜432−n コリレータ、434−1〜434−n インテグレータ、450 CPU、470 ディスプレイ、1020 受信部、1030 取得部、1100 参照サーバ、1110 制御部、1120 入力部、1130 クロック、1140 通信部、1150 ハードディスク、1210 入出力部、1220 抽出部、1230 補正部。

Claims (16)

  1. 符号化の対象となるデータを格納する記憶手段と、
    前記信号の送信元を識別するためのコードに基づいて前記記憶手段に格納されているデータを符号化することにより、測位信号を生成する符号化手段と、
    周期性を有する信号を生成する生成手段と、
    前記符号化手段により生成された測位信号に基づいて前記周期性を有する信号を変調する変調手段と、
    搬送波を生成する発振手段と、
    前記変調手段の変調により生成された信号に基づいて前記搬送波を変調する搬送波変調手段と、
    前記搬送波変調手段により生成された搬送波に基づいて前記測位信号を送信する送信手段とを備える、測位信号を送信するための装置。
  2. 前記測位信号の波形は、矩形であり、
    前記生成手段は鋸波形の信号を出力する、請求項1に記載の測位信号を送信するための装置。
  3. 前記装置は、人工衛星に搭載されている、請求項1または2に記載の測位信号を送信するための装置。
  4. 前記符号化の対象となるデータは、前記人工衛星の軌道情報を含む、請求項1〜3のいずれかに記載の測位信号を送信するための装置。
  5. 前記軌道情報を受信する受信手段と、
    前記記憶手段に、前記受信手段により受信された軌道情報を書き込む書込手段とをさらに備える、請求項4に記載の測位信号を送信するための装置。
  6. 時刻を計測する計時手段をさらに備え、
    前記符号化手段は、前記時刻が含まれる測位信号を生成する、請求項1に記載の測位信号を送信するための装置。
  7. 前記生成手段は、発振器を含む、請求項1に記載の測位信号を送信するための装置。
  8. 請求項1〜7のいずれかに記載の測位信号を送信するための装置と、
    前記装置により送信された測位信号に基づいて測位を実行する受信機とを備え、
    前記受信機は、
    複数の前記装置の各々により送信された信号をそれぞれ受信する受信手段と、
    各前記信号の送信元を識別する識別手段と、
    各前記測位信号により変調された信号と同一の信号を発生する発振手段と、
    前記識別手段により識別された各々の送信元について、前記受信手段により受信された信号と、前記発振手段により発生された信号とに基づいて、前記測位信号を取得する取得手段と、
    前記取得手段により取得された測位信号に基づいて、前記受信機の位置情報を算出する算出手段と、
    前記位置情報を出力する出力手段とを含む、測位システム。
  9. 前記発振手段は、周期性を有する信号を生成する信号生成手段を含む、請求項8に記載の測位システム。
  10. 前記周期性を有する信号の周期は、前記受信された信号の送信元を識別するためのコードにおける2ビットに相当する長さを下回る、請求項9に記載の測位システム。
  11. 測位信号を送信する複数の送信装置を備え、
    各前記送信装置は、
    符号化の対象となるデータを格納する記憶手段と、
    時刻を計測する計時手段と、
    前記測位信号に含まれる情報を補正するための補正情報を受信する受信手段とを含み、前記補正情報は、前記送信装置の位置を表わす情報を補正するための位置補正データと、時刻を補正するための時刻補正データと、前記測位信号が伝播する領域の特性を表わす情報を補正するための特性補正データとを有し、
    前記記憶手段に、前記受信手段により受信された補正情報を書き込む書込手段と、
    前記測位信号の送信元を識別するためのコードに基づいて前記記憶手段に格納されているデータを符号化することにより、前記測位信号を生成する符号化手段と、
    周期性を有する信号を生成する生成手段と、
    前記符号化手段により生成された測位信号に基づいて前記周期性を有する信号を変調する変調手段と、
    搬送波を生成する発振手段と、
    前記変調手段の変調により生成された信号に基づいて前記搬送波を変調する搬送波変調手段と、
    前記搬送波変調手段により生成された搬送波に基づいて前記測位信号を送信する送信手段とを含む、測位信号を送信するシステム。
  12. 各前記送信装置は、複数の人工衛星の各々に搭載されている、請求項11に記載の測位信号を送信するシステム。
  13. 各前記送信装置に前記補正情報を送信する補正情報送信装置をさらに備え、
    前記補正情報送信装置は、
    前記補正情報の入力を受ける入力手段と、
    前記補正情報を格納する記憶手段と、
    予め定められた条件が成立した場合に、前記補正情報を送信する送信制御手段とを含む、請求項12に記載の測位信号を送信するシステム。
  14. 前記補正情報送信装置は、前記補正情報の更新を検知する検知手段をさらに含み、
    前記送信制御手段は、前記補正情報の更新が検知された場合に前記補正情報を送信する、請求項13に記載の測位信号を送信するシステム。
  15. 前記補正情報送信装置は、時刻を計測する計時手段をさらに含み、
    前記送信制御手段は、予め定められた時刻に前記補正情報を送信する、請求項13に記載の測位信号を送信するシステム。
  16. 前記送信制御手段は、
    前記記憶手段から、前記補正情報を読み出す読出手段と、
    前記読み出された補正情報に基づいて送信用のデータを生成する生成手段と、
    前記生成されたデータを無線送信する送信手段とを含む、請求項13に記載の測位信号を送信するシステム。
JP2005196322A 2005-07-05 2005-07-05 測位信号を送信するための装置、その装置を備える測位システムおよび測位信号を送信するシステム Expired - Fee Related JP4848146B2 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2005196322A JP4848146B2 (ja) 2005-07-05 2005-07-05 測位信号を送信するための装置、その装置を備える測位システムおよび測位信号を送信するシステム
EP20060013647 EP1742077B1 (en) 2005-07-05 2006-06-30 Apparatus for transmitting positioning signal, positioning system including the apparatus, and system for transmitting positioning signal
DE200660006620 DE602006006620D1 (de) 2005-07-05 2006-06-30 Vorrichtung zur Übertragung eines Positionierungssignals, Positionierungssystem damit und System zur Übertragung eines Positionierungssignals
US11/480,795 US7817090B2 (en) 2005-07-05 2006-07-03 Apparatus for transmitting positioning signal, positioning system including the apparatus, and system for transmitting positioning signal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005196322A JP4848146B2 (ja) 2005-07-05 2005-07-05 測位信号を送信するための装置、その装置を備える測位システムおよび測位信号を送信するシステム

Publications (2)

Publication Number Publication Date
JP2007017184A true JP2007017184A (ja) 2007-01-25
JP4848146B2 JP4848146B2 (ja) 2011-12-28

Family

ID=36940175

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005196322A Expired - Fee Related JP4848146B2 (ja) 2005-07-05 2005-07-05 測位信号を送信するための装置、その装置を備える測位システムおよび測位信号を送信するシステム

Country Status (4)

Country Link
US (1) US7817090B2 (ja)
EP (1) EP1742077B1 (ja)
JP (1) JP4848146B2 (ja)
DE (1) DE602006006620D1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009041293A1 (ja) * 2007-09-27 2009-04-02 Kyushu University, National University Corporation 伝送システム、送信機、受信機及び伝送方法
US9124345B2 (en) 2006-09-01 2015-09-01 Mediatek Inc. If process engine and receiver having the same and method for removing if carriers used therein

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7825854B2 (en) * 2007-04-19 2010-11-02 The Boeing Company System and method for compensating for temperature effects on GPS transponders
US9594168B2 (en) 2007-06-22 2017-03-14 Trimble Inc. GNSS signal processing with synthesized base station data
US9071342B1 (en) * 2010-04-08 2015-06-30 Marvell International Ltd. Method and apparatus for correlating global positioning system (GPS) pseudorandom noise (PRN) codes
DE102011111070B4 (de) * 2011-08-18 2014-10-16 Audi Ag Verfahren zum Betreiben einer Sensoreinrichtung in einem Fahrzeug und Fahrzeug
CN102621381A (zh) * 2012-01-13 2012-08-01 平湖市电子有限公司 恒温晶体振荡器温频特性自动化测量仪

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6277938A (ja) * 1985-10-01 1987-04-10 Nippon Typewriter Kk タイプライタに於ける活字ホイールの自動装着装置
JPH0798372A (ja) * 1993-09-29 1995-04-11 Victor Co Of Japan Ltd Gps受信装置
JPH07113860A (ja) * 1993-10-19 1995-05-02 Toshiba Corp 基準局の擬似gps信号送出システム
WO2003027703A2 (en) * 2001-09-26 2003-04-03 Itt Manufacturing Enterprises, Inc. An embedded chirp signal for position determination in cellular communication systems
JP2004205525A (ja) * 2004-02-10 2004-07-22 Hitachi Ltd 衛星測位システム、その地上局及び地上端末

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5017926A (en) * 1989-12-05 1991-05-21 Qualcomm, Inc. Dual satellite navigation system
US5440491A (en) * 1993-10-19 1995-08-08 Kabushiki Kaisha Toshiba Pseudo GPS signal transmitting system in a base station
US6157896A (en) * 1996-12-30 2000-12-05 Southwest Research Institute Geolocation communications method during visibility between an earth-orbit satellite and a transmitter and receiver
US6882314B2 (en) * 2000-01-24 2005-04-19 Novariant, Inc. Carrier-based differential-position determination using multi-frequency pseudolites
JP3815423B2 (ja) * 2002-11-07 2006-08-30 ソニー株式会社 送信装置及び送信方法、受信装置及び受信方法、パルス位置検出方法、並びにトラッキング方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6277938A (ja) * 1985-10-01 1987-04-10 Nippon Typewriter Kk タイプライタに於ける活字ホイールの自動装着装置
JPH0798372A (ja) * 1993-09-29 1995-04-11 Victor Co Of Japan Ltd Gps受信装置
JPH07113860A (ja) * 1993-10-19 1995-05-02 Toshiba Corp 基準局の擬似gps信号送出システム
WO2003027703A2 (en) * 2001-09-26 2003-04-03 Itt Manufacturing Enterprises, Inc. An embedded chirp signal for position determination in cellular communication systems
JP2004205525A (ja) * 2004-02-10 2004-07-22 Hitachi Ltd 衛星測位システム、その地上局及び地上端末

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9124345B2 (en) 2006-09-01 2015-09-01 Mediatek Inc. If process engine and receiver having the same and method for removing if carriers used therein
WO2009041293A1 (ja) * 2007-09-27 2009-04-02 Kyushu University, National University Corporation 伝送システム、送信機、受信機及び伝送方法
JP2009081745A (ja) * 2007-09-27 2009-04-16 Kyushu Univ 伝送システム、送信機、受信機及び伝送方法

Also Published As

Publication number Publication date
JP4848146B2 (ja) 2011-12-28
EP1742077A2 (en) 2007-01-10
US20070010212A1 (en) 2007-01-11
EP1742077B1 (en) 2009-05-06
US7817090B2 (en) 2010-10-19
DE602006006620D1 (de) 2009-06-18
EP1742077A3 (en) 2007-03-28

Similar Documents

Publication Publication Date Title
JP5688115B2 (ja) 通信リンクを利用した改良型gps受信器
JP4235112B2 (ja) Gps信号の高速取得
JP5641279B2 (ja) Gps受信機とgps信号を処理する方法
US7869948B2 (en) Method and apparatus in positioning without broadcast ephemeris
KR100489843B1 (ko) Gps 수신기에서 시각을 결정하기 위한 방법 및 장치
JP5323301B2 (ja) 衛星測位システム
JP4848146B2 (ja) 測位信号を送信するための装置、その装置を備える測位システムおよび測位信号を送信するシステム
US20120293366A1 (en) System, method and computer program for ultra fast time to first fix for a gnss receiver
JP5965765B2 (ja) 衛星測位信号受信方法及び装置
KR101638210B1 (ko) 이동 수신기에 의해, 위성으로부터의 확산 스펙트럼 신호의 획득을 최적화하는 방법
EP2006706B1 (en) Coherent integration enhancement method, positioning method, storage medium, coherent integration enhancement circuit, positioning circuit, and electronic instrument
KR100663899B1 (ko) 통신링크를이용한향상된지피에스수신기
JP6047944B2 (ja) 受信装置及び相関積算処理方法
US6784834B2 (en) Method for performing positioning and an electronic device
JP4916660B2 (ja) 衛星測位システムにおける支援
JP2010127715A (ja) 衛星測位システム
JP4952328B2 (ja) Gps測位装置、電子機器、制御方法、プログラム及び記憶媒体
US6714159B1 (en) Method for performing positioning and an electronic device
JP2010139507A (ja) 通信リンクを利用した改良型gps受信器
JP6846995B2 (ja) タイミング信号生成装置、それを備える電子機器、及びタイミング信号生成方法
JP2024541123A (ja) 測位システム及び方法
JP2006090755A (ja) 観測データ出力測位用受信機
JP2010014732A (ja) Gps受信機とgps信号を処理する方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080331

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100921

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101012

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101213

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110607

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110831

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20110907

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111004

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111017

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141021

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4848146

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees