JP2007016661A - Once-through type windmill - Google Patents
Once-through type windmill Download PDFInfo
- Publication number
- JP2007016661A JP2007016661A JP2005197759A JP2005197759A JP2007016661A JP 2007016661 A JP2007016661 A JP 2007016661A JP 2005197759 A JP2005197759 A JP 2005197759A JP 2005197759 A JP2005197759 A JP 2005197759A JP 2007016661 A JP2007016661 A JP 2007016661A
- Authority
- JP
- Japan
- Prior art keywords
- wind
- guide
- power
- blade
- once
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/70—Wind energy
- Y02E10/74—Wind turbines with rotation axis perpendicular to the wind direction
Landscapes
- Wind Motors (AREA)
Abstract
Description
本発明は、風力発電等に利用可能な案内羽根を有する貫流型風車に関する。 The present invention relates to a once-through wind turbine having guide vanes that can be used for wind power generation and the like.
風車には空気流に平行な回転軸を持つプロペラ型の風車と空気流に垂直な回転軸を持つ貫流型(籠型)の風車がある。貫流型風車は、構造が比較的簡単であり、また、起動トルクが大きく、風向きについての指向性がないなど、風車として優れた特性を有しており、案内羽根を設けることによって効率が上がることが知られている。 There are two types of wind turbines: a propeller type wind turbine having a rotation axis parallel to the air flow and a once-through type (winding type) wind turbine having a rotation axis perpendicular to the air flow. The once-through wind turbine has a relatively simple structure, has a large starting torque, and has no directivity with respect to the wind direction, and has excellent characteristics as a wind turbine, and the efficiency is improved by providing guide vanes. It has been known.
貫流型風車は、プロペラ型風車に比較して多くの利点がある。上述のように、風の方向に影響されずに常に一定の方向に回転することで、プロペラ型風車のように風向制御の必要がなく安定して風エネルギーを吸収でき、構造が単純、軽量且つ高い剛性を有するものであるので低コストで製造でき、軸受端部が比較的広く大きい基礎となっているため発電機等の動力活用機器との連結が容易である等の利点を備えている。 The once-through wind turbine has many advantages over the propeller type wind turbine. As described above, by always rotating in a certain direction without being influenced by the direction of the wind, there is no need for wind direction control as in the case of a propeller type wind turbine, and the wind energy can be stably absorbed, the structure is simple, lightweight and Since it has high rigidity, it can be manufactured at low cost, and since the bearing end portion is a relatively wide and large foundation, it has advantages such as easy connection with power utilization equipment such as a generator.
このように多くの利点を持つ貫流型風車ではあるが、風を受ける側(推進側)で有効に動力化できるが、羽根の裏側に風を受ける反対側(抵抗側)が、推進側で受けた動力の一部を打ち消すために効率の悪いものになっていた。この欠点を打ち消し、かつ吸入空気を有効に活用するため、図7の(2)、図2に示すように、動力羽根の外周に案内羽根を対称に設けることが提案された。案内羽根は円筒形の案内籠の中に収容され、約50%の出力向上が得られている。(特許文献1参照) Although this is a once-through wind turbine with many advantages, it can be effectively powered on the wind receiving side (propulsion side), but the opposite side (resisting side) receiving wind on the back side of the blade is received on the propulsion side. It was inefficient to counteract some of the power. In order to counteract this drawback and effectively use the intake air, it has been proposed to provide guide blades symmetrically on the outer periphery of the power blades as shown in FIG. 7 (2) and FIG. The guide vanes are accommodated in a cylindrical guide rod, and an output improvement of about 50% is obtained. (See Patent Document 1)
対称型案内羽根を設けることにより、風は図2に示す流れとなり、貫流型風車の効率を向上させているが、しかし、案内羽根の役割を個別に検討していくと、図2に示すように羽根車の抵抗側に流線が集中し、効率向上に貢献しない案内羽根がある。本発明は、この検討結果から、風車の効率向上に貢献する案内羽根の形状、位置及び配列を検討して、貫流型風車の効率を更に高めるものである。 By providing symmetrical guide vanes, the wind flows as shown in FIG. 2, improving the efficiency of the once-through wind turbine. However, when the roles of the guide vanes are examined individually, as shown in FIG. However, there are guide vanes that do not contribute to efficiency improvement because streamlines concentrate on the resistance side of the impeller. The present invention examines the shape, position, and arrangement of the guide blades that contribute to improving the efficiency of the wind turbine based on the results of this study, and further improves the efficiency of the once-through wind turbine.
動力羽根の外側に案内羽根を有する貫流型風車であって、抵抗側に設けた風量増加用案内羽根が案内羽根の外周より外側に延長する延長部を形成したものであり、動力羽根に向かう風量を増加させ、動力変換率を高めたものである。
また、動力羽根の外側に案内羽根を有する貫流型風車であって、推力側に中間から動力羽根側に折り曲げてある加速用案内羽根が設けたものであり、動力羽根に向かう風を加速して変換率を高めたものである。
A flow-through windmill having guide vanes on the outside of the power vanes, in which the guide vanes for increasing the air volume provided on the resistance side form an extension extending outward from the outer periphery of the guide vanes, and the air volume toward the power vanes The power conversion rate is increased.
Further, it is a once-through type windmill having guide vanes outside the power blades, and provided with an acceleration guide blade bent from the middle to the power blade side on the thrust side, and accelerates the wind toward the power blade The conversion rate is increased.
案内羽根の配列及び形状を前記のようにすることにより、動力羽根の抵抗側へ風が回りこむのを防止し、貫流する風量を増加させると共に加速することによって、高速回転域における効率を大幅に上昇させ、更に、推力側に加速された流速吹き込み用案内羽根を設けることによって推力側において風が抜けて動力羽根に風が到達しなくなるのを防止し、流入風速を上昇させることによって低速回転域での出力を大幅に向上させた。
案内羽根がないときと比較して出力は3.4倍、トルクは2倍となった。また、従来型の8枚対称型案内羽根の貫流型風車と比較すると、出力が1.6倍、トルクは1.3倍となった。
By making the arrangement and shape of the guide vanes as described above, it is possible to prevent the wind from flowing into the resistance side of the power vanes, increase the amount of air flowing through and accelerate, thereby greatly improving the efficiency in the high-speed rotation range. Further, by providing a guide vane for speed flow blowing that is accelerated on the thrust side, it is possible to prevent the wind from coming off on the thrust side and the wind from reaching the power blade, and to increase the inflow wind speed to reduce the rotational speed range. The output at has been greatly improved.
Compared to the case without guide vanes, the output was 3.4 times and the torque was doubled. In addition, the output was 1.6 times and the torque 1.3 times that of the conventional eight-way symmetric guide vane once-through wind turbine.
第1実施例
本発明の貫流型風車1は、図1に示すように、風車1の動力羽根2は、厚さ0.5mm、長さ40mm、曲率半径38mmの30枚のアルミ板を円筒状に等間隔に取付角度30度で配列したものである。
First Embodiment As shown in FIG. 1, in a once-
この、円筒形に配列した動力羽根2の外側に案内羽根を固定する籠30が設けてあり、動力羽根2の抵抗側に風が入り込むのを防止するための風量増加用案内羽根31が風の主流方向に対する垂線に対して角度αで取り付けてある。αは、実験によると28度(風向に対して62度)が最適である。風量増加用案内羽根31には、更に籠30の外側に延びる延長部32が設けてあり、延長部32は、風を推力側に導くために中心側に折り曲げてある。
したがって、動力羽根の抵抗側へ風が回りこむのが防止されて、推力側に貫流する風量を増加させると共に加速することによって、高速回転域における効率を向上させる。
A
Therefore, the wind is prevented from flowing to the resistance side of the power blade, and the air volume flowing through the thrust side is increased and accelerated, thereby improving the efficiency in the high speed rotation region.
また、推力側の案内羽根として推力側案内羽根の籠の中央から動力羽根に向かう加速された流速吹き込み用案内羽根33が風の主流方向に対する垂線に対して角度βで取り付けてある。βは、実験によると25度(風向に対して65度)が最適である。加速された流速吹き込み用案内羽根33は途中から折り曲げた折り曲げ部34が設けてある。加速された流速吹き込み用案内羽根33を設けたことによって、推力側において風が抜けるのが阻止され、動力羽根2への流入風速が上昇し、低速回転域での出力を向上させる。
Further, as a thrust side guide vane, an accelerated flow velocity blowing guide vane 33 directed from the center of the thrust side guide vane toward the power vane is attached at an angle β with respect to a perpendicular to the main flow direction of the wind. According to experiments, β is optimally 25 degrees (65 degrees with respect to the wind direction). The accelerated flow velocity blowing guide vane 33 is provided with a bent portion 34 bent from the middle. By providing the accelerated flow velocity blowing guide vane 33, the wind is prevented from being blown out on the thrust side, the flow velocity of the air flowing into the
第2実施例
第1実施例より、動力羽根2は、厚さ0.5mm、長さ50mm、曲率半径が100mmのアルミ板16枚を同様に等間隔に配列したものであり、案内羽根は第1実施例と同じである。
Second Embodiment From the first embodiment, the
本発明の貫流型風車の効率向上を以下のようにして確認した。
開放型風洞に二枚翼プロペラと4mmφコアのハニカム型整流板を設置し、風速を制御した。この風洞内に前記の実施例1及び2の貫流型風車を整流板から800mmの位置に設置した。受風面における風速はほぼ全域で一様である。
この状態において、風車軸にトルク検出器、回転数検出器、逆トルクを発生するトルクモータを取り付け、負荷トルク及び回転数はトルクコンバータを介して計測器(コンピュータ)に入力して記録した。
The improvement in efficiency of the once-through wind turbine of the present invention was confirmed as follows.
A two-blade propeller and a 4 mmφ core honeycomb-type rectifying plate were installed in an open-type wind tunnel to control the wind speed. In the wind tunnel, the once-through wind turbines of Examples 1 and 2 were installed at a position 800 mm from the current plate. The wind speed at the wind receiving surface is almost uniform throughout the entire area.
In this state, a torque detector, a rotation speed detector, and a torque motor generating reverse torque were attached to the windmill shaft, and the load torque and the rotation speed were input to a measuring instrument (computer) through a torque converter and recorded.
図3及び図4に、風速4.5m/sのときの動力羽根が30枚の第1実施例の出力(Cp)及びトルク特性(Cq)を示す。なお、横軸のλは、動力羽根2の先端周速比であり、λ=πDBN/60V∞である。
(DB:羽根車の直径(m)、N:回転数(rpm)、V∞:風速(m/s)
3 and 4 show the output (Cp) and torque characteristics (Cq) of the first embodiment with 30 power blades at a wind speed of 4.5 m / s. Note that λ on the horizontal axis is the tip peripheral speed ratio of the
(D B : Diameter of impeller (m), N: Number of rotations (rpm), V ∞ : Wind speed (m / s)
抵抗側に風力増加用案内羽根を設けたことによって動力羽根を貫流する風量の増大が認められ、高速回転域での効率が大幅に向上した。また、低速回転域では、8枚案内羽根の風車と同程度かそれ以上の効率が得られた。
低速回転域では、8枚案内羽根と同程度の効率を示した。風力増加用案内羽根の延長部32を設けないと、低速回転域では推力側で風が抜けてしまっており、トルク特性の向上は顕著なものとは認められなかった。
An increase in the amount of air flowing through the power vane was recognized by providing a wind vane increasing guide vane on the resistance side, and the efficiency in the high-speed rotation region was greatly improved. Further, in the low-speed rotation region, an efficiency comparable to or higher than that of a wind turbine having eight guide blades was obtained.
In the low-speed rotation region, the efficiency was similar to that of the eight guide vanes. If the extended portion 32 of the guide blade for increasing wind force is not provided, the wind is lost on the thrust side in the low-speed rotation region, and the improvement in torque characteristics was not recognized to be remarkable.
表1及び表2に風速4.0mのときの案内羽根がない場合、従来の8枚の案内羽根を有する風車及び本発明の風車の出力とトルク特性を示し、案内羽根ゼロのとき及び8枚のときの値を基準として、その比率を示した。 Table 1 and Table 2 show the output and torque characteristics of a conventional wind turbine having eight guide vanes and the wind turbine of the present invention when there is no guide vane at a wind speed of 4.0 m. The ratio was shown based on the value at.
表1及び2から分かるように、本発明による風車の出力特性は、案内羽根無しに比較して3.4倍、トルク特性は2倍であり、8枚案内羽根の風車と比較しても、夫々1.6倍、1.3倍と大幅な向上が認められた。 As can be seen from Tables 1 and 2, the output characteristics of the windmill according to the present invention are 3.4 times that of the case without the guide vanes and the torque characteristics are twice that of the windmills having 8 guide vanes. Significant improvements were observed, 1.6 times and 1.3 times, respectively.
図5及び図6には、動力羽根2が16枚の第2実施例の出力及びトルク特性を示す。
動力羽根が30枚の第1実施例に比較して出力特性は25%ほど低下しているが、本発明の風力増加用案内羽根と加速された流速吹き込み用案内羽根を設けることによって大幅な性能向上が認められた。
案内羽根の角度は、最適角度から前後10度程度の範囲内で本発明の顕著な効果が認められた。
5 and 6 show the output and torque characteristics of the second embodiment having 16
Compared with the first embodiment with 30 power blades, the output characteristics are reduced by about 25%. However, the provision of the guide blade for increasing wind force and the guide blade for accelerating the flow velocity of the present invention provides significant performance. An improvement was observed.
The remarkable effect of the present invention was recognized when the angle of the guide vane was within the range of about 10 degrees from the optimum angle.
1 風車
20 動力羽根
3 案内羽根(図8)
30 籠
31 風量増加用案内羽根
32 延長部
33 流速吹き込み用案内羽根
1 windmill 20
30 籠 31 Airflow increase guide vane 32 Extension 33 Flow velocity blowing guide vane
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005197759A JP2007016661A (en) | 2005-07-06 | 2005-07-06 | Once-through type windmill |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005197759A JP2007016661A (en) | 2005-07-06 | 2005-07-06 | Once-through type windmill |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2007016661A true JP2007016661A (en) | 2007-01-25 |
Family
ID=37754043
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005197759A Pending JP2007016661A (en) | 2005-07-06 | 2005-07-06 | Once-through type windmill |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2007016661A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2011078435A1 (en) * | 2009-12-22 | 2011-06-30 | 방부현 | Wind generator |
KR101194836B1 (en) | 2009-12-04 | 2012-10-25 | 풍진다 에너지 사이언스 앤드 테크놀로지 컴퍼니, 리미티드 | Apparatus for generating electric power using wind energy |
CN108869170A (en) * | 2017-05-12 | 2018-11-23 | 王连群 | One kind, which can horizontally rotate, meets poly- air ducting and horizontal cross shaft wind-driven generator |
-
2005
- 2005-07-06 JP JP2005197759A patent/JP2007016661A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101194836B1 (en) | 2009-12-04 | 2012-10-25 | 풍진다 에너지 사이언스 앤드 테크놀로지 컴퍼니, 리미티드 | Apparatus for generating electric power using wind energy |
WO2011078435A1 (en) * | 2009-12-22 | 2011-06-30 | 방부현 | Wind generator |
CN108869170A (en) * | 2017-05-12 | 2018-11-23 | 王连群 | One kind, which can horizontally rotate, meets poly- air ducting and horizontal cross shaft wind-driven generator |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7600975B2 (en) | Turbine and rotor therefor | |
US7094018B2 (en) | Wind power generator | |
JP2007529662A5 (en) | ||
JP2014513233A (en) | Wind turbine enhanced by diffuser | |
AU2013395801B2 (en) | Wind power generation tower provided with gyromill type wind turbine | |
WO2002059464A1 (en) | Fluid machinery | |
JP2015031227A (en) | Wind mill | |
CN109424584A (en) | Vane flow guiding device | |
JP2011007147A (en) | Exhaust gas flow power plant | |
KR101684367B1 (en) | Ducted Pre-Swirl Stator | |
EP2258941A1 (en) | Wind turbine | |
JP6954739B2 (en) | Rotor for generator | |
JP2007016661A (en) | Once-through type windmill | |
AU2008235238B2 (en) | Wind wheel | |
US9217332B2 (en) | Uni-directional axial turbine blade assembly | |
JP2016041916A (en) | Wind turbine apparatus | |
CN212868015U (en) | Blade of fan | |
JP6063445B2 (en) | Vertical axis windmill | |
WO2021033419A1 (en) | Vane wheel for wind power generation and wind power generation system | |
JP6158019B2 (en) | Axial turbine generator | |
JP3987960B2 (en) | Fluid machinery | |
JP2020033885A (en) | Axial flow impeller and turbine | |
WO2022054800A1 (en) | Vertical-axis wind turbine and vertical-axis wind turbine power generator | |
RU191762U1 (en) | WIND POWER INSTALLATION OF ORTHOGONAL TYPE | |
KR101374050B1 (en) | Wind power generation tower with giromill |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Effective date: 20080314 Free format text: JAPANESE INTERMEDIATE CODE: A971007 |
|
A131 | Notification of reasons for refusal |
Effective date: 20080325 Free format text: JAPANESE INTERMEDIATE CODE: A131 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20080526 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20080708 |