JP2007016336A - Latent-crimped polyester conjugate fiber - Google Patents

Latent-crimped polyester conjugate fiber Download PDF

Info

Publication number
JP2007016336A
JP2007016336A JP2005197617A JP2005197617A JP2007016336A JP 2007016336 A JP2007016336 A JP 2007016336A JP 2005197617 A JP2005197617 A JP 2005197617A JP 2005197617 A JP2005197617 A JP 2005197617A JP 2007016336 A JP2007016336 A JP 2007016336A
Authority
JP
Japan
Prior art keywords
fine particles
polyester
viscosity
mass
polyester component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005197617A
Other languages
Japanese (ja)
Other versions
JP4602856B2 (en
Inventor
Tsutomu Hirai
努 平井
Takashi Hashimoto
隆司 橋本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Ester Co Ltd
Original Assignee
Nippon Ester Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Ester Co Ltd filed Critical Nippon Ester Co Ltd
Priority to JP2005197617A priority Critical patent/JP4602856B2/en
Publication of JP2007016336A publication Critical patent/JP2007016336A/en
Application granted granted Critical
Publication of JP4602856B2 publication Critical patent/JP4602856B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a latent-crimped polyester conjugate fiber providing a stretchable woven fabric providing very good dyed quality, and having both of soft feeling with bulking, and drape with massive feeling. <P>SOLUTION: The latent-crimped polyester conjugate fiber is a conjugate fiber in which each single filament constituting a multifilament has a cross section shape obtained by cladding two kinds of polyester components having different viscosities in a side-by-side shape. The low-viscosity polyester component contains 1.5-8.0 mass% ceramic fine particles having 0.2-2.0 μm average particle diameter and ≥3.5 g/cm<SP>3</SP>density. The content of the ceramic fine particles in the high-viscosity polyester component is ≤0.5 mass%. The recovery stress of the crimp of the multifilament is ≥0.010 cN/dtex. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、膨らみ感のあるソフトな風合いと染色性に優れ、かつ重量感のあるドレープ性にも優れるストレッチ性織編物を得るのに好適な潜在捲縮性ポリエステル複合繊維に関するものである。   The present invention relates to a latently crimped polyester composite fiber suitable for obtaining a stretch woven or knitted fabric excellent in soft texture and dyeability with a feeling of swelling, and having excellent drapeability with a feeling of weight.

ポリエチレンテレフタレートに代表されるポリエステルは、優れた機械的特性と化学的特性を有しており、広範な分野において使用されている。この用途の一つとして、ストレッチ機能を有する織編物を得るために、熱収縮特性の異なる2種類のポリエステルをサイドバイサイド型に接合し、製織編後の加工時に受ける熱により捲縮性能を発現する潜在捲縮性の複合繊維を使用することがよく知られている。   Polyesters represented by polyethylene terephthalate have excellent mechanical and chemical properties and are used in a wide range of fields. As one of the applications, in order to obtain a woven or knitted fabric having a stretch function, two types of polyesters having different heat shrinkage characteristics are joined to a side-by-side type, and the potential to develop crimp performance by heat received during processing after weaving It is well known to use crimped conjugate fibers.

このような潜在捲縮性を有する繊維は、製織編後に捲縮を発現することにより織編物に嵩高性を付与し、膨らみ感を与えることができ、ソフトな風合いを発現するのに好適な繊維である。   Such a fiber having latent crimpability is a fiber suitable for expressing a soft texture by imparting a bulkiness to the woven or knitted fabric by expressing crimp after weaving and knitting, giving a feeling of swelling. It is.

一方、衣料用途の中には、布帛の重量感やドレープ性が要求される用途があり、このような用途においても高いストレッチ性を有するものが近年要望されている。したがって、高い捲縮性能を有しながら重量感があり、布帛にしたときに良好なドレープ性を発現する繊維が求められているが、従来の潜在捲縮糸を布帛にした場合、嵩高であるがゆえに重量感に欠け、また、捲縮を発現する際に、単糸同士の拘束があり、布帛にしたとき剪断方向の抵抗が大きくなるため、ドレープ性が要求される織編物には不向きであり、用途が限定されていた。   On the other hand, there are applications that require a heavy feeling and drapeability of the fabric, and in recent years, there is a demand for high stretch properties in such applications. Therefore, there is a demand for a fiber that has high crimp performance and a feeling of weight, and that exhibits good drapeability when made into a fabric. However, when a conventional latent crimp yarn is made into a fabric, it is bulky. Therefore, it lacks a feeling of weight, and when crimping is manifested, there is a constraint between single yarns, and since the resistance in the shear direction increases when it is made into a fabric, it is not suitable for woven or knitted fabrics that require drapeability. Yes, the use was limited.

上記の問題を解決するために、特許文献1では、溶融粘度が高い側のポリエステル成分中にセラミックス微粒子を高含有させた潜在捲縮性能を有するポリエステル複合繊維が提案されている。この複合繊維は、高い捲縮性能を有しながら重量感があるため、布帛にしたときに良好な膨らみ感とドレープ性を発現するものであった。しかしながら、この複合繊維は、高粘度ポリエステル成分中にセラミックス微粒子を高含有させているため、染色した際に染色色差が発生することがあり、得られた布帛に染色筋が発生することもあった。
特開2000−345433号公報
In order to solve the above problem, Patent Document 1 proposes a polyester composite fiber having a latent crimping performance in which ceramic fine particles are highly contained in a polyester component having a higher melt viscosity. Since this composite fiber has a high crimp performance and a feeling of weight, when it is made into a fabric, it exhibits a good feeling of swelling and drape. However, since this composite fiber contains a high amount of ceramic fine particles in the high-viscosity polyester component, a dyeing color difference may occur when dyeing, and dyed streaks may occur in the resulting fabric. .
JP 2000-345433 A

本発明は、上記の問題を解決し、染色色差が生じることなく、染色品位の良好な布帛を得ることができ、かつ、膨らみ感のあるソフトな風合いと重量感のあるドレープ性を兼ね備えたストレッチ性の布帛を得ることができる潜在捲縮性ポリエステル複合繊維を提供することを技術的な課題とするものである。   The present invention solves the above-described problems, can produce a fabric having good dyeing quality without causing a color difference in dyeing, and has a stretchy soft texture and a heavy drape. It is an object of the present invention to provide a latent crimpable polyester composite fiber capable of obtaining a woven fabric.

本発明者らは、上記の課題を解決するために鋭意検討した結果、本発明に到達した。   As a result of intensive studies to solve the above problems, the present inventors have reached the present invention.

すなわち、本発明は、マルチフィラメントを構成する各単糸が、粘度が異なる2種類のポリエステル成分が互いにサイドバイサイド型に貼り合わされた断面形状を呈している複合繊維であって、低粘度ポリエステル成分は平均粒径が0.2〜2.0μm、密度が3.5g/cm3以上のセラミックス微粒子を1.5〜8.0質量%含有しており、高粘度ポリエステル成分はセラミックス微粒子の含有量が0.5質量%以下であり、かつマルチフィラメントの捲縮回復応力が0.010cN/dtex以上であることを特徴とする潜在捲縮性ポリエステル複合繊維を要旨とするものである。 That is, the present invention is a composite fiber in which each single yarn constituting the multifilament has a cross-sectional shape in which two types of polyester components having different viscosities are bonded to each other side by side, and the low-viscosity polyester component is an average. Contains 1.5 to 8.0% by mass of ceramic fine particles having a particle size of 0.2 to 2.0 μm and a density of 3.5 g / cm 3 or more, the high-viscosity polyester component has a content of ceramic fine particles of 0.5% by mass or less, and The summary is a latent crimpable polyester composite fiber characterized in that the crimp recovery stress of the filament is 0.010 cN / dtex or more.

本発明の潜在捲縮性ポリエステル複合繊維によれば、製編織することにより、膨らみ感のあるソフトな風合いを有しながら、重量感のあるドレープ性を兼ね備え、かつ染色品位にも優れたストレッチ性織編物を得ることが可能であり、特に衣料用途に好適である。   According to the latently crimpable polyester composite fiber of the present invention, by knitting or weaving, it has a soft texture with a feeling of swelling, has a heavy drape, and has excellent dyeing quality. A woven or knitted fabric can be obtained, and is particularly suitable for apparel applications.

以下、本発明について詳細に説明する。   Hereinafter, the present invention will be described in detail.

本発明の潜在捲縮性ポリエステル複合繊維(以下、単に複合繊維と称する。)は、粘度が異なる2種類のポリエステル成分からなるものであり、ポリエステル成分は、エチレンテレフタレートの繰り返し単位が90%以上の実質的にポリエチレンテレフタレート(PET)を主体とするものであることが好ましい。   The latent crimpable polyester composite fiber (hereinafter simply referred to as a composite fiber) of the present invention is composed of two types of polyester components having different viscosities, and the polyester component has an ethylene terephthalate repeating unit of 90% or more. It is preferably substantially composed mainly of polyethylene terephthalate (PET).

粘度の異なる2種類のポリエステルは、繊維にしたとき捲縮を発現するために、紡糸時の溶融粘度に差があることが好ましく、高粘度ポリエステル成分と低粘度ポリエステル成分との溶融粘度差は、温度280℃、剪断速度1000/Sの条件で測定したとき、100ポイズ以上あることが好ましく、十分な捲縮を発現するためには、500〜1500ポイズの差があることがより好ましい。   The two types of polyesters having different viscosities preferably exhibit a difference in melt viscosity at the time of spinning in order to develop crimp when formed into fibers, and the difference in melt viscosity between the high viscosity polyester component and the low viscosity polyester component is: When measured under the conditions of a temperature of 280 ° C. and a shear rate of 1000 / S, it is preferably 100 poise or more, and more preferably a difference of 500 to 1500 poise in order to develop sufficient crimp.

両ポリエステル成分間の溶融粘度差が100ポイズより小さいと、両成分の熱収縮性が近似するため、目的とする捲縮性能を十分発現することができないことがあり、好ましくない。一方、両ポリエステル成分間の溶融粘度差が1500ポイズを超えると、紡糸操業性が低下しやすくなり、また染色色差も生じやすくなり、染色品位が低下することがある。   If the difference in melt viscosity between the two polyester components is less than 100 poise, the heat shrinkability of both components is approximated, and the desired crimping performance may not be sufficiently exhibited, which is not preferable. On the other hand, if the difference in melt viscosity between the two polyester components exceeds 1500 poise, the spinning operability tends to be lowered, and the dyeing color difference is likely to occur, which may lower the dyeing quality.

上記のように、両ポリエステル成分の粘度差を設けるには、高粘度ポリエステル成分は、低粘度ポリエステル成分より熱収縮性が高いことが必要であるため、PET中に共重合成分を含んでいてもよい。例えば共重合成分としては、イソフタル酸、5−ナトリウムスルホイソフタル酸、ナフタレンジカルボン酸、アジピン酸等のジカルボン酸成分や1,4−ブタンジオール、プロピレングリコール、ジエチレングリコール、1,4−シクロヘキサンジメタノール等のジオール成分、ビスフェノールAのEO付加体等が挙げられる。   As described above, in order to provide a difference in viscosity between the two polyester components, the high-viscosity polyester component needs to have higher heat shrinkability than the low-viscosity polyester component. Good. For example, as copolymerization components, dicarboxylic acid components such as isophthalic acid, 5-sodium sulfoisophthalic acid, naphthalene dicarboxylic acid, adipic acid, 1,4-butanediol, propylene glycol, diethylene glycol, 1,4-cyclohexanedimethanol, etc. Examples thereof include a diol component and an EO adduct of bisphenol A.

さらに、両ポリエステル成分には、本質的な特性を損なわない限り、艶消し剤、酸化防止剤、紫外線吸収剤、顔料、難燃剤、抗菌剤、導電性付与剤等、他の成分を少量含有していてもよい。   In addition, both polyester components contain small amounts of other components such as matting agents, antioxidants, UV absorbers, pigments, flame retardants, antibacterial agents, and conductivity-imparting agents, as long as the essential properties are not impaired. It may be.

また、これらの2種類のポリエステル成分の重合度は、通常の溶融紡糸に用いられる範囲から選定することができ、極限粘度が0.4〜0.8の範囲となるものが好ましい。   The degree of polymerization of these two types of polyester components can be selected from the range used for ordinary melt spinning, and those having an intrinsic viscosity in the range of 0.4 to 0.8 are preferred.

そして、低粘度ポリエステル成分は、平均粒径が0.2〜2.0μmの範囲にあり、密度が3.5g/cm3以上のセラミックス微粒子を1.5〜8.0質量%含有し、中でも1.5〜6.0質量%含有することが好ましい。 The low-viscosity polyester component has an average particle size in the range of 0.2 to 2.0 μm and contains 1.5 to 8.0% by mass of ceramic fine particles having a density of 3.5 g / cm 3 or more, and more preferably 1.5 to 6.0% by mass. Is preferred.

この微粒子を含有することにより、繊維の重量感を増すと同時に、繊維表面に微粒子が部分的に露出することにより、表面摩擦抵抗を下げる効果があり、これらの相乗効果により、布帛化したときに良好なドレープ感を発現することが可能となる。   By containing these fine particles, the weight feeling of the fiber is increased, and at the same time, the fine particles are partially exposed on the fiber surface, thereby reducing the surface frictional resistance. It becomes possible to express a good drape feeling.

両ポリエステル成分のうち、配向がより促進される高粘度ポリエステル成分に微粒子を多く含有させると、微粒子の2次凝縮の発生頻度が高くなり、繊維中の微粒子の分散状態により染色色差や染色筋が発生しやすく、この繊維を用いた布帛の品位が低下しやすくなる。このため、低粘度ポリエステル成分に微粒子を含有させることにより、高粘度ポリエステル成分で物性を支配(特定)させ、低粘度ポリエステル成分で微粒子の2次凝縮を抑制することにより、強度、伸度等の物性が安定し、かつ染色品位の安定した繊維を得ることができる。   When both of the polyester components contain a large amount of fine particles in a high-viscosity polyester component whose orientation is further promoted, the frequency of occurrence of secondary condensation of the fine particles increases. It is easy to generate | occur | produce and the quality of the fabric using this fiber will fall easily. Therefore, by incorporating fine particles into the low-viscosity polyester component, the physical properties are governed (specified) by the high-viscosity polyester component, and by suppressing secondary condensation of the fine particles with the low-viscosity polyester component, strength, elongation, etc. A fiber having stable physical properties and stable dyeing quality can be obtained.

本発明で使用するセラミックス微粒子とは、成形、焼成等の工程を経て得られる非金属無機材料を微粒化したものをいい、酸化チタン、酸化珪素等の無機酸化物微粒子が代表的であり、ポリエステルとの界面における表面張力が小さく、溶融時に凝集し難いものが操業上及び品位上から好ましい。   The ceramic fine particles used in the present invention are those obtained by atomizing a nonmetallic inorganic material obtained through processes such as molding and firing, and are typically inorganic oxide fine particles such as titanium oxide and silicon oxide. From the viewpoint of operation and quality, it is preferable that the surface tension at the interface with the material is small and hardly aggregates at the time of melting.

セラミックス微粒子は、平均粒径が0.2〜2.0μmの範囲にあることが必要である。なお、平均粒経とは、セラミック微粒子をエチレングリコール溶液に微分散させた後、島津製作所社製のレーザー回折式粒度分布測定装置SALD−2000Jを用い、体積分布基準換算、屈折率1.70-0.20iの条件で測定するものである。   The ceramic fine particles are required to have an average particle size in the range of 0.2 to 2.0 μm. The average particle size means that after finely dispersing ceramic fine particles in an ethylene glycol solution, using a laser diffraction particle size distribution analyzer SALD-2000J manufactured by Shimadzu Corporation, volume distribution standard conversion, refractive index 1.70-0.20i The measurement is performed under the following conditions.

平均粒径がこの範囲にあるセラミックス微粒子が繊維表面に部分的に露出することにより、繊維表面の滑りがよくなる。平均粒径がこの範囲より小さいと繊維表面を改質する効果が乏しい。一方、この範囲より大きいと粒子が局部的に大きく露出してしまうため摩擦抵抗が大きくなり、さらには、粒子が局在するために、紡糸時に応力の偏りによる糸切れが発生したり、延伸時に毛羽が発生する等、操業的な問題が発生する。   When the ceramic fine particles having an average particle diameter in this range are partially exposed on the fiber surface, the fiber surface slips better. If the average particle size is smaller than this range, the effect of modifying the fiber surface is poor. On the other hand, if it is larger than this range, the particles are locally exposed to a large extent, resulting in an increase in frictional resistance. Further, since the particles are localized, yarn breakage occurs due to stress bias during spinning, Operational problems such as fluffing occur.

また、セラミックス微粒子の密度は3.5g/cm3以上である。密度が3.5g/cm3より低いと繊維の密度を増す効果が乏しく、密度を増すために多量に含有させた場合は紡糸時に糸切れが発生したり、延伸、加工時に毛羽が発生する等、操業性に問題があり、好ましくない。セラミックス微粒子の密度の上限は特に限定されるものではないが、凝集によるトラブルや操業性を考慮すると、5.0g/cm3程度とすることが好ましい。 Further, the density of the ceramic fine particles is 3.5 g / cm 3 or more. If the density is lower than 3.5 g / cm 3, the effect of increasing the density of the fiber is poor, and if it is included in a large amount to increase the density, yarn breakage may occur during spinning, fluffing may occur during stretching, processing, etc. There is a problem in operability, which is not preferable. The upper limit of the density of the ceramic fine particles is not particularly limited, but is preferably about 5.0 g / cm 3 in consideration of trouble due to aggregation and operability.

次に、セラミックス微粒子の含有量は、低粘度ポリエステル成分の総質量に対し1.5〜 8.0質量%、好ましくは1.5〜6.0質量%である。含有量が1.5質量%未満であると、重量感の付与や表面摩擦を低下する効果が乏しくなる。一方、含有量が8.0質量%を超えると、紡糸、延伸時に糸切れや毛羽等が発生しやすく、品位の低下した繊維となり、また、得られた布帛の染色品位も劣るものとなる。   Next, the content of the ceramic fine particles is 1.5 to 8.0 mass%, preferably 1.5 to 6.0 mass%, based on the total mass of the low-viscosity polyester component. When the content is less than 1.5% by mass, the effect of imparting a feeling of weight and reducing surface friction becomes poor. On the other hand, when the content exceeds 8.0% by mass, yarn breakage and fluff are likely to occur during spinning and drawing, resulting in a fiber having a deteriorated quality, and the dyed quality of the obtained fabric is also inferior.

セラミックス微粒子は、ポリエステルの重合時あるいは紡糸時の溶融段階で添加することが可能であるが、凝集を防ぎ、より均一に分散させることを考慮すると、重合時に添加することが好ましい。   The ceramic fine particles can be added at the time of melting the polyester during polymerization or spinning, but it is preferable to add at the time of polymerization in consideration of preventing aggregation and dispersing more uniformly.

また、高粘度ポリエステル成分中にも低粘度ポリエステル成分と同様のセラミックス微粒子を少量であれば含んでいてもよいが、含有量は0.5質量%以下とする。0.5質量%を超えると、高粘度ポリエステル成分中でセラミックス微粒子の凝集が生じやすくなり、染色色差を生じることとなる。   The high-viscosity polyester component may contain a small amount of ceramic fine particles similar to the low-viscosity polyester component, but the content is 0.5% by mass or less. If it exceeds 0.5% by mass, aggregation of ceramic fine particles is likely to occur in the high-viscosity polyester component, resulting in a dyeing color difference.

また、本発明の複合繊維は、捲縮回復応力が0.010cN/dtex以上であり、中でも0.015〜0.020cN/dtexであることが好ましい。捲縮回復応力が0.010cN/dtex未満であると、捲縮発現性能に劣るものとなり、布帛にした後で捲縮を発現させてもストレッチ性に乏しい布帛となる。一方、捲縮回復応力が0.020cN/dtexを超える場合、このような糸を得ようとすると紡糸操業性が悪化し、それにより染色性も低下しやすくなる。   The composite fiber of the present invention has a crimp recovery stress of 0.010 cN / dtex or more, and preferably 0.015 to 0.020 cN / dtex. When the crimp recovery stress is less than 0.010 cN / dtex, the crimp development performance is inferior, and even if crimps are developed after forming the fabric, a fabric having poor stretchability is obtained. On the other hand, when the crimp recovery stress exceeds 0.020 cN / dtex, when trying to obtain such a yarn, the spinning operability deteriorates, and the dyeability tends to decrease.

なお、本発明における捲縮回復応力は、マルチフィラメント(繊維)を外周 1mの検尺機で5回かせ取りして2重にし、1/6800cN/dtex の荷重を掛けて30分間放置した後、30分間沸水処理し、乾燥した後、オリエンテック社製万能引張試験機テンシロンRTC1210 の引張速度を100mm/分とし、(繊度×2)cNの応力まで試料を伸長させ、同じ速度で回復させ、このときの最大応力点から垂線を降ろし、応力0cNの線との交点から45度の角度で応力曲線側に引いた線と応力回復曲線との交点での応力測定値を読み取るものである。   The crimp recovery stress in the present invention is obtained by staking a multifilament (fiber) 5 times with a measuring machine having an outer circumference of 1 m, making it double, and applying a load of 1/6800 cN / dtex for 30 minutes. After 30 minutes of boiling water treatment and drying, the tensile speed of the universal tensile tester Tensilon RTC1210 manufactured by Orientec Co., Ltd. was increased to 100 mm / min, and the sample was stretched to a stress of (fineness x 2) cN and recovered at the same speed. A perpendicular is drawn from the maximum stress point at the time, and the stress measurement value at the intersection of the stress recovery curve and the line drawn to the stress curve side at an angle of 45 degrees from the intersection with the stress 0 cN line is read.

両ポリエステル成分は、複合繊維の長手方向に対して垂直に切断した断面形状において、サイドバイサイド型に貼り合わされた形状を呈するものであるが、両ポリエステル成分の接合面は直線的な形状のものでも、湾曲している形状のものであってもよい。   Both polyester components exhibit a shape bonded to the side-by-side type in a cross-sectional shape cut perpendicularly to the longitudinal direction of the composite fiber, but the joint surfaces of both polyester components may be linear shapes, It may have a curved shape.

そして、両ポリエステル成分の複合比率は、良好な捲縮性能を得るためには、質量比で40/60〜60/40の範囲が好ましい。この範囲を外れると、十分な捲縮性能を発現させることができないことがあり、好ましくない。   And the composite ratio of both polyester components is preferably in the range of 40/60 to 60/40 in mass ratio in order to obtain good crimping performance. If it is out of this range, sufficient crimping performance may not be exhibited, which is not preferable.

本発明の複合繊維は、単糸繊度が1〜10デシテックス、単糸数が5〜 100本とすることが好ましく、これらの範囲内で用途に応じて適宜選定することが好ましい。   The composite fiber of the present invention preferably has a single yarn fineness of 1 to 10 dtex and a single yarn number of 5 to 100, and it is preferable to select appropriately in accordance with the application within these ranges.

次に、本発明の複合繊維の製造方法について説明する。本発明の複合繊維は、通常の複合紡糸型溶融紡糸機により製造することができる。まず、紡糸口金の背面で両ポリエステル成分をサイドバイサイド型になるように合流させ、同一紡糸孔から吐出し紡糸する。その際、紡糸温度は両ポリエステル成分の溶融粘度によって適宜選定されるが、通常 280〜 310℃の範囲が好ましい。紡出糸条は冷却固化した後、紡糸油剤を付与して1000〜4000m/分の速度で引取る。この後、一旦捲き取り、延伸機により熱延伸を施すか、あるいは引取った糸条を紡糸に連続して熱延伸することにより、本発明の複合繊維を得ることができる。   Next, the manufacturing method of the composite fiber of this invention is demonstrated. The conjugate fiber of the present invention can be produced by a usual conjugate spinning type melt spinning machine. First, both polyester components are merged to form a side-by-side type on the back surface of the spinneret, and discharged from the same spinning hole for spinning. In this case, the spinning temperature is appropriately selected depending on the melt viscosity of both polyester components, but is usually preferably in the range of 280 to 310 ° C. The spinning yarn is cooled and solidified, and then a spinning oil is applied and taken up at a speed of 1000 to 4000 m / min. Thereafter, the composite fiber of the present invention can be obtained by winding it once and subjecting it to hot drawing by a drawing machine, or by drawing the taken yarn continuously after spinning.

上記の製造方法における延伸倍率は、引き取った時点での繊維の残留伸度により適宜選定することが好ましく、延伸後の残留伸度が15〜40%の範囲になるように選定することが好ましい。残留伸度がこの範囲より高いと十分な捲縮性能が発現されず、また、残留伸度がこの範囲より低いと、延伸時に単糸の切断が発生する等、操業的に問題があり、好ましくない。   The draw ratio in the above production method is preferably selected as appropriate depending on the residual elongation of the fiber at the time of drawing, and is preferably selected so that the residual elongation after drawing is in the range of 15 to 40%. If the residual elongation is higher than this range, sufficient crimping performance will not be expressed, and if the residual elongation is lower than this range, there is a problem in operation such as the occurrence of single yarn breakage during drawing, which is preferable. Absent.

次に、本発明を実施例によって具体的に説明する。なお、実施例における物性の測定方法及び評価方法は以下のとおりである。
(a) 溶融粘度
島津製作所製フローテスターCFT-500 を用いて、温度280 ℃、剪断速度1000/Sの条件で測定した。
(b) 捲縮回復応力
前記の方法で測定した。
(c) ストレッチ性、ドレープ性、染色品位の評価
得られた複合繊維(56dtex/48f、56dtex/12f)に1100T/Mの加撚(S撚、撚係数K11000)を施し、引き続き80℃、40分間の条件で真空熱セットを行った。この糸を緯糸に用い、経糸に110デシテックス/24フィラメントのPETの延伸糸を用い、経密度78本/2.54cm、緯密度57本/2.54cmの平織の織物を製織し、以下の条件で染色を行った。
得られた織物について10人のパネラーによる官能評価を行った。それぞれの性能について、10段階で評価(10を最も優れているものとする)させ、これらの評価値の10人の平均値を求め、以下の4段階で評価した。◎と○を合格とした。
◎ 非常に良好:平均値が8点以上
○ 良好 :平均値が6点〜8点未満
△ やや劣る :平均値が5点〜6点未満
× 劣る :平均値が5点未満
染色条件−染料としてDianix Blue UN-SE(1%omf)を使用し、浴比1:20、130℃で30分間染色を行った。このとき、リラックス条件:130℃×30分(液流染色機)、プレセット条件:190℃×40秒、ファイナルセット条件:170℃×30秒とした。
Next, the present invention will be specifically described with reference to examples. In addition, the measuring method and evaluation method of the physical property in an Example are as follows.
(a) Melt viscosity Measured using a flow tester CFT-500 manufactured by Shimadzu Corporation under conditions of a temperature of 280 ° C. and a shear rate of 1000 / S.
(b) Crimp recovery stress Measured by the method described above.
(c) Evaluation of stretch property, drape property, and dyeing quality The resulting composite fiber (56dtex / 48f, 56dtex / 12f) was subjected to 1100 T / M twist (S twist, twist coefficient K11000), followed by 80 ° C, 40 Vacuum heat setting was performed under the condition of minutes. Using this yarn as the weft, using a warp yarn of 110 dtex / 24 filament PET, weaving a plain weave fabric with a warp density of 78 / 2.54 cm and a weft density of 57 / 2.54 cm, and dyeing under the following conditions Went.
The obtained fabric was subjected to sensory evaluation by 10 panelists. Each performance was evaluated in 10 stages (10 is the most excellent), and an average value of 10 of these evaluation values was obtained and evaluated in the following 4 stages. ◎ and ○ were accepted.
◎ Very good: Average value is 8 points or more ○ Good: Average value is 6 points to less than 8 points Δ Slightly inferior: Average value is 5 points to less than 6 points × Inferior: Average value is less than 5 points Dianix Blue UN-SE (1% omf) was used, and staining was performed at a bath ratio of 1:20 and 130 ° C. for 30 minutes. At this time, the relaxation condition was 130 ° C. × 30 minutes (liquid flow dyeing machine), the preset condition was 190 ° C. × 40 seconds, and the final set condition was 170 ° C. × 30 seconds.

実施例1
高粘度ポリエステル成分として、密度が3.9g/cm3、平均粒径が 0.7μmの二酸化チタン微粒子を重合時に添加し、二酸化チタン微粒子の含有量が2.0質量%である溶融粘度2200ポイズのPETを用いた。低粘度ポリエステル成分として、高粘度ポリエステル成分と同様の二酸化チタン微粒子を 0.3質量%含有する溶融粘度1700ポイズのPETを用いた。
両ポリエステル成分を複合紡糸型溶融押出機に等質量供給し、紡糸温度 295℃で溶融し、紡出孔を24個有する紡糸口金の背面で両成分を合流させ、サイドバイサイド型に接合して紡出し、冷却固化した後、紡糸油剤を付与しながら糸条を集束し、表面速度が3250m/分の引取ローラを介して、捲取機で捲き取った。
次いで、得られた繊維を延伸機に供給し、表面温度85℃のローラと 165℃のホットプレートを介して1.47倍に延伸し、110デシテックス/24フィラメントの複合繊維を得た。
Example 1
As a high-viscosity polyester component, titanium dioxide fine particles with a density of 3.9 g / cm 3 and an average particle diameter of 0.7 μm are added during polymerization, and a PET with a melt viscosity of 2200 poise with a content of titanium dioxide fine particles of 2.0 mass% is used. It was. As the low-viscosity polyester component, PET having a melt viscosity of 1700 poise containing 0.3% by mass of titanium dioxide fine particles similar to the high-viscosity polyester component was used.
Equal mass of both polyester components are fed to a compound spinning type melt extruder, melted at a spinning temperature of 295 ° C, and both components are merged at the back of a spinneret with 24 spinning holes, and joined to a side-by-side mold for spinning. After cooling and solidification, the yarn was collected while applying a spinning oil agent, and was wound off by a take-off machine through a take-up roller having a surface speed of 3250 m / min.
Next, the obtained fiber was supplied to a drawing machine and drawn 1.47 times through a roller having a surface temperature of 85 ° C. and a hot plate having a temperature of 165 ° C. to obtain a composite fiber of 110 dtex / 24 filament.

実施例2〜6、比較例1〜5
両ポリエステル成分の溶融粘度、低粘度ポリエステル成分の二酸化チタン微粒子の含有量を表1に示すように種々変更した以外は、実施例1と同様に行い複合繊維を得た。
Examples 2-6, Comparative Examples 1-5
A composite fiber was obtained in the same manner as in Example 1 except that the melt viscosity of both polyester components and the content of titanium dioxide fine particles of the low viscosity polyester component were variously changed as shown in Table 1.

実施例1〜6、比較例1〜5で得られた複合繊維と織物の評価結果を併せて表1に示す。   Table 1 shows the evaluation results of the composite fibers and fabrics obtained in Examples 1 to 6 and Comparative Examples 1 to 5.

表1から明らかなように、実施例1〜6の複合繊維は、いずれも捲縮回復応力が高く、これらの繊維から得られた織物は、高いストレッチ性と優れた染色品位、良好なドレープ性とを併せ持ったものであった。   As is apparent from Table 1, the composite fibers of Examples 1 to 6 all have high crimp recovery stress, and the fabric obtained from these fibers has high stretchability, excellent dyeing quality, and good drapeability. It was something that had both.

一方、比較例1の複合繊維は、両ポリエステル成分の粘度差がないため、捲縮回復応力がなく、得られた織物は、ストレッチ性に乏しいものであった。比較例2の複合繊維は、セラミックス微粒子(二酸化チタン微粒子)の含有量が少ないため、得られた織物はドレープ性に欠けていた。また、比較例3の複合繊維は、二酸化チタン微粒子の含有量が多いため、延伸時に毛羽が多発し、得られた織物は染色品位が劣るものであった。比較例4の複合繊維は、セラミックス微粒子を含有していないため、得られた織物はドレープ性に乏しかった。さらに、比較例5の複合繊維は、高粘度ポリエステル成分に二酸化チタン微粒子を含有するものであったため、得られた織物は染色色差が生じ、染色品位に劣るものであった。
On the other hand, since the conjugate fiber of Comparative Example 1 has no difference in viscosity between the two polyester components, there was no crimp recovery stress, and the resulting woven fabric was poor in stretchability. Since the composite fiber of Comparative Example 2 has a small content of ceramic fine particles (titanium dioxide fine particles), the resulting fabric lacked drapeability. Moreover, since the composite fiber of Comparative Example 3 had a large content of titanium dioxide fine particles, fluff frequently occurred during stretching, and the resulting woven fabric was inferior in dyeing quality. Since the conjugate fiber of Comparative Example 4 did not contain ceramic fine particles, the resulting fabric had poor drapeability. Furthermore, since the conjugate fiber of Comparative Example 5 contained titanium dioxide fine particles in a high-viscosity polyester component, the resulting fabric had a dyeing color difference and was inferior in dyeing quality.

Claims (2)

マルチフィラメントを構成する各単糸が、粘度が異なる2種類のポリエステル成分が互いにサイドバイサイド型に貼り合わされた断面形状を呈している複合繊維であって、低粘度ポリエステル成分は平均粒径が0.2〜2.0μm、密度が3.5g/cm3以上のセラミックス微粒子を1.5〜8.0質量%含有しており、高粘度ポリエステル成分はセラミックス微粒子の含有量が0.5質量%以下であり、かつマルチフィラメントの捲縮回復応力が0.010cN/dtex以上であることを特徴とする潜在捲縮性ポリエステル複合繊維。 Each single yarn constituting the multifilament is a composite fiber having a cross-sectional shape in which two types of polyester components having different viscosities are bonded to each other side by side, and the low-viscosity polyester component has an average particle size of 0.2 to 2.0. It contains 1.5 to 8.0% by mass of ceramic fine particles with μm and density of 3.5g / cm 3 or more, high viscosity polyester component contains 0.5% by mass or less of ceramic fine particles, and crimp recovery stress of multifilament A latent crimpable polyester composite fiber characterized by having a crease of 0.010 cN / dtex or more. 低粘度ポリエステル成分と高粘度ポリエステル成分との溶融粘度差(温度280℃、剪断速度1000/Sの条件で測定)が500〜1500ポイズである請求項1記載の潜在捲縮性ポリエステル複合繊維。
The latent crimpable polyester composite fiber according to claim 1, wherein a difference in melt viscosity (measured at a temperature of 280 ° C and a shear rate of 1000 / S) between the low viscosity polyester component and the high viscosity polyester component is 500 to 1500 poise.
JP2005197617A 2005-07-06 2005-07-06 Latent crimped polyester composite fiber Active JP4602856B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005197617A JP4602856B2 (en) 2005-07-06 2005-07-06 Latent crimped polyester composite fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005197617A JP4602856B2 (en) 2005-07-06 2005-07-06 Latent crimped polyester composite fiber

Publications (2)

Publication Number Publication Date
JP2007016336A true JP2007016336A (en) 2007-01-25
JP4602856B2 JP4602856B2 (en) 2010-12-22

Family

ID=37753741

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005197617A Active JP4602856B2 (en) 2005-07-06 2005-07-06 Latent crimped polyester composite fiber

Country Status (1)

Country Link
JP (1) JP4602856B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013216999A (en) * 2012-04-11 2013-10-24 Nippon Ester Co Ltd Spun-dyed conjugate fiber having latent crimpability
KR101972100B1 (en) * 2017-11-29 2019-04-25 주식회사 휴비스 Cationic-dyeable Polyester composite yarn with excellent color tone and Method Preparing Same
CN112981606A (en) * 2019-12-02 2021-06-18 江苏鑫博高分子材料有限公司 Full-dull low-elasticity polyester bicomponent composite fiber

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101913162B1 (en) * 2016-11-29 2018-11-01 주식회사 휴비스 Cationic-dyeable latent crimping polyester fiber

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH042818A (en) * 1990-04-13 1992-01-07 Teijin Ltd Far infrared ray-radiating polyester conjugate fiber
JPH1143822A (en) * 1997-07-23 1999-02-16 Nippon Ester Co Ltd Latent crimpable polyester conjugate fiber
JPH11229238A (en) * 1998-02-18 1999-08-24 Nippon Ester Co Ltd Antimicrobial bulky polyester yarn
JP2003306834A (en) * 2002-04-17 2003-10-31 Nippon Ester Co Ltd Latently crimpable polylactic acid conjugated fiber

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH042818A (en) * 1990-04-13 1992-01-07 Teijin Ltd Far infrared ray-radiating polyester conjugate fiber
JPH1143822A (en) * 1997-07-23 1999-02-16 Nippon Ester Co Ltd Latent crimpable polyester conjugate fiber
JPH11229238A (en) * 1998-02-18 1999-08-24 Nippon Ester Co Ltd Antimicrobial bulky polyester yarn
JP2003306834A (en) * 2002-04-17 2003-10-31 Nippon Ester Co Ltd Latently crimpable polylactic acid conjugated fiber

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013216999A (en) * 2012-04-11 2013-10-24 Nippon Ester Co Ltd Spun-dyed conjugate fiber having latent crimpability
KR101972100B1 (en) * 2017-11-29 2019-04-25 주식회사 휴비스 Cationic-dyeable Polyester composite yarn with excellent color tone and Method Preparing Same
CN112981606A (en) * 2019-12-02 2021-06-18 江苏鑫博高分子材料有限公司 Full-dull low-elasticity polyester bicomponent composite fiber

Also Published As

Publication number Publication date
JP4602856B2 (en) 2010-12-22

Similar Documents

Publication Publication Date Title
KR20010049484A (en) Soft Stretch Yarns and Process for the Preparation Thereof
JP4602856B2 (en) Latent crimped polyester composite fiber
JP7320081B2 (en) Polyester composite fiber with excellent stretchability and method for producing the same
JP3690274B2 (en) Polyester-based composite yarn, method for producing the same, and fabric
KR100829480B1 (en) Latent crimping typed polyester conjugated yarn with two component and process of manufacturing for the same
JP3736298B2 (en) Blended yarn
JP4226144B2 (en) Polyester composite fiber for stretch woven and knitted fabric
JP2002105796A (en) Light-shielding woven fabric
KR101866688B1 (en) Rayon-like polyester composite yarn having excellent melange effect, drapability and high elasticity and manufacturing method thereof
JPH09217225A (en) Hollow nylon fiber, its production and use
KR101850628B1 (en) Rayon-like polyester composite yarn having excellent drapability and high elasticity and manufacturing method thereof
JP2006169649A (en) Cationic dye-dyeable polyester yarn and method for producing the same
JP4395948B2 (en) Low shrinkage polyester yarn and polyester blended yarn comprising the same
JP2009144277A (en) Composite yarn, woven/knitted fabric using the same, and method for producing the composite yarn
JP2019026991A (en) Black spun-dyed polyester fiber
JP2007046212A (en) Conjugate yarn and fabric product containing the same
JP4699072B2 (en) Stretch polyester composite fiber
JP2000248430A (en) Latent crimp-expressing polyester fiber and production
JP4380519B2 (en) Method for producing soft stretch yarn
JP3489919B2 (en) Polyester fiber
JP3892799B2 (en) Manufacturing method of woven and knitted fabric
JP2008266808A (en) Combined filament yarn having different fineness and different elongation
JP2001214335A (en) Low-shrinkage polyester slub yarn and combined polyester filament yarn composed thereof
JP2911060B2 (en) Composite fiber aggregate
JP4334320B2 (en) Package made of composite fiber for high-speed false twisting and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080618

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100615

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100816

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100921

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100930

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131008

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4602856

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131008

Year of fee payment: 3