JP2006169649A - Cationic dye-dyeable polyester yarn and method for producing the same - Google Patents

Cationic dye-dyeable polyester yarn and method for producing the same Download PDF

Info

Publication number
JP2006169649A
JP2006169649A JP2004360445A JP2004360445A JP2006169649A JP 2006169649 A JP2006169649 A JP 2006169649A JP 2004360445 A JP2004360445 A JP 2004360445A JP 2004360445 A JP2004360445 A JP 2004360445A JP 2006169649 A JP2006169649 A JP 2006169649A
Authority
JP
Japan
Prior art keywords
fiber
temperature
polyester
yarn
multifilament
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004360445A
Other languages
Japanese (ja)
Inventor
Hideyasu Terao
秀康 寺尾
Yoshinori Kawashima
能則 川島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Rayon Co Ltd
Mitsubishi Rayon Textile Co Ltd
Original Assignee
Mitsubishi Rayon Co Ltd
Mitsubishi Rayon Textile Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co Ltd, Mitsubishi Rayon Textile Co Ltd filed Critical Mitsubishi Rayon Co Ltd
Priority to JP2004360445A priority Critical patent/JP2006169649A/en
Publication of JP2006169649A publication Critical patent/JP2006169649A/en
Pending legal-status Critical Current

Links

Landscapes

  • Woven Fabrics (AREA)
  • Yarns And Mechanical Finishing Of Yarns Or Ropes (AREA)
  • Multicomponent Fibers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a cationic dye-dyeable polyester yarn which has sufficient stretchability and swollen touch. <P>SOLUTION: The cationic dye-dyeable polyester conjugated multifilament yarn. And the cationic dye-dyeable polyester conjugated multifilament yarn having thick-thin irregularity in the axial direction of the yarn, a thickest single filament diameter/thinnest single filament diameter ratio of 1.2 to 2.4 in an arbitrary diameter, and a strength of ≥2.0 cN/dtex is obtained by spinning a cationic dye-dyeable polyester polymer having a melt viscosity Via≥8.3×10<SP>2</SP>poise and a polyester polymer having a viscosity Vib≤8.0×10<SP>2</SP>poise [Via and Vib are the melt viscosities of the polymers A and B, respectively, at a temperature of 280°C and a shear rate of 2.43×10<SP>3</SP>(sec-1)] at a takeoff rate of ≤2,500 m/min on a heated roller in specific conditions. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、織編物にした場合ストレッチ性と良好な膨らみ感を与えるカチオン染料可染性ポリエステル複合繊維及びその製造方法に関する。   TECHNICAL FIELD The present invention relates to a cationic dye-dyeable polyester composite fiber that gives stretchability and good swelling feeling when it is made into a woven or knitted fabric, and a method for producing the same.

従来、特許文献1、特許文献2において、溶融粘度の異なる2種の熱可塑性ポリマーを同一吐出孔より吐出する複合紡糸により接合型複合繊維糸とし、熱処理によりスパイラル型クリンプを発現させ捲縮型ストレッチ糸とすることが知られており、高捲縮を得るために、用いる2種の熱可塑性ポリマーの溶融粘度差を大きくすること、また高溶融粘度成分として高収縮性のポリエステルを用いることなどにより、ポリエステル系潜在捲縮製複合繊維が提案され、該繊維による布帛はストレッチ性、深みのある色彩を得ることが知られている。しかしながら、該繊維によると、スパイラル型クリンプを有するが、繊維長手方向に均一であるため、布帛を形成した際にフラットな表面感となるため嵩高性、膨らみ感に欠けるものとなる。   Conventionally, in Patent Document 1 and Patent Document 2, two types of thermoplastic polymers having different melt viscosities are made into bonded composite fiber yarns by composite spinning that discharges them from the same discharge hole, and spiral crimps are developed by heat treatment to produce a crimped stretch. In order to obtain high crimp, it is known to increase the difference in melt viscosity between the two types of thermoplastic polymers used, and by using highly shrinkable polyester as a high melt viscosity component. Polyester-based latently crimped composite fibers have been proposed, and it is known that fabrics made of these fibers will have a stretchable and deep color. However, the fiber has a spiral crimp, but is uniform in the longitudinal direction of the fiber, so that when the fabric is formed, it has a flat surface feeling and lacks bulkiness and swelling.

一方、特許文献3、特許文献4には、繊維製品の風合改善の方法として繊維の長手方向に繊度が変化する太細繊維があり、糸条としたときに部分的に異収縮混繊となることから太細繊維から得られる布帛は特異な風合を呈することが開示されている。しかしながら、該繊維によると部分的な異収縮混繊とし、太細繊維から得られた布帛は膨らみ感を有するが、ストレッチ性に劣るといった問題があり、機能性などに一層の向上が求められている。
かかる課題に対しては、例えば、布帛にストレッチ性を付与する手段としては、ポリウレタン系弾性繊維を使用する方法があるが、工程が増えるなどによるコストが高くなる問題を呈している。
On the other hand, Patent Literature 3 and Patent Literature 4 have thick and thin fibers whose fineness changes in the longitudinal direction of the fiber as a method for improving the texture of the fiber product. Therefore, it is disclosed that the fabric obtained from the thick and fine fibers exhibits a unique texture. However, according to the fiber, it is partially mixed with different shrinkage, and the fabric obtained from the thick fiber has a feeling of swelling, but there is a problem that it is inferior in stretchability, and further improvement in functionality is required. Yes.
In order to deal with such problems, for example, as a means for imparting stretch properties to the fabric, there is a method using polyurethane-based elastic fibers, but this presents a problem that costs increase due to an increase in the number of steps.

また、特許文献5、特許文献6には、布帛にしたときにストレッチ性と、スパン調風合または太細スラブ調外観を呈する複合繊維糸が開示されているが、該特許文献5によると太細スラブ調の外観を呈するため繊維糸条長手方向に局在化した高配向部と低配向部が存在する構造のため、染色により局在化した構造に起因した濃色部と淡色部を呈し、スラブ調の外観を得るには良いが、ナチュラルな外観を得ることは困難であり、また、ストレッチ性も太細スラブ調外観を有しないものに比べ劣る傾向にある。
更に特許文献7、特許文献8においては、良好な脹らみ感を有し、ナチュラルな外観を有するストレッチ性の複合繊維が開示されているが、これら特許文献によると分散染料染色時は良好な染色性が得られるが、カチオン染色の際に実用的な強度を得ることが困難である。
Further, Patent Document 5 and Patent Document 6 disclose composite fiber yarns that exhibit stretch properties and a span-like texture or a thick slab-like appearance when made into a fabric. Because it has a fine slab-like appearance, it has a highly oriented part and a lowly oriented part that are localized in the longitudinal direction of the fiber yarn, so it exhibits dark and light colored parts due to the structure localized by dyeing. Although it is good for obtaining a slab-like appearance, it is difficult to obtain a natural appearance, and the stretchability tends to be inferior to that having no thick slab-like appearance.
Furthermore, Patent Document 7 and Patent Document 8 disclose stretchable conjugate fibers having a good swell feeling and a natural appearance, but according to these patent documents, they are good when dyed disperse dyes. Although dyeability can be obtained, it is difficult to obtain a practical strength during cationic dyeing.

特開平5−295670号公報Japanese Patent Laid-Open No. 5-295670 特開平11−81069号公報Japanese Patent Laid-Open No. 11-81069 特開平5−239714号公報JP-A-5-239714 特開平10−102318号公報JP-A-10-102318 特開2000−160443号公報JP 2000-160443 A 特開2001−115344号公報JP 2001-115344 A 特開2004−124271号公報JP 2004-124271 A 特開2004−183141号公報JP 2004-183141 A

本発明は、布帛としたときに十分なストレッチ性の付与と膨らみを呈するカチオン染料可染性複合ポリエステル繊維に関する。   The present invention relates to a cationic dye-dyeable composite polyester fiber that exhibits sufficient stretchability and swelling when made into a fabric.

本発明者らは、前記問題点を解決するために、カチオン染料可染性複合ポリエステルマルチフィラメント繊維で、各マルチフィラメント繊維を構成する単繊維の繊維軸方向の太細斑と単繊維径のバラツキとストレッチ性、さらには、製造工程の通過安定性等について、詳細に研究を重ねた結果本発明に到達した。
すなわち、本発明は、溶融粘度の異なる2種のポリエステルポリマーを接合した複合マルチフィラメントからなる繊維であって、マルチフィラメント繊維を構成する単繊維が繊維軸方向に太細斑を有し、マルチフィラメント繊維中の任意の断面における最も太い単繊維と最も細い単繊維の単繊維径の比が1.2〜2.4であり、強度が2.0cN/dtex以上であることを特徴とするカチオン染料可染性ポリエステル複合マルチフィラメント繊維にある。
また本発明は、マルチフィラメント繊維としての太さ斑の変動係数が0.30〜1.20、捲縮率(cc)が20〜45%である上記カチオン染料可染性ポリエステル複合マルチフィラメントにある。
In order to solve the above-mentioned problems, the present inventors have made use of a cationic dye-dyeable composite polyester multifilament fiber, in which the single filaments constituting each multifilament fiber have thick and thin spots in the fiber axis direction and variations in the single fiber diameter. As a result of extensive studies on the stretchability and the passage stability of the production process, the present invention has been achieved.
That is, the present invention is a fiber composed of a composite multifilament in which two kinds of polyester polymers having different melt viscosities are joined, and the single fiber constituting the multifilament fiber has thick spots in the fiber axis direction. Cationic dye characterized in that the ratio of the single fiber diameter of the thickest single fiber to the thinnest single fiber in any cross section in the fiber is 1.2 to 2.4, and the strength is 2.0 cN / dtex or more In dyeable polyester composite multifilament fibers.
The present invention also resides in the above-mentioned cationic dyeable dyeable polyester composite multifilament having a coefficient of variation of thickness spots as a multifilament fiber of 0.30 to 1.20 and a crimp rate (cc) of 20 to 45%. .

さらに本発明は、溶融粘度Via≧8.3×102poiseのカチオン染料可染性ポリエステルポリマーと、粘度Vib≦8.0×102poise(Via、VibはそれぞれA、Bポリマーの温度280℃、シェアレート2.43×103(秒-1)のときの溶融粘度を示す。)のポリエステルポリマーを、2500m/分以下の引取速度で紡糸した接合型複合繊維の未延伸糸を、下記の式(2)〜(6)を満足する条件下で加熱ローラー延伸することを特徴とするカチオン染料可染性ポリエステル複合マルチフィラメント繊維の製造方法にある。
Via−Vib>3.0×102poise (1)
MDR×0.45≦DR1≦MDR×0.65 (2)
1.000≦DR2≦1.300 (3)
DR1>DR2 (4)
Tg≦TDR1≦Tc (5)
Tg+20℃≦TDR2≦Tc (6)
(但し、式中、Via、Vibは前記に同じ、MDRは延伸温度85℃における未延伸糸の最大延伸倍率を表す。DR1は1段目延伸倍率、DR2は2段目延伸倍率、TDR1は1段目延伸におけるローラー温度、TDR2は2段目延伸における熱セット温度、Tgは未延伸糸のガラス転移温度(℃)、Tcは未延伸糸の結晶化温度(℃)を示す。なお、複合繊維の未延伸糸の結晶化温度、ガラス転移温度がそれぞれ2点測定される場合は、低い方の温度を結晶化温度、高い方の温度をガラス転移温度とする。)
Furthermore, the present invention relates to a cationic dye-dyeable polyester polymer having a melt viscosity Via ≧ 8.3 × 10 2 poise and a viscosity Vib ≦ 8.0 × 10 2 poise (Via and Vib are temperatures of 280 ° C. of A and B polymers, respectively). , A melt viscosity at a shear rate of 2.43 × 10 3 (second −1 )) is spun at a take-up speed of 2500 m / min or less. The present invention resides in a method for producing a cationic dye-dyeable polyester composite multifilament fiber, characterized in that heating roller stretching is performed under conditions satisfying the formulas (2) to (6).
Via-Vib> 3.0 × 10 2 poise (1)
MDR × 0.45 ≦ DR1 ≦ MDR × 0.65 (2)
1.000 ≦ DR2 ≦ 1.300 (3)
DR1> DR2 (4)
Tg ≦ TDR1 ≦ Tc (5)
Tg + 20 ° C. ≦ TDR2 ≦ Tc (6)
(In the formula, Via and Vib are the same as described above, MDR represents the maximum draw ratio of the undrawn yarn at a draw temperature of 85 ° C. DR1 is the first-stage draw ratio, DR2 is the second-stage draw ratio, and TDR1 is 1. Roller temperature in the stage drawing, TDR2 is the heat setting temperature in the second stage drawing, Tg is the glass transition temperature (° C.) of the undrawn yarn, and Tc is the crystallization temperature (° C.) of the undrawn yarn. When the crystallization temperature and the glass transition temperature of each undrawn yarn are measured at two points, the lower temperature is the crystallization temperature and the higher temperature is the glass transition temperature.)

さらに本発明は、前記のカチオン染料可染性ポリエステル複合マルチフィラメントからなる繊維を含み、織編物収縮率(LC)が20〜40%であることを特徴とする織編物にある。   Furthermore, the present invention is a woven or knitted fabric characterized in that it comprises fibers composed of the above-mentioned cationic dyeable dyeable polyester composite multifilament and has a woven / knitted fabric shrinkage ratio (LC) of 20 to 40%.

本発明のカチオン染料可染性ポリエステル複合マルチフィラメント繊維は、布帛としたときに濃色部と淡色部が局在化せずにナチュラルな外観を呈するばかりでなく十分な膨らみ感とストレッチ性があり、また、衣料用途分野において実用上の十分な強力を有する織編物とすることができる。   The cationic dye-dyeable polyester composite multifilament fiber of the present invention has not only a dark appearance and a light-colored portion but not a natural appearance when it is made into a fabric, and has a sufficient swelling and stretchability. Moreover, it can be set as the woven / knitted fabric which has practically sufficient strength in the garment application field.

以下、本発明の好適な実施の形態について具体的に説明する。
本発明においてカチオン可染性ポリエステルポリマーは、主としてエチレンテレフタレートを主たる繰り返し単位としカチオン染料に易染性または可染性のポリエステルをいう。
カチオン染料可染性ポリエステルとしては、エチレンテレフタレートにナトリウムスルホイソフタル酸、ナトリウムスルホナフタレンジカルボン酸等の金属塩、スルホネート基等の酸基含有エステル形成性化合物を共重合した変性ポリエステル、好ましくはエチレンテレフタレートに5−ナトリウムスルホイソフタ−ル酸を1.3〜3.5モル%共重合した変性ポリエステルが挙げられる。
Hereinafter, preferred embodiments of the present invention will be specifically described.
In the present invention, the cationic dyeable polyester polymer refers to a polyester that is mainly dyeable or dyeable to a cationic dye, with ethylene terephthalate as the main repeating unit.
The cationic dye-dyeable polyester is a modified polyester obtained by copolymerizing ethylene terephthalate with a metal salt such as sodium sulfoisophthalic acid or sodium sulfonaphthalenedicarboxylic acid, or an acid group-containing ester-forming compound such as a sulfonate group, preferably ethylene terephthalate. Examples thereof include a modified polyester obtained by copolymerizing 5-sodium sulfoisophthalic acid with 1.3 to 3.5 mol%.

さらに、カチオン染料可染性ポリエステルは、カチオン染料に対する易染色性を向上させる目的で、エチレンテレフタレートに上記ナトリウムスルホイソフタル酸、ナトリウムスルホナフタレンジカルボン酸等の金属塩、スルホネート基等の酸基含有エステル形成性化合物以外の、その他の共重合成分を共重合させた共重合ポリエステル、及びポリアルキレングリコール、アルキルスルホン酸、無機物等、少量のブレンド成分を含有するポリエステル混合物であってもよい。他の共重合成分としては、芳香族ジカルボン酸類、脂肪族ジカルボン酸類、脂肪族ジオール類、脂環式ジオール類、芳香族ジオール類を用いることができ、具体的にはイソフタル酸、アジピン酸、セバシン酸、1,4−ブタンジオール、シクロヘキサンジオール、ビスフェノールAのエチレンオキシド付加物等を挙げることができる。   In addition, cationic dye-dyeable polyester is a metal salt such as sodium sulfoisophthalic acid, sodium sulfonaphthalenedicarboxylic acid, and other acid group-containing esters such as sulfonate group for ethylene terephthalate for the purpose of improving easy dyeability for cationic dyes. It may be a copolymer polyester obtained by copolymerizing other copolymer components other than the functional compound, and a polyester mixture containing a small amount of blend components such as polyalkylene glycol, alkyl sulfonic acid and inorganic substances. As other copolymerization components, aromatic dicarboxylic acids, aliphatic dicarboxylic acids, aliphatic diols, alicyclic diols, and aromatic diols can be used. Specifically, isophthalic acid, adipic acid, sebacin Examples include acid, 1,4-butanediol, cyclohexanediol, ethylene oxide adduct of bisphenol A, and the like.

本発明のカチオン染料可染性ポリエステルマルチフィラメント繊維は、ストレッチ性を発現させるために、溶融粘度の異なる2種のポリエステルポリマーを接合した複合マルチフィラメント繊維であることが必要である。複合繊維としたときに良好なストレッチ性を得るためには溶融粘度の異なる組合せであれば、少なくとも片側にカチオン染料の染着座席を有するものであれば、どのような組合せでもよく、また、両ポリマーが同一のカチオン染料可染性のポリマーで低粘度品と高粘度品の組合せでもよい。この場合、溶融粘度の異なる一方の成分であるポリエステルポリマー(A)は高粘度で高収縮成分として作用し、他方の成分であるポリエステルポリマー(B)は低粘度で低収縮成分として作用する。   The cationic dye-dyeable polyester multifilament fiber of the present invention is required to be a composite multifilament fiber in which two kinds of polyester polymers having different melt viscosities are bonded in order to develop stretchability. In order to obtain good stretchability when a composite fiber is used, any combination of different melt viscosities may be used as long as it has a dye dye seat on at least one side. A combination of a low-viscosity product and a high-viscosity product with the same cationic dye dyeable polymer may be used. In this case, the polyester polymer (A) which is one component having a different melt viscosity has a high viscosity and acts as a high shrinkage component, and the polyester polymer (B) which is the other component has a low viscosity and acts as a low shrinkage component.

本発明において溶融粘度の異なる(A)、(B)2種のポリエステルポリマーの接合は、複合繊維としたときに良好なストレッチ性が発現する接合であればいかなる接合形式でもよい。好ましくはサイドバイサイド型または偏心芯鞘型であり、より好ましくは高度なストレッチ性を得るためにサイドバイサイド型がよい。
また本発明では、マルチフィラメント繊維を構成する単繊維が繊維軸方向に太細斑を有し、マルチフィラメント繊維中の任意の断面における最も太い単繊維と最も細い単繊維の単繊維径の比が1.2〜2.4であり、強度が2.0cN/dtex以上であることが必要である。マルチフィラメント繊維を構成している単繊維の繊維軸方向に太部と細部が混在することにより、単繊維の長手方向に繊維の配向差が生じ、仮撚、混繊、染色など公知の後加工時に熱処理を施した際に単繊維内に収縮差を生じ、布帛とした場合膨らみ感が得られる。さらに、衣料用ポリエステル繊維として、延伸糸の強度が、2.0cN/dtex未満であると実用上の強度が得られないため衣料用としては適さない。
In the present invention, the two types of polyester polymers (A) and (B) having different melt viscosities may be joined in any manner as long as they exhibit good stretch properties when made into a composite fiber. A side-by-side type or an eccentric core-sheath type is preferable, and a side-by-side type is preferable in order to obtain a high stretchability.
Further, in the present invention, the single fiber constituting the multifilament fiber has thick and thin spots in the fiber axis direction, and the ratio of the single fiber diameter of the thickest single fiber to the thinnest single fiber in any cross section in the multifilament fiber is It is 1.2 to 2.4, and the strength needs to be 2.0 cN / dtex or more. When thick parts and details are mixed in the fiber axis direction of the single fiber constituting the multifilament fiber, a difference in fiber orientation occurs in the longitudinal direction of the single fiber, and known post-processing such as false twist, mixed fiber, and dyeing. Occasionally, when heat treatment is performed, a difference in shrinkage occurs in the single fiber, and when it is made into a fabric, a feeling of swelling is obtained. Furthermore, if the strength of the drawn yarn is less than 2.0 cN / dtex, the polyester fiber for clothing is not suitable for clothing because practical strength cannot be obtained.

また、本発明のカチオン染料可染性複合ポリエステルマルチフィラメント繊維は、マルチフィラメント繊維としての太さ斑の変動係数(CV)が0.30〜1.20、捲縮率(CC)が20〜45%であることが好ましい。これにより、単繊維の繊維軸方向に太部と細部が適度に分散することにより、実用上の強度が得られる。太部と細部が局在化すると、太部の配向が低いことにより単繊維強度が弱い部分が繊維糸条として集中し、衣料用としての実用上の強度が得られない。
マルチフィラメント繊維中の任意の断面における最も太い単繊維と最も細い単繊維の単繊維径の比は1.2〜2.4であることが必要である。太細比の下限は、好ましくは1.2以上、より好ましくは1.3以上がよい。上限は好ましくは2.4以下、より好ましくは1.8以下である。単繊維軸方向に太部と細部が混在することにより、単繊維長手方向に繊維の配向差が生じる。繊維の配向差により、仮撚、混繊、染色など公知の後加工時に熱処理を施した際に単繊維内に収縮差を生じ、繊維に膨らみを持たせることが知られている。
太細比の下限が1.2未満であると単繊維の繊維軸長手方向に、太部と細部の単繊維繊度差が小さいため太部、細部の繊維配向による構造斑に起因した捲縮形態差が得難く、布帛にした際のふくらみ感が不足する。また、上限が2.4を超えると単繊維の太部と細部の繊維配向差が大きいため、太部と細部の伸度差が大きくなり、製糸する際に糸切れなど工程安定性上の問題がある。
Moreover, the cationic dye-dyeable composite polyester multifilament fiber of the present invention has a coefficient of variation (CV) of thickness spots as a multifilament fiber of 0.30 to 1.20, and a crimp ratio (CC) of 20 to 45. % Is preferred. Thereby, practical intensity | strength is acquired by disperse | distributing a thick part and detail moderately in the fiber-axis direction of a single fiber. When the thick portion and the details are localized, the portion where the single fiber strength is weak is concentrated as the fiber yarn due to the low orientation of the thick portion, and practical strength for clothing cannot be obtained.
The ratio of the single fiber diameter of the thickest single fiber to the thinnest single fiber in any cross section in the multifilament fiber needs to be 1.2 to 2.4. The lower limit of the thickness ratio is preferably 1.2 or more, more preferably 1.3 or more. The upper limit is preferably 2.4 or less, more preferably 1.8 or less. When a thick part and details are mixed in the single fiber axis direction, a difference in fiber orientation occurs in the single fiber longitudinal direction. It is known that due to the difference in fiber orientation, a shrinkage difference is produced in the single fiber when the heat treatment is performed during known post-processing such as false twisting, blending, and dyeing, and the fiber is swollen.
If the lower limit of the thickness ratio is less than 1.2, the single fiber fineness difference between the thick part and the detail is small in the fiber axis longitudinal direction of the single fiber. The difference is difficult to obtain, and the feeling of swelling when made into a fabric is insufficient. Also, if the upper limit exceeds 2.4, the fiber orientation difference between the thick part and the detail of the single fiber is large, so that the difference in elongation between the thick part and the detail becomes large. There is.

マルチフィラメント繊維全体としての太さ斑の変動係数(CV)は、下限が好ましくは0.30以上、より好ましくは0.35以上、上限が好ましくは1.20以下、より好ましくは1.0以下である。下限が0.3未満であると、マルチフィラメント繊維内の単繊維径の太細差が小さくなるため、単繊維間での捲縮形態差が小さくなり本発明の目的とする膨らみ感を得ることができなくなる。一方、上限が1.20を超えると仮撚、混繊、染色など公知の後加工時に熱処理を施した際に、マルチフィラメント繊維として、繊維糸条軸方向に太部と細部が局在化し、マルチフィラメント繊維の太部の収縮が著しく粗野な繊維になるばかりか、太部と細部の伸度差が大きいため製糸する際に糸切れなど工程安定性上の問題が発生する。さらに、染色した際にスラブ調外観を呈した太細が発生する。さらにまた、太部と細部が局在化することで収縮部が集中するため染色後に本発明の目的とする自然な外観と膨らみを呈する繊維を得ることができない。
さらに本発明では、捲縮率(CC)が20〜45%が必要である。CCが20%未満では十分なストレッチ性を得ることができない。45%を超えると織編物とした際の形態が安定しない。
As for the variation coefficient (CV) of the thickness variation as the whole multifilament fiber, the lower limit is preferably 0.30 or more, more preferably 0.35 or more, and the upper limit is preferably 1.20 or less, more preferably 1.0 or less. It is. When the lower limit is less than 0.3, the thickness difference between the single fibers in the multifilament fiber becomes small, so that the crimp form difference between the single fibers becomes small, and the desired swell feeling is obtained. Can not be. On the other hand, when the upper limit exceeds 1.20, when heat treatment is performed during known post-processing such as false twisting, blending, and dyeing, as multifilament fibers, thick portions and details are localized in the fiber yarn axis direction, The shrinkage of the thick part of the multifilament fiber becomes notably rough fiber, and the difference in elongation between the thick part and the detail is large, and thus problems in process stability such as thread breakage occur during yarn production. Furthermore, a thick and fine slab-like appearance occurs when dyed. Furthermore, since the contracted portion concentrates due to the localization of the thick portion and the details, it is not possible to obtain a fiber exhibiting the natural appearance and bulge that is the object of the present invention after dyeing.
Further, in the present invention, the crimp ratio (CC) needs to be 20 to 45%. If the CC is less than 20%, sufficient stretchability cannot be obtained. If it exceeds 45%, the form of the woven or knitted fabric is not stable.

また、本発明のポリエステル複合マルチフィラメント繊維は、好ましくは伸度(DE)の下限が30%以上、より好ましくは35%以上、上限は70%以下、より好ましくは60%以下が望ましい。伸度が70%を超えると、織編物としたときに十分な捲縮が発現しにくく、満足すべきストレッチ性能を得ることができにくい。また30%未満では、単繊維の繊維軸方向に太細斑の発現が不足しやすく、満足すべき目的とする膨らみ効果を得ることが困難となりがちである。   The polyester composite multifilament fiber of the present invention preferably has a lower limit of elongation (DE) of 30% or more, more preferably 35% or more, and an upper limit of 70% or less, more preferably 60% or less. When the elongation exceeds 70%, sufficient crimping is difficult to occur when a woven or knitted fabric is obtained, and it is difficult to obtain satisfactory stretch performance. If it is less than 30%, the occurrence of thick spots tends to be insufficient in the fiber axis direction of the single fiber, and it tends to be difficult to obtain the desired bulge effect.

次に本発明の、カチオン可染性ポリエステル複合マルチフィラメント繊維の製造法について詳細に説明する。
本発明では、温度280℃、シェアレート2.43×103(秒-1)のときの粘度Via≧8.3×102poise(ポリマーAの溶融粘度)のカチオン染料可染性ポリマーと、粘度Vib≦8.0×102poise(ポリマーBの溶融粘度)のポリエステルポリマーを、下記の式(1)と同時に満足するポリエステルポリマー(A)とポリエステルポリマー(B)とを、2500m/分以下の引取速度で紡糸した接合型複合繊維の未延伸糸を、下記の式(2)〜(6)を満足する条件下で加熱ローラー延伸することが必要である。
Via−Vib>3.0×102poise (1)
MDR×0.45≦DR1≦MDR×0.65 (2)
1.000≦DR2≦1.300 (3)
DR1>DR2 (4)
Tg≦TDR1≦Tc (5)
Tg+20℃≦TDR2≦Tc (6)
(但し、式中、Via、Vibは上記に同じ、MDRは延伸温度85℃における未延伸糸の最大延伸倍率を表す。DR1は1段目延伸倍率、DR2は2段目延伸倍率、TDR1は1段目延伸におけるローラー温度、TDR2は2段目延伸における熱セット温度、Tgは未延伸糸のガラス転移温度(℃)、Tcは未延伸糸の結晶化温度(℃)を示す。なお、複合繊維の未延伸糸の結晶化温度、ガラス転移温度がそれぞれ2点測定される場合は、低い方の温度を結晶化温度、高い方の温度をガラス転移温度とする。)
ポリエステルポリマー(A)とポリエステルポリマー(B)の温度280℃、シェアレート2.43×10-3(秒-1)のときの溶融粘度差は3.0×10-1poiseより大きいことが必要である。粘度の異なる一方の成分であるポリエステルポリマー(A)は高粘度で高収縮成分として作用し、他方の成分であるポリエステルポリマー(B)は低粘度で低収縮成分として作用する。固有粘度の差が0.145以下の場合、ポリエステルポリマー(A)とポリエステルポリマー(B)の収縮差が小さく、捲縮の発現が不足しストレッチ性能が得られない。
Next, the production method of the cationic dyeable polyester composite multifilament fiber of the present invention will be described in detail.
In the present invention, a cationic dye-dyeable polymer having a viscosity Via ≧ 8.3 × 10 2 poise (melt viscosity of polymer A) at a temperature of 280 ° C. and a shear rate of 2.43 × 10 3 (second −1 ), A polyester polymer having a viscosity Vib ≦ 8.0 × 10 2 poise (melt viscosity of the polymer B) and a polyester polymer (A) satisfying the following formula (1) and a polyester polymer (B) of 2500 m / min or less It is necessary to stretch the undrawn yarn of the joining type composite fiber spun at the take-up speed under the condition of satisfying the following formulas (2) to (6) with a heating roller.
Via-Vib> 3.0 × 10 2 poise (1)
MDR × 0.45 ≦ DR1 ≦ MDR × 0.65 (2)
1.000 ≦ DR2 ≦ 1.300 (3)
DR1> DR2 (4)
Tg ≦ TDR1 ≦ Tc (5)
Tg + 20 ° C. ≦ TDR2 ≦ Tc (6)
(In the formula, Via and Vib are the same as above, MDR represents the maximum draw ratio of the undrawn yarn at a draw temperature of 85 ° C. DR1 is the first-stage draw ratio, DR2 is the second-stage draw ratio, and TDR1 is 1. Roller temperature in the stage drawing, TDR2 is the heat setting temperature in the second stage drawing, Tg is the glass transition temperature (° C.) of the undrawn yarn, and Tc is the crystallization temperature (° C.) of the undrawn yarn. When the crystallization temperature and the glass transition temperature of each undrawn yarn are measured at two points, the lower temperature is the crystallization temperature and the higher temperature is the glass transition temperature.)
The difference in melt viscosity between the polyester polymer (A) and the polyester polymer (B) at a temperature of 280 ° C. and a shear rate of 2.43 × 10 −3 (second −1 ) needs to be larger than 3.0 × 10 −1 poise. It is. The polyester polymer (A) which is one component having a different viscosity has a high viscosity and acts as a high shrinkage component, and the polyester polymer (B) which is the other component has a low viscosity and acts as a low shrinkage component. When the difference in intrinsic viscosity is 0.145 or less, the shrinkage difference between the polyester polymer (A) and the polyester polymer (B) is small, the expression of crimp is insufficient, and the stretch performance cannot be obtained.

また、溶融粘度の異なる2種のポリエステルポリマーのうち高粘度成分が第三成分を5〜15モル%共重合させた共重合ポリエチレンテレフタレートであることが好ましい。
第三成分が5モル%未満では捲縮発現力が十分得られにくく、15モル%を超えると融点低下が著しく複合紡糸自体が困難になるだけでなく、捲縮発現力も不十分となりやすい。
第三成分としては、テレフタル酸成分以外の芳香族ジカルボン酸、脂肪族ジカルボン酸等の酸成分、エチレングリコール成分以外の脂肪族ジオール、脂環式ジオール、芳香族ジオール等のジオール成分が挙げられ、具体的には、イソフタル酸、アジピン酸、セバシン酸、1,4−ブタンジオール、シクロヘキサンジオール、ビスフェノールAエチレンオキシド付加物、スルホイソフタル酸金属塩、2,2−ビス[4−(2−ヒドロキシエトキシ)フェニル]プロパン等が挙げられ、特にイソフタル酸、アジピン酸、スルホイソフタル酸金属塩、2,2−ビス[4−(2−ヒドロキシエトキシ)フェニル]プロパンが好ましい。これらの第三成分は単独或いは2種以上の組み合わせであってもよい。
Moreover, it is preferable that the high viscosity component is copolymer polyethylene terephthalate which copolymerized 5-15 mol% of the 3rd component among two types of polyester polymers from which melt viscosity differs.
If the third component is less than 5 mol%, it is difficult to obtain sufficient crimping power, and if it exceeds 15 mol%, the melting point is remarkably lowered and not only composite spinning itself becomes difficult, but also crimping power tends to be insufficient.
Examples of the third component include aromatic dicarboxylic acids other than terephthalic acid components, acid components such as aliphatic dicarboxylic acids, aliphatic diols other than ethylene glycol components, alicyclic diols, diol components such as aromatic diols, Specifically, isophthalic acid, adipic acid, sebacic acid, 1,4-butanediol, cyclohexanediol, bisphenol A ethylene oxide adduct, sulfoisophthalic acid metal salt, 2,2-bis [4- (2-hydroxyethoxy) Phenyl] propane and the like, and isophthalic acid, adipic acid, sulfoisophthalic acid metal salt, and 2,2-bis [4- (2-hydroxyethoxy) phenyl] propane are particularly preferable. These third components may be used alone or in combination of two or more.

ポリエステル(A)、ポリエステル(B)より複合繊維を形成するには、好ましくは高粘度側が、カチオン可染ポリエステルであることがよい。カチオン可染性成分としては、エチレンテレフタレートにナトリウムスルホイソフタル酸、ナトリウムスルホナフタレンジカルボン酸等の金属塩スルホネート基等の酸基含有エステル形成性化合物を共重合した変性ポリエステル、より好ましくはエチレンテレフタレートに5−ナトリウムスルホイソフタ−ル酸を1.3〜3.5モル%共重合した変性ポリエステルが挙げられる。   In order to form a composite fiber from the polyester (A) and the polyester (B), the high viscosity side is preferably a cationic dyeable polyester. As the cationic dyeable component, a modified polyester obtained by copolymerizing ethylene terephthalate with an acid group-containing ester-forming compound such as a metal salt sulfonate group such as sodium sulfoisophthalic acid or sodium sulfonaphthalenedicarboxylic acid, more preferably 5 to ethylene terephthalate. -The modified polyester which copolymerized 1.3-3.5 mol% of sodium sulfoisophthalic acid is mentioned.

本発明の溶融粘度の異なる2種のポリエステルポリマーの接合は、複合繊維としたときに良好なストレッチ性が発現する接合であればいかなる接合でもよい。好ましくはサイドバイサイド型または偏心芯鞘型などが用いられ、より好ましくはサイドバイサイド型が高度なストレッチ性を得るために用いられる。
複合紡糸に際してのポリエステルポリマー(A)/ポリエステルポリマー(B)の接合比(質量比)Wは、複合繊維の形態下で捲縮発現力を与えるうえで4/6<W<6/4が好ましい。接合比が上記範囲外では製糸性が低下しやすく、複合繊維の形態下での捲縮発現力も不足しがちである。
The joining of two types of polyester polymers having different melt viscosities according to the present invention may be any joining as long as a good stretch property is exhibited when a composite fiber is formed. A side-by-side type or an eccentric core-sheath type is preferably used, and a side-by-side type is more preferably used to obtain a high stretchability.
The joining ratio (mass ratio) W of the polyester polymer (A) / polyester polymer (B) at the time of composite spinning is preferably 4/6 <W <6/4 in order to give a crimp expression in the form of the composite fiber. . If the joining ratio is out of the above range, the yarn-forming property tends to be lowered, and the crimping ability in the form of the composite fiber tends to be insufficient.

また本発明では、ポリエステルポリマー(A)とポリエステルポリマー(B)を複合紡糸するときの紡糸時の引取速度は、未延伸糸の配向度を比較的低く抑え、延伸での繊維軸方向での太細斑の形成を容易にするために2500m/分以下とすることが必要である。引取速度が2500m/分を超えると、未延伸糸の配向度が高くなり、太細斑の形成が困難となる。未延伸糸の延伸は、前記式(2)〜(6)を満足する条件で、加熱ローラーで2段延伸することが必要である。
前記式(2)において、DR1がMDR×0.45未満では、十分な捲縮発現力が得られず、MDR×0.65を超えると、マルチフィラメント繊維の単繊維間に太細斑の形成が困難となり、本発明の目的とする膨らみ感を得ることが困難となる。
また、前記式(3)において、DR2が1.000未満であると、DR1で形成された単繊維間の太細斑が局在化されスラブ調の外観になり、また、1.300を超えても同様に太細斑が局在化するため単繊維間に太細斑が分散せず、目的とする膨らみが得られない。このため、前記式(4)にあるように、DR1>DR2であることが必要である。DR2がDR1を超える場合DR1で形成された単繊維間の太細斑が延伸により局在化するため、スラブ調の外観となり、単繊維間に太細斑を分散させて膨らみを発現させることが困難となる。
In the present invention, the take-up speed at the time of spinning when the polyester polymer (A) and the polyester polymer (B) are composite-spun is such that the orientation degree of the undrawn yarn is kept relatively low, and the thickness in the fiber axis direction during drawing is reduced. In order to facilitate the formation of fine spots, it is necessary to set it to 2500 m / min or less. When the take-up speed exceeds 2500 m / min, the degree of orientation of the undrawn yarn becomes high and it becomes difficult to form thick spots. The unstretched yarn needs to be stretched in two stages with a heating roller under the conditions satisfying the formulas (2) to (6).
In the formula (2), if DR1 is less than MDR × 0.45, sufficient crimp expression cannot be obtained, and if it exceeds MDR × 0.65, formation of thick spots between single fibers of multifilament fibers It becomes difficult to obtain the swell feeling that is the object of the present invention.
Further, in the above formula (3), when DR2 is less than 1.000, thick spots between single fibers formed with DR1 are localized to have a slab-like appearance, and exceed 1.300. However, since the thick spots are localized in the same manner, the thick spots are not dispersed between the single fibers, and the desired bulge cannot be obtained. For this reason, it is necessary that DR1> DR2 as in the equation (4). When DR2 exceeds DR1, the thick and thin spots between the single fibers formed with DR1 are localized by stretching, so that a slab-like appearance is obtained, and the thick spots are dispersed between the single fibers to develop swelling. It becomes difficult.

二次転移点は前記式(5)にあるように、TDR1はTg≦TDR1≦Tcであり、かつ、前述の式(2)の条件により未延伸糸の延伸のネック点発生が1段目延伸ローラー上に存在することでネック点が分散し単繊維間で太細のバラツキを発生させることができる。TDR1がTg未満、またはTcを超えると延伸のネック点発生の分散性不良となり、得られる太細糸はスラブ調の外観となるため本発明の目的とする糸が得られない。
また、前記式(6)にあるように、TDR2がTg+20℃未満では、得られる繊維の配向度が低く強度不十分となり、Tcを超えると単繊維の太部と細部が局在化し、マルチフィラメント繊維として太部と細部が局在化したスラブ調の繊維になる。
さらに本発明では、延伸は加熱ローラーで行うことが必要であり、熱ピンによる延伸では延伸点が熱ピン上に固定され、単繊維の太部と細部が局在化するため、マルチフィラメント繊維として太部と細部が局在化したスラブ調の繊維となる。
As shown in the above formula (5), the secondary transition point TDR1 is Tg ≦ TDR1 ≦ Tc, and the neck point generation of the undrawn yarn is generated in the first stage under the condition of the above formula (2). By being on the roller, the neck point is dispersed, and thick and thin variations can be generated between the single fibers. When TDR1 is less than Tg or exceeds Tc, the dispersibility is poor due to the occurrence of a neck point in stretching, and the resulting thick and fine yarn has a slab-like appearance, so that the intended yarn of the present invention cannot be obtained.
Further, as shown in the above formula (6), when TDR2 is less than Tg + 20 ° C., the degree of orientation of the obtained fiber is low and the strength is insufficient, and when Tc is exceeded, the thick part and details of the single fiber are localized, and the multifilament The fiber becomes a slab-like fiber with thick parts and details localized.
Furthermore, in the present invention, the drawing needs to be performed with a heating roller. In the drawing with a heat pin, the drawing point is fixed on the heat pin, and the thick part and details of the single fiber are localized. It becomes a slab-like fiber with thick parts and details localized.

また、本発明のカチオン可染性ポリエステル繊維またはこれを含む繊維からなる織編物は、ポリエステル複合マルチフィラメント繊維を含み、織物収縮率(LC)が20〜40%であることが必要である。LCが20%未満であると十分なストレッチ性を得ることができない。40%を超えると織編物とした際の形態が安定しない。
なお、これらの織編物は、例えば、上記本発明で得られたポリエステル複合マルチフィラメント繊維を、例えば該繊維を単独及び/または混繊した後、公知の方法により織編物とし、染色処理することによって得ることができる。
Further, the woven or knitted fabric made of the cationic dyeable polyester fiber of the present invention or a fiber containing the same needs to contain a polyester composite multifilament fiber and have a fabric shrinkage (LC) of 20 to 40%. If the LC is less than 20%, sufficient stretch properties cannot be obtained. If it exceeds 40%, the form of the knitted or knitted fabric is not stable.
These woven and knitted fabrics are obtained by, for example, subjecting the polyester composite multifilament fibers obtained in the present invention to a woven or knitted fabric by a known method after dyeing and / or blending the fibers and dyeing the fibers. Obtainable.

以下、本発明を実施例を挙げて具体的に説明する。なお、実施例における特性値の評価は次の方法によって拠った。
(単繊維径の比(太細比))
マルチフィラメント繊維の長手方向の任意の位置で、光学顕微鏡により断面を観察、単繊維径を測定し、単繊維径の最も太い部分と最も細い部分の単繊維径の比を求めた。
(糸全体としての太さ斑の変動係数(CV))
計測器工業(株)製糸斑試験機KET80Cを用い、糸速15m/分、レンジ±12.5%、ノーマルモードの条件で糸の太さの変動係数CV(%)を測定した。
Hereinafter, the present invention will be specifically described by way of examples. In addition, evaluation of the characteristic value in an Example depended on the following method.
(Single fiber diameter ratio (thickness ratio))
The cross section was observed with an optical microscope at an arbitrary position in the longitudinal direction of the multifilament fiber, the single fiber diameter was measured, and the ratio of the single fiber diameter of the thickest part to the thinnest part was determined.
(Coefficient of variation of thickness variation as a whole thread (CV))
The variation coefficient CV (%) of the thickness of the yarn was measured under the conditions of a yarn speed of 15 m / min, a range of ± 12.5%, and a normal mode, using a measuring instrument industry Co., Ltd. yarn unevenness tester KET80C.

(捲縮率CC)
サンプル原糸を枠周1mで巻き数10回の綛を作成し、綛が乱れないように2ヶ所を束ねてくくり、8の字状にして2つ折に重ねて輪にすることを2回繰り返し、ガーゼに包み水浴に浸したときに浮かないように金網箱に入れ、90℃に調整した恒温槽に20分間浸漬する。恒温槽から金網箱を取り出し、水を切り綛が乱れない様に濾紙の上に並べる。20時間以上放置し、自然乾燥した後に捲縮を引き伸ばさない様に注意しながら、余分な絡まりをほぐす。表示デシテックス(1.1dtex)当り49/25000cN×20の初荷重を掛け1分後の長さ(L0)を測る。初荷重を除重後に表示デシテックス当りの49/500cN×20の測定荷重を掛けて1分後の長さ(L1)を測り、除重後2分間放置して再び初荷重を掛けて1分後の長さ(L2)を測る。捲縮率CCは下記式により算出する。
捲縮率CC(%)=(L1−L2)/L1×100
(Crimping rate CC)
Create a cocoon of sample yarn with a winding of 10 turns with a frame circumference of 1 m, wrap two places so that the cocoon does not get disturbed, repeat the process twice, making it into a figure of 8 and folding it into two. Then, wrap in gauze, put in a wire mesh box so that it will not float when immersed in a water bath, and immerse in a thermostat adjusted to 90 ° C. for 20 minutes. Remove the wire mesh box from the thermostatic chamber, drain the water, and place it on the filter paper so that the bottle does not get disturbed. Leave it for 20 hours or more and let it dry naturally and loosen any excess entanglement, taking care not to stretch the crimp. Apply an initial load of 49/25000 cN × 20 per display decitex (1.1 dtex) and measure the length (L0) after 1 minute. After weighing the initial load, apply a measurement load of 49/500 cN × 20 per display decitex, measure the length (L1) after 1 minute, leave it for 2 minutes after dewetting, and then reapply the initial load and 1 minute later Measure the length (L2). The crimp rate CC is calculated by the following formula.
Crimp rate CC (%) = (L1-L2) / L1 × 100

(伸度(DE))
島津製作所(株)製オートグラフシステムSD−100−Cを用い、サンプル長20cm、引張速度20m/分の条件で測定した。
(織物収縮率(LC))
サンプル原糸を撚係数K=100(T=K×√D Tは1m当りの撚数、Dはサンプル原糸の繊度)の条件で加撚を施し、温度70℃、湿度90%RHの条件下で40分間セットした糸を緯糸として、該サンプル糸の繊度(D)から打ち込み本数(本/cm)=311.1/√Dで算出される打込み本数で、縦糸密度39.6本/cmに設定された56dtex18フィラメントの原糸を経糸として製織した後、織物緯糸方向に長さ1mの間隔で印を付け(L0)緯糸に平行に10cm幅のサンプル布を切り出し、130度℃×30分間、熱水処理する。熱水処理したサンプル布を風乾後、片端を固定して垂直に垂らし、下方の他端に0.45g/dtexの荷重をかけ、先に付けた印の間隔(L1)を測定し、織物収縮率(LC)=(L0−L1)/L0×100で算出した。
(Elongation (DE))
Using an autograph system SD-100-C manufactured by Shimadzu Corporation, measurement was performed under the conditions of a sample length of 20 cm and a tensile speed of 20 m / min.
(Textile shrinkage (LC))
Sample yarn is twisted under the conditions of twisting coefficient K = 100 (T = K × √D T is the number of twists per meter, D is the fineness of the sample yarn), temperature 70 ° C., humidity 90% RH The weft yarn set for 40 minutes below is used as the weft yarn, and the warp yarn density is 39.6 yarns / cm with the number of yarns driven (number / cm) = 311.1 / √D from the fineness (D) of the sample yarn. After weaving 56 dtex 18 filament yarn set as warp as warp, mark it at 1 m length in the weft direction of the fabric (L0), cut out a 10 cm width sample cloth parallel to the weft, 130 degrees C x 30 minutes , Hot water treatment. After air-drying the sample fabric treated with hot water, one end is fixed and hung vertically, a load of 0.45 g / dtex is applied to the other lower end, the distance (L1) between the marks on the tip is measured, and the fabric shrinks The ratio (LC) = (L0−L1) / L0 × 100.

(溶融粘度(Vi))
ポリマーを120℃で8時間、真空乾燥した後に、キャピログラフ(東洋精機製 1−B型)を用い、キャピラリー長10mm、直径1.0mmのキャピラリーにて、温度280℃、シェアレート2.432×10-3(秒-1)にて溶融粘度Vi(poise)を測定した。
(織物風合)
織物収縮率の測定に用いた湿熱処理後のサンプル布の引張り弾性を触感による官能テストにより次の基準で評価した。
○:伸長、反発弾性が共に非常に良好。
△:伸長、反発弾性が共に良好。
×:伸長、反発弾性が共に不十分。
(織物外観)
織物収縮率の測定に用いた湿熱処理後のサンプル布を分散染料Color.Index Basic Blue 117を1.0 o.w.f%、染色温度130℃にて染色し、織物の外観を目視で次の基準にて評価した。
○:スラブ外観が無く、織物としてプレーンな外観。
×:スラブ調の外観、太部、細部に起因した濃淡が発生。
(Melt viscosity (Vi))
After the polymer was vacuum-dried at 120 ° C. for 8 hours, using a capillograph (1-B type manufactured by Toyo Seiki Co., Ltd.), a capillary having a capillary length of 10 mm and a diameter of 1.0 mm, a temperature of 280 ° C. and a share rate of 2.432 × 10 The melt viscosity Vi (poise) was measured at -3 (second -1 ).
(Textile texture)
The tensile elasticity of the sample fabric after the wet heat treatment used for the measurement of the fabric shrinkage was evaluated by the following criteria by a sensory test based on tactile sensation.
○: Both elongation and impact resilience are very good.
Δ: Both elongation and impact resilience are good.
X: Both elongation and impact resilience are insufficient.
(Textile appearance)
The sample fabric after the wet heat treatment used for the measurement of the fabric shrinkage rate was dispersed dye Color. Index Basic Blue 117 1.0 o. w. The fabric was dyed at f% and a dyeing temperature of 130 ° C., and the appearance of the fabric was visually evaluated according to the following criteria.
○: There is no slab appearance and a plain appearance as a fabric.
X: Light and shade due to slab-like appearance, thick part, and details are generated.

(実施例1)
5−ナトリウムスルホイソフタル酸(DMS)1.5モル%、アジピン酸10モル%をポリエチレンテレフタレートに共重合した溶融粘度Via=1.10×10-3poiseの共重合ポリエチレンテレフタレートをポリマー(A)、Vib=7.44×10-3poiseのポリエチレンテレフタレートをポリマー(B)とし、紡糸温度を280℃とし、紡糸吐出孔の上流で2種のポリマー流を面対称に合流させ、接合比(重量比)5/5で、孔径0.3mm、長さ1.5mmの細孔の吐出孔を36個有する複合紡糸口金より紡出した。この紡出糸条を冷却、オイリング後、1800m/分の引取速度で巻き取り、102dtex/36フィラメントの複合繊維の未延伸糸を得た。
得られた未延伸糸を表1に示す条件で延伸して63dtex/36フィラメントのポリエステル複合マルチフィラメント繊維の延伸糸を得た。表1に得られたカチオン可染性ポリエステル複合マルチフィラメント繊維の評価結果を示した。
Example 1
Copolymer polyethylene terephthalate having a melt viscosity Via = 1.10 × 10 −3 poise obtained by copolymerizing 1.5 mol% of 5-sodium sulfoisophthalic acid (DMS) and 10 mol% of adipic acid with polyethylene terephthalate, polymer (A), Vib = 7.44 × 10 −3 poise of polyethylene terephthalate is the polymer (B), the spinning temperature is 280 ° C., the two polymer streams are joined in plane symmetry upstream of the spinning discharge hole, and the joining ratio (weight ratio) ) 5/5, spun from a composite spinneret having 36 discharge holes having a pore diameter of 0.3 mm and a length of 1.5 mm. The spun yarn was cooled and oiled, and then wound at a take-up speed of 1800 m / min to obtain a 102 dtex / 36 filament composite fiber undrawn yarn.
The obtained undrawn yarn was drawn under the conditions shown in Table 1 to obtain a drawn yarn of 63 dtex / 36 filament polyester composite multifilament fiber. Table 1 shows the evaluation results of the cationic dyeable polyester composite multifilament fibers obtained.

(実施例2)
実施例1において用いたものと同様のポリマーを用い、同様の紡糸条件で、吐出孔を48個有する複合紡糸口金で、117dtex/48フィラメントの未延伸糸を得た。
得られた未延伸糸を、表1に示す条件で延伸して82dtex/48フィラメントのポリエステル複合マルチフィラメント繊維を得た。表1に得られたカチオン可染性ポリエステル複合マルチフィラメント繊維延伸糸の評価結果を示した。
(Example 2)
An undrawn yarn of 117 dtex / 48 filaments was obtained using a composite spinneret having 48 discharge holes under the same spinning conditions using the same polymer as that used in Example 1.
The obtained undrawn yarn was drawn under the conditions shown in Table 1 to obtain a 82 dtex / 48 filament polyester composite multifilament fiber. Table 1 shows the evaluation results of the cationic dyeable polyester composite multifilament fiber drawn yarns obtained.

(比較例1)
実施例1において未延伸糸繊度を115dtex/36フィラメントと変更した外は実施例1と同様の紡糸条件で未延伸糸を得た。
得られた未延伸糸を、表1に示す条件で延伸して62dtex/36フィラメントのポリエステル複合マルチフィラメント繊維を得た。表1に得られたカチオン可染性ポリエステル複合マルチフィラメント繊維の評価結果を示した。得られたポリエステル複合マルチフィラメント繊維はCVが大きく、織物にスラブ外観があり、スラブの太部と細部で収縮差があり、膨らみ感に欠け、衣料用として強度が劣るものとなった。
(Comparative Example 1)
An undrawn yarn was obtained under the same spinning conditions as in Example 1, except that the undrawn yarn fineness was changed to 115 dtex / 36 filament in Example 1.
The obtained undrawn yarn was drawn under the conditions shown in Table 1 to obtain a 62 dtex / 36 filament polyester composite multifilament fiber. Table 1 shows the evaluation results of the cationic dyeable polyester composite multifilament fibers obtained. The obtained polyester composite multifilament fiber had a large CV, the woven fabric had a slab appearance, there was a difference in shrinkage between the thick part and the details of the slab, lacked a feeling of swelling, and the strength was inferior for clothing.

(比較例2)
表1に示した延伸条件に変えた外は実施例2と同様にして、カチオン可染性ポリエステル複合マルチフィラメント繊維を得た。スラブ調の外観は無いが、最も太い単繊維と最も細い単繊維の単繊維径の比が小さく、膨らみ感に欠ける風合となった。
(Comparative Example 2)
A cationic dyeable polyester composite multifilament fiber was obtained in the same manner as in Example 2 except that the drawing conditions were changed to those shown in Table 1. Although there was no slab-like appearance, the ratio of the single fiber diameter of the thickest single fiber to the thinnest single fiber was small, resulting in a feeling of lack of swelling.

Figure 2006169649
Figure 2006169649

Claims (4)

溶融粘度の異なる2種のポリエステルポリマーを接合した複合マルチフィラメントからなる繊維であって、マルチフィラメント繊維を構成する単繊維が繊維軸方向に太細斑を有し、マルチフィラメント繊維中の任意の断面における最も太い単繊維と最も細い単繊維の単繊維径の比が1.2〜2.4であり、強度が2.0cN/dtex以上であることを特徴とするカチオン染料可染性ポリエステル複合マルチフィラメント繊維。   A fiber composed of a composite multifilament in which two types of polyester polymers having different melt viscosities are joined, and the single fiber constituting the multifilament fiber has thick spots in the fiber axis direction, and an arbitrary cross section in the multifilament fiber The ratio of the single fiber diameter of the thickest single fiber to the thinnest single fiber is 1.2 to 2.4, and the strength is 2.0 cN / dtex or more. Filament fiber. マルチフィラメント繊維としての太さ斑の変動係数(CV)が0.30〜1.20、捲縮率(CC)が20〜45%である請求項1記載のカチオン染料可染性ポリエステル繊維。   The cationic dyeable dyeable polyester fiber according to claim 1, wherein the coefficient of variation (CV) of thickness spots as a multifilament fiber is 0.30 to 1.20, and the crimp ratio (CC) is 20 to 45%. 溶融粘度Via≧8.3×102poiseのカチオン染料可染性ポリエステルポリマーと、粘度Vib≦8.0×102poise(Via、VibはそれぞれA、Bポリマーの温度280℃、シェアレート2.43×103(秒-1)のときの溶融粘度を示す。)のポリエステルポリマーを、2500m/分以下の引取速度で紡糸した接合型複合繊維の未延伸糸を、下記の式(2)〜(6)を満足する条件下で加熱ローラー延伸することを特徴とするカチオン染料可染性ポリエステル複合マルチフィラメント繊維の製造方法。
Via−Vib>3.0×102poise (1)
MDR×0.45≦DR1≦MDR×0.65 (2)
1.000≦DR2≦1.300 (3)
DR1>DR2 (4)
Tg≦TDR1≦Tc (5)
Tg+20℃≦TDR2≦Tc (6)
(但し、式中、Via、Vibは前記に同じ、MDRは延伸温度85℃における未延伸糸の最大延伸倍率を表す。DR1は1段目延伸倍率、DR2は2段目延伸倍率、TDR1は1段目延伸におけるローラー温度、TDR2は2段目延伸における熱セット温度、Tgは未延伸糸のガラス転移温度(℃)、Tcは未延伸糸の結晶化温度(℃)を示す。なお、複合繊維の未延伸糸の結晶化温度、ガラス転移温度がそれぞれ2点測定される場合は、低い方の温度を結晶化温度、高い方の温度をガラス転移温度とする。)
A cationic dye-dyeable polyester polymer having a melt viscosity Via ≧ 8.3 × 10 2 poise and a viscosity Vib ≦ 8.0 × 10 2 poise (Via and Vib are A and B, respectively, temperature 280 ° C. and share rate 2. The unstretched yarn of the joint type composite fiber obtained by spinning the polyester polymer of 43 × 10 3 (second −1 ) at a take-up speed of 2500 m / min or less is represented by the following formula (2) to A method for producing a cationic dye-dyeable polyester composite multifilament fiber, characterized in that heating roller drawing is performed under a condition satisfying (6).
Via-Vib> 3.0 × 10 2 poise (1)
MDR × 0.45 ≦ DR1 ≦ MDR × 0.65 (2)
1.000 ≦ DR2 ≦ 1.300 (3)
DR1> DR2 (4)
Tg ≦ TDR1 ≦ Tc (5)
Tg + 20 ° C. ≦ TDR2 ≦ Tc (6)
(In the formula, Via and Vib are the same as described above, MDR represents the maximum draw ratio of the undrawn yarn at a draw temperature of 85 ° C. DR1 is the first-stage draw ratio, DR2 is the second-stage draw ratio, and TDR1 is 1. Roller temperature in the stage drawing, TDR2 is the heat setting temperature in the second stage drawing, Tg is the glass transition temperature (° C.) of the undrawn yarn, and Tc is the crystallization temperature (° C.) of the undrawn yarn. When the crystallization temperature and the glass transition temperature of each undrawn yarn are measured at two points, the lower temperature is the crystallization temperature and the higher temperature is the glass transition temperature.)
請求項1記載のカチオン染料可染性ポリエステル複合マルチフィラメント繊維を含み、織編物収縮率(LC)が20〜40%であることを特徴とする織編物。
A woven or knitted fabric comprising the cationic dyeable polyester composite multifilament fiber according to claim 1 and having a woven / knitted fabric shrinkage (LC) of 20 to 40%.
JP2004360445A 2004-12-13 2004-12-13 Cationic dye-dyeable polyester yarn and method for producing the same Pending JP2006169649A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004360445A JP2006169649A (en) 2004-12-13 2004-12-13 Cationic dye-dyeable polyester yarn and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004360445A JP2006169649A (en) 2004-12-13 2004-12-13 Cationic dye-dyeable polyester yarn and method for producing the same

Publications (1)

Publication Number Publication Date
JP2006169649A true JP2006169649A (en) 2006-06-29

Family

ID=36670697

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004360445A Pending JP2006169649A (en) 2004-12-13 2004-12-13 Cationic dye-dyeable polyester yarn and method for producing the same

Country Status (1)

Country Link
JP (1) JP2006169649A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009069641A1 (en) 2007-11-26 2009-06-04 The University Of Tokyo Cellulose nanofiber and process for production thereof, and cellulose nanofiber dispersion
JP2010024600A (en) * 2008-07-24 2010-02-04 Teijin Fibers Ltd Core-sheath composite yarn, fabric and clothing
CN108625025A (en) * 2017-03-21 2018-10-09 东丽纤维研究所(中国)有限公司 A kind of imitative cotton machine knitted fabric
KR20220021477A (en) * 2019-12-24 2022-02-22 지앙수 헝리 케미컬 파이버 컴퍼니 리미티드 Single process CDP/PET two-component composite yarn and manufacturing method thereof

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009069641A1 (en) 2007-11-26 2009-06-04 The University Of Tokyo Cellulose nanofiber and process for production thereof, and cellulose nanofiber dispersion
JP2010024600A (en) * 2008-07-24 2010-02-04 Teijin Fibers Ltd Core-sheath composite yarn, fabric and clothing
CN108625025A (en) * 2017-03-21 2018-10-09 东丽纤维研究所(中国)有限公司 A kind of imitative cotton machine knitted fabric
KR20220021477A (en) * 2019-12-24 2022-02-22 지앙수 헝리 케미컬 파이버 컴퍼니 리미티드 Single process CDP/PET two-component composite yarn and manufacturing method thereof
KR102482996B1 (en) 2019-12-24 2022-12-29 지앙수 헝리 케미컬 파이버 컴퍼니 리미티드 Single process CDP/PET bicomponent composite yarn and its manufacturing method

Similar Documents

Publication Publication Date Title
JP4870795B2 (en) Manufacturing method of composite fiber
KR20010049484A (en) Soft Stretch Yarns and Process for the Preparation Thereof
JP3473890B2 (en) Polyester composite fiber
JP3545749B2 (en) Worsted-like fabric and method for producing the same
JP4602856B2 (en) Latent crimped polyester composite fiber
JP3736298B2 (en) Blended yarn
JP2006169649A (en) Cationic dye-dyeable polyester yarn and method for producing the same
JP2001288621A (en) Polyester-based conjugate fiber
JP2006249585A (en) Conjugated textured yarn and woven or knitted fabric thereof
JP3802471B2 (en) Polyester composite multifilament fiber, production method thereof, and woven / knitted fabric thereof
JP3892799B2 (en) Manufacturing method of woven and knitted fabric
JP4123646B2 (en) Polyester fiber yarn and fabric
JP6948048B2 (en) Latent crimpable composite fiber
JP3621293B2 (en) Multicolor partially fused false twisted yarn and method for producing the same
JPH0651925B2 (en) Fiber with special cross-sectional shape
JP2005113309A (en) Modified cross-section polytrimethylene terephthalate fiber
JP2002129433A (en) Highly strechable polyester-based conjugated fiber
JP3061271B2 (en) Polyester thick composite fiber yarn and method for producing the same
JP4357198B2 (en) Polyester multifilament fiber and method for producing the same
JP3515508B2 (en) Dark-woven knitted fabric containing polyester twist yarn
JP2000136440A (en) Latent crimp-expressing polyester fiber and its production
JP4866109B2 (en) False twisted yarn
JP2000248430A (en) Latent crimp-expressing polyester fiber and production
JP2001214335A (en) Low-shrinkage polyester slub yarn and combined polyester filament yarn composed thereof
JP3437945B2 (en) Polyester composite fiber and method for producing the same