JP2007016273A - Hierarchical surface reforming process of austenitic stainless steel component - Google Patents

Hierarchical surface reforming process of austenitic stainless steel component Download PDF

Info

Publication number
JP2007016273A
JP2007016273A JP2005198219A JP2005198219A JP2007016273A JP 2007016273 A JP2007016273 A JP 2007016273A JP 2005198219 A JP2005198219 A JP 2005198219A JP 2005198219 A JP2005198219 A JP 2005198219A JP 2007016273 A JP2007016273 A JP 2007016273A
Authority
JP
Japan
Prior art keywords
nitrogen
gas
stainless steel
austenitic stainless
carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005198219A
Other languages
Japanese (ja)
Inventor
Hirotsugu Takeuchi
博次 竹内
Keiji Tamamoto
圭司 玉本
Hiroshi Nagata
浩 永田
Tomoya Kitada
智也 北田
Masatoshi Futagawa
正敏 二川
Takashi Naoe
崇 直江
Hiroyuki Konakawa
広行 粉川
Yujiro Ikeda
裕二郎 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Atomic Energy Agency
NDK Inc
Original Assignee
Nihon Denshi Kogyo KK
Japan Atomic Energy Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nihon Denshi Kogyo KK, Japan Atomic Energy Agency filed Critical Nihon Denshi Kogyo KK
Priority to JP2005198219A priority Critical patent/JP2007016273A/en
Publication of JP2007016273A publication Critical patent/JP2007016273A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a complex plasma surface reforming process by which the surface hardness is enhanced without deteriorating corrosion resistance of austenitic stainless steel and the wear resistance is improved by making a hardened layer deeper; and a process for successively performing the penetration-diffusion of each of carbon and nitrogen by using plasma. <P>SOLUTION: A hierarchical surface reforming process comprises a low temperature carbon penetration-diffusion process for penetrating and diffusing carbon into an austenite phase by applying glow discharge to a material 22 to be treated of austenitic stainless steel in a gaseous hydrocarbon atmosphere in a vacuum vessel 11 and a low temperature nitrogen penetration-diffusion process for penetrating and diffusing nitrogen into the austenite phase by using glow discharge in a nitrogen atmosphere in the same vacuum vessel 11, which is performed successively after the carbon penetration-diffusion process. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

この発明は、オーステナイト系ステンレス鋼部品の耐食性を損なわずに表面硬さを高くし、かつ硬化層を深くする階層表面改質法に関する。   The present invention relates to a hierarchical surface modification method for increasing surface hardness and deepening a hardened layer without impairing the corrosion resistance of austenitic stainless steel parts.

従来、オーステナイト系ステンレス鋼部品の耐摩耗性を向上させる方法としては、例えば非特許文献1に示すようにプラズマ浸炭の技術、および非特許文献2に記載のプラズマ窒化の技術により表面硬さを高くする表面改質方法が広く行われている。
しかし、処理温度が高く、プラズマ浸炭ではクロム炭化物、プラズマ窒化ではクロム窒化物が析出し、表面の不働体皮膜が除去され、オーステナイト系ステンレス鋼のもつ耐食性が損なわれることは周知の事実である。
また耐食性を損なわない表面改質方法として400℃程度の温度を用いて行われる浸炭法(非特許文献3)、および窒化法(非特許文献4)がある。
しかしながら上記低温浸炭では表面硬さは高いが、硬化層が浅い、例えば非特許文献3の例では低温浸炭では表面硬さは高いが、硬化層が浅い、例えば非特許文献3の例では表面硬さは1000程度(HV)であるが、硬化層の深さは4〜40μm程度である。また、例えば非特許文献4の例では低温窒化では表面硬さは290〜460(HV)、硬化層の深さは2〜5μm程度であるという欠点がある。
Conventionally, as a method of improving the wear resistance of austenitic stainless steel parts, for example, as shown in Non-Patent Document 1, the surface hardness is increased by the plasma carburizing technique and the plasma nitriding technique described in Non-Patent Document 2. Surface modification methods are widely used.
However, it is a well-known fact that the processing temperature is high, chromium carbide precipitates in plasma carburization, chromium nitride precipitates in plasma nitriding, the passive film on the surface is removed, and the corrosion resistance of austenitic stainless steel is impaired.
Moreover, there are a carburizing method (Non-Patent Document 3) and a nitriding method (Non-Patent Document 4) performed using a temperature of about 400 ° C. as surface modification methods that do not impair the corrosion resistance.
However, the surface hardness is high in the low-temperature carburization, but the hardened layer is shallow. For example, in the example of Non-Patent Document 3, the surface hardness is high in low-temperature carburizing, but the hardened layer is shallow, for example, in the example of Non-Patent Document 3, the surface hardness is high. The thickness is about 1000 (HV), but the depth of the hardened layer is about 4 to 40 μm. Further, for example, in the example of Non-Patent Document 4, there is a drawback that the surface hardness is 290 to 460 (HV) and the depth of the hardened layer is about 2 to 5 μm at low temperature nitriding.

表面技術第105回講演大会講演要旨集 2002,03.04 P120〜121Summary of Surface Technology 105th Conference 2002,03.04 P120 ~ 121 イオン窒化法 日刊工業新聞社 昭和51年7月10日 P51〜57Ion nitriding method Nikkan Kogyo Shimbun July 10, 1976 P51-57 Thermochemical Surface Engineering of Stainless Steel (Reprinted from Surface Engineering 1999,15(1),P49〜54)Thermochemical Surface Engineering of Stainless Steel (Reprinted from Surface Engineering 1999, 15 (1), P49-54) 熱処理25巻4号 昭和60年8月 P191〜195Heat treatment Vol.25 No.4 August 1985 P191〜195

この発明の課題は、オーステナト系ステンレス鋼の耐食性を損なわずに表面硬さを高くし、かつ硬化層を深くして耐摩耗性を向上させる階層プラズマ表面改質法および連続的にプラズマにより炭素および窒素の浸透拡散を行う装置の提供にある。   The object of the present invention is to increase the surface hardness without impairing the corrosion resistance of the austenitic stainless steel, and to deepen the hardened layer to improve the wear resistance and to continuously improve the carbon and carbon by plasma. An object of the present invention is to provide an apparatus for osmotic diffusion of nitrogen.

本発明は、真空容器内において炭化水素系ガス雰囲気中でオーステナイト系ステンレス鋼部品にグロー放電を用いて炭素をオーステナイト相に浸透拡散させる低温炭素浸透拡散工程と、同じ真空容器内で、連続して窒素雰囲気中でグロー放電を用いて窒素をオーステナイト相に浸透拡散さる低温窒素浸透拡散工程とよりなり、オーステナイト系ステンレス鋼部品の耐食性を損なわずに表面硬さを高くし、かつ硬化層を深くすることを特徴とする。
また、上記低温浸透拡散工程は、1Pa〜2.6kPaに保持した真空容器内で、炭素の浸透拡散はメタンガス、プロパンガス、アセチレンガスなどの炭化水素系ガスを用い、希釈ガスとしてアルゴンガス、又は水素ガスを用いると共に、低温窒素浸透拡散工程は、窒素の浸透拡散は窒素ガスを用い、希釈ガスとしてアルゴンガス、又は水素ガスを用いることを特徴とする。
更に前記低温炭素浸透拡散工程として用いる炭化水素系ガス濃度は1〜3%程度とすることが好ましく、また低温窒素浸透拡散工程として用いる窒素ガス濃度は10〜30%程度とすることが好ましい。更に、前記低温炭素浸透拡散工程において、炭素の浸透拡散温度は400〜450℃とし、低温窒素浸透拡散工程として、窒素の浸透拡散温度は380〜420℃とすることが好ましい。
The present invention includes a low-temperature carbon permeation diffusion step in which carbon is infiltrated and diffused into an austenitic phase using glow discharge in an austenitic stainless steel part in a hydrocarbon-based gas atmosphere in a vacuum vessel, and continuously in the same vacuum vessel. It consists of a low temperature nitrogen permeation diffusion process in which nitrogen is permeated and diffused into the austenite phase using glow discharge in a nitrogen atmosphere, increasing the surface hardness and deepening the hardened layer without impairing the corrosion resistance of the austenitic stainless steel parts. It is characterized by that.
The low temperature permeation diffusion step is performed in a vacuum vessel maintained at 1 Pa to 2.6 kPa, and carbon permeation diffusion uses a hydrocarbon gas such as methane gas, propane gas, and acetylene gas, and argon gas as a dilution gas, or In addition to using hydrogen gas, the low-temperature nitrogen permeation diffusion step uses nitrogen gas for nitrogen permeation diffusion and uses argon gas or hydrogen gas as a dilution gas.
Further, the hydrocarbon gas concentration used in the low temperature carbon permeation diffusion step is preferably about 1 to 3%, and the nitrogen gas concentration used in the low temperature nitrogen permeation diffusion step is preferably about 10 to 30%. Further, in the low temperature carbon permeation diffusion step, the carbon permeation diffusion temperature is preferably 400 to 450 ° C., and in the low temperature nitrogen permeation diffusion step, the nitrogen permeation diffusion temperature is preferably 380 to 420 ° C.

本発明は、上述のように、真空容器内において炭化水素系ガス雰囲気中でオーステナイト系ステンレス鋼部品にグロー放電を用いて炭素をオーステナイト相に浸透拡散させる低温炭素浸透拡散工程と、同じ真空容器内で、連続して窒素雰囲気中でグロー放電を用いて窒素をオーステナイト相に浸透拡散さる低温窒素浸透拡散工程とよりなり、低温処理であるためプラズマ浸炭ではクロム炭化物、プラズマ窒化ではクロム窒化物の析出をすることを防止出来、オーステナイト系ステンレス鋼部品の耐食性を損なわずに表面硬さを高くし、かつ硬化層を深くすることができる。
即ち、この発明のプラズマ階層表面加工法は、炭化水素系ガスが少なくとも水素ガスで希釈される雰囲気の中にオーステナイト系ステンレス鋼部品をセットし、そして、その温度が400〜450℃を保持し、その炭化水素ガスを1〜3%の濃度に保ちながらグロー放電により表面より炭素を浸透拡散させた後、その温度が380〜420℃を保持し、窒素ガスを10〜30%の濃度に保ちながらグロー放電により表面より窒素を浸透拡散させ、炭素および窒素をオーステナイト相に固溶させることにより、クロム炭化物およびクロム窒化物が析出されず、耐食性を損なわず、表面硬さを高くし、硬化層を深くさせるので、省エネルギー化が容易で環境にも低負荷になり、自動車部品、機械部品、電気部品に使用出来等優れた効果を有する。
As described above, the present invention includes a low-temperature carbon permeation diffusion step in which carbon is infiltrated and diffused into an austenitic phase using glow discharge in an austenitic stainless steel part in a hydrocarbon-based gas atmosphere in a vacuum vessel, as described above. It consists of a low-temperature nitrogen permeation diffusion process in which nitrogen is continuously permeated and diffused into the austenite phase using a glow discharge in a nitrogen atmosphere. Since this is a low-temperature treatment, chromium carbide is precipitated in plasma carburizing and chromium nitride is precipitated in plasma nitriding. The surface hardness can be increased and the hardened layer can be deepened without impairing the corrosion resistance of the austenitic stainless steel part.
That is, in the plasma hierarchical surface processing method of the present invention, the austenitic stainless steel part is set in an atmosphere in which the hydrocarbon-based gas is diluted with at least hydrogen gas, and the temperature is maintained at 400 to 450 ° C. While carbon is permeated and diffused from the surface by glow discharge while maintaining the hydrocarbon gas at a concentration of 1 to 3%, the temperature is maintained at 380 to 420 ° C. and the nitrogen gas is maintained at a concentration of 10 to 30%. Nitrogen penetrates and diffuses from the surface by glow discharge, and carbon and nitrogen are dissolved in the austenite phase, so that chromium carbide and chromium nitride are not precipitated, corrosion resistance is not impaired, surface hardness is increased, and a hardened layer is formed. Since it is deepened, it is easy to save energy and has a low environmental impact, and has excellent effects such as being usable for automobile parts, machine parts, and electrical parts.

以下、本発明を実施するための最良の形態を図面に基づき、詳細に説明する
図1は、この発明のプラズマ階層表面加工法を行うところのプラズマ階層表面改質装置10を図式的に示す。
このプラズマ階層表面加工装置10は、真空容器11、真空排気装置12、ガス供給装置13、直流プラズマ電源14および操作盤15などから構成される。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the best mode for carrying out the present invention will be described in detail with reference to the drawings. FIG. 1 schematically shows a plasma hierarchical surface modification apparatus 10 for performing the plasma hierarchical surface processing method of the present invention.
The plasma layer surface processing apparatus 10 includes a vacuum vessel 11, a vacuum exhaust device 12, a gas supply device 13, a DC plasma power supply 14, an operation panel 15, and the like.

<真空容器>
その真空容器11には、オーステナイト系ステンレス鋼の被処理材22の温度測定、およびグロー放電の状態を耐熱ガラスを通して観察できるように円筒状の観察窓16を有している。そして、その真空容器11は過熱を防止するために、2重構造とし、外壁と内壁の間に冷却水を通し水冷している。またこの真空容器は炭化水素系ガス、窒素ガス、水素ガスなどを供給するポートを有している。さらに真空容器11の床壁には絶縁された電極17が組みつけられ、真空容器内に突き出している。その電極17の先端にオーステナイト系ステンレス鋼の被処理材22を載せる処理台18が取り付けられている。
<Vacuum container>
The vacuum vessel 11 has a cylindrical observation window 16 so that the temperature of the material 22 to be treated of austenitic stainless steel and the state of glow discharge can be observed through the heat-resistant glass. The vacuum vessel 11 has a double structure to prevent overheating, and cooling water is passed between the outer wall and the inner wall to cool the water. The vacuum vessel also has a port for supplying hydrocarbon gas, nitrogen gas, hydrogen gas and the like. Further, an insulated electrode 17 is assembled on the floor wall of the vacuum vessel 11 and protrudes into the vacuum vessel. A processing table 18 on which a processing material 22 made of austenitic stainless steel is placed is attached to the tip of the electrode 17.

<真空排気装置及びガス供給装置>
その真空排気装置12は、油回転真空ポンプ20、メカニカルブースタポンプ21から構成され、真空容器11の内部を所定圧まで排気する。また、ガス供給装置13は、炭化水素系ガス、窒素ガス、水素ガスをそれぞれのガス流量計により、そのガス流量を所定値になるように調整し、ガス混合容器の中で混合する。そのガス混合容器の中で混合されたガスはマスフローコントローラにより真空容器11の中に供給される。勿論、ガス混合容器を用いないで、直接真空容器に供給してもかまわない。そして、その真空容器11の内部の圧力は、ピラニー真空計で計測しながら、所定値になるようにマスフローコントローラおよび真空排気装置12により制御する。
<Vacuum exhaust device and gas supply device>
The vacuum exhaust device 12 includes an oil rotary vacuum pump 20 and a mechanical booster pump 21 and exhausts the inside of the vacuum vessel 11 to a predetermined pressure. Moreover, the gas supply apparatus 13 adjusts the gas flow rate so that it may become predetermined value with each gas flowmeter, and mixes hydrocarbon gas, nitrogen gas, and hydrogen gas in a gas mixing container. The gas mixed in the gas mixing container is supplied into the vacuum container 11 by the mass flow controller. Of course, you may supply directly to a vacuum container, without using a gas mixing container. The pressure inside the vacuum vessel 11 is controlled by the mass flow controller and the vacuum exhaust device 12 so as to become a predetermined value while being measured by a Pirani vacuum gauge.

<直流プラズマ電源>
その直流プラズマ電源14は、その陰極17と真空容器11との間に数百Vの電圧をかけて、そのオーステナイト系ステンレス鋼の被処理材22の表面にグロー放電によりプラズマを発生させる。
従って、このプラズマ電源14は、直流、高周波、マイクロ波などの適宜電源を用いる。
本実施のための形態においては、被処理材22の昇温について、特別な装置を設けていいない。これはプラズマ階層表面改質装置10では、その表面にグロー放電を発生させることにより、その炭素イオン、窒素イオン、水素イオンなどが陰極に接続されたオーステナイト系ステンレス鋼の被処理材22の表面に電気的に引き寄せられ、その表面に衝突し、その時の炭素イオン、窒素イオン、水素イオンなどの運動エネルギーが熱エネルギーに変換され被処理材22が加熱される為である。勿論、その加熱源として、適宜ヒータを用いて、被処理材22を所定の温度に加熱しても良い。
なお、またオーステナイト系ステンレス鋼の被処理材22の温度は、耐熱ガラスの観察窓16を通して赤外線放射温度計19により測定する。勿論、その温度は熱電対を用いて測定しても良い。
<DC plasma power supply>
The DC plasma power source 14 applies a voltage of several hundred volts between the cathode 17 and the vacuum vessel 11 to generate plasma on the surface of the austenitic stainless steel material 22 by glow discharge.
Therefore, the plasma power source 14 uses an appropriate power source such as direct current, high frequency, or microwave.
In the embodiment for the present embodiment, no special device is provided for raising the temperature of the material 22 to be processed. This is because the plasma hierarchical surface reforming apparatus 10 generates glow discharge on the surface thereof, so that the carbon ions, nitrogen ions, hydrogen ions, etc. are applied to the surface of the material 22 to be treated of austenitic stainless steel connected to the cathode. This is because they are attracted electrically and collide with the surface, and the kinetic energy of carbon ions, nitrogen ions, hydrogen ions, etc. at that time is converted into thermal energy and the material 22 to be processed is heated. Of course, the material to be treated 22 may be heated to a predetermined temperature using an appropriate heater as the heating source.
The temperature of the material 22 to be treated of austenitic stainless steel is measured by an infrared radiation thermometer 19 through an observation window 16 made of heat resistant glass. Of course, the temperature may be measured using a thermocouple.

次に、本発明のオーステナイト系ステンレス鋼部品の階層表面改質法を上記プラズマ階層表面加工装置10を用いた例で説明する。
上記プラズマ階層表面改質装置10の、処理台18上にオーステナイト系ステンレス鋼、例えばSUS316Lの被処理材22を載せ、次いで真空容器11を密閉状態とする。次いでその真空排気装置12を稼動させ、真空容器11内を1Pa以下まで排気する。次に、その真空容器11内にガス供給装置13から水素ガスを供給し、真空容器11内が2.6Paで保持されるようにマスフローコントローラで水素ガス供給量を制御し、その直流プラズマ電源14により、電極17に−200〜−300Vの電圧を印加させ、治具およびオーステナイト系ステンレス鋼の被処理材22の表面にグロー放電を発生させる。それから、その水素ガス雰囲気中において、放電電圧、放電電流を増加させると共に、段階的に真空容器11内の雰囲気圧力を増加させる。そのような操作によりそのオーステナイト系ステンレス鋼の被処理材22の加熱を続け、そして、その雰囲気圧力が532Paでオーステナイト系ステンレス鋼の被処理材22が450℃を維持するように放電出力の調整を行う。
Next, the hierarchical surface modification method for an austenitic stainless steel part according to the present invention will be described using an example in which the plasma hierarchical surface processing apparatus 10 is used.
The processing material 18 of austenitic stainless steel, for example, SUS316L, is placed on the processing table 18 of the plasma level surface reforming apparatus 10, and then the vacuum vessel 11 is sealed. Next, the vacuum exhaust device 12 is operated, and the inside of the vacuum vessel 11 is exhausted to 1 Pa or less. Next, hydrogen gas is supplied from the gas supply device 13 into the vacuum vessel 11, the supply amount of the hydrogen gas is controlled by a mass flow controller so that the inside of the vacuum vessel 11 is maintained at 2.6 Pa, and the DC plasma power source 14. Thus, a voltage of −200 to −300 V is applied to the electrode 17 to generate glow discharge on the surface of the jig and the austenitic stainless steel workpiece 22. Then, in the hydrogen gas atmosphere, the discharge voltage and discharge current are increased, and the atmospheric pressure in the vacuum vessel 11 is increased stepwise. By such an operation, the austenitic stainless steel material 22 is continuously heated, and the discharge output is adjusted so that the atmospheric pressure is 532 Pa and the austenitic stainless steel material 22 is maintained at 450 ° C. Do.

また、その雰囲気圧力が532Paで、オーステナイト系ステンレス鋼の被処理材22の温度が450℃なった時点で、炭化水素系ガス、例えばメタンガスを用い真空容器11内に供給した。その雰囲気中の炭化水素系ガス濃度が1%になるように炭化水素系ガスおよび水素ガスをそのガス流量計で調整し、20時間、炭素の浸透拡散を行う。   Further, when the atmospheric pressure was 532 Pa and the temperature of the material 22 to be treated of austenitic stainless steel reached 450 ° C., a hydrocarbon-based gas such as methane gas was used to supply the vacuum container 11. The hydrocarbon gas and the hydrogen gas are adjusted with the gas flowmeter so that the hydrocarbon gas concentration in the atmosphere becomes 1%, and carbon permeation diffusion is performed for 20 hours.

次に、その炭素の浸透拡散を行った後、ガス供給装置13からの炭化水素系ガスの供給、およびプラズマ放電を停止すべく直流プラズマ電源14の出力を停止し、オーステナイト系ステンレス鋼の被処理材22の温度を400℃まで降温させる。そして、オーステナイト系ステンレス鋼の被処理材22の温度が400℃になった時点で雰囲気中の窒素ガス濃度が30%になるようにガス供給装置13からの窒素ガスおよび水素ガスをそのガス流量計で調整し、その真空容器11内が532Paになるまで供給し、その直流プラズマ電源14により、電極17電圧を印加させ、処理台およびオーステナイト系ステンレス鋼の被処理材22の表面にグロー放電を発生させ、40時間窒素の浸透拡散を行った。その窒素の浸透拡散後、そのオーステナイト系ステンレス鋼の被処理材22は真空容器11内で冷却した。   Next, after performing the permeation diffusion of the carbon, the supply of the hydrocarbon gas from the gas supply device 13 and the output of the DC plasma power source 14 are stopped to stop the plasma discharge, and the austenitic stainless steel is processed. The temperature of the material 22 is lowered to 400 ° C. Then, when the temperature of the material 22 to be treated of austenitic stainless steel reaches 400 ° C., the nitrogen gas and hydrogen gas from the gas supply device 13 are supplied to the gas flow meter so that the nitrogen gas concentration in the atmosphere becomes 30%. Then, the vacuum vessel 11 is supplied until it reaches 532 Pa, and the DC plasma power supply 14 applies the voltage of the electrode 17 to generate glow discharge on the surface of the processing base 22 and the austenitic stainless steel workpiece 22. And nitrogen permeation diffusion was performed for 40 hours. After the nitrogen permeation and diffusion, the austenitic stainless steel treated material 22 was cooled in the vacuum vessel 11.

なお、この発明は、炭素の浸透拡散に用いる炭化水素系のガス濃度は1〜3%程度が望ましい。
1%以下では表面からの炭素の浸透拡散がほとんど行われない。また、3%以上では解離された炭素が多くなりオーステナイト系ステンレス鋼がスーティングされ浸炭される部分と浸炭されない部分が発生するからである。
In the present invention, the hydrocarbon gas concentration used for carbon permeation diffusion is preferably about 1 to 3%.
If it is 1% or less, there is almost no permeation and diffusion of carbon from the surface. Further, if it is 3% or more, the amount of dissociated carbon increases, and austenitic stainless steel is sooted and carburized, and a part that is not carburized is generated.

また、窒素の浸透拡散に用いる窒素ガス濃度は10〜30%程度が望ましい。
10%以下では表面からの窒素の浸透拡散が遅くなる。例えば、窒素のガス濃度が30%の場合のに比べ10%の場合には、被処理材表面からの窒素の浸透拡散が遅くなり、処理時間が約1.5倍となるからである。
また、30%以上ではクロム窒化物が生成され表面のクロムが減少し不働体皮膜が除去され、耐食性が低下する。
Further, the concentration of nitrogen gas used for the permeation diffusion of nitrogen is preferably about 10 to 30%.
If it is 10% or less, the permeation and diffusion of nitrogen from the surface becomes slow. For example, when the nitrogen gas concentration is 10% compared to the case where the nitrogen gas concentration is 30%, the permeation and diffusion of nitrogen from the surface of the material to be processed becomes slow, and the processing time becomes about 1.5 times.
On the other hand, if it is 30% or more, chromium nitride is produced, chromium on the surface is reduced, the passive film is removed, and the corrosion resistance is lowered.

炭素の浸透拡散温度は400〜450℃が望ましい。
400℃以下では炭素はオーステナイト相に浸透拡散されるが時間が長くかかる。例えば、450℃で処理した場合、20時間で得た表面硬度と同一の表面硬度を得るために、390℃で処理した場合には35時間かかった。
また、470℃を超えた温度では、クロム炭化物が析出し、耐食性が低下するからである。
他方、窒素の浸透拡散温度は380〜420℃が望ましい。380℃以下では窒素が浸透拡散されず、硬さが高くならない。420℃以上ではクロム窒化物が析出し、耐食性が低下する。
The carbon penetration diffusion temperature is preferably 400 to 450 ° C.
Below 400 ° C., carbon permeates and diffuses into the austenite phase, but takes a long time. For example, when treated at 450 ° C., it took 35 hours when treated at 390 ° C. in order to obtain the same surface hardness as obtained at 20 hours.
Further, when the temperature exceeds 470 ° C., chromium carbide precipitates and the corrosion resistance is lowered.
On the other hand, the penetration temperature of nitrogen is preferably 380 to 420 ° C. Below 380 ° C., nitrogen does not penetrate and diffuse, and the hardness does not increase. Above 420 ° C., chromium nitride precipitates and the corrosion resistance decreases.

上記処理を行ったオーステナイト系ステンレス鋼の被処理材22の表面付近の金属顕微鏡組織を図2に示す。
図2に示されたように炭素の浸透拡散後、窒素の浸透拡散が行われても、4%硝酸アルコール溶液において、その表面には炭素化合物および窒素化合物は析出されず、耐食性が損なわれないことが確認できた。
FIG. 2 shows a metallographic microstructure near the surface of the material 22 to be treated of the austenitic stainless steel subjected to the above treatment.
As shown in FIG. 2, even if nitrogen permeation and diffusion are performed after carbon permeation and diffusion, carbon compound and nitrogen compound are not deposited on the surface of the 4% nitric acid alcohol solution, and corrosion resistance is not impaired. I was able to confirm.

また、図3は上記処理方法を行ったオーステナイト系ステンレス鋼のそれぞれの表面硬さおよび断面硬さ分布曲線を示したグラフであり、そのオーステナイト系ステンレス鋼の被処理材22は、マイクロビッカース硬さ計、荷重0.245Nで表面硬さおよび断面硬さを測定している。
図3に示されたように450℃で20時間炭素の浸透拡散を行った後、400℃で40時間窒素の拡散浸透を行ったオーステナイト系ステンレス鋼の被処理材22は、表面硬さがHv1090、断面硬さ分布による硬化層深さは70μm程度が確認できた。
なお、比較例として450℃で20時間炭素の浸透拡散を行ったオーステナイト系ステンレス鋼の表面硬さはHv620、硬化層深さは25μm程度、400℃で80時間窒素の浸透拡散を行ったオーステナイト系ステンレス鋼の表面硬さは、Hv1200、硬化層深さは20μm程度であり、炭素の浸透拡散では表面硬さが低く、硬化層が浅い、窒素の浸透拡散では表面硬さは高いが、硬化層が浅いことが確認された。
FIG. 3 is a graph showing respective surface hardness and cross-sectional hardness distribution curves of the austenitic stainless steel subjected to the above-described processing method. The material 22 to be treated of the austenitic stainless steel has a micro Vickers hardness. The surface hardness and cross-sectional hardness are measured with a total load of 0.245N.
As shown in FIG. 3, the material 22 to be treated of austenitic stainless steel that has been subjected to carbon diffusion at 450 ° C. for 20 hours and then nitrogen diffusion at 400 ° C. for 40 hours has a surface hardness of Hv1090. Further, the depth of the hardened layer by the cross-sectional hardness distribution was confirmed to be about 70 μm.
As a comparative example, the surface hardness of an austenitic stainless steel subjected to carbon penetration diffusion at 450 ° C. for 20 hours is Hv620, the hardened layer depth is about 25 μm, and the austenite system subjected to nitrogen penetration diffusion at 400 ° C. for 80 hours. The surface hardness of stainless steel is Hv1200, the depth of the hardened layer is about 20 μm, the surface hardness is low with carbon penetration diffusion, the hardened layer is shallow, and the surface hardness is high with nitrogen penetration diffusion, the hardened layer Was confirmed to be shallow.

上述から理解されるように、こ発明のプラズマ複合表面加工法は、クロム炭化物およびクロム窒化物が析出されず、耐食性を損なわず、表面硬さを高くし、硬化層を深くさせるので、省エネルギー化が容易で環境にも低負荷になり、自動車部品、機械部品、電気部品などにとって利用することが出来る。   As understood from the above, the plasma composite surface processing method of the present invention does not precipitate chromium carbide and chromium nitride, does not impair corrosion resistance, increases surface hardness, and deepens the hardened layer, thus saving energy. It is easy to use and has a low environmental impact, and can be used for automobile parts, machine parts, electrical parts, and the like.

この発明のオーステナイト系ステンレス鋼部品を表面加工する方法を実施するところのプラズマ階層表面改質装置を図式的に示した概説図である。It is the general | schematic figure which showed schematically the plasma hierarchical surface modification | reformation apparatus which enforces the method of surface-processing the austenitic stainless steel part of this invention. そのオーステナイト系ステンレス鋼の表面付近の金属顕微鏡組織である。It is a metallographic microstructure near the surface of the austenitic stainless steel. そのオーステナイト系ステンレス鋼のそれぞれの表面硬さおよび断面硬さ分布曲線を示したグラフである。It is the graph which showed each surface hardness and cross-sectional hardness distribution curve of the austenitic stainless steel.

符号の説明Explanation of symbols

11 真空容器
12 真空排気装置
13 ガス供給装置
14 直流プラズマ電源
15 操作盤
16 耐熱ガラス製観察窓
17 電極
18 処理台
19 赤外線放射温度計
20 油回真空ポンプ
21 メカニカルブースタポンプ
22 被処理材
DESCRIPTION OF SYMBOLS 11 Vacuum container 12 Vacuum exhaust apparatus 13 Gas supply apparatus 14 DC plasma power supply 15 Operation panel 16 Observation window 17 made of heat-resistant glass 17 Electrode 18 Treatment stand 19 Infrared radiation thermometer 20 Oil pressure vacuum pump 21 Mechanical booster pump 22 Material to be treated

Claims (5)

真空容器内において炭化水素系ガス雰囲気中でオーステナイト系ステンレス鋼部品にグロー放電を用いて炭素をオーステナイト相に浸透拡散させる低温炭素浸透拡散工程と、同じ真空容器内で、連続して窒素雰囲気中でグロー放電を用いて窒素をオーステナイト相に浸透拡散さる低温窒素浸透拡散工程とよりなり、オーステナイト系ステンレス鋼部品の耐食性を損なわずに表面硬さを高くし、かつ硬化層を深くすることを特徴とするオーステナイト系ステンレス鋼部品の階層表面改質法。   A low temperature carbon infiltration and diffusion process in which carbon is infiltrated and diffused into the austenite phase using glow discharge in an austenitic stainless steel part in a hydrocarbon gas atmosphere in a vacuum vessel, and in a nitrogen atmosphere continuously in the same vacuum vessel It consists of a low temperature nitrogen permeation diffusion process in which nitrogen is permeated and diffused into the austenite phase using glow discharge, characterized by increasing the surface hardness and deepening the hardened layer without impairing the corrosion resistance of the austenitic stainless steel parts. Hierarchical surface modification method for austenitic stainless steel parts. 低温炭素浸透拡散工程は、1Pa〜2.6kPaに保持した真空容器内で、炭素の浸透拡散はメタンガス、プロパンガス、アセチレンガスなどの炭化水素系ガスを用い、希釈ガスとしてアルゴンガス、又は水素ガスを用いると共に、低温窒素浸透拡散工程は、窒素の浸透拡散は窒素ガスを用い、希釈ガスとしてアルゴンガス、又は水素ガスを用いることを特徴とする請求項1記載のオーステナイト系ステンレス鋼部品の階層表面改質法。   The low-temperature carbon permeation diffusion step is performed in a vacuum vessel maintained at 1 Pa to 2.6 kPa, and carbon permeation diffusion is performed using a hydrocarbon-based gas such as methane gas, propane gas, or acetylene gas, and argon gas or hydrogen gas as a dilution gas. The low-temperature nitrogen permeation and diffusion step uses nitrogen gas for nitrogen permeation and diffusion, and uses argon gas or hydrogen gas as a dilution gas. The hierarchical surface of an austenitic stainless steel part according to claim 1, Modification method. 低温炭素浸透拡散工程として用いる炭化水素系ガス濃度は1〜3%とすることを特徴とする請求項2記載のオーステナイト系ステンレス鋼部品の階層表面改質法。   The hierarchical surface modification method for an austenitic stainless steel part according to claim 2, wherein the hydrocarbon gas concentration used in the low temperature carbon permeation diffusion step is 1 to 3%. 低温窒素浸透拡散工程として用いる窒素ガス濃度は10〜30%とすることを特徴とする請求項2又は3記載のオーステナイト系ステンレス鋼部品の階層表面改質法。   The hierarchical surface modification method for austenitic stainless steel parts according to claim 2 or 3, wherein the nitrogen gas concentration used in the low temperature nitrogen permeation diffusion step is 10 to 30%. 低温炭素浸透拡散工程において、炭素の浸透拡散温度は400〜450℃とし、低温窒素浸透拡散工程として、窒素の浸透拡散温度は380〜420℃とすることを特徴とする請求項1〜4の何れか記載のオーステナイト系ステンレス鋼部品の階層表面改質法。
5. The low temperature carbon permeation diffusion step, wherein the carbon permeation diffusion temperature is 400 to 450 ° C., and in the low temperature nitrogen permeation diffusion step, the nitrogen permeation diffusion temperature is 380 to 420 ° C. A hierarchical surface modification method for austenitic stainless steel parts.
JP2005198219A 2005-07-07 2005-07-07 Hierarchical surface reforming process of austenitic stainless steel component Pending JP2007016273A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005198219A JP2007016273A (en) 2005-07-07 2005-07-07 Hierarchical surface reforming process of austenitic stainless steel component

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005198219A JP2007016273A (en) 2005-07-07 2005-07-07 Hierarchical surface reforming process of austenitic stainless steel component

Publications (1)

Publication Number Publication Date
JP2007016273A true JP2007016273A (en) 2007-01-25

Family

ID=37753690

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005198219A Pending JP2007016273A (en) 2005-07-07 2005-07-07 Hierarchical surface reforming process of austenitic stainless steel component

Country Status (1)

Country Link
JP (1) JP2007016273A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010132937A (en) * 2008-12-02 2010-06-17 Nippon Parkerizing Co Ltd Surface modifying method of stainless steel material
US11396692B2 (en) 2019-02-21 2022-07-26 Fluid Controls Private Limited Method of heat treating an article

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5332837A (en) * 1976-09-08 1978-03-28 Oriental Engineering Co Method of ionitriding* carburizing and carbonitriding steel and the like
JPH08144039A (en) * 1994-11-21 1996-06-04 Hitachi Metals Ltd Metal mold for casting or member to be in contact with molten metal, excellent in erosion resistance
JPH0915383A (en) * 1995-06-26 1997-01-17 Mitsubishi Heavy Ind Ltd Abrasion resistive pipe shape part
JPH10330906A (en) * 1997-06-05 1998-12-15 Daido Hoxan Inc Production of austenitic stainless steel product
JPH11229114A (en) * 1998-02-10 1999-08-24 Sumitomo Metal Mining Co Ltd Surface hardening method for austenitic stainless steel
JP2005097651A (en) * 2003-09-22 2005-04-14 Seiko Epson Corp Surface treatment method for ornament, and ornament

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5332837A (en) * 1976-09-08 1978-03-28 Oriental Engineering Co Method of ionitriding* carburizing and carbonitriding steel and the like
JPH08144039A (en) * 1994-11-21 1996-06-04 Hitachi Metals Ltd Metal mold for casting or member to be in contact with molten metal, excellent in erosion resistance
JPH0915383A (en) * 1995-06-26 1997-01-17 Mitsubishi Heavy Ind Ltd Abrasion resistive pipe shape part
JPH10330906A (en) * 1997-06-05 1998-12-15 Daido Hoxan Inc Production of austenitic stainless steel product
JPH11229114A (en) * 1998-02-10 1999-08-24 Sumitomo Metal Mining Co Ltd Surface hardening method for austenitic stainless steel
JP2005097651A (en) * 2003-09-22 2005-04-14 Seiko Epson Corp Surface treatment method for ornament, and ornament

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010132937A (en) * 2008-12-02 2010-06-17 Nippon Parkerizing Co Ltd Surface modifying method of stainless steel material
US11396692B2 (en) 2019-02-21 2022-07-26 Fluid Controls Private Limited Method of heat treating an article

Similar Documents

Publication Publication Date Title
Grube et al. High-rate carburizing in a glow-discharge methane plasma
Belkin et al. Anodic plasma electrolytic saturation of steels by carbon and nitrogen
Jafarpour et al. Solid carbon active screen plasma nitrocarburizing of AISI 316L stainless steel in cold wall reactor: Influence of plasma conditions
CN106756775B (en) A kind of alloy surface forms the preparation method of spinelle coating
Fraczek et al. Mechanism of ion nitriding of 316L austenitic steel by active screen method in a hydrogen-nitrogen atmosphere
KR100245361B1 (en) Method and apparatus for producing an anticorrosion layer and an abrasion resistant layer on iron-basis material
Biró Trends of nitriding processes
JP2008091409A5 (en)
JP2007016273A (en) Hierarchical surface reforming process of austenitic stainless steel component
Jacobs et al. Plasma Carburiiing: Theory; Industrial Benefits and Practices
JPH0790541A (en) Mixed gas penetration modifying method and device therefor
JPS55125267A (en) Surface treating method of improving abrasion resistance and corrosion resistance of iron and steel
US10287667B2 (en) Process for treating a piece of tantalum or of a tantalum alloy
CN110644028B (en) Method for rapidly preparing expansion alpha phase on surface of metal material
Lebrun Plasma-assisted processes for surface hardening of stainless steel
JP2008202105A (en) Method for carbonitriding metallic member
Kornienko et al. Use of the electrospark alloying method to increase the corrosion resistance of a titanium surface
JP2017197822A (en) Surface hardening method and surface hardening apparatus
EP2369028B1 (en) Method for nitriding metal alloys and device for carrying out said method
Mouri et al. Improvement of the corrosion resistance of a low carbon steel using a two step plasma treatment
Elwar et al. Plasma (ion) nitriding and nitrocarburizing of steels
JP2006249508A (en) Method for nitriding titanium and titanium alloy
Li et al. Carburising of steel AISI 1010 by using a cathode arc plasma process
KR100560066B1 (en) Ion-Nitriding treatment device and method therefor
KR20140045072A (en) Method and system for nitriding bore of pipe with hollow cathode discharge

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080306

A521 Written amendment

Effective date: 20080306

Free format text: JAPANESE INTERMEDIATE CODE: A821

A977 Report on retrieval

Effective date: 20110216

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110223

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20111019