JPH0915383A - Abrasion resistive pipe shape part - Google Patents

Abrasion resistive pipe shape part

Info

Publication number
JPH0915383A
JPH0915383A JP7159345A JP15934595A JPH0915383A JP H0915383 A JPH0915383 A JP H0915383A JP 7159345 A JP7159345 A JP 7159345A JP 15934595 A JP15934595 A JP 15934595A JP H0915383 A JPH0915383 A JP H0915383A
Authority
JP
Japan
Prior art keywords
stainless steel
resistivity
tubular member
ion nitriding
wear
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP7159345A
Other languages
Japanese (ja)
Inventor
Masaharu Fujiwara
昌晴 藤原
Juntaro Shimizu
純太郎 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP7159345A priority Critical patent/JPH0915383A/en
Publication of JPH0915383A publication Critical patent/JPH0915383A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)

Abstract

PURPOSE: To improve abrasion resistivity and besides separation resistivity and corrosion resistivity by low temperature ion nitriding of the surface of a pipe shape part of austenitic stainless steel including molybdenum. CONSTITUTION: Austenitic stainless steel including molybdenum and nickel and consisting of chrome of ca. 16 to 20% and iron for the rest, for example SUS316, SUS316L, is used to execute low temperature ion nitriding at ca. 400 to 470 deg.C. As the nitride layer is mainly M4 N (M:Fe, Ni, Cr etc.), production of chrome nitride is suppressed and degradation of corrosion resistivity is prevented. Molybdenum content of 2 to 3% is desired for this. The ratio of nitrogen gas and hydrogen gas in the nitriding is set to be N2 : about 5 to 15vol%, H2 : about 95 to 85vol%. The thickness of the produced nitride layer of about 50μm is enough. By this, a pipe shape part having superior resistivity is obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は耐摩耗管状部材に関し、
特に原子炉内の高温高圧水中で使用される制御棒あるい
は中性子計装案内管等のようなオーステナイトステンレ
ス鋼の耐摩耗管状部材に関する。
FIELD OF THE INVENTION This invention relates to wear resistant tubular members,
In particular, it relates to wear-resistant tubular members made of austenitic stainless steel such as control rods or neutron instrumentation guide tubes used in high temperature and high pressure water in a nuclear reactor.

【0002】[0002]

【従来の技術】軽水炉型原子炉内では制御あるいは計装
目的で管状部材をガイドに沿って支持する構造が多い
が、冷却水の流動に伴なう振動や制御等を目的とした移
動によって相互接触・摺動を生ずる。特に負荷追従を行
なう制御棒においては摺動回数が多く摩耗減肉によって
しばしば交換の必要が生ずる。これらの摩耗を防止する
ために、接触する管の外表面に硬質クロムメッキ、ニッ
ケルメッキ等の表面コーティングが行なわれており、ま
た耐摩耗のよい窒化処理も行なわれている。
2. Description of the Related Art In a light water reactor type reactor, there are many structures in which a tubular member is supported along a guide for the purpose of control or instrumentation, but mutual movement is performed by vibrations accompanying the flow of cooling water or movement for the purpose of control. Contact / sliding occurs. In particular, control rods that follow load often have a large number of slides and often need to be replaced due to wear thinning. In order to prevent these abrasions, the outer surface of the contacting pipe is coated with a surface such as hard chrome plating or nickel plating, and a nitriding treatment with good abrasion resistance is also performed.

【0003】[0003]

【発明が解決しようとする課題】従来行われている摩耗
対策としての硬質クロムメッキはメッキ層内に微細な割
れを含んでおり、薄いメッキ層では耐久性に劣る。ま
た、ニッケルメッキでは、冷却水中に溶出したニッケル
が放射化し、系の汚染を進行させる。更に通常のイオン
窒化したステンレス鋼は、窒化クロムの生成に伴なって
処理層基地のクロム欠乏を生じ耐食性が著しく減少す
る。
The conventional hard chrome plating as a countermeasure against wear contains fine cracks in the plating layer, and a thin plating layer is inferior in durability. Further, in nickel plating, the nickel eluted in the cooling water is activated and the system is contaminated. In addition, the conventional ion-nitrided stainless steel has a deficiency of chromium in the treated layer matrix with the formation of chromium nitride, resulting in a marked decrease in corrosion resistance.

【0004】本発明は上記技術水準に鑑み、上述した従
来技術の有する不具合を解消し、耐摩耗性を向上さすと
同時に、その部材の耐食性、耐剥離性を向上させ、機器
の機能維持を図ることができる耐摩耗管状部材を提供し
ようとするものである。
In view of the above-mentioned state of the art, the present invention solves the above-mentioned problems of the prior art and improves the wear resistance, and at the same time, improves the corrosion resistance and peeling resistance of the member to maintain the function of the equipment. It is an object of the present invention to provide a wear-resistant tubular member that can be used.

【0005】[0005]

【課題を解決するための手段】本発明は(1)モリブデ
ンを含むオーステナイトステンレス鋼製管状部材の表面
を低温イオン窒化処理してなることを特徴とする耐摩耗
管状部材、(2)モリブデンを含むオーステナイトステ
ンレス鋼製管状部材のモリブデン含有量が2〜3%であ
ることを特徴とする上記(1)記載の耐摩耗管状部材、
及び(3)低温イオン窒化処理がN2 :5〜15容量
%、H2 :95〜85容量%のガス雰囲気中で400〜
470℃の温度で行われ、その窒化処理層の厚さが10
〜50μmであることを特徴とする上記(1)または
(2)記載の耐摩耗管状部材である。
The present invention comprises (1) a wear-resistant tubular member characterized in that the surface of an austenitic stainless steel tubular member containing molybdenum is subjected to low temperature ion nitriding treatment, and (2) molybdenum. The wear-resistant tubular member according to (1) above, wherein the austenitic stainless steel tubular member has a molybdenum content of 2 to 3%.
And (3) the low temperature ion nitriding treatment is 400 to 400 in a gas atmosphere of N 2 : 5 to 15% by volume and H 2 : 95 to 85% by volume.
At a temperature of 470 ° C. and the nitriding layer has a thickness of 10
The wear-resistant tubular member according to (1) or (2) above, wherein the wear-resistant tubular member has a thickness of 50 μm.

【0006】[0006]

【作用】通常、オーステナイトステンレス鋼のイオン窒
化は処理温度:500〜600℃で窒素ガスと水素ガス
を含む稀薄ガス(窒素ガス:10〜80%)中でグロー
放電させ、N+ ,H+ 等のイオンを部材に衝突させて昇
温加熱すると共に、H+イオンによって還元クリーニン
グし、N+ イオンの生成、部材表面への吸着と、これに
伴う金属内部への拡散によって窒化層を生成し、耐摩耗
性の向上を達成するものであるが、高温でイオン窒化を
行うとε相(Fe2-3 N)を生じ、これが耐食性を低下
させる。従って、本発明ではε相の生成を抑制できる低
温イオン窒化を行うものである。
In general, the ion nitriding of austenitic stainless steel is carried out at a treatment temperature of 500 to 600 ° C. by glow discharge in a dilute gas containing nitrogen gas and hydrogen gas (nitrogen gas: 10 to 80%), and N + , H + Ions are made to collide with the member and heated at a high temperature, and reduction cleaning is performed with H + ions, N + ions are generated, adsorption on the member surface and accompanying diffusion into the metal to form a nitride layer, Although it achieves an improvement in wear resistance, ion nitriding at a high temperature produces an ε phase (Fe 2-3 N), which lowers the corrosion resistance. Therefore, according to the present invention, low temperature ion nitriding that can suppress the production of ε phase is performed.

【0007】しかしながら、低温イオン窒化処理して
も、TiやNbを含む又は何も含まないオーステナイト
ステンレス鋼では窒化層の主体がクロム窒化物となり、
そのようなオーステナイトステンレス鋼では局部的にク
ロムの欠乏部が生じ、耐食性の低下を招くようになる。
そこで、本発明ではモリブデンを含み、かつニッケルを
を含有し、クロム:16〜20%、残部:鉄よりなるオ
ーステナイトステンレス鋼、例えばSUS316、SU
S316Lを用いて400〜470℃の低温イオン窒化
処理を行うものである。モリブデンを含み、かつニッケ
ル含有量の高いオーステナイトステンレス鋼を低温イオ
ン窒化処理を施すと、窒化層は主としてM 4 N(M:F
e,Cr,Ni等の金属元素)であり、クロム窒化物の
生成が抑制されることをX線回折で確認している。この
ため、母材のオーステナイトステンレス鋼には固溶クロ
ム量の低下が少なく、耐食性の低下を抑制できる。この
ような効果はMoの含有量が1%未満では少なく、また
4%を越えるとオーステナイト安定化に悪い影響を与え
る。このうち、Mo含有量は2〜3%が好ましい。
However, after low temperature ion nitriding treatment,
Also contains austenite containing Ti or Nb or nothing
In stainless steel, the main nitride layer is chromium nitride,
In such austenitic stainless steels, local cracking occurs.
The ROM is deficient, which causes deterioration of corrosion resistance.
Therefore, the present invention includes molybdenum and nickel
Containing chromium: 16 to 20%, balance: iron
-Stenitic stainless steel, eg SUS316, SU
Low temperature ion nitriding at 400-470 ° C using S316L
The processing is performed. Contains molybdenum and nickel
Austenitic stainless steel with high
When the nitriding process is performed, the nitride layer is mainly M FourN (M: F
e, Cr, Ni, etc.) and chromium nitride
It was confirmed by X-ray diffraction that the generation was suppressed. this
Therefore, the solid solution of austenitic stainless steel as a base material
The decrease in the amount of aluminum is small, and the decrease in corrosion resistance can be suppressed. this
Such effects are less when the Mo content is less than 1%, and
If it exceeds 4%, it will adversely affect the stabilization of austenite.
You. Of these, the Mo content is preferably 2 to 3%.

【0008】低温イオン窒化処理の窒素ガスと水素ガス
の比率は通常のイオン窒化処理におけるよりも窒素ガス
量を制限することが好ましいことを確認した。本発明に
おいて、その好ましい比率はN2 :5〜15容量%、H
2 :95〜85容量%である。
It was confirmed that the ratio of nitrogen gas to hydrogen gas in the low temperature ion nitriding treatment should preferably limit the amount of nitrogen gas more than in the normal ion nitriding treatment. In the present invention, the preferable ratio is N 2 : 5 to 15% by volume, H
2 : 95 to 85% by volume.

【0009】本発明における生成窒化層の厚さは50μ
mあればよく、常用管厚:0.5mmに対しては1/1
0に相当する。管厚:1.3mmでも130μmは必要
としない。本発明において、硬化層(窒化層)をもたせ
て耐摩耗性を与え、内部は高い靱性をもつオーステナイ
トステンレス鋼本来の特性を維持させるためであり、そ
の理由の他の一つは窒化処理厚さを厚くするために長時
間高温にさらすとε相を生じ、耐食性を低下させる傾向
が強いからである。
The thickness of the nitrided layer formed in the present invention is 50 μm.
m is enough, 1/1 for regular pipe thickness: 0.5 mm
Equivalent to 0. Even if the tube thickness is 1.3 mm, 130 μm is not necessary. In the present invention, a hardened layer (nitriding layer) is provided to provide wear resistance, and the inside is to maintain the original characteristics of austenitic stainless steel with high toughness, and another reason is that the nitriding thickness This is because if the steel is exposed to a high temperature for a long time in order to make it thick, the ε phase is generated, and the corrosion resistance tends to be lowered.

【0010】[0010]

【実施例】以下、本発明の耐摩耗管状部材の一例として
制御棒クラスタ集合体を図1により、またその低温イオ
ン窒化装置を図2によって説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A control rod cluster assembly as an example of the wear resistant tubular member of the present invention will be described below with reference to FIG. 1, and a low temperature ion nitriding apparatus thereof will be described with reference to FIG.

【0011】図1は加圧水型原子炉の制御棒クラスタ集
合体を示し、制御棒1には外管3の中に中性子吸収体4
を挿入し、位置固定目的でスプリング2で押している。
この制御棒クラスタ集合体は案内板5によってガイドさ
れており、制御時の集合体垂直移動あるいは保持中の水
平振動等によって外管3と案内板5の内面とが接触・摺
動する。この摺動による摩耗減肉を防止するために外管
3の外表面にイオン窒化処理を施こすものである。通常
のイオン窒化処理では耐食性が損なわれることから、対
象部材が高温使用であることやオーステナイト安定化の
高いことが有利であると考えられ、材料としてはSUS
316を用い、外管3は外径:7〜25mm、管肉厚:
0.4〜1.3mm程度のものを用い、摩耗防止のため
のイオン窒化層は15〜50μmの深さを設ける。
FIG. 1 shows a control rod cluster assembly of a pressurized water reactor, in which the control rod 1 has an outer tube 3 inside a neutron absorber 4.
Is inserted and pushed by the spring 2 for the purpose of fixing the position.
The control rod cluster assembly is guided by the guide plate 5, and the outer tube 3 and the inner surface of the guide plate 5 contact and slide with each other due to vertical movement of the assembly during control or horizontal vibration during holding. The outer surface of the outer tube 3 is subjected to an ion nitriding treatment in order to prevent wear and thickness reduction due to the sliding. Corrosion resistance is impaired by normal ion nitriding treatment, so it is considered that it is advantageous that the target member is used at high temperature and that the austenite stability is high.
316, the outer tube 3 has an outer diameter of 7 to 25 mm, and a wall thickness of the tube:
A thickness of about 0.4 to 1.3 mm is used, and an ion nitride layer for preventing wear is provided with a depth of 15 to 50 μm.

【0012】イオン窒化処理は図2の構成をもつ装置に
て行なう。密封容器8と、排気装置15、ガス供給装置
13、電圧発生装置14、温度計測装置16、のぞき窓
11を主な構成要素とし、密封容器8の中に窒化処理を
施こす外管3を保持金具9に、吊棒6を介して保持す
る。保持金具9は密封容器8と絶縁体17で仕切られて
いる。外管3の両端にはキャップ7を取付け、外管3の
中心で支持すると共に端面の窒化防止を行なっている。
The ion nitriding process is performed by the apparatus having the structure shown in FIG. The sealed container 8, the exhaust device 15, the gas supply device 13, the voltage generator 14, the temperature measuring device 16, and the peep window 11 are main components, and the sealed container 8 holds the outer tube 3 to be subjected to the nitriding treatment. It is held on the metal fitting 9 via the suspension rod 6. The holding metal fitting 9 is partitioned by the sealed container 8 and the insulator 17. Caps 7 are attached to both ends of the outer tube 3 to support them at the center of the outer tube 3 and prevent nitriding of the end faces.

【0013】窒化処理は約5Paまで真空引きした後グ
ロー放電を行ない表面を清浄化した後、表1に示すよう
な割合の窒素と水素の混合ガスを導入し、圧力:130
Paで24時間の窒化処理を行なった。その結果を表1
に併せて示す。試験は、C:0.05%、Ni:13.
2%、Cr:16.4%、Mo:2.34%、Fe:残
部よりなるSUS316製外管と比較のために、C:
0.049%、Ni:10.1%、Cr:18.4%、
Fe:残部よりなるSUS304製外管を用いて行っ
た。
In the nitriding treatment, after vacuuming to about 5 Pa, glow discharge was performed to clean the surface, and then a mixed gas of nitrogen and hydrogen in the proportions shown in Table 1 was introduced, and the pressure was 130.
Nitriding was performed for 24 hours at Pa. Table 1 shows the results.
Are shown together. The test was C: 0.05%, Ni: 13.
2%, Cr: 16.4%, Mo: 2.34%, Fe: C: for comparison with an outer tube made of SUS316 consisting of the balance, C:
0.049%, Ni: 10.1%, Cr: 18.4%,
Fe: An outer tube made of SUS304 composed of the balance was used.

【0014】なお、表1中の耐食性(発錆面積率)はボ
ロンを2000ppm含有する60℃の水中に240時
間浸漬し、表面上に生じた赤錆(酸化鉄)の面積率で表
わしている。
The corrosion resistance (corrosion area ratio) in Table 1 is represented by the area ratio of red rust (iron oxide) formed on the surface after being immersed in 60 ° C. water containing 2000 ppm of boron for 240 hours.

【0015】[0015]

【表1】 [Table 1]

【0016】表1における試験番号No.1〜No.8
はSUS304製外管のイオン窒化の比較例であるが、
処理ガス中の窒素ガス量が少ないほど、またイオン窒化
温度が低いほど発錆面積率が低い。しかしながら、本発
明の実施例であるNo.9〜No.11にみられるほど
の発錆面積率の低下は認められない。なお、No.12
(比較例)は処理ガスにCO2 を0.2%含ませたもの
であるが、CO2 を微量でも含むと本発明の実施例ほど
の発錆面積率の低下は奏されない。
Test number No. in Table 1 1 to No. 8
Is a comparative example of ion nitriding of an SUS304 outer tube.
The smaller the amount of nitrogen gas in the treated gas and the lower the ion nitriding temperature, the lower the rusting area ratio. However, No. 1 which is an embodiment of the present invention. 9-No. No decrease in the rusted area ratio as observed in No. 11 is observed. In addition, No. 12
(Comparative example) contains 0.2% of CO 2 in the processing gas, but if a small amount of CO 2 is contained, the rusted area ratio is not reduced as much as that of the example of the present invention.

【0017】表1のNo.7(比較例)とNo.10
(実施例)のイオン窒化層の組成を調べた結果、下記表
2に示すとおりのものであることが判った。
No. 1 in Table 1 7 (comparative example) and No. 10
As a result of examining the composition of the ion nitriding layer of (Example), it was found to be as shown in Table 2 below.

【0018】[0018]

【表2】 [Table 2]

【0019】[0019]

【発明の効果】本発明によれば、モリブデンを含むオー
ステナイトステンレス鋼を管理された温度・雰囲気の下
でイオン窒化処理することにより耐摩耗性の向上を図る
ことが可能となる。更に、通常の304ステンレス鋼を
通常の方法でイオン窒化処理すると、耐食性の大巾な低
下により窒化層の溶出が生じ使用に耐えないが、本発明
によりSUS316をイオン窒化することで耐食性が大
巾に改善され、原子炉用制御棒として優れた耐久性を維
持できる管状部材を供給できる。
According to the present invention, wear resistance can be improved by subjecting austenitic stainless steel containing molybdenum to ion nitriding under controlled temperature and atmosphere. Further, if ordinary 304 stainless steel is subjected to ion nitriding treatment by a usual method, the corrosion resistance is greatly deteriorated and the nitrided layer is eluted, so that it cannot withstand use. Therefore, it is possible to supply a tubular member which is improved as described above and can maintain excellent durability as a control rod for a nuclear reactor.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の対象とする管状部材の一例の制御棒ク
ラスタ集合体の構成図。
FIG. 1 is a configuration diagram of a control rod cluster assembly which is an example of a tubular member to which the present invention is applied.

【図2】本発明の一実施例のイオン窒化処理装置の構成
図。
FIG. 2 is a configuration diagram of an ion nitriding apparatus according to an embodiment of the present invention.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 モリブデンを含むオーステナイトステン
レス鋼製管状部材の表面を低温イオン窒化処理してなる
ことを特徴とする耐摩耗管状部材。
1. A wear-resistant tubular member obtained by subjecting the surface of an austenitic stainless steel tubular member containing molybdenum to low temperature ion nitriding.
【請求項2】 モリブデンを含むオーステナイトステン
レス鋼製管状部材のモリブデン含有量が2〜3%である
ことを特徴とする請求項1記載の耐摩耗管状部材。
2. The wear-resistant tubular member according to claim 1, wherein the austenitic stainless steel tubular member containing molybdenum has a molybdenum content of 2 to 3%.
【請求項3】 低温イオン窒化処理がN2 :5〜15容
量%、H2 :95〜85容量%のガス雰囲気中で400
〜470℃の温度で行われ、その窒化処理層の厚さが1
0〜50μmであることを特徴とする請求項1または2
記載の耐摩耗管状部材。
3. The low temperature ion nitriding treatment is performed in a gas atmosphere of N 2 : 5 to 15% by volume and H 2 : 95 to 85% by volume.
It is performed at a temperature of up to 470 ° C. and the nitriding layer has a thickness of 1
It is 0-50 micrometers, It is characterized by the above-mentioned.
The wear-resistant tubular member described.
JP7159345A 1995-06-26 1995-06-26 Abrasion resistive pipe shape part Withdrawn JPH0915383A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7159345A JPH0915383A (en) 1995-06-26 1995-06-26 Abrasion resistive pipe shape part

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7159345A JPH0915383A (en) 1995-06-26 1995-06-26 Abrasion resistive pipe shape part

Publications (1)

Publication Number Publication Date
JPH0915383A true JPH0915383A (en) 1997-01-17

Family

ID=15691821

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7159345A Withdrawn JPH0915383A (en) 1995-06-26 1995-06-26 Abrasion resistive pipe shape part

Country Status (1)

Country Link
JP (1) JPH0915383A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001034867A1 (en) * 1999-11-10 2001-05-17 Cemm Co., Ltd. Method of nitriding iron group alloy base material
JP2007016273A (en) * 2005-07-07 2007-01-25 Nippon Denshi Kogyo Kk Hierarchical surface reforming process of austenitic stainless steel component
JP2014532175A (en) * 2011-09-30 2014-12-04 アレバ・エヌペ Method for producing cladding tubes for wear-resistant and corrosion-resistant reactors from preforms made from austenitic stainless steel having a low carbon content, corresponding cladding tubes and corresponding controls cluster
JP2014532174A (en) * 2011-09-30 2014-12-04 アレバ・エヌペ Method for producing stainless steel parts for wear-resistant and corrosion-resistant reactors, corresponding parts, and corresponding control clusters
JP2016504487A (en) * 2012-11-07 2016-02-12 アレバ・エヌペ Method for thermochemical treatment of parts while partly covering and corresponding mask

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001034867A1 (en) * 1999-11-10 2001-05-17 Cemm Co., Ltd. Method of nitriding iron group alloy base material
US6602353B1 (en) 1999-11-10 2003-08-05 Cemm Co., Ltd. Method for nitriding-processing iron group series alloy substrate
JP2007016273A (en) * 2005-07-07 2007-01-25 Nippon Denshi Kogyo Kk Hierarchical surface reforming process of austenitic stainless steel component
JP2014532175A (en) * 2011-09-30 2014-12-04 アレバ・エヌペ Method for producing cladding tubes for wear-resistant and corrosion-resistant reactors from preforms made from austenitic stainless steel having a low carbon content, corresponding cladding tubes and corresponding controls cluster
JP2014532174A (en) * 2011-09-30 2014-12-04 アレバ・エヌペ Method for producing stainless steel parts for wear-resistant and corrosion-resistant reactors, corresponding parts, and corresponding control clusters
US9914986B2 (en) 2011-09-30 2018-03-13 Areva Np Method for producing, from a preform made of austenitic stainless steel with a low carbon content, a wear-resistant and corrosion-resistant cladding for a nuclear reactor, corresponding cladding and corresponding control cluster
JP2016504487A (en) * 2012-11-07 2016-02-12 アレバ・エヌペ Method for thermochemical treatment of parts while partly covering and corresponding mask
US10625300B2 (en) 2012-11-07 2020-04-21 Areva Np Method for thermochemically treating a part while masking a portion and corresponding mask

Similar Documents

Publication Publication Date Title
EP1647609B1 (en) A method of producing a NI based alloy
CN101906595B (en) Austenite heat-resistance stainless steel forming Al2O3 protective layer spontaneously
KR100274299B1 (en) Method of nitriding austnitic stainless steel products
Zurek et al. Microstructural stability and oxidation behavior of Sanicro 25 during long‐term steam exposure in the temperature range 600–750° C
GB1582504A (en) Anticorrosive bellows
JPH0915383A (en) Abrasion resistive pipe shape part
JPS6039150A (en) Steel for pipe for oil well with superior resistance to stress corrosion cracking
JP3213254B2 (en) High corrosion resistant metal products and their manufacturing method
US4640817A (en) Dual-phase stainless steel with improved resistance to corrosion by nitric acid
San Marchi et al. Fatigue life of austenitic stainless steel in hydrogen environments
JP4022991B2 (en) Ferritic-martensitic duplex stainless steel pipe
US6602355B2 (en) Corrosion resistance of high temperature alloys
Eremin et al. The properties of chromium steel overlaying used as a hardening coating for stop valve sealing surface
US5779820A (en) Process for producing a ferritic stainless steel having an improved corrosion resistance, especially resistance to intergranular and pitting corrosion
Carinci et al. M2C carbide precipitation in Af1410 steel
JP2006274386A (en) Production method of ni-based alloy
Cohen et al. The influence of ion nitriding parameters on the hardness layer of 15-5 PH stainless steel
Mori et al. Depletion zones and intergranular corrosion of superaustenitic stainless steel Alloy 926
JP6786040B2 (en) Stainless steel and stainless steel pipe with excellent rouge resistance, and pure steam path member
KR100550327B1 (en) Method for post-heating treatment of welded pipe made of 2-phase stainless steel
JPH0978204A (en) Metallic material
JP2004514788A (en) Tubular tubes for industrial chemical equipment
EP0073685B1 (en) Nickel-chrome-iron alloy
Singh Raman et al. Oxidation behavior of 2.25 Cr-1Mo steel with prior tempering at different temperatures
JPH0633264A (en) Austenitic stainless steel for high purity gas excellent in corrosion resistance and its manufacture

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20020903