JP2007011059A - Semiconductive elastic member for electrophotography - Google Patents

Semiconductive elastic member for electrophotography Download PDF

Info

Publication number
JP2007011059A
JP2007011059A JP2005192607A JP2005192607A JP2007011059A JP 2007011059 A JP2007011059 A JP 2007011059A JP 2005192607 A JP2005192607 A JP 2005192607A JP 2005192607 A JP2005192607 A JP 2005192607A JP 2007011059 A JP2007011059 A JP 2007011059A
Authority
JP
Japan
Prior art keywords
semiconductive
elastic member
semiconductive elastic
layer
clay mineral
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005192607A
Other languages
Japanese (ja)
Other versions
JP2007011059A5 (en
JP4745736B2 (en
Inventor
Takumi Furukawa
匠 古川
Atsushi Murata
淳 村田
Hisao Kato
久雄 加藤
Toshinari Miura
俊成 三浦
Noriaki Kuroda
紀明 黒田
Toshiro Suzuki
敏郎 鈴木
Michitaka Kitahara
道隆 北原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2005192607A priority Critical patent/JP4745736B2/en
Publication of JP2007011059A publication Critical patent/JP2007011059A/en
Publication of JP2007011059A5 publication Critical patent/JP2007011059A5/ja
Application granted granted Critical
Publication of JP4745736B2 publication Critical patent/JP4745736B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Rolls And Other Rotary Bodies (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Dry Development In Electrophotography (AREA)
  • Electrophotography Configuration And Component (AREA)
  • Electrostatic Charge, Transfer And Separation In Electrography (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a semiconductive elastic member by which a member to be contacted, for example, a photoreceptor or the like used in an electrophotographic device is restrained from being soiled. <P>SOLUTION: A semiconductive elastic body layer is formed by hardening (a) organically modified layered clay mineral and (b) material of the semiconductive elastic body layer raw material containing oligomer having an epoxy group. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、電子写真装置内で用いられる、現像部材、帯電部材、転写部材等の電子写真用半導電性弾性部材に関するものである。   The present invention relates to a semiconductive elastic member for electrophotography, such as a developing member, a charging member, and a transfer member, used in an electrophotographic apparatus.

複写機、光プリンタ等の電子写真装置、静電記録装置等の画像形成装置において、感光体、誘電体等の像担持体を帯電処理する手段として、従来はコロナ放電が利用されてきた。   In an image forming apparatus such as an electrophotographic apparatus such as a copying machine or an optical printer or an electrostatic recording apparatus, a corona discharge has been conventionally used as a means for charging an image carrier such as a photosensitive member or a dielectric.

しかしながら、コロナ放電は像担持体の被帯電体面を所定の電位に均一に帯電処理する手段として有効であるものの、高価な高圧電源を必要とし、かつ装置が大型になり、また、コロナ放電におけるオゾン発生、異常放電による被帯電面の破壊等の不具合が発生する場合があった。   However, although corona discharge is effective as a means for uniformly charging the surface of the image carrier to be charged at a predetermined potential, it requires an expensive high-voltage power source and the apparatus becomes large, and ozone in corona discharge In some cases, problems such as generation and destruction of the charged surface due to abnormal discharge may occur.

この様なコロナ放電方式に対して、近年は接触帯電方式が採用されている。接触帯電方式は、電圧を印加した帯電する部材(帯電部材)を、被帯電面に近接又は接触させて、被帯電面を帯電するもので、コロナ放電方式に比べ、オゾン等のコロナ生成物の発生が少ない、構造が簡単で低コスト化や装置の小型化が図れる、異常放電による被帯電面の破壊が少ない等の利点がある。そして、通常、金属製芯金上に半導電性弾性体層が形成された半導電性ローラが使用されている。   In contrast to such a corona discharge method, a contact charging method has been adopted in recent years. In the contact charging method, a charged member (charging member) to which a voltage is applied is brought close to or in contact with the surface to be charged to charge the surface to be charged. Compared with the corona discharge method, corona products such as ozone are charged. There are advantages such as less generation, simple structure, low cost, miniaturization of the apparatus, and less damage to the charged surface due to abnormal discharge. Usually, a semiconductive roller having a semiconductive elastic layer formed on a metal core is used.

接触帯電方式で用いられる帯電部材の性弾性体層は、感光体等の被帯電面のピンホール、傷等により生じるリークを防止するため、適度な半導電性を有することが必要である。また、被帯電面を均一に帯電させるためには、帯電部材の弾性体層が体積固有抵抗率で1×103〜1×109Ω・cm程度の半導電性領域の均一な導電性を有していることが重要である。そして、この様な導電性を実現するために、従来、導電性カーボンブラック等の導電粒子が配合され、半導電化された電子導電系ゴム組成物を用いて、弾性体層が作製されている。 The elastic elastic layer of the charging member used in the contact charging method needs to have an appropriate semiconductivity in order to prevent leakage caused by pinholes, scratches, etc. on the surface to be charged such as a photoconductor. In addition, in order to uniformly charge the surface to be charged, the elastic layer of the charging member has uniform conductivity in a semiconductive region having a volume resistivity of about 1 × 10 3 to 1 × 10 9 Ω · cm. It is important to have. And in order to implement | achieve such electroconductivity, the elastic body layer is conventionally produced using the electroconductive rubber composition which mix | blended electroconductive particles, such as electroconductive carbon black, and was semiconductive. .

しかしながら、この様な電子導電系ゴム組成物は原料ゴムに配合する導電粒子の添加量によって、電気抵抗を調整することができるものの、体積固有抵抗率が1×103〜1×109Ω・cmの半導電領域においては、導電粒子の種類にもよるが、導電粒子の配合量の僅かな変化により、電気抵抗が大きく変化する場合がある。したがって、半導電領域において均質な所望の電気抵抗値を示す弾性体層を作製することが困難となり、帯電部材内及び帯電部材間で電気抵抗にバラツキが生じ易い。 However, although such an electronic conductive rubber composition can adjust the electric resistance depending on the amount of conductive particles added to the raw rubber, the volume resistivity is 1 × 10 3 to 1 × 10 9 Ω · In the semiconductive region of cm, depending on the type of conductive particles, the electrical resistance may change greatly due to a slight change in the blending amount of the conductive particles. Therefore, it is difficult to produce an elastic body layer having a uniform desired electric resistance value in the semiconductive region, and the electric resistance tends to vary within the charging member and between the charging members.

電気抵抗が均一なゴム成形物を得る手法としては、エピクロルヒドリンゴム、NBR等のそれ自身が半導電性を有する極性ゴムを使用することや、原料ゴムにイオン導電剤を添加して半導電性を付与したイオン導電系ゴムにより弾性体層を構成することが知られている。   As a method of obtaining a rubber molded product having a uniform electric resistance, it is possible to use a semi-conductive polar rubber such as epichlorohydrin rubber or NBR, or to add semi-conductive by adding an ionic conductive agent to the raw rubber. It is known that an elastic body layer is composed of an imparted ion conductive rubber.

一方、帯電部材には感光体等の像担持体(以下、「感光体」と記載する)を汚染しないことも要求される。接触帯電方式においては帯電部材が感光体に接触して使用されるため、長期間の使用において、帯電部材中のイオン導電剤や軟化剤等の低分子量成分が感光体を汚染し、感光体に機能障害を生じさせ、画像不良が発生する場合がある。低分子量成分による感光体汚染を防ぐ方法として、帯電部材に使用されるゴム材料に層状有機珪酸塩を混入する例がある(例えば、特許文献1参照)。   On the other hand, the charging member is also required not to contaminate an image carrier such as a photoreceptor (hereinafter referred to as “photoreceptor”). In the contact charging method, since the charging member is used in contact with the photoreceptor, low molecular weight components such as an ionic conductive agent and a softening agent in the charging member contaminate the photoreceptor during long-term use. It may cause functional failure and image defects may occur. As a method for preventing photoreceptor contamination due to low molecular weight components, there is an example in which a layered organic silicate is mixed in a rubber material used for a charging member (see, for example, Patent Document 1).

しかしながら、近年、電子写真装置における高画質化、高速化に伴い、低電気抵抗でありながら、より感光体汚染の少ない帯電部材が要求されている。帯電部材の原料ポリマーとなる極性ゴムは、電気抵抗が低いほど、帯電部材中の低分子量成分の移行速度が速くなり、感光体を汚染しやすく、同じく電気抵抗を下げる目的で用いられるイオン導電剤も、感光体汚染の原因となりやすい。
特開平2003−223038号公報
However, in recent years, with high image quality and high speed in an electrophotographic apparatus, there is a demand for a charging member that is low in electrical resistance but less contaminated with a photoreceptor. The polar rubber used as the raw material polymer for the charging member is an ionic conductive agent that is used for the purpose of lowering the electric resistance, as the lower the electric resistance, the faster the migration speed of the low molecular weight component in the charging member, However, it is likely to cause photoconductor contamination.
Japanese Patent Laid-Open No. 2003-223038

本発明の目的は、電子写真装置に用いられる、被接触部材、例えば感光体等への汚染が抑制された半導電性弾性部材を提供することである。   An object of the present invention is to provide a semiconductive elastic member used in an electrophotographic apparatus in which contamination to a contacted member such as a photoreceptor is suppressed.

本発明者らは、上記課題について鋭意検討した結果、原料中に有機変性した層状粘土鉱物およびエポキシ基を有する低分子量のポリマー(オリゴマー)を配合し、半導電性弾性体層を形成したならば、感光体への汚染が極めて少ない電子写真用半導電性弾性部材が提供できることを見出し、さらに検討して本発明に至った。   As a result of intensive studies on the above problems, the present inventors have formulated a semi-conductive elastic body layer by blending an organically modified layered clay mineral and a low molecular weight polymer (oligomer) having an epoxy group into the raw material. The inventors have found that an electrophotographic semiconductive elastic member with very little contamination to the photoreceptor can be provided, and have further studied to arrive at the present invention.

すなわち、本発明は、下記構成を有する。   That is, the present invention has the following configuration.

(1)半導電性弾性体層が、(a)有機変性した層状粘土鉱物および(b)エポキシ基を有するオリゴマーを含有する半導電性弾性体層原料から硬化形成されたものである電子写真用半導電性弾性部材。 (1) The electroconductive elastic layer is formed by curing from a semiconductive elastic layer material containing (a) an organically modified layered clay mineral and (b) an oligomer having an epoxy group. Semiconductive elastic member.

(2)エポキシ基を有するオリゴマーがエポキシ化ブタジエンオリゴマーである上記(1)の電子写真用半導電性弾性部材。 (2) The electroconductive semiconductive elastic member for electrophotography according to (1), wherein the oligomer having an epoxy group is an epoxidized butadiene oligomer.

(3)層状粘土鉱物がベントナイトである上記(1)〜(2)の電子写真用半導電性弾性部材。 (3) The electroconductive semiconductive elastic member for electrophotography according to the above (1) to (2), wherein the layered clay mineral is bentonite.

(4)半導電性弾性体層をX線回折による測定で、層状粘土鉱物に基づく層間距離が3.7nm〜5.0nmに観察されることを特徴とする上記(1)〜(3)の電子写真用半導電性弾性部材。 (4) The above-mentioned (1) to (3), wherein an interlayer distance based on a layered clay mineral is observed at 3.7 nm to 5.0 nm by measuring the semiconductive elastic body layer by X-ray diffraction Semiconductive elastic member for electrophotography.

本発明によれば、電子写真装置に用いられる、被接触部材、例えば感光体等への汚染が抑制された半導電性弾性部材を提供することが可能となった。   ADVANTAGE OF THE INVENTION According to this invention, it became possible to provide the semiconductive elastic member used for the electrophotographic apparatus by which the contamination to the to-be-contacted member, for example, a photoreceptor, was suppressed.

以下、本発明の実施の形態をより詳細に説明する。   Hereinafter, embodiments of the present invention will be described in more detail.

本発明に係る半導電性弾性部材は、主に電子写真装置の感光体に当接して用いられ、少なくとも半導体領域の導電性を有するゴム弾性体成形体であり、(a)有機変性した層状粘土鉱物および(b)エポキシ基を有するオリゴマーを含有する半導電性弾性体層原料から硬化形成されたものである。   The semiconductive elastic member according to the present invention is a rubber elastic body molded body that is mainly used in contact with a photoreceptor of an electrophotographic apparatus and has conductivity of at least a semiconductor region. (A) Organically modified layered clay It is formed by curing from a semiconductive elastic layer material containing a mineral and (b) an oligomer having an epoxy group.

具体的には、ロール形状の半導体弾性部材においては、少なくとも表面が導電性である柱状あるいは円筒状の芯金の外周に、(a)有機変性した層状粘土鉱物(以下、有機変性層状粘土鉱物、(a)成分ということがある)および(b)エポキシ基を有するオリゴマー(以下、(b)成分ということがある)を含有する半導電性弾性体層原料を、成形し、硬化し、半導電性弾性体層を形成したものである。   Specifically, in a roll-shaped semiconductor elastic member, (a) an organically modified layered clay mineral (hereinafter referred to as an organically modified layered clay mineral, A semiconductive elastic layer material containing (a) component) and (b) an oligomer having an epoxy group (hereinafter also referred to as (b) component) is molded, cured, and semiconductive The elastic elastic body layer is formed.

本発明で用いる、(a)有機変性した層状粘土鉱物とは、層状をした粘土鉱物の層間に、有機物が修飾されているものである。なお、この有機物は、粘土鉱物の層間に物理吸着していても、化学的に結合していても構わない。   The (a) organically modified layered clay mineral used in the present invention is one in which an organic substance is modified between layers of a layered clay mineral. The organic matter may be physically adsorbed between the clay mineral layers or chemically bonded.

層状をした粘土鉱物とは、例えば、モンモリロナイト、バイデライト、ノントロナイト、サボナイト、ヘクトライト、ソーコナイト等のスメクタイトやバーミキュライトのように厚み約1nmの板状のケイ酸塩層が積層され、その板状ケイ酸塩層表面がマイナスに帯電しており、層間にはカリウム、ナトリウム、リチウムやカルシウムのような無機陽イオンが通常介在して電気的に中性を保っているもので、この無機陽イオンは容易に交換可能である。また、この無機陽イオンの性質によって、この層間が水によって容易に膨潤することが知られている。   The layered clay mineral is formed by laminating a plate-like silicate layer having a thickness of about 1 nm, for example, smectite or vermiculite such as montmorillonite, beidellite, nontronite, sabonite, hectorite, and saconite. The surface of the silicate layer is negatively charged, and inorganic cations such as potassium, sodium, lithium and calcium are usually interposed between the layers to keep them electrically neutral. Are easily replaceable. Further, it is known that the interlayer easily swells with water due to the nature of the inorganic cation.

本発明において、有機変性した層状粘土鉱物として、上記の層状粘土鉱物の層間の無機陽イオンを、例えば、トリメチルステアリルアンモニウムイオン、ジメチルステアリルアンモニウムイオン、ジメチルジオクタデシルアンモニウムイオン、オレイルビス(2−ヒドロキシエチル)メチルアンモニウムイオン等の第四級アンモニウムイオンに代表される有機陽イオンで一部もしくは全部がイオン交換され、層間に置き換えられたものが使用できる。   In the present invention, as the organically modified layered clay mineral, the inorganic cation between the above layered clay minerals is, for example, trimethyl stearyl ammonium ion, dimethyl stearyl ammonium ion, dimethyl dioctadecyl ammonium ion, oleyl bis (2-hydroxyethyl). An organic cation represented by a quaternary ammonium ion such as methylammonium ion, which is partially or completely ion-exchanged and replaced between layers can be used.

有機変性層状粘土鉱物の使用量は特に限定されるものではないが、弾性体層原料のゴム成分100質量部に対して、0.5〜100質量部が好ましい。有機変性粘土鉱物の使用量が0.5質量部未満では半導電性部材の汚染防止効果が充分に得られず、また、100質量部を超える場合、半導電性弾性部材の硬度が非常に高くなり好ましくない。更に好ましい範囲は1〜30質量部である。   Although the usage-amount of an organic modified layered clay mineral is not specifically limited, 0.5-100 mass parts is preferable with respect to 100 mass parts of rubber components of an elastic body raw material. When the amount of the organically modified clay mineral used is less than 0.5 parts by mass, the effect of preventing the contamination of the semiconductive member cannot be sufficiently obtained, and when it exceeds 100 parts by mass, the hardness of the semiconductive elastic member is very high. It is not preferable. A more preferable range is 1 to 30 parts by mass.

本発明で用いる、(b)エポキシ基を有するオリゴマーとは、オリゴブタジエン、オリゴイソプレン、オリゴアクリロニトリル−ブタジエン共重合体、オリゴスチレン−ブタジエン等の不飽和結合を分子内に有する、数平均分子量が1000〜10000であり、該不飽和結合の少なくとも1つがエポキシ基となった化合物であり、そのエポキシ基がオリゴマー分子の末端、側鎖あるいは主連鎖、好ましくは末端および/または側鎖に存在する。なお、エポキシ基含有量としては、エポキシ当量で100〜10000であることが好ましい。さらに、エポキシ基以外のヒドロキシル基、カルボキシル基、アミノ基等の官能基が末端もしくは/および側鎖に修飾されたものであっても良い。   The oligomer (b) having an epoxy group used in the present invention has an unsaturated bond such as oligobutadiene, oligoisoprene, oligoacrylonitrile-butadiene copolymer, oligostyrene-butadiene in the molecule, and has a number average molecular weight of 1000. Is a compound in which at least one of the unsaturated bonds is an epoxy group, and the epoxy group is present at the terminal, side chain or main chain, preferably at the terminal and / or side chain of the oligomer molecule. In addition, as epoxy group content, it is preferable that it is 100-10000 in an epoxy equivalent. Furthermore, a functional group such as a hydroxyl group, a carboxyl group, and an amino group other than an epoxy group may be modified at the terminal or / and the side chain.

エポキシ基を有するオリゴマーの使用量としては、弾性体層原料ポリマー100質量部に対して1〜30質量部であることが好ましい。この値より小さいと汚染防止効果が充分に得られず、加工性の向上につながる粘度の低下も小さい。この値より大きいと、半導電性弾性体の圧縮永久歪み等の物性が低下してしまう。   The amount of the oligomer having an epoxy group is preferably 1 to 30 parts by mass with respect to 100 parts by mass of the elastic layer raw material polymer. If it is smaller than this value, the effect of preventing contamination cannot be sufficiently obtained, and the decrease in viscosity that leads to improvement in workability is also small. When it is larger than this value, the physical properties such as compression set of the semiconductive elastic body are lowered.

このエポキシ基を有するオリゴマーは、半導電性弾性体層中で、エポキシ基を有するオリゴマー、上記有機変性層状粘土鉱物、弾性体層原料ポリマー、各種配合剤等の少なくとも1つと反応し、本発明の効果を達成する。   The oligomer having an epoxy group reacts with at least one of the oligomer having an epoxy group, the organically modified layered clay mineral, the elastic layer material polymer, various compounding agents, etc. in the semiconductive elastic layer, and Achieve the effect.

また、これらエポキシ基を有するオリゴマーは部材加工時の熱処理等によって、反応し架橋することによって、エポキシ基を有するオリゴマー自身が表面へ移行することが無く、感光体を汚染することが無い。   Further, the oligomer having an epoxy group reacts and crosslinks by heat treatment at the time of processing the member, so that the oligomer having the epoxy group itself does not migrate to the surface and does not contaminate the photoreceptor.

本発明の汚染防止効果の作用機構については、有機変性層状粘土鉱物は有機変性していないものに比べ、層間が広がっていることに加え、エポキシ基を有するオリゴマーと共存することにより、さらにその層間が広がる。エポキシ基を有するオリゴマーは、エポキシ基が極性を持っているために、有機変性層状粘土鉱物の層間に侵入し易く、層間を広げる働きをし、このように層間距離が拡大することで、エポキシ基を有するオリゴマーを用いない場合に比べ、比較的大きな分子量の汚染物質でも、物理的および化学的に層間に吸着保持するができ、弾性体から外部に移行していくのを防いでいると考えられる。また、他の作用機構としては、エポキシ基を有するオリゴマーの存在によって、弾性体に使用される原料ポリマーが層間に侵入し易くなり、物理的および化学的に吸着し、加熱硬化によってナノ複合体を形成し、弾性体層構成ポリマーの分子運動が拘束され、弾性体中における汚染物質の移行速度が低下することで、汚染を防止していることが考えられる。   Regarding the action mechanism of the antifouling effect of the present invention, the organically modified layered clay mineral is further expanded by the coexistence with the oligomer having an epoxy group, in addition to the layer being expanded compared to the organically modified layered clay mineral. Spread. An oligomer having an epoxy group has a polarity, so that it easily penetrates between layers of an organically modified layered clay mineral and functions to expand the layer. Compared to the case of not using oligomers that have a high molecular weight, it is considered that even relatively large molecular weight contaminants can be physically and chemically adsorbed and retained between the layers, preventing migration from elastic bodies to the outside. . As another mechanism of action, the presence of an oligomer having an epoxy group makes it easy for the raw material polymer used for the elastic body to enter between the layers, physically and chemically adsorbing, and heating and curing the nanocomposite. It is considered that the molecular movement of the elastic layer-constituting polymer is restricted and the migration rate of the contaminant in the elastic body is reduced, thereby preventing contamination.

特に、有機変性層状粘土鉱物として、モンモリロナイトを主成分とする天然鉱物であるベントナイトを有機アンモニウム変性したものを用いた場合、エポキシ基を有するオリゴマーとしてエポキシ化ブタジエンオリゴマーを用いた場合に、非常に汚染防止効果が大きい。   In particular, when organically modified layered clay mineral, bentonite, which is a natural mineral mainly composed of montmorillonite, is modified with organic ammonium, epoxidized butadiene oligomer is used as an oligomer having an epoxy group. The prevention effect is great.

弾性体用の原料ポリマーとしては、特に限定されるものではないが、電気抵抗が均一なイオン導電系ポリマーを使用することが好ましい。イオン導電系ポリマーとして、例えば、エピクロルヒドリンホモポリマー(CO)、エピクロルヒドリン−エチレンオキサイド共重合体(ECO)、エピクロルヒドリン−エチレンオキサイド−アリルグリシジルエーテル3元共重合体(GECO)、アクリロニトリル−ブタジエン共重合体(NBR)、アクリロニトリル−ブタジエン共重合体(NBR)の水素添加物、アクリルゴム(ACM、ANM)及びウレタンゴム(AU、EU)等が挙げられる。なお、原料ポリマーはこれらに限らず、また、1種を用いても、2種以上を併用してもよい。その際に、電子写真装置の高速化に伴い、帯電能力を向上させるためより電気抵抗が低いイオン導電性ポリマーが望まれる。一般的に原料ポリマーが低抵抗であるほど、汚染性が悪化する傾向にある。しかし、本発明を用いることで、そのような低抵抗である原料ポリマーを用いた場合でも感光体汚染を防止することが可能となる。   The raw material polymer for the elastic body is not particularly limited, but it is preferable to use an ion conductive polymer having uniform electric resistance. Examples of the ion conductive polymer include epichlorohydrin homopolymer (CO), epichlorohydrin-ethylene oxide copolymer (ECO), epichlorohydrin-ethylene oxide-allyl glycidyl ether terpolymer (GECO), acrylonitrile-butadiene copolymer ( NBR), hydrogenated acrylonitrile-butadiene copolymer (NBR), acrylic rubber (ACM, ANM), urethane rubber (AU, EU) and the like. In addition, a raw material polymer is not restricted to these, Moreover, 1 type may be used or 2 or more types may be used together. At this time, an ion conductive polymer having a lower electric resistance is desired in order to improve the charging ability as the electrophotographic apparatus is increased in speed. Generally, the lower the resistance of the starting polymer, the worse the contamination. However, by using the present invention, it is possible to prevent contamination of the photoreceptor even when such a low-resistance raw material polymer is used.

弾性体層の体積固有抵抗率は、帯電電圧を電子写真感光体に印加することができるよう、1×103〜1×109Ω・cmであることが好ましい。そのため、弾性体層には電気抵抗を調整するためにカーボンブラック、グラファイト、酸化チタン等の酸化物や、銅、銀等の金属等の導電性粒子を添加しても良い。 The volume resistivity of the elastic layer is preferably 1 × 10 3 to 1 × 10 9 Ω · cm so that a charging voltage can be applied to the electrophotographic photosensitive member. Therefore, conductive particles such as oxides such as carbon black, graphite, and titanium oxide, and metals such as copper and silver may be added to the elastic layer in order to adjust electric resistance.

有機変性層状粘土鉱物の層間距離は、該鉱物を含有する高分子組成物試料についてX線回折装置を用いて、2θ/θスキャンを行い、その回折強度のピーク角度から計算される格子間隔を層間距離と定義する。有機変性層状粘土鉱物は弾性体中の高分子材料に含有された状態で、その層間距離が3.7〜5.0nmであることが好ましく、3.8〜4.5nmが更に好ましい。層間距離が3.7nm未満である場合、低分子量成分の移行防止効果が充分に得られ難くなり、また、層間距離が5.0nm超であると、低分子量成分を捕捉する効果が殆どなくなる。   The interlayer distance of the organically modified layered clay mineral is determined by performing a 2θ / θ scan on the polymer composition sample containing the mineral using an X-ray diffractometer and calculating the lattice spacing calculated from the peak angle of the diffraction intensity. Defined as distance. The organically modified layered clay mineral is contained in the polymer material in the elastic body, and the interlayer distance is preferably 3.7 to 5.0 nm, and more preferably 3.8 to 4.5 nm. When the interlayer distance is less than 3.7 nm, the effect of preventing the migration of the low molecular weight component is hardly obtained, and when the interlayer distance is more than 5.0 nm, the effect of capturing the low molecular weight component is almost lost.

さらに、本発明では、発明の効果を著しく損なわない範囲内で、必要に応じて、ゴム分野で配合剤として一般に用いられている充填剤、加工助剤、架橋助剤、架橋促進剤、架橋促進助剤、架橋遅延剤、粘着付与剤、分散剤、発泡剤等を添加することができる。なお、可塑剤、軟化剤、イオン導電剤等のオイル状の配合剤は、感光体汚染の原因となりやすく、用いないのが好ましい。   Furthermore, in the present invention, a filler, a processing aid, a crosslinking aid, a crosslinking accelerator, a crosslinking accelerator, which are generally used as a compounding agent in the rubber field, if necessary, within a range that does not significantly impair the effects of the invention. Auxiliaries, crosslinking retarders, tackifiers, dispersants, foaming agents and the like can be added. It should be noted that oily compounding agents such as a plasticizer, a softening agent, and an ionic conductive agent are liable to cause contamination of the photoreceptor and are preferably not used.

これらの原料の混合方法としては、バンバリーミキサーや加圧式ニーダーといった密閉型混合機を使用した混合方法、オープンロールのような開放型の混合機を使用した混合方法等を例示することができる。   Examples of the mixing method of these raw materials include a mixing method using a closed mixer such as a Banbury mixer and a pressure kneader, a mixing method using an open mixer such as an open roll, and the like.

本発明における半導電性弾性部材がローラ形状である時、上記弾性体層原料組成物をチューブ状に押出して、加熱硬化して半導電性弾性体チューブを得て、所定長さに切断した後、導電性芯金を挿入し、表面を研磨し、あるいは表面に他の機能性層を形成し、本発明の半導電性弾性部材を製造することができる。また、芯金を内蔵した円筒状金型に上記弾性体層原料を注入し、一次硬化した後金型より成形物を取り出し、加熱炉中で更に加熱硬化(二次硬化)し、さらに上記と同様の表面処理を必要により行なって本発明の半導電性弾性部材が製造できる。   When the semiconductive elastic member in the present invention has a roller shape, the elastic body material composition is extruded into a tube shape, heat-cured to obtain a semiconductive elastic tube, and cut into a predetermined length The semiconductive elastic member of the present invention can be manufactured by inserting a conductive metal core, polishing the surface, or forming another functional layer on the surface. In addition, the elastic layer material is injected into a cylindrical mold containing a core metal, and after primary curing, the molded product is taken out from the mold, and further heated and cured (secondary curing) in a heating furnace. The semiconductive elastic member of the present invention can be manufactured by performing the same surface treatment as necessary.

なお、この際の加工条件については、弾性体層原料ポリマーに応じて適宜選択すればよく、特に制限されるものではない。   The processing conditions at this time may be appropriately selected according to the elastic layer raw material polymer, and are not particularly limited.

以下、図面により本発明を説明する。   Hereinafter, the present invention will be described with reference to the drawings.

本発明の半導電性弾性部材がローラ形状である例の概略断面図を図1に示す。   FIG. 1 shows a schematic cross-sectional view of an example in which the semiconductive elastic member of the present invention has a roller shape.

半発明の半導電性弾性部材は、図1(a)に示すように、少なくとも、少なくとも表面が導電性である円筒状あるいは円柱状の芯金11とその外周に設けられた半導電性を有する弾性体層12とからなる。なお、半導電性弾性体層は本例では単層で示しているが、多層であっても構わない。また、芯金11と弾性体層12の間に接着性を得るために接着剤層が形成されていてもよい。   As shown in FIG. 1A, the semiconductive elastic member of the semi-invention has at least a cylindrical or columnar core metal 11 having a conductive surface and a semiconductive property provided on the outer periphery thereof. It consists of an elastic body layer 12. The semiconductive elastic layer is shown as a single layer in this example, but may be a multilayer. Further, an adhesive layer may be formed between the core metal 11 and the elastic body layer 12 in order to obtain adhesiveness.

さらに、弾性体層12の表面に機能、特にトナー及びトナー外添剤の付着防止性を付与するために、図1(b)に示すように表面層13が形成されていてもよい。さらに、弾性体層12と表面層13との間に中間層や接着層を何層か配置した多層構成であってもよい。   Furthermore, a surface layer 13 may be formed on the surface of the elastic body layer 12 as shown in FIG. 1B in order to provide a function, particularly, adhesion prevention property of toner and toner external additives. Furthermore, a multilayer structure in which several intermediate layers or adhesive layers are arranged between the elastic body layer 12 and the surface layer 13 may be employed.

表面層13は、弾性体層表面に電子線、紫外線、X線、マイクロウェーブ等のエネルギー線を照射して表面を硬化して、あるいは、アクリル樹脂、ポリウレタン、ポリアミド、ポリエステル、ポリオレフィン、シリコーン樹脂等の非粘着性樹脂やシリコーン系の反応性表面処理剤を用いて、形成される。   The surface layer 13 is formed by irradiating the elastic layer surface with energy rays such as electron beam, ultraviolet ray, X-ray, microwave, etc., or curing the surface, or acrylic resin, polyurethane, polyamide, polyester, polyolefin, silicone resin, etc. And a non-adhesive resin or a silicone-based reactive surface treatment agent.

なお、表面層13が設けられる場合、表面層を有する半導電性弾性部材においても、その電気抵抗が半導電性を示す必要がある。この場合、先述した非粘着性樹脂に対して、必要に応じて、カーボンブラック、グラファイト、酸化チタン等の酸化物や、銅、銀等の金属を配し、所望の電気抵抗値としたものを用いる。   In addition, when the surface layer 13 is provided, also in the semiconductive elastic member which has a surface layer, the electrical resistance needs to show semiconductivity. In this case, with respect to the non-adhesive resin described above, an oxide such as carbon black, graphite, titanium oxide or the like, or a metal such as copper or silver is arranged as required to obtain a desired electric resistance value. Use.

感光体の汚染の程度は、表面の非粘着処理の方法や程度によっても異なる。厚膜や積層された表面層を形成する場合にくらべ、極薄い膜で表面層が形成されている非粘着処理の場合は、より半導電性弾性体層内部から汚染物質が表面に移行しやすく、また、エネルギー線の照射により表面処理だけで表面層が形成される非粘着処理の場合も同様に半導電性弾性体層内部から汚染物質が表面に移行しやすい。本発明では、(a)有機変性層状粘土鉱物および(b)エポキシ基を有するオリゴマーが配されて、半導電性弾性体層が形成されているので、これらの非粘着処理の場合にも感光体汚染を防止されている。   The degree of contamination of the photoreceptor varies depending on the method and degree of non-adhesive treatment of the surface. In the case of non-adhesive treatment in which the surface layer is formed with an extremely thin film, compared to the case where a thick film or a laminated surface layer is formed, contaminants are more easily transferred from the inside of the semiconductive elastic layer to the surface. Also, in the case of non-adhesive treatment in which a surface layer is formed only by surface treatment by irradiation with energy rays, the contaminants easily move from the inside of the semiconductive elastic layer to the surface. In the present invention, (a) an organically modified layered clay mineral and (b) an oligomer having an epoxy group are arranged to form a semiconductive elastic body layer. Contamination is prevented.

なお、本発明において(a)成分と(b)成分は、半導電性弾性体層に配されていることが必須であるが、導電性弾性体層が多層である時は少なくとも最外層の半導電性弾性体層にのみ(a)成分と(b)成分が配されていてもよく、また、表面層、中間層等の半導電性弾性体層以外に配されていてもよい。   In the present invention, it is essential that the component (a) and the component (b) are disposed in the semiconductive elastic layer, but when the conductive elastic layer is a multilayer, at least a half of the outermost layer is required. The component (a) and the component (b) may be disposed only in the conductive elastic body layer, or may be disposed other than the semiconductive elastic body layer such as the surface layer and the intermediate layer.

層間の広がった層状粘土鉱物は、感光体を汚染する低分子量成分を含有する層に存在してこれらの汚染成分の移行を防止する作用もあるが、低分子量成分を含有する層の外側層に含まれることにより、移行物質を外側層で捕捉する作用もある。   The layered clay mineral spread between the layers exists in the layer containing low molecular weight components that contaminate the photoreceptor, and has the effect of preventing the migration of these contaminating components, but in the outer layer of the layer containing low molecular weight components. By being included, there is also an action of trapping the migration substance in the outer layer.

本発明の半導電性弾性部材は、電子写真装置等の画像形成装置や、感光体及び弾性部材を一体的にカートリッジ化し、画像形成装置本体に対して着脱自在としたプロセスカートリッジにおいて、感光体等の非弾性部材に当接して使用される電子写真用半導電性弾性部材、すなわち帯電部材、現像部材、転写部材等として好適である。   The semiconductive elastic member of the present invention is an image forming apparatus such as an electrophotographic apparatus, a process cartridge in which a photosensitive member and an elastic member are integrally formed as a cartridge, and is detachable from the main body of the image forming apparatus. It is suitable as a semiconductive elastic member for electrophotography used in contact with the non-elastic member, that is, a charging member, a developing member, a transfer member and the like.

図2は、本発明の弾性部材を有する電子写真装置の概略構成図である。   FIG. 2 is a schematic configuration diagram of an electrophotographic apparatus having the elastic member of the present invention.

21は被帯電体としての電子写真感光体であり、通常は、アルミニウム等の導電性を有する支持体21bと、該支持体21b上に形成した感光層21aを基本構成とするドラム形状の電子写真感光体である。軸21cを中心に図の矢印方向に所定の周速度をもって回転駆動される。   Reference numeral 21 denotes an electrophotographic photosensitive member as a member to be charged. Usually, a drum-shaped electrophotographic photosensitive member 21a having a conductive property such as aluminum and a photosensitive layer 21a formed on the supporting member 21b is basically used. It is a photoreceptor. The shaft 21c is driven to rotate at a predetermined peripheral speed in the direction of the arrow in the figure.

電子写真感光体21に接触配置されて電子写真感光体を所定の極性・電位に帯電(一次帯電)する帯電ローラ1は、芯金11と、芯金11上に形成した弾性体層12と、弾性体層12上に形成した表面層13からなり、芯金11の両端部を不図示の押圧手段で電子写真感光体21の回転駆動に伴い従動回転する。   A charging roller 1 disposed in contact with the electrophotographic photosensitive member 21 to charge (primary charging) the electrophotographic photosensitive member to a predetermined polarity and potential includes a cored bar 11, an elastic layer 12 formed on the cored bar 11, and It consists of a surface layer 13 formed on the elastic layer 12, and both ends of the cored bar 11 are driven to rotate as the electrophotographic photosensitive member 21 is driven by a pressing means (not shown).

電源23で摺擦端子23aにより、芯金11の所定の直流(DC)バイアス、あるいは直流+交流(DC+AC)バイアスが印加されることで電子写真感光体21が所定の極性・電位に接触帯電される。帯電ローラ1で周面が帯電された電子写真感光体21は、次いで露光手段24により目的画像情報の露光(レーザービーム走査露光、原稿画像のスリット露光等)を受けることで、その周面に目的の画像情報に対した静電潜像が形成される。   By applying a predetermined direct current (DC) bias or direct current + alternating current (DC + AC) bias of the metal core 11 by the rubbing terminal 23a with the power source 23, the electrophotographic photosensitive member 21 is contact-charged to a predetermined polarity and potential. The The electrophotographic photosensitive member 21 whose peripheral surface is charged by the charging roller 1 is then subjected to exposure of target image information (laser beam scanning exposure, slit exposure of a manuscript image, etc.) by the exposure means 24, so that the peripheral surface has a target. An electrostatic latent image corresponding to the image information is formed.

静電潜像は、次いで、現像手段25により、トナー画像として順次に可視像化されていく。このトナー画像は、次いで、転写手段26により不図示の給紙手段部から電子写真感光体21の回転と同期取りされて適正なタイミングをもって電子写真感光体21と転写手段26との間の転写部へ搬送された転写材27に順次転写されていく。ここで転写手段26は転写ローラであり、転写材27の裏からトナーと逆極性の帯電を行うことで電子写真感光体21側のトナー画像が転写材27に転写されていく。   Next, the electrostatic latent image is sequentially visualized as a toner image by the developing unit 25. This toner image is then synchronized with the rotation of the electrophotographic photosensitive member 21 from a paper feeding unit (not shown) by the transfer unit 26 and transferred at a proper timing between the electrophotographic photosensitive member 21 and the transfer unit 26. Are sequentially transferred to the transfer material 27 conveyed to the substrate. Here, the transfer unit 26 is a transfer roller, and the toner image on the electrophotographic photosensitive member 21 side is transferred to the transfer material 27 by charging from the back of the transfer material 27 with the reverse polarity to the toner.

表面にトナー画像の転写を受けた転写材27は、電子写真感光体21から分離されて不図示の定着手段へ搬送されて像定着を受け、画像形成物として出力される。あるいは、裏面にも像形成するものでは、転写部への再搬送手段へ搬送される。   The transfer material 27 having received the transfer of the toner image on the surface is separated from the electrophotographic photosensitive member 21 and conveyed to a fixing means (not shown) to receive image fixing and output as an image formed product. Alternatively, in the case of forming an image on the back side, it is conveyed to a re-conveying means to the transfer unit.

像転写後の電子写真感光体21の周面は、前露光手段28による前露光を受けて電子写真感光体ドラム上の残留電荷が除去(除電)される。この前露光手段28には公知の手段を利用することができ、例えばLEDチップアレイ、ヒューズランプ、ハロゲンランプ、蛍光ランプ等を好適に例示することができる。前露光手段は、除電効果を考慮すると、その露光量は前述した露光手段の露光量よりも大きいことが好ましい。また、前露光手段の位置は本実施形態に限定されるものではなく、クリーニング手段29と帯電手段(例えば、帯電ローラ1)の間に設けてもよい。   The peripheral surface of the electrophotographic photosensitive member 21 after the image transfer is subjected to pre-exposure by the pre-exposure means 28, and residual charges on the electrophotographic photosensitive drum are removed (static elimination). Known means can be used for the pre-exposure means 28. For example, an LED chip array, a fuse lamp, a halogen lamp, a fluorescent lamp, etc. can be preferably exemplified. The pre-exposure means preferably has an exposure amount larger than the exposure amount of the exposure means described above in consideration of the charge removal effect. Further, the position of the pre-exposure means is not limited to this embodiment, and may be provided between the cleaning means 29 and the charging means (for example, the charging roller 1).

除電された電子写真感光体21の周面は、クリーニング手段29で転写残りトナー、転写材屑等の付着汚染物の除去を受けて洗浄面化されて、繰り返して画像形成に供される。   The peripheral surface of the electrophotographic photosensitive member 21 that has been neutralized is cleaned by the cleaning means 29 to remove adhered contaminants such as transfer residual toner and transfer material waste, and is repeatedly used for image formation.

帯電ローラ1は面移動駆動される電子写真感光体21に従動駆動させてもよいし、非回転にしてもよいし、電子写真感光体21の面移動方向に順方向又は逆方向に所定の周速度をもって積極的に回転駆動させるようにしてもよい。   The charging roller 1 may be driven and driven by the electrophotographic photosensitive member 21 driven to move the surface, or may not be rotated, or may move in a predetermined direction in the forward or reverse direction in the surface moving direction of the electrophotographic photosensitive member 21. You may make it actively rotate at a speed.

また、露光は、電子写真装置を複写機として使用する場合には、原稿からの反射光や透過光、あるいは原稿を読み取り信号化し、この信号に基づいてレーザービームを走査したり、LEDアレイを駆動したり、又は液晶シャッターアレイを駆動したりすること等により行われる。   In addition, when the electrophotographic apparatus is used as a copying machine, exposure is performed by reflecting or transmitting light from a document or by reading a document as a read signal, scanning a laser beam based on this signal, or driving an LED array. Or by driving a liquid crystal shutter array.

本発明の電子写真用半導電性弾性部材を使用しうる電子写真装置としては、複写機、レーザービームプリンター、LEDプリンタ、あるいは、電子写真製版システム等の電子写真応用装置等が挙げられる。   Examples of the electrophotographic apparatus that can use the electroconductive elastic member for electrophotography of the present invention include copying machines, laser beam printers, LED printers, and electrophotographic application apparatuses such as an electrophotographic plate making system.

本発明の弾性部材は、除電部材や給紙ローラ等の搬送部材としても使用可能である。   The elastic member of the present invention can also be used as a conveying member such as a static eliminating member or a paper feed roller.

本発明においては、図3に示されるように、電子写真感光体21、帯電部材1、現像手段25、クリーニング手段29のような複数部材が、プロセスカートリッジに一体的に組み込まれることもできる。プロセスカートリッジは、電子写真装置本体に対して着脱自在の構成とすることができる。例えば、本発明の帯電部材及び電子写真感光体、必要に応じて、更に現像部材やクリーニング部材等をプロセスカートリッジに一体的に組み込み、電子写真装置本体のレール等の案内手段を用いて着脱自在に構成できる。   In the present invention, as shown in FIG. 3, a plurality of members such as the electrophotographic photosensitive member 21, the charging member 1, the developing unit 25, and the cleaning unit 29 can be integrated into the process cartridge. The process cartridge can be detachably attached to the main body of the electrophotographic apparatus. For example, the charging member and the electrophotographic photosensitive member of the present invention, and if necessary, further a developing member and a cleaning member are integrally incorporated in the process cartridge, and can be attached and detached using guide means such as a rail of the electrophotographic apparatus main body. Can be configured.

以下に、実施例によって本発明を更に詳細に説明する。これらは、本発明を何ら限定するものではない。なお、以下、特に明記しない限り、「部」は「質量部」を意味しており、試薬等で特に指定のないものは、市販の高純度品を用いた。   Hereinafter, the present invention will be described in more detail by way of examples. These do not limit the present invention in any way. In the following, unless otherwise specified, “part” means “part by mass”, and a commercially available high-purity product was used as a reagent or the like unless otherwise specified.

実施例1
原料ゴムとしてエピクロルヒドリン−エチレンオキサイド−アリルグリシジルエーテル3元共重合体「エピクロマー CG105」(商品名、ダイソー株式会社製)50部およびエピクロルヒドリン−エチレンオキサイド−アリルグリシジルエーテル3元共重合体「エピクロマー EPION301」(商品名、ダイソー株式会社製)50部、加工助剤としてステアリン酸亜鉛1部、加硫促進助剤として酸化亜鉛5部、充填剤としてMTカーボンブラック「サーマックスフローフォームN990」(商品名、CANCARB社製)35部、有機変性層状粘土鉱物「エスベンNX」(商品名、株式会社ホージュン製、層間がジメチルオクタデシルアンモニウムイオンで修飾されたベントナイト)5部、エポキシ基を有するオリゴマーとしてエポキシ化ブタジエン「アデカイザー BF1000」(商品名、旭電化工業株式会社製)5部、加硫剤としてジベンゾチアゾリルジスルフィド「ノクセラーDM」(商品名、大内新興化学工業株式会社製)1部、テトラメチルチオラムジスルフィド「ノクセラーTS」(商品名、大内新興化学工業株式会社製)1部、及び硫黄1.2部をオープンロールにて混合し、未加硫ゴム組成物を得た。
Example 1
Epichlorohydrin-ethylene oxide-allyl glycidyl ether terpolymer “Epichromer CG105” (trade name, manufactured by Daiso Corporation) and epichlorohydrin-ethylene oxide-allyl glycidyl ether terpolymer “Epichromer EPION301” 50 parts by trade name, manufactured by Daiso Corporation, 1 part zinc stearate as processing aid, 5 parts zinc oxide as vulcanization accelerator, MT carbon black “Thermax Flow Foam N990” as filler (trade name, CANCARB) 35 parts organically modified layered clay mineral “Esven NX” (trade name, manufactured by Hojun Co., Ltd., bentonite whose interlayer is modified with dimethyloctadecyl ammonium ion), epoxy as an epoxy group oligomer Butadiene "Adekaiser BF1000" (trade name, manufactured by Asahi Denka Kogyo Co., Ltd.), dibenzothiazolyl disulfide "Noxeller DM" (trade name, manufactured by Ouchi Shinsei Chemical Co., Ltd.) as a vulcanizing agent, tetra 1 part of methylthioram disulfide “Noxeller TS” (trade name, manufactured by Ouchi Shinsei Chemical Co., Ltd.) and 1.2 parts of sulfur were mixed with an open roll to obtain an unvulcanized rubber composition.

得られた未加硫ゴム組成物を、株式会社イーエム技研製のベント式ゴム押出機(φ50mm、L/D=16)によりチューブ状に押出し、加硫缶を用いた加圧水蒸気により160℃で30分間の一次加硫を行い、切断して、外径15mm、内径5.5mm、長さ250mmのゴムチューブを得た。   The obtained unvulcanized rubber composition was extruded into a tube shape by a vent type rubber extruder (φ50 mm, L / D = 16) manufactured by EM Giken Co., Ltd., and 30 ° C. at 160 ° C. with pressurized steam using a vulcanized can. The rubber tube having an outer diameter of 15 mm, an inner diameter of 5.5 mm, and a length of 250 mm was obtained.

直径6mm、長さ256mmの円柱形の導電性芯金(鋼製、表面はニッケルメッキ)の円柱の中央部232mmに導電性ホットメルト接着剤を塗布し、80℃で30分間乾燥したものを、上記ゴムチューブに圧入し、熱風炉にて160℃で2時間の二次加硫と接着処理を行った。ゴム両端部を突切って、ゴム部分の長さを232mmとした後、ゴム部分を回転砥石で研磨し、端部直径8.3mm、中央部直径8.5mmの太鼓形状の弾性体層を有するローラを得た。   A conductive hot melt adhesive was applied to a central portion 232 mm of a cylindrical conductive core bar (steel, surface is nickel-plated) having a diameter of 6 mm and a length of 256 mm, and dried at 80 ° C. for 30 minutes. The rubber tube was press-fitted and subjected to secondary vulcanization and adhesion treatment at 160 ° C. for 2 hours in a hot air furnace. After both ends of the rubber were cut to make the length of the rubber part 232 mm, the rubber part was polished with a rotating grindstone to have a drum-shaped elastic body layer with an end diameter of 8.3 mm and a center diameter of 8.5 mm. Got Laura.

このローラの弾性体層表面に、回転させながら、紫外線照射装置(185nm、245nmが波長主成分)を用いて紫外線強度40mW/cm2で10分間紫外線を照射して表面処理を行い、電子写真用半導電性弾性部材を得た。 The surface of the elastic layer of this roller is rotated and irradiated with ultraviolet rays at an ultraviolet intensity of 40 mW / cm 2 for 10 minutes using an ultraviolet irradiation device (185 nm and 245 nm are the main components of wavelength) for electrophotography. A semiconductive elastic member was obtained.

この弾性体層から2mm厚の試験片を短冊状に数枚切り出し、アルミニウム製の試料ホルダーに測定面が平滑に揃うように敷き詰め、X線回折装置「TTR―2」(商品名、株式会社リガク製)によって層状鉱物の層間距離を2θ/θスキャン法にて2θ=1〜10°で測定した。なお、X線回折測定の条件は、X線出力50kV、300mAのCuKα線を用い、発散スリット0.20mm、発散縦制限スリット10.0mm、散乱スリット開放、受光スリット0.15mm、インシデントモノクロメーター使用とした。その結果、層間距離は3.97nmであった。   Several strips of 2mm thickness are cut out from this elastic layer into strips, spread on an aluminum sample holder so that the measurement surface is evenly aligned, and the X-ray diffractometer “TTR-2” (trade name, Rigaku Corporation) The interlayer distance of the layered mineral was measured at 2θ = 1 to 10 ° by the 2θ / θ scanning method. The X-ray diffraction measurement was performed using CuKα rays with an X-ray output of 50 kV and 300 mA, a divergence slit of 0.20 mm, a divergence longitudinal limit slit of 10.0 mm, a scattering slit opened, a light receiving slit of 0.15 mm, and an incident monochromator used. It was. As a result, the interlayer distance was 3.97 nm.

この電子写真用半導電性弾性部材を帯電ローラとして図3に示したプロセスカートリッジ「トナーカートリッジEP−85」(商品名、キヤノン株式会社製)に組み込み、40℃/95%RHの過酷環境下で30日間放置し、感光体汚染性の加速試験を行った。その結果、電子写真用半導電性弾性部材から感光体への汚染物質の移行は確認されなかった。   This electrophotographic semiconductive elastic member is incorporated as a charging roller into the process cartridge “Toner Cartridge EP-85” (trade name, manufactured by Canon Inc.) shown in FIG. 3 and is used in a harsh environment of 40 ° C./95% RH. The sample was allowed to stand for 30 days, and an acceleration test for the photoreceptor contamination was conducted. As a result, the migration of contaminants from the electrophotographic semiconductive elastic member to the photoreceptor was not confirmed.

次に、このカートリッジを図2に示した電子写真装置「レーザショットLBP−2510」(商品名、キヤノン株式会社製)にて、常温常湿環境下でハーフトーンの画像形成を行い、過酷環境放置後の画像評価を行い、下記基準で評価したところ、A評価であった。   Next, this cartridge was subjected to half-tone image formation in a room temperature and humidity environment by using the electrophotographic apparatus “Laser Shot LBP-2510” (trade name, manufactured by Canon Inc.) shown in FIG. When the later image evaluation was performed and the following criteria were evaluated, the evaluation was A.

(過酷環境放置後の画像評価基準)
A評価:電子写真用半導電性弾性部材から感光体への汚染物質の移行は確認されず、品位良好な画像がえられ、「良い」。
B評価:汚染物質が表面に移行することにより、電子写真用半導電性弾性部材や感光体の表面に汚染物質が残り、その部位の帯電特性や現像特性や転写特性が変わり、電子写真用半導電性弾性部材や感光体の円周長さの周期で画像不良が発生し、「悪い」。
C評価:汚染物質が表面に移行することにより、電子写真用半導電性弾性部材や感光体の表面に汚染物質が多く残り、その部位の帯電特性や現像特性や転写特性がかなり変わり、電子写真用半導電性弾性部材や感光体の円周長さの周期で画像不良が多く発生し、「非常に悪い」。
(Image evaluation criteria after leaving the harsh environment)
A evaluation: No migration of contaminants from the electroconductive semiconductive elastic member for electrophotography to the photosensitive member was confirmed, and an image of good quality was obtained and “good”.
B evaluation: When the contaminants move to the surface, the contaminants remain on the surface of the electroconductive semiconductive elastic member or the photoreceptor, and the charging characteristics, development characteristics, and transfer characteristics of the portions change, and the electrophotographic semi-conductors change. An image defect occurs in the period of the circumferential length of the conductive elastic member or the photosensitive member, and “bad”.
C evaluation: When contaminants migrate to the surface, a lot of contaminants remain on the surface of the electroconductive semiconductive elastic member for electrophotography and the photoreceptor, and the charging characteristics, development characteristics, and transfer characteristics of the portions change considerably, and electrophotography Many image defects occur in the period of the circumferential length of the semiconductive elastic member and the photosensitive member, and “very bad”.

実施例2
エポキシ基を有するオリゴマーとしてエポキシ化ブタジエン「アデカレンジ EPB1200」(商品名、旭電化工業株式会社製)5部を使用した以外は実施例1と同様に電子写真用半導電性弾性部材を得た。なお、この弾性体中の層状粘土鉱物の層間距離は、4.03nmであった。また、実施例1と同様に感光体汚染試験を画像出力により行った。その結果、過酷環境放置後も電子写真用半導電性弾性部材から感光体への汚染物質の移行は確認されず、品位良好な画像が得られた(A評価)。
Example 2
A semiconductive elastic member for electrophotography was obtained in the same manner as in Example 1 except that 5 parts of epoxidized butadiene “Adekarange EPB1200” (trade name, manufactured by Asahi Denka Kogyo Co., Ltd.) was used as the oligomer having an epoxy group. The interlayer distance of the layered clay mineral in this elastic body was 4.03 nm. Further, in the same manner as in Example 1, a photoreceptor contamination test was performed by image output. As a result, even after being left in a harsh environment, no migration of contaminants from the electroconductive semiconductive elastic member to the photosensitive member was confirmed, and an image of good quality was obtained (A evaluation).

実施例3
表面処理として、紫外線照射に替えて、シリコーン系反応性表面処理液「SAT−500F」(商品名:、シンコー技研株式会社製)に弾性体層を1分間ディッピングした後、100℃、10分の熱処理とする他は実施例1と同様にして、電子写真用半導電性弾性部材を得た。このとき表面処理液の硬化物の膜厚は0.1μm以下であった。また、この弾性体層中の層状粘土鉱物の層間距離は3.97nmであった。実施例1と同様に感光体汚染試験を画像出力により行った結果、過酷環境放置後も電子写真用半導電性弾性部材から感光体への汚染物質の移行は確認されず、品位良好な画像が得られた(A評価)。
Example 3
As the surface treatment, instead of ultraviolet irradiation, the elastic body layer was dipped in a silicone-based reactive surface treatment solution “SAT-500F” (trade name: manufactured by Shinko Giken Co., Ltd.) for 1 minute, and then at 100 ° C. for 10 minutes. A semiconductive elastic member for electrophotography was obtained in the same manner as in Example 1 except that heat treatment was performed. At this time, the film thickness of the cured product of the surface treatment liquid was 0.1 μm or less. The interlayer distance of the layered clay mineral in this elastic layer was 3.97 nm. As a result of conducting the photoconductor contamination test by image output in the same manner as in Example 1, no migration of contaminants from the electrophotographic semiconductive elastic member to the photoconductor was confirmed even after being left in a harsh environment, and an image of good quality was obtained. Obtained (A evaluation).

実施例4
表面処理として、紫外線照射に替えて、シリコーン系反応性表面処理液「SAT−500F」(商品名)に弾性体層を1分間ディッピングした後、100℃、10分の熱処理とする他は実施例2と同様にして、電子写真用半導電性弾性部材を得た。このとき表面処理液の硬化物の膜厚は0.1μm以下であった。また、この弾性体中の層状粘土鉱物の層間距離は4.03nmであった。実施例1と同様に感光体汚染試験を画像出力により行った結果、過酷環境放置後も電子写真用半導電性弾性部材から感光体への汚染物質の移行は確認されず、品位良好な画像が得られた(A評価)。
Example 4
Example of surface treatment except that instead of UV irradiation, the elastic layer is dipped for 1 minute in a silicone-based reactive surface treatment solution “SAT-500F” (trade name) and then heat treated at 100 ° C. for 10 minutes. In the same manner as in Example 2, an electrophotographic semiconductive elastic member was obtained. At this time, the film thickness of the cured product of the surface treatment liquid was 0.1 μm or less. The interlayer distance of the layered clay mineral in this elastic body was 4.03 nm. As a result of conducting the photoconductor contamination test by image output in the same manner as in Example 1, no migration of contaminants from the electrophotographic semiconductive elastic member to the photoconductor was confirmed even after being left in a harsh environment, and an image of good quality was obtained. Obtained (A evaluation).

実施例5
表面処理を何も行なわないこと以外は、実施例1と同様にして、電子写真用半導電性弾性部材を得た。また、この弾性体層中の層状粘土鉱物の層間距離は3.97nmであった。この電子写真用半導電性弾性部材を帯電ローラとして図3に示したプロセスカートリッジ「トナーカートリッジEP−85」(商品名、キヤノン株式会社製)に組み込み、40℃/95%RHの過酷環境下で30日間放置し、感光体汚染性の加速試験を行った。その結果、過酷環境放置後も電子写真用半導電性弾性部材から感光体への汚染物質の移行は確認されなかった。ただし、表面処理を行っていないために、トナーや外添剤が電子写真用半導電性部材表面に付着するという弊害があるので、画像出力は行なわなかった。
Example 5
A semiconductive elastic member for electrophotography was obtained in the same manner as in Example 1 except that no surface treatment was performed. The interlayer distance of the layered clay mineral in this elastic layer was 3.97 nm. This electrophotographic semiconductive elastic member is incorporated as a charging roller into the process cartridge “Toner Cartridge EP-85” (trade name, manufactured by Canon Inc.) shown in FIG. 3 and is used in a harsh environment of 40 ° C./95% RH. The sample was allowed to stand for 30 days, and an acceleration test for the photoreceptor contamination was conducted. As a result, no migration of contaminants from the electrophotographic semiconductive elastic member to the photoreceptor was confirmed even after being left in a harsh environment. However, since the surface treatment was not performed, there was an adverse effect that the toner and the external additive adhered to the surface of the electroconductive semiconductive member. Therefore, image output was not performed.

比較例1
導電性弾性体層原料として、有機変性層状粘土鉱物およびエポキシ基を有するオリゴマーを含まないものとした以外は実施例1と同様に電子写真用半導電性弾性部材を得た。実施例1と同様に感光体汚染試験を画像出力により行った結果、過酷放置中に電子写真用半導電性部材からかなり滲み出し、感光体と電子写真用半導電性弾性部材に付着した汚染物質と見られる画像不良が明確に確認された(C評価)。
Comparative Example 1
A semiconductive elastic member for electrophotography was obtained in the same manner as in Example 1 except that the conductive elastic layer material did not contain an organically modified layered clay mineral and an oligomer having an epoxy group. As a result of conducting the photoconductor contamination test by image output in the same manner as in Example 1, the contaminants oozed out of the electrophotographic semiconductive member during severe storage and adhered to the photoconductor and the electroconductive semiconductive elastic member. It was clearly confirmed that the image was defective (C evaluation).

比較例2
導電性弾性体層原料として、有機変性層状粘土鉱物およびエポキシ基を有するオリゴマーを含まないものとした以外は実施例3と同様に電子写真用半導電性弾性部材を得た。実施例1と同様に感光体汚染試験を画像出力により行った結果、過酷放置中に電子写真用半導電性部材からかなり滲み出し、感光体と電子写真用半導電性弾性部材に付着した汚染物質と見られる画像不良が明確に確認された(C評価)。
Comparative Example 2
A semiconductive elastic member for electrophotography was obtained in the same manner as in Example 3 except that the conductive elastic layer material did not contain an organically modified layered clay mineral and an oligomer having an epoxy group. As a result of conducting the photoconductor contamination test by image output in the same manner as in Example 1, the contaminants oozed out of the electrophotographic semiconductive member during severe storage and adhered to the photoconductor and the electroconductive semiconductive elastic member. It was clearly confirmed that the image was defective (C evaluation).

比較例3
導電性弾性体層原料として、エポキシ基を有するオリゴマーを含まないものとした以外は実施例1と同様に電子写真用半導電性弾性部材を得た。なお、この弾性体層中の層状粘土鉱物の層間距離は3.52nmであった。実施例1と同様に感光体汚染試験を画像出力により行った結果、過酷放置中に電子写真用半導電性部材から滲み出し、感光体と電子写真用半導電性弾性部材に付着した汚染物質と見られる画像不良が確認された(B評価)。
Comparative Example 3
A semiconductive elastic member for electrophotography was obtained in the same manner as in Example 1 except that the conductive elastic layer material did not contain an epoxy group-containing oligomer. The interlayer distance of the layered clay mineral in this elastic layer was 3.52 nm. As a result of conducting the photoconductor contamination test by image output in the same manner as in Example 1, the contaminants oozed out from the electroconductive semiconductive member during severe storage and adhered to the photoconductor and the electroconductive semiconductive elastic member. The image defect seen was confirmed (B evaluation).

比較例4
導電性弾性体層原料として、有機変性層状粘土鉱物を含まないものとした以外は実施例1と同様に電子写真用半導電性弾性部材を得た。実施例1と同様に感光体汚染試験を画像出力により行った結果、過酷放置中に電子写真用半導電性部材からかなりの量が滲み出し、感光体と電子写真用半導電性弾性部材に付着した汚染物質と見られる画像不良が確認された(B評価)。
Comparative Example 4
A semiconductive elastic member for electrophotography was obtained in the same manner as in Example 1 except that the conductive elastic layer material did not contain an organically modified layered clay mineral. As a result of conducting the photoconductor contamination test by image output in the same manner as in Example 1, a considerable amount oozes out from the electrophotographic semiconductive member during severe storage and adheres to the photoconductor and the electroconductive semiconductive elastic member. An image defect that appears to be a contaminated material was confirmed (B evaluation).

以上の帯電ローラの、弾性体層の材料組成、表面処理および評価結果を表1に示す。   Table 1 shows the material composition, surface treatment, and evaluation results of the elastic layer of the above charging roller.

Figure 2007011059
注)組成中の記号は下記を示す。
CG105:ダイソー株式会社製のエピクロルヒドリン−エチレンオキサイド−アリルグリシジルエーテル3元共重合体「エピクロマー CG105」(商品名)
EPION:ダイソー株式会社製のエピクロルヒドリン−エチレンオキサイド−アリルグリシジルエーテル3元共重合体「エピクロマー EPION301」(商品名)
MTカーボンブラック:CANCARB社製のMTカーボンブラック「サーマックスフローフォームN990」(商品名)
BF1000:旭電化工業株式会社製のエポキシ化ブタジエン「アデカイザー BF1000」(商品名)
EPB1200:旭電化工業株式会社製のエポキシ化ブタジエン「アデカイザー EPB1200」(商品名)
DM:ジベンゾチアゾリルジスルフィド
TS:テトラメチルチオラムジスルフィド
*)表面処理は、それぞれUV:紫外線照射、SAT:シリコーン系反応性表面処理剤処理を示す。
Figure 2007011059
Note) Symbols in the composition are as follows.
CG105: Epichlorohydrin-ethylene oxide-allyl glycidyl ether terpolymer “Epichromer CG105” (trade name) manufactured by Daiso Corporation
EPION: Epichlorohydrin-ethylene oxide-allyl glycidyl ether terpolymer “Epichromer EPION301” (trade name) manufactured by Daiso Corporation
MT Carbon Black: MT carbon black “Thermax Flow Foam N990” (trade name) manufactured by CANCARB
BF1000: Epoxidized butadiene “Adekaiser BF1000” (trade name) manufactured by Asahi Denka Kogyo Co., Ltd.
EPB1200: Epoxidized butadiene “Adekaiser EPB1200” (trade name) manufactured by Asahi Denka Kogyo Co., Ltd.
DM: dibenzothiazolyl disulfide TS: tetramethylthioram disulfide *) surface treatment indicates UV: ultraviolet irradiation, SAT: silicone-based reactive surface treatment treatment, respectively.

比較例1〜4については帯電ローラを構成するポリマーに、本発明の有機変性層状粘土鉱物とエポキシ化ブタジエンオリゴマーの少なくとも一方が含有されておらず、比較例3では、有機変性粘土鉱物があるために、その層間に比較的小さな汚染物質であれば吸着保持することができ、比較例4では、エポキシ化ブタジエンオリゴマーのエポキシ基が塩素と反応し、塩素起因の汚染を防ぐことができるが、本発明ほどの効果を得ることはできなかった。その結果、電子写真用半導電性弾性部材を感光体と当接させて過酷環境下で長期放置した場合に、該部材の弾性体層からの移行物質が感光体を汚染したことによる画像不良が発生した。   In Comparative Examples 1 to 4, the polymer constituting the charging roller does not contain at least one of the organic modified layered clay mineral of the present invention and the epoxidized butadiene oligomer. In Comparative Example 3, there is an organic modified clay mineral. In addition, comparatively small contaminants can be adsorbed and retained between the layers. In Comparative Example 4, the epoxy group of the epoxidized butadiene oligomer reacts with chlorine to prevent contamination caused by chlorine. The effect as invented could not be obtained. As a result, when the electroconductive semiconductive elastic member is brought into contact with the photoconductor and left for a long time in a harsh environment, an image defect due to the migration material from the elastic layer of the member contaminating the photoconductor is caused. Occurred.

表1から明らかなように、本発明の電子写真用半導電性弾性部材を帯電ローラとして用いたときには、感光体と当接して過酷環境下で長期放置された場合でも、弾性体層からの移行物質が殆どなく、感光体汚染による画像不良は発生していない。   As is apparent from Table 1, when the electrophotographic semiconductive elastic member of the present invention is used as a charging roller, even when left in a harsh environment for a long time in contact with the photoreceptor, the transition from the elastic body layer occurs. There is almost no substance, and image defects due to photoconductor contamination do not occur.

本発明の半導電性弾性部材(ローラ形状)の模式断面図である。It is a schematic cross section of the semiconductive elastic member (roller shape) of the present invention. 本発明における電子写真装置の模式的断面図である。1 is a schematic cross-sectional view of an electrophotographic apparatus according to the present invention. 本発明におけるプロセスカートリッジの模式的断面図である。It is a typical sectional view of a process cartridge in the present invention.

符号の説明Explanation of symbols

1 帯電ローラ
11 芯金
12 弾性体層
13 表面層
21 電子写真感光体
21a 感光層
21b 導電性支持体
21c 軸
23 電源
23a 摺擦端子
24 露光手段
25 現像手段
26 転写手段
27 転写材
28 前露光手段
29 クリーニング手段
T トナー
DESCRIPTION OF SYMBOLS 1 Charging roller 11 Core metal 12 Elastic body layer 13 Surface layer 21 Electrophotographic photoreceptor 21a Photosensitive layer 21b Conductive support 21c Shaft 23 Power supply 23a Rub terminal 24 Exposure means 25 Development means 26 Transfer means 27 Transfer material 28 Pre-exposure means 29 Cleaning means T Toner

Claims (4)

半導電性弾性体層が、(a)有機変性した層状粘土鉱物および(b)エポキシ基を有するオリゴマーを含有する半導電性弾性体層原料から硬化形成されたものである電子写真用半導電性弾性部材。   The semiconductive elastic layer is cured from a semiconductive elastic layer material containing (a) an organically modified layered clay mineral and (b) an oligomer having an epoxy group. Elastic member. エポキシ基を有するオリゴマーがエポキシ化ブタジエンオリゴマーである請求項1に記載の電子写真用半導電性弾性部材。   The semiconductive elastic member for electrophotography according to claim 1, wherein the oligomer having an epoxy group is an epoxidized butadiene oligomer. 層状粘土鉱物がベントナイトである請求項1または2に記載の電子写真用半導電性弾性部材。   The semiconductive elastic member for electrophotography according to claim 1 or 2, wherein the layered clay mineral is bentonite. 半導電性弾性体層をX線回折による測定で、層状粘土鉱物に基づく層間距離が3.7nm〜5.0nmに観察されることを特徴とする請求項1〜3のいずれかに記載の電子写真用半導電性弾性部材。   The electron according to any one of claims 1 to 3, wherein an interlayer distance based on the layered clay mineral is observed at 3.7 nm to 5.0 nm as measured by X-ray diffraction of the semiconductive elastic layer. Semiconductive elastic member for photography.
JP2005192607A 2005-06-30 2005-06-30 Semiconductive elastic member for electrophotography Expired - Fee Related JP4745736B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005192607A JP4745736B2 (en) 2005-06-30 2005-06-30 Semiconductive elastic member for electrophotography

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005192607A JP4745736B2 (en) 2005-06-30 2005-06-30 Semiconductive elastic member for electrophotography

Publications (3)

Publication Number Publication Date
JP2007011059A true JP2007011059A (en) 2007-01-18
JP2007011059A5 JP2007011059A5 (en) 2008-05-29
JP4745736B2 JP4745736B2 (en) 2011-08-10

Family

ID=37749649

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005192607A Expired - Fee Related JP4745736B2 (en) 2005-06-30 2005-06-30 Semiconductive elastic member for electrophotography

Country Status (1)

Country Link
JP (1) JP4745736B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012022240A (en) * 2010-07-16 2012-02-02 Canon Inc Conductive member for electrophotography
JP2012194334A (en) * 2011-03-16 2012-10-11 Canon Inc Conductive member for electrophotography

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004085695A (en) * 2002-08-23 2004-03-18 Canon Inc Semiconductive roller
JP2005092076A (en) * 2003-09-19 2005-04-07 Canon Inc Elastic member, electrophotographic apparatus and process cartridge
JP2005155660A (en) * 2003-11-20 2005-06-16 Canon Inc Roller and electrophotography device
JP2005164781A (en) * 2003-12-01 2005-06-23 Canon Inc Charging device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004085695A (en) * 2002-08-23 2004-03-18 Canon Inc Semiconductive roller
JP2005092076A (en) * 2003-09-19 2005-04-07 Canon Inc Elastic member, electrophotographic apparatus and process cartridge
JP2005155660A (en) * 2003-11-20 2005-06-16 Canon Inc Roller and electrophotography device
JP2005164781A (en) * 2003-12-01 2005-06-23 Canon Inc Charging device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012022240A (en) * 2010-07-16 2012-02-02 Canon Inc Conductive member for electrophotography
JP2012194334A (en) * 2011-03-16 2012-10-11 Canon Inc Conductive member for electrophotography

Also Published As

Publication number Publication date
JP4745736B2 (en) 2011-08-10

Similar Documents

Publication Publication Date Title
JP4700985B2 (en) Electrophotographic conductive member, process cartridge, and electrophotographic apparatus
JP2002003651A (en) Semiconductive rubber composition, electrified member, electrophotographic device and process cartridge
JP4745736B2 (en) Semiconductive elastic member for electrophotography
JP2007193110A (en) Conductive member, process cartridge having the same and image forming apparatus having the process cartridge
JP2010076205A (en) Method of manufacturing conductive roller, conductive roller, charged roller, and electrophotographic device
JP2004310064A (en) Roll member and image forming apparatus
JPH0854813A (en) Cleaning device of improved photosensitive substance
JP2005092076A (en) Elastic member, electrophotographic apparatus and process cartridge
JP2019012102A (en) Conductive member, charging device, transfer device, process cartridge, and image forming apparatus
JP2003221474A (en) Conductive member
JP2006251008A (en) Charging member, process cartridge and image forming apparatus
JP5766020B2 (en) Charging member
JP2004354477A (en) Charging member and image forming apparatus having the same
JP2018151615A (en) Member for electrophotography, transfer member, and electrophotographic image forming apparatus
JP2006154634A (en) Semi-conductive elastic member for electrophotography, process cartridge and electrophotographic device
JP2009223214A (en) Charging device, image forming unit, and image forming apparatus
JP2007171826A (en) Conductive member for electrophotographic device
JP5201886B2 (en) Electrophotographic equipment
JP4163564B2 (en) Charging member, cartridge having the same, and image forming apparatus having cartridge
JP2006350097A (en) Charging member, electrophotographic device, and process cartridge for electrophotographic device
JP2019032463A (en) Intermediate transfer belt and image forming apparatus
JP2011221150A (en) Rubber roller and image forming device
JP4205544B2 (en) Charging member and image forming apparatus having the same
JPH1184819A (en) Electrifying member and electrophotographic device using that
JP2002296930A (en) Electrifying member and electrophotographic device

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080411

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080411

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110421

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110510

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110512

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140520

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4745736

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees