JP2007010504A - Detection gearwheel for magnetic type encoder - Google Patents

Detection gearwheel for magnetic type encoder Download PDF

Info

Publication number
JP2007010504A
JP2007010504A JP2005192227A JP2005192227A JP2007010504A JP 2007010504 A JP2007010504 A JP 2007010504A JP 2005192227 A JP2005192227 A JP 2005192227A JP 2005192227 A JP2005192227 A JP 2005192227A JP 2007010504 A JP2007010504 A JP 2007010504A
Authority
JP
Japan
Prior art keywords
gear
magnetic sensor
shaped body
magnetic
detection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005192227A
Other languages
Japanese (ja)
Inventor
Kenichi Tamura
健一 田村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tamagawa Seiki Co Ltd
Original Assignee
Tamagawa Seiki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tamagawa Seiki Co Ltd filed Critical Tamagawa Seiki Co Ltd
Priority to JP2005192227A priority Critical patent/JP2007010504A/en
Publication of JP2007010504A publication Critical patent/JP2007010504A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To realize a high resolution, a simple installation and a superior heat resistance easily when rotating a recess-projection section of a gearwheel body and detecting it by using a magnetic sensor, by bringing the output waveform of the magnetic sensor to be a sinusoidal signal. <P>SOLUTION: A detection gearwheel for a magnetic type encoder is provided, wherein the recess-projection section (3) of the gearwheel body (1) made of a magnetic material is made up in shape such that when rotating the gearwheel body (1) and detecting it by using the magnetic sensor (4), the output waveform of the magnetic sensor (4) is the sinusoidal signal which is composed of a sinusoidal curved line, in order to obtain the output signal more approximate to the theoretical sine wave. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、磁気式エンコーダ用検出歯車に関し、特に、検出歯車である歯車形状体の凹凸部の形状を歯車形状体を回転させて磁気センサで検出した場合に、正弦波状の曲線からなる正弦波信号を出力できる形状とすることにより、センサからのセンサ出力を理論正弦波により近づけ、高分解能化、取付けの容易化及び耐熱性の向上化を得るための新規な改良に関する。   The present invention relates to a detection gear for a magnetic encoder, and in particular, a sine wave consisting of a sinusoidal curve when the shape of a concavo-convex portion of a gear shape body that is a detection gear is detected by a magnetic sensor by rotating the gear shape body. The present invention relates to a novel improvement for obtaining a sensor output from a sensor closer to a theoretical sine wave by obtaining a shape capable of outputting a signal, thereby obtaining higher resolution, easier mounting, and improved heat resistance.

従来、用いられていたこの種の磁気エンコーダとしては、例えば、特許文献1に開示された構成を挙げることができるが、その構成は採用されていた検出歯車である歯車形状体としては、図3及び図4で示される構成であった。   As this type of magnetic encoder that has been conventionally used, for example, the configuration disclosed in Patent Document 1 can be cited, but the configuration is shown in FIG. 3 as a gear-shaped body that is a detection gear employed. And it was the structure shown by FIG.

すなわち、図3及び図4で示される磁性材料よりなる円板状の歯車形状体1は、回転軸2を介して回転自在に配設され、この歯車形状体1の周縁には歯車状の凹凸部3が形成されている。
前記凹凸部3の近傍位置には、周知のMR素子型の磁気センサ4が配設され、この凹凸部3は、図4で示されるように、JIS規格に規定された形状であるインボリュート歯車が採用されている。
That is, the disk-shaped gear-shaped body 1 made of the magnetic material shown in FIGS. 3 and 4 is rotatably disposed via the rotating shaft 2, and the gear-shaped unevenness is formed on the periphery of the gear-shaped body 1. Part 3 is formed.
A known MR element type magnetic sensor 4 is disposed in the vicinity of the concavo-convex portion 3, and the concavo-convex portion 3 has an involute gear having a shape defined by JIS standards as shown in FIG. 4. It has been adopted.

前述の図3で示される構成において、検出歯車である歯車形状体1を回転させ、この回転状態を磁気センサ4で検出し、近似正弦波として出力される。
前記近似正弦波は理論正弦波に近いため、後段の電気回路の電気内挿回路によって高分解能を得ていた。
In the configuration shown in FIG. 3 described above, the gear-shaped body 1 serving as a detection gear is rotated, and this rotation state is detected by the magnetic sensor 4 and output as an approximate sine wave.
Since the approximate sine wave is close to the theoretical sine wave, high resolution is obtained by an electric interpolation circuit of the subsequent electric circuit.

特開2003−28667号公報JP 2003-28667 A

従来の磁気式エンコーダ用検出歯車は、以上のように構成されていたため、次のような課題が存在していた。
すなわち、従来構成のインボリュート歯車を用いた歯車形状体を用いているため、このインボリュート歯車から得られる近似正弦波は、歯車の歯形形状のインボリュート形に影響を受け、正弦波の歪率は一定レベルまでしか下げることはできなかった。
また、歯車形状体の凹凸部に対抗して配設した磁気センサは、一定の隙間で設定されるが、その隙間の設定誤差によって歪率は変化し、隙間が小さくなればなるほど、歪率は大となる。
従って、この歯車形状体と磁気センサとの組込み時の隙間設定は容易ではなかった。
その結果、高分割内挿をした分割波形の角度誤差は歪率の悪化に合わせて悪化していたため、速度制御においては、その角度誤差が速度リップルとなって現われ、工作機等の高ゲイン制御化に限界があった。
また、前述と逆に、この隙間を大きくすることによって歪率の悪化は軽減されるが、磁気センサ自体の出力信号が2乗カーブで低下するため、S/N比が悪化し、工業用の用途としては使用できない状態となっていた。
Since the conventional magnetic encoder detection gear is configured as described above, the following problems exist.
That is, since a gear-shaped body using an involute gear having a conventional configuration is used, the approximate sine wave obtained from this involute gear is affected by the involute shape of the gear tooth shape, and the distortion rate of the sine wave is a constant level. It could only be lowered.
In addition, the magnetic sensor arranged to oppose the uneven portion of the gear-shaped body is set with a certain gap, but the distortion changes due to the setting error of the gap, and the distortion becomes smaller as the gap becomes smaller. Become big.
Therefore, it is not easy to set a gap when the gear-shaped body and the magnetic sensor are assembled.
As a result, the angle error of the divided waveform obtained by high-division interpolation deteriorated with the deterioration of the distortion rate. Therefore, in the speed control, the angle error appears as a speed ripple. There was a limit to conversion.
Contrary to the above, the distortion is reduced by increasing the gap, but the output signal of the magnetic sensor itself is reduced by the square curve, so the S / N ratio is deteriorated and the industrial use is reduced. It was in a state where it could not be used as a use.

本発明による磁気式エンコーダ用検出歯車は、磁性材料よりなり全体形状が円板状をなすと共に、周縁に凹凸部が形成された歯車形状体よりなる磁気式エンコーダ用検出歯車において、前記凹凸部は、前記歯車形状体を回転させて磁気センサで検出した場合に、正弦波状の曲線からなる正弦波信号を出力できる形状に形成されている構成である。   The detection gear for a magnetic encoder according to the present invention is a detection gear for a magnetic encoder comprising a gear-shaped body made of a magnetic material and having an overall shape of a disc shape and an uneven portion formed on the periphery thereof. When the gear-shaped body is rotated and detected by a magnetic sensor, the gear-shaped body is formed into a shape capable of outputting a sine wave signal composed of a sine wave curve.

本発明による磁気式エンコーダ用検出歯車は、以上のように構成されているため、次のような効果を得ることができる。
すなわち、検出歯車である歯車形状体の凹凸部の形状が、歯車形状体を回転させて磁気センサで検出した場合に正弦波状の曲線となる正弦波信号が得られるように形成されているため、磁気センサの出力波形が理論正弦波により近づくことができ、伝記分割内挿の倍率が高くなり、高分解能化が可能となる。
また、前述の効果により、凹凸部と磁気センサとの隙間を従来のように厳しく設定する必要がなくなり、歪率の変化も少なくなり、所要の最終出力波形精度を得ることができる。
また、稼動中における高温下で歯車形状体が熱膨張し、隙間に変化が発生した場合でも、出力波形精度に与える影響は少なく、高精度の出力信号に基づく高いサーボゲインの制御システムを得ることができる。
Since the detection gear for a magnetic encoder according to the present invention is configured as described above, the following effects can be obtained.
That is, since the shape of the uneven portion of the gear-shaped body that is the detection gear is formed so that a sine wave signal that becomes a sinusoidal curve is obtained when the gear-shaped body is rotated and detected by a magnetic sensor, The output waveform of the magnetic sensor can be approximated by a theoretical sine wave, the magnification of biographical division interpolation is increased, and high resolution can be achieved.
In addition, due to the above-described effects, it is not necessary to set the gap between the concavo-convex part and the magnetic sensor as strictly as in the prior art, and the change in distortion is reduced, so that the required final output waveform accuracy can be obtained.
In addition, even if the gear-shaped body thermally expands at high temperatures during operation and the gap changes, there is little effect on the output waveform accuracy, and a high servo gain control system based on high-accuracy output signals is obtained. Can do.

本発明は、検出歯車である歯車形状体の凹凸部の形状を、歯車形状体を回転させて磁気センサで検出した場合に、正弦波状の曲線からなる正弦波信号を出力できるようにすることにより、センサからのセンサ出力を理論正弦波により近づけ、高分解能化、取付けの容易化及び耐熱性の向上化を得るようにした磁気式エンコーダ用検出歯車を提供することを目的とする。   The present invention enables output of a sine wave signal consisting of a sinusoidal curve when the shape of the concavo-convex portion of the gear-shaped body that is a detection gear is detected by a magnetic sensor by rotating the gear-shaped body. It is an object of the present invention to provide a detection gear for a magnetic encoder, in which the sensor output from a sensor is made closer to a theoretical sine wave to obtain high resolution, easy mounting, and improved heat resistance.

以下、図面と共に本発明による磁気式エンコーダ用検出歯車の好適な実施の形態について説明する。
尚、従来例と同一又は同等部分には、同一符号を付して説明する。
図1及び図2において、符号1で示されるものは、磁性材料よりなる円板状の検出歯車としての歯車形状体であり、回転軸2を介して回転自在に配設され、この歯車形状体1の周縁には歯車状をなす凹凸部3が形成されている。
前記凹凸部3の形状は、従来のインボリュート歯車の形状ではなく、図2に特に示されているように、例えば、正弦波形状のホブを用いて歯車加工をすることにより、この歯車形状体1を回転させて磁気センサ4で検出した場合に、その出力波形が正弦波状の曲線からなる正弦波信号となるように構成されており、インボリュート歯車よりは製作が大幅に容易化されている。
DESCRIPTION OF EMBODIMENTS Hereinafter, preferred embodiments of a detection gear for a magnetic encoder according to the present invention will be described with reference to the drawings.
In addition, the same code | symbol is attached | subjected and demonstrated to a part the same as that of a prior art example, or an equivalent part.
In FIG. 1 and FIG. 2, what is indicated by reference numeral 1 is a gear-shaped body as a disc-shaped detection gear made of a magnetic material, which is rotatably arranged via a rotating shaft 2, and this gear-shaped body. An uneven portion 3 having a gear shape is formed on the periphery of 1.
The shape of the concavo-convex portion 3 is not the shape of a conventional involute gear, but as shown particularly in FIG. 2, for example, by gear processing using a sine wave-shaped hob, the gear-shaped body 1 Is detected by the magnetic sensor 4, the output waveform is a sine wave signal composed of a sinusoidal curve, which is much easier to manufacture than the involute gear.

図1の歯車形状体1を図3に示す磁気センサ4と組合わせて、この歯車形状体1を回転させることにより、磁気センサ4からの出力波形が、従来のインボリュート歯車を用いた場合よりもさらに理論正弦波に近づくことができ、周知の電気分割内挿の倍率が高くなるため、出力信号に基づく角度及び速度信号の高分解能化を達成することができる。   The gear-shaped body 1 of FIG. 1 is combined with the magnetic sensor 4 shown in FIG. 3 and the gear-shaped body 1 is rotated so that the output waveform from the magnetic sensor 4 is higher than that when a conventional involute gear is used. Furthermore, since it can approach a theoretical sine wave and the magnification of the known electric division interpolation becomes high, it is possible to achieve high resolution of the angle and velocity signals based on the output signal.

また、前述のように、さらに理論正弦波に近づくことにより、歯車形状体1と磁気センサ4との間の隙間を従来のように厳しく管理する必要がなくなり、適度な隙間による取付けでも歪率の変化は少なく、所要の最終出力波形精度を得ることができる。
また、稼動中に歯車形状体1の温度が上昇し、熱膨張によって隙間の変化が発生した場合でも、波形精度に与える影響は少なく、高精度の出力信号とサーボゲインの高い制御システムを得ることができる。
Further, as described above, by approaching the theoretical sine wave, it is not necessary to strictly manage the gap between the gear-shaped body 1 and the magnetic sensor 4 as in the conventional case, and the distortion rate can be reduced even by mounting with an appropriate gap. There is little change, and the required final output waveform accuracy can be obtained.
In addition, even when the temperature of the gear-shaped body 1 rises during operation and a change in the gap occurs due to thermal expansion, there is little effect on the waveform accuracy, and a control system with a high-accuracy output signal and a high servo gain is obtained. Can do.

本発明は、回転式の磁気エンコーダに限らず、リニア式の磁気エンコーダにも適用可である。   The present invention can be applied not only to a rotary magnetic encoder but also to a linear magnetic encoder.

本発明による磁気式エンコーダ用検出歯車を示す斜視図である。It is a perspective view which shows the detection gearwheel for magnetic encoders by this invention. 図1の要部を示す正面図である。It is a front view which shows the principal part of FIG. 従来構成を示す斜視図である。It is a perspective view which shows a conventional structure. 図3の要部を示す正面図である。It is a front view which shows the principal part of FIG.

符号の説明Explanation of symbols

1 歯車形状体(検出歯車)
2 回転軸
3 凹凸部
4 磁気センサ
1 Gear-shaped body (detection gear)
2 Rotating shaft 3 Concavity and convexity 4 Magnetic sensor

Claims (1)

磁性材料よりなり全体形状が円板状をなすと共に、周縁に凹凸部(3)が形成された歯車形状体(1)よりなる磁気式エンコーダ用検出歯車において、
前記凹凸部(3)は、前記歯車形状体(1)を回転させて磁気センサ(4)で検出した場合に、正弦波状の曲線からなる正弦波信号を出力できる形状に形成されていることを特徴とする磁気式エンコーダ用検出歯車。
In the detection gear for a magnetic encoder comprising a gear-shaped body (1) formed of a magnetic material and having an overall shape of a disc shape and an uneven portion (3) formed on the periphery,
The uneven portion (3) is formed in a shape capable of outputting a sine wave signal consisting of a sine wave curve when the gear-shaped body (1) is rotated and detected by a magnetic sensor (4). A detection gear for a magnetic encoder.
JP2005192227A 2005-06-30 2005-06-30 Detection gearwheel for magnetic type encoder Pending JP2007010504A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005192227A JP2007010504A (en) 2005-06-30 2005-06-30 Detection gearwheel for magnetic type encoder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005192227A JP2007010504A (en) 2005-06-30 2005-06-30 Detection gearwheel for magnetic type encoder

Publications (1)

Publication Number Publication Date
JP2007010504A true JP2007010504A (en) 2007-01-18

Family

ID=37749213

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005192227A Pending JP2007010504A (en) 2005-06-30 2005-06-30 Detection gearwheel for magnetic type encoder

Country Status (1)

Country Link
JP (1) JP2007010504A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013238485A (en) * 2012-05-15 2013-11-28 Asahi Kasei Electronics Co Ltd Encoder and actuator using the same
JP2020071028A (en) * 2018-10-29 2020-05-07 大銀微系統股▲分▼有限公司 Grid encoder and grid encoder device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63243718A (en) * 1987-03-31 1988-10-11 Yaskawa Electric Mfg Co Ltd Magnetic encoder

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63243718A (en) * 1987-03-31 1988-10-11 Yaskawa Electric Mfg Co Ltd Magnetic encoder

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013238485A (en) * 2012-05-15 2013-11-28 Asahi Kasei Electronics Co Ltd Encoder and actuator using the same
JP2020071028A (en) * 2018-10-29 2020-05-07 大銀微系統股▲分▼有限公司 Grid encoder and grid encoder device

Similar Documents

Publication Publication Date Title
JP6154401B2 (en) High resolution absolute encoder
ES2732551T3 (en) Absolute encoder
JP2009080058A (en) Rotation detector and bearing with rotation detector
JP2006220530A (en) Device for detecting absolute angle of rotation
JP2008082739A (en) Rotation angle detection device and rotation control device using it
JP2007010504A (en) Detection gearwheel for magnetic type encoder
JP2005140557A (en) Steering angle detector
JP2006170788A (en) Optical encoder
WO2007055092A1 (en) Encoder signal processing device
JP2011064459A (en) Correction circuit of encoder signal
JP2001050774A (en) Sine cosine output sensor and servo motor using it
JP4862336B2 (en) Rotation angle sensor
JP5162739B2 (en) Encoder signal processing method, encoder device, and servo motor
JP4867534B2 (en) Motor speed detection device
JP4581953B2 (en) Encoder output signal correction circuit
JP2015004630A (en) Magnetic type movement detection device
JP4725109B2 (en) Brushless motor
JP2009244022A (en) Phase detection circuit
JP2009058243A (en) Optical encoder
JP2006105652A (en) High precision position detection control method by radiation-resistant rotation detector using proximity sensor, and device used for the method
JP2810695B2 (en) Zero detection method for incremental magnetic encoder
JP2009103502A (en) Zero point detection method using relative angle sensor
JP2008261786A (en) Absolute angle detector
JP5294378B2 (en) Absolute linear encoder and actuator
JP2580714B2 (en) Composite rotary encoder

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20071225

Free format text: JAPANESE INTERMEDIATE CODE: A621

A521 Written amendment

Effective date: 20081217

Free format text: JAPANESE INTERMEDIATE CODE: A523

A131 Notification of reasons for refusal

Effective date: 20100608

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Effective date: 20101019

Free format text: JAPANESE INTERMEDIATE CODE: A02