JP2007010475A - Thickness of membrane measuring device and method - Google Patents

Thickness of membrane measuring device and method Download PDF

Info

Publication number
JP2007010475A
JP2007010475A JP2005191493A JP2005191493A JP2007010475A JP 2007010475 A JP2007010475 A JP 2007010475A JP 2005191493 A JP2005191493 A JP 2005191493A JP 2005191493 A JP2005191493 A JP 2005191493A JP 2007010475 A JP2007010475 A JP 2007010475A
Authority
JP
Japan
Prior art keywords
film
film thickness
light
thickness
membrane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005191493A
Other languages
Japanese (ja)
Inventor
Hiroyuki Sugiura
寛幸 杉浦
Akira Torao
彰 虎尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2005191493A priority Critical patent/JP2007010475A/en
Publication of JP2007010475A publication Critical patent/JP2007010475A/en
Pending legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a thickness of membrane measuring device capable of measuring the thickness of a membrane with good precision on real time even regarding the membrane of uneven thickness and large grain growth accompanied by the thickness of the membrane. <P>SOLUTION: The method of measuring the thickness of the membrane attaching on the steel plate having largely different grain growth surface depending on the thickness of the membrane, comprises the following steps: the light projection process for projecting the linear polarization light having the parallel and vertical components of azimuth angle to the incident surface of the measurement surface; the light receiving process for receiving the light with the specular component of the reflection light from the measurement surface at the surface and inside of the membranes and three polarization angles by setting the elliptic polarized light changed by the reflection component of the dispersion/scattering on the surface and inside of the membrane to the angles of the major axis, minor axis and the intermediate angle between the major axis and the minor axis; and the thickness operation process using the multiple regression equation for estimating the thickness of the membrane, based on the received light amount in the light receiving process. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、例えば鋼板表面上に偏光光を照射し、照射された鋼板上に付着する膜から反射した偏光光を受光することで膜厚を測定する膜厚測定装置及び方法に関するものである。   The present invention relates to a film thickness measuring apparatus and method for measuring a film thickness by, for example, irradiating polarized light on a steel sheet surface and receiving polarized light reflected from a film adhering to the irradiated steel sheet.

偏光応用計測の1つとしてエリプソメータという膜厚測定技術があり、これはシリコンウエハー上の薄膜測定によく利用される技術である。直線偏光の光を膜に入射させると、膜の表面での反射と膜内部での多重反射により膜から反射した光は、楕円偏光となって反射する。この楕円偏光の楕円率Δ、方位角ψ、およびあらかじめ判っている測定対象の複素屈折率を計測し、膜厚を求める方式がエリプソ論理と呼ばれているものである。   One of the polarization applied measurements is an ellipsometer film thickness measuring technique, which is a technique often used for measuring a thin film on a silicon wafer. When linearly polarized light is incident on the film, the light reflected from the film by reflection on the surface of the film and multiple reflection inside the film is reflected as elliptically polarized light. A method for measuring the ellipticity Δ of the elliptically polarized light, the azimuth angle ψ, and the complex refractive index of the measurement object that is known in advance to obtain the film thickness is called ellipso logic.

このエリプソ論理を使った従来技術としては、例えば特許文献1に開示された技術がある。この技術は、基材上のクロム層の上の酸化クロム皮膜を測定する技術であり、直線偏光光源と、膜で反射された楕円偏光光を複数の部分拘束に分割する分割手段と、部分光束の各々の強度を測定する手段と、その強度より楕円偏光の楕円率Δを計算する。酸化クロム特有の一定の入射角度範囲では方位角ψが一定であるという発見から、あらかじめ判っている方位角ψを利用して楕円率Δのみ測定することで膜厚を計算する方式である。   As a conventional technique using this ellipso logic, for example, there is a technique disclosed in Patent Document 1. This technology measures a chromium oxide film on a chromium layer on a substrate, a linearly polarized light source, a splitting means for splitting elliptically polarized light reflected by the film into a plurality of partial constraints, and a partial luminous flux The means for measuring the intensity of each and the ellipticity Δ of elliptically polarized light is calculated from the intensity. From the discovery that the azimuth angle ψ is constant within a certain incident angle range peculiar to chromium oxide, the film thickness is calculated by measuring only the ellipticity Δ using the azimuth angle ψ known in advance.

別の従来技術としては、特許文献2に開示された技術がある。これは、下地に施された薄膜の膜厚を測定する膜厚測定技術で、2つの異なる波長光を同一入射角、同一直線偏光角で対象に入射することで楕円率Δと方位角ψをそれぞれ計算し、さらに下地の複素屈折率が変化しても膜厚を測定する技術である。   As another conventional technique, there is a technique disclosed in Patent Document 2. This is a film thickness measurement technique that measures the film thickness of the thin film applied to the substrate. By entering two different wavelength lights at the same incident angle and the same linear polarization angle, the ellipticity Δ and the azimuth angle ψ are obtained. This is a technique for calculating the film thickness and measuring the film thickness even when the complex refractive index of the base changes.

また、他の技術として、例えば特許文献3に開示された極低加速SEM法を使い鋼板表面に付着する酸素の量を測定して膜厚換算する方式がある。
特開平2−263105号公報 特開昭63−36105号公報 特開2005−98923号公報
As another technique, for example, there is a method of measuring the amount of oxygen adhering to the surface of a steel sheet and converting the film thickness by using an ultra-low acceleration SEM method disclosed in Patent Document 3.
JP-A-2-263105 JP-A-63-36105 JP 2005-98923 A

上述の特許文献1および特許文献2に開示された技術は、いずれも直線偏光光を入射しその反射光の楕円偏光光を測定し、エリプソパラメ-タの楕円率Δと方位角ψを求め、さらに表面の複素屈折率を合わせてエリプソ論理を使い膜厚を求める技術である。しかしながら、本発明が測定対象とする鋼板表面に付着している酸化膜は、均一な膜ではなく、鋼板に結晶が成長している表面をしており、結晶と空隙が混ざった膜になっている。このため、膜の内部できれいな多重反射が起こらず表面での散乱、内部での散乱反射が起こり、従来のエリプソ論理が成り立たず、上述の特許文献1および特許文献2に開示された技術では、正確な膜厚が求められないという問題点があった。   The techniques disclosed in Patent Document 1 and Patent Document 2 described above both receive linearly polarized light, measure the elliptically polarized light of the reflected light, determine the ellipticity Δ and azimuth angle ψ of the ellipsometer parameter, Furthermore, it is a technique for obtaining the film thickness by using ellipso logic by combining the complex refractive index of the surface. However, the oxide film adhering to the surface of the steel sheet to be measured by the present invention is not a uniform film, but a surface on which the crystal grows on the steel sheet, and becomes a film in which crystals and voids are mixed. Yes. For this reason, clean multiple reflection does not occur inside the film, scattering on the surface, scattering reflection on the inside occurs, the conventional ellipso logic does not hold, and the techniques disclosed in Patent Document 1 and Patent Document 2 described above, There was a problem that an accurate film thickness was not required.

また、上述の極低加速SEM法を用いた技術では、測定のために1cm程度のサンプルを打ち抜き、サンプルを真空中で測定する必要があり、測定時間が非常に長くかかるという問題点があった。   In addition, the technique using the ultra-low acceleration SEM method described above has a problem that it takes a very long measurement time because it is necessary to punch out a sample of about 1 cm for measurement and measure the sample in a vacuum. .

本発明は、上記事情に鑑みてなされたもので、その目的とするところは、膜が均一でなく、膜厚により結晶成長が大きくなる膜に関しても、膜厚を精度良くリアルタイムに測定できる膜厚測定装置及び方法を提供することである。   The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a film thickness capable of measuring the film thickness accurately and in real time even for a film in which the film is not uniform and crystal growth increases depending on the film thickness. It is to provide a measuring device and method.

本発明の請求項1に係る発明は、鋼板上に付着する膜厚により結晶成長が大きく異なる結晶が成長した表面をもつ膜の膜厚を測定する膜厚測定装置であって、被測定面に対する入射面に平行な方位角の成分及び垂直な方位角の成分を有する直線偏光光源と、前記被測定面からの反射光を膜表面および膜内部での正反射成分と、膜表面および膜内部での散乱・拡散反射成分により変化した楕円偏光光を楕円偏光の長軸、短軸、および長軸と短軸の中間の角度にセットした、3つの偏光角で受光する受光手段と、該受光手段で受光した受光量に基づいて、重回帰式により膜厚を推定する膜厚演算処理装置とを備えることを特徴とする膜厚測定装置である。   The invention according to claim 1 of the present invention is a film thickness measuring apparatus for measuring a film thickness of a film having a surface on which a crystal grows greatly depending on the film thickness attached to the steel sheet, A linearly polarized light source having an azimuth angle component parallel to the incident surface and a perpendicular azimuth angle component; reflected light from the surface to be measured on the film surface and inside the film; and on the film surface and inside the film Light receiving means for receiving light at three polarization angles, wherein the elliptically polarized light changed by the scattering / diffuse reflection component of light is set to the major axis, the minor axis, and the intermediate angle between the major axis and the minor axis of the elliptically polarized light, and the light receiving means And a film thickness calculation processing device that estimates the film thickness by a multiple regression equation based on the amount of received light.

また本発明の請求項2に係る発明は、請求項1に記載の膜厚測定装置において、前記膜は、鋼板表面に付着した酸化膜であり、膜厚に応じて網目状結晶から板状結晶が大きく成長してくる膜であることを特徴とする膜厚測定装置である。   The invention according to claim 2 of the present invention is the film thickness measuring device according to claim 1, wherein the film is an oxide film adhered to the surface of the steel sheet, and the network crystal is changed to a plate crystal depending on the film thickness. It is a film thickness measuring device characterized by being a film that grows greatly.

また本発明の請求項3に係る発明は、鋼板上に付着する膜厚により結晶成長が大きく異なる結晶が成長した表面をもつ膜の膜厚を測定する膜厚測定方法であって、被測定面に対する入射面に平行な方位角の成分及び垂直な方位角の成分を有する直線偏光を被測定面に入射する投光工程と、前記被測定面からの反射光を膜表面および膜内部での正反射成分と、膜表面および膜内部での散乱・拡散反射成分により変化した楕円偏光光を楕円偏光の長軸、短軸、および長軸と短軸の中間の角度にセットした、3つの偏光角で受光する受光工程と、該受光工程で受光した受光量に基づいて、重回帰式により膜厚を推定する膜厚演算処理工程とを備えることを特徴とする膜厚測定方法である。   The invention according to claim 3 of the present invention is a film thickness measuring method for measuring the film thickness of a film having a surface on which a crystal has grown that differs greatly depending on the film thickness attached to the steel sheet. Projecting the linearly polarized light having an azimuth angle component parallel to the incident surface and a perpendicular azimuth angle component to the surface to be measured, and reflecting light from the surface to be measured on the film surface and inside the film. Three polarization angles with elliptical polarized light changed by the reflection component and the scattering / diffuse reflection component on the film surface and inside the film set to the major axis and minor axis of the elliptical polarization and the angle between the major axis and minor axis A film thickness measuring method, comprising: a light receiving process for receiving light at a light receiving process; and a film thickness calculation processing process for estimating a film thickness by a multiple regression equation based on the amount of light received by the light receiving process.

さらに本発明の請求項4に係る発明は、請求項3に記載の膜厚測定方法において、前記膜は、鋼板表面に付着した酸化膜であり、膜厚に応じて網目状結晶から板状結晶が大きく成長してくる膜であることを特徴とする膜厚測定方法である。   Furthermore, the invention according to claim 4 of the present invention is the film thickness measuring method according to claim 3, wherein the film is an oxide film adhering to the surface of the steel sheet, and from a network crystal to a plate crystal. The film thickness measuring method is characterized in that the film grows greatly.

本発明は、直線偏光の光を入射し、膜表面での散乱、膜内部での散乱、膜厚による結晶表面の違いの影響を受けた楕円偏光の3つの検光角の輝度測定により膜厚との新しいモデルの関係式を導き出すようにしたので、膜が均一でなく、膜厚により結晶成長が大きくなる膜に関しても、膜厚を精度良くリアルタイムに測定できる。   In the present invention, linearly polarized light is incident, and the film thickness is measured by luminance measurement of three detection angles of elliptically polarized light affected by scattering on the film surface, scattering inside the film, and the difference in crystal surface depending on the film thickness. Therefore, the film thickness can be measured with high accuracy in real time even for a film in which the film is not uniform and crystal growth increases with the film thickness.

以下に、本発明を実施するための最良の形態について、図面を用いて詳細に説明する。図1は、本発明に係る膜厚測定装置の構成例を示す図である。図中、1は棒状光源部、2は偏光板、3は受光偏光板、4はラインセンサーカメラ、5はA/D変換器、6は膜厚演算処理装置、および7は膜厚出力装置をそれぞれ示す。先ず、直線偏光光を入射する光源として、被測定面に線状の光として照射するための棒状光源を用いる。この光源は、線状光を出すための棒状光源部1と、その前に取り付けた光を集光するためのシリンドリカルレンズ(図示せず)と、さらにその前に置かれた偏光板2とから構成される。   The best mode for carrying out the present invention will be described below in detail with reference to the drawings. FIG. 1 is a diagram showing a configuration example of a film thickness measuring apparatus according to the present invention. In the figure, 1 is a rod-shaped light source unit, 2 is a polarizing plate, 3 is a light receiving polarizing plate, 4 is a line sensor camera, 5 is an A / D converter, 6 is a film thickness calculation processing device, and 7 is a film thickness output device. Each is shown. First, a rod-shaped light source for irradiating the surface to be measured as linear light is used as a light source for entering linearly polarized light. This light source is composed of a rod-shaped light source unit 1 for emitting linear light, a cylindrical lens (not shown) for condensing light attached in front of it, and a polarizing plate 2 placed in front of it. Composed.

この偏光板2の設置角度は45°に設定され、被測定面には45°の直線偏光の光を被測定面に入射する。直線偏光の光とは、被測定面に対する入射面に平行な方位角の成分及び、垂直な方位角の成分を有する偏光光である。この線状光源は、均一に鋼板を照明でき光量が十分に確保できる細い線状の光源であれば、一部に拡散反射塗料を塗布した透明導光棒の両端にランプからの光を導いた線状光源、あるいはランプからの光を光ファイバーで線状に導いたファイバー光源、あるいは他の線状光源を利用してもかまわない。   The installation angle of the polarizing plate 2 is set to 45 °, and 45 ° linearly polarized light is incident on the surface to be measured. The linearly polarized light is polarized light having an azimuth component parallel to the incident surface with respect to the surface to be measured and a vertical azimuth component. If this linear light source is a thin linear light source that can uniformly illuminate the steel sheet and sufficiently secure the amount of light, the light from the lamp was guided to both ends of a transparent light guide rod partially coated with diffuse reflection paint. A linear light source, a fiber light source in which light from a lamp is linearly guided by an optical fiber, or another linear light source may be used.

この偏光光源からの光を、60°の投光角で被測定面に直線状に照射する。そして、受光角60°の正反射光をカメラの前に配置した受光偏光板3を通して、ラインセンサーカメラ4で受光する。受光偏光板3の角度は、反射してきた光の楕円偏光の長軸の角度(I3、主に正反射光成分を受光)と短軸の角度(I2、主に拡散反射成分を受光)と長軸と短軸の中間の角度(I1、正反射光と拡散反射光成分を含む)の合計3つの受光偏光角度を選択して、3台のラインセンサーカメラ4を使い受光する。このとき3台のカメラの光軸は、鋼板上の同一線状を見るように調整されている。   Light from this polarized light source is irradiated linearly onto the surface to be measured at a projection angle of 60 °. Then, the line sensor camera 4 receives the regular reflection light having a light receiving angle of 60 ° through the light receiving polarizing plate 3 disposed in front of the camera. The angle of the light receiving polarizing plate 3 is the long axis angle of the elliptically polarized light of the reflected light (I3, mainly receiving the regular reflection light component) and the short axis angle (I2, mainly receiving the diffuse reflection component). A total of three light receiving polarization angles of an intermediate angle between the axis and the short axis (I1, including regular reflection light and diffuse reflection light components) are selected, and light is received using the three line sensor cameras 4. At this time, the optical axes of the three cameras are adjusted so as to see the same linear shape on the steel plate.

今回対象とした鋼板上の酸化膜測定では60°の投光角が最適であったが、対象の酸化膜の形状、結晶成長の違いによっては膜厚との相関の最適値が異なるため対象に合わせた入射角度設定が必要である。   In the measurement of the oxide film on the target steel plate, the projection angle of 60 ° was optimal. However, the optimum value of the correlation with the film thickness differs depending on the shape of the target oxide film and the crystal growth. It is necessary to set the incident angle.

受光偏光板の偏光角度は今回対象とした酸化膜表面では、膜表面から反射してきた楕円偏光の長軸がI3=−45°、短軸がI2=45°、長軸短軸の中間の角度I1=0°設定であったが、測定対象の酸化膜の結晶状態、表面形状状態によっては反射してくる楕円偏光の長軸、短軸の角度が異なってくるため、対象に合わせて楕円偏光の形状を測定し最適なI1、I2、I3の角度を選択する必要がある。   The polarization angle of the light receiving polarizing plate is the angle between the major axis of the elliptical polarized light reflected from the film surface, I3 = −45 °, the minor axis is I2 = 45 °, and the major axis / minor axis on the surface of the target oxide film. Although I1 was set to 0 °, the major axis and minor axis angles of the reflected elliptically polarized light differ depending on the crystal state and surface shape state of the oxide film to be measured. Therefore, it is necessary to select the optimum angles I1, I2, and I3.

図2は、測定対象の違いによる表面での反射の様子を、模式的に示した図である。(a)は、従来のエリプソ論理の多重反射が成り立つ均一な膜構造を、(b)は、本発明が対象としている酸化膜の板状の結晶が成長している構造を、それぞれ表している。   FIG. 2 is a diagram schematically showing the state of reflection on the surface due to the difference in measurement object. (A) shows the conventional uniform film structure in which multiple reflection of the ellipso logic is realized, and (b) shows the structure in which the plate-like crystal of the oxide film targeted by the present invention is grown. .

図2(b)に示すように、今回対象とする表面は鋼板上に酸化膜が板状に成長しており、結晶が均一に密になった膜にはなっていため、結晶部には空隙も多くある。このため、膜内に入った光は膜の内部では、従来のエリプソメータのようにきれいな多重反射をすることができずにエリプソ論理が成り立たない。   As shown in FIG. 2 (b), the target surface is an oxide film grown on a steel plate in a plate shape and is a film in which crystals are uniformly dense. There are many. For this reason, the light entering the film cannot be subjected to clean multiple reflection like the conventional ellipsometer inside the film, and the ellipso logic does not hold.

対象とする酸化膜に光が入射すると、膜の表面で正反射する成分と、一部散乱・拡散反射をする成分が発生する。膜内部に入った光は、内部で散乱して一部の光は正反射方向に、一部の光は散乱・拡散反射した光としてカメラの光軸方向に反射する。この反射してきた光を測定すると、入射した直線偏光は膜の表面と内部の散乱を含んだ反射の影響を受けて楕円偏光の光として反射してくることが分った。   When light enters the target oxide film, a component that is regularly reflected on the surface of the film and a component that is partially scattered / diffuse reflected are generated. The light that has entered the film is scattered inside and part of the light is reflected in the regular reflection direction, and part of the light is reflected in the direction of the optical axis of the camera as scattered / diffuse reflected light. When the reflected light was measured, it was found that the incident linearly polarized light was reflected as elliptically polarized light under the influence of reflection including scattering on the surface and inside of the film.

そこで、この楕円偏光の状態を測定して、長軸(I3)、短軸(I2)の角度及び長軸と短軸の中間の角度(I1)の偏光光を受光することで、正反射成分の光、拡散反射成分の光、正反射拡散反射両方の成分の光を持った3つの偏光角で光を受光することとなる。受光された光はアナログ信号として出力され、A/D変換器5を経て、膜厚演算処理装置6にて演算処理して膜厚を求め、膜厚出力装置7に出力される。   Therefore, by measuring the state of this elliptically polarized light and receiving polarized light having an angle between the major axis (I3) and minor axis (I2) and an angle between the major axis and minor axis (I1), the specular reflection component is received. The light is received at three polarization angles having the light of the above, the light of the diffuse reflection component, and the light of both the regular reflection diffuse reflection. The received light is output as an analog signal, and through the A / D converter 5, the film thickness calculation processing device 6 performs arithmetic processing to obtain the film thickness, and is output to the film thickness output device 7.

膜厚演算処理装置6での演算処理では、対象の酸化膜の膜厚を推定するモデルを有しており、この膜厚モデルの作成について以下説明する。   The arithmetic processing in the film thickness arithmetic processing device 6 has a model for estimating the thickness of the target oxide film, and the creation of this film thickness model will be described below.

膜厚モデルの作成は、まず現状の極低加速SEM法で鋼板表面の酸素の量を測定し、それを膜厚換算し膜厚を求める。この値を膜厚の正しい値として、膜厚水準を変えたサンプルを複数枚用意し極低加速SEM法で膜厚測定する。これらの膜厚測定値と、前述のI1、I2およびI3の3つの偏光角度で受光した受光光量のカメラで鋼板上を測定したときの同一の画素(位置の)I1、I2およびI3のデータを使い、重回帰を行って膜厚測定のためのモデル式を作成する。   To create a film thickness model, first, the amount of oxygen on the surface of the steel sheet is measured by the current extremely low acceleration SEM method, and the film thickness is converted to obtain the film thickness. Using this value as the correct value for the film thickness, multiple samples with different film thickness levels are prepared, and the film thickness is measured by the ultra-low acceleration SEM method. These film thickness measurement values and the data of the same pixels (positions) I1, I2 and I3 when measured on the steel sheet with the camera of the received light amount received at the three polarization angles of I1, I2 and I3 described above. Use the multiple regression to create a model formula for film thickness measurement.

今回対象とした酸化膜では、膜厚Xは例えば以下に示す(1)式でモデルを構築している。
X=A×I1+B×I2+C×I3+D ・・・・・・(1)
上記(1)式のA,B,CおよびDは定数であり、これは対象とする酸化膜の種類、物性、膜の厚さに対する結晶成長の度合いによって変化するパラメータである。このため実際に測定する酸化膜に対して、上述のモデル作成手順であらかじめ定数を求めておく必要がある。
In the oxide film targeted this time, a model of the film thickness X is constructed by, for example, the following equation (1).
X = A × I1 + B × I2 + C × I3 + D (1)
In the above equation (1), A, B, C, and D are constants, which are parameters that vary depending on the type of oxide film, physical properties, and the degree of crystal growth with respect to the film thickness. For this reason, it is necessary to obtain constants beforehand for the oxide film to be actually measured by the above-described model creation procedure.

図3は、本発明による膜厚測定結果の一例を示す図である。極低加速SEM法により測定した膜厚と、本発明の光学系で測定したI1、I2およびI3の偏光輝度情報により求めた膜厚とを比較しているが、両者の直線性も良く、膜厚が非常に精度良く測定できることを確認した。本発明により、従来のエリプソ論理では測定できなかった、表面に結晶成長している酸化膜の膜厚測定を実現することが可能となった。   FIG. 3 is a diagram showing an example of a film thickness measurement result according to the present invention. The film thickness measured by the ultra-low acceleration SEM method is compared with the film thickness obtained from the polarization luminance information of I1, I2 and I3 measured by the optical system of the present invention. It was confirmed that the thickness can be measured with very high accuracy. According to the present invention, it has become possible to realize film thickness measurement of an oxide film having crystal growth on the surface, which could not be measured by conventional ellipso logic.

また本発明では、ラインセンサーカメラを使用しかつ膜厚演算式が単純であるため、装置構成もパソコンレベルで、リアルタイムの膜厚測定が可能である。これまでスポット位置の測定に、極低加速SEM法で20分程度の測定時間がかかっていたところを、本発明では100msec以下で測定できるため、リアルタイムで鋼板上の全幅にわたって膜厚測定ができる。本発明により、初めてオンラインでの膜厚測定・膜厚変化の検出が可能となった。   In the present invention, since the line sensor camera is used and the film thickness calculation formula is simple, the apparatus configuration can be measured at a personal computer level in real time. In the present invention, the spot position can be measured in 100 msec or less where a very low acceleration SEM method has been required for measuring the spot position, and thus the film thickness can be measured over the entire width of the steel sheet in real time. The present invention makes it possible for the first time to perform online film thickness measurement and film thickness change detection.

本発明に係る膜厚測定装置の構成例を示す図である。It is a figure which shows the structural example of the film thickness measuring apparatus which concerns on this invention. 測定対象の違いによる表面での反射の様子を、模式的に示した図である。It is the figure which showed typically the mode of reflection on the surface by the difference in a measuring object. 本発明による膜厚測定結果の一例を示す図である。It is a figure which shows an example of the film thickness measurement result by this invention.

符号の説明Explanation of symbols

1 棒状光源部
2 偏光板
3 受光偏光板
4 ラインセンサーカメラ
5 A/D変換器
6 膜厚演算処理装置
7 膜厚出力装置
DESCRIPTION OF SYMBOLS 1 Bar-shaped light source part 2 Polarizing plate 3 Light-receiving polarizing plate 4 Line sensor camera 5 A / D converter 6 Film thickness calculation processing apparatus 7 Film thickness output apparatus

Claims (4)

鋼板上に付着する膜厚により結晶成長が大きく異なる結晶が成長した表面をもつ膜の膜厚を測定する膜厚測定装置であって、
被測定面に対する入射面に平行な方位角の成分及び垂直な方位角の成分を有する直線偏光光源と、
前記被測定面からの反射光を膜表面および膜内部での正反射成分と、膜表面および膜内部での散乱・拡散反射成分により変化した楕円偏光光を楕円偏光の長軸、短軸、および長軸と短軸の中間の角度にセットした、3つの偏光角で受光する受光手段と、
該受光手段で受光した受光量に基づいて、重回帰式により膜厚を推定する膜厚演算処理装置とを備えることを特徴とする膜厚測定装置。
A film thickness measuring device for measuring a film thickness of a film having a surface on which a crystal grows greatly depending on a film thickness attached on a steel sheet,
A linearly polarized light source having a component of an azimuth angle parallel to the incident surface with respect to the surface to be measured and a component of a perpendicular azimuth angle;
Reflected light from the surface to be measured is converted into specular reflection components on the film surface and inside the film, and elliptically polarized light changed by scattering / diffuse reflection components on the film surface and inside the film, A light receiving means for receiving light at three polarization angles set at an intermediate angle between the long axis and the short axis;
A film thickness measuring apparatus comprising: a film thickness calculation processing apparatus that estimates a film thickness by a multiple regression equation based on the amount of light received by the light receiving means.
請求項1に記載の膜厚測定装置において、
前記膜は、鋼板表面に付着した酸化膜であり、膜厚に応じて網目状結晶から板状結晶が大きく成長してくる膜であることを特徴とする膜厚測定装置。
In the film thickness measuring device according to claim 1,
The film thickness measuring apparatus is characterized in that the film is an oxide film attached to the surface of a steel plate, and is a film in which plate crystals grow greatly from a network crystal according to the film thickness.
鋼板上に付着する膜厚により結晶成長が大きく異なる結晶が成長した表面をもつ膜の膜厚を測定する膜厚測定方法であって、
被測定面に対する入射面に平行な方位角の成分及び垂直な方位角の成分を有する直線偏光を被測定面に入射する投光工程と、
前記被測定面からの反射光を膜表面および膜内部での正反射成分と、膜表面および膜内部での散乱・拡散反射成分により変化した楕円偏光光を楕円偏光の長軸、短軸、および長軸と短軸の中間の角度にセットした、3つの偏光角で受光する受光工程と、
該受光工程で受光した受光量に基づいて、重回帰式により膜厚を推定する膜厚演算処理工程とを備えることを特徴とする膜厚測定方法。
A film thickness measuring method for measuring a film thickness of a film having a surface on which a crystal grows greatly depending on a film thickness attached on a steel sheet,
A light projecting step in which linearly polarized light having a component of an azimuth angle parallel to the incident surface with respect to the surface to be measured and a component of a perpendicular azimuth angle is incident on the surface to be measured;
Reflected light from the surface to be measured is converted into specular reflection components on the film surface and inside the film, and elliptically polarized light changed by scattering / diffuse reflection components on the film surface and inside the film, A light receiving step for receiving light at three polarization angles set at an intermediate angle between the long axis and the short axis;
A film thickness calculation method comprising: a film thickness calculation processing step of estimating a film thickness by a multiple regression equation based on the amount of received light received in the light receiving step.
請求項3に記載の膜厚測定方法において、
前記膜は、鋼板表面に付着した酸化膜であり、膜厚に応じて網目状結晶から板状結晶が大きく成長してくる膜であることを特徴とする膜厚測定方法。
In the film thickness measuring method according to claim 3,
The film thickness measuring method characterized in that the film is an oxide film attached to the surface of a steel plate, and is a film in which plate crystals grow greatly from a network crystal according to the film thickness.
JP2005191493A 2005-06-30 2005-06-30 Thickness of membrane measuring device and method Pending JP2007010475A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005191493A JP2007010475A (en) 2005-06-30 2005-06-30 Thickness of membrane measuring device and method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005191493A JP2007010475A (en) 2005-06-30 2005-06-30 Thickness of membrane measuring device and method

Publications (1)

Publication Number Publication Date
JP2007010475A true JP2007010475A (en) 2007-01-18

Family

ID=37749189

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005191493A Pending JP2007010475A (en) 2005-06-30 2005-06-30 Thickness of membrane measuring device and method

Country Status (1)

Country Link
JP (1) JP2007010475A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105806205A (en) * 2016-03-16 2016-07-27 武汉华星光电技术有限公司 Method for measuring membrane thicknesses of light resistors
JP7400901B2 (en) 2021-05-13 2023-12-19 東洋製罐株式会社 Inspection equipment and inspection method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105806205A (en) * 2016-03-16 2016-07-27 武汉华星光电技术有限公司 Method for measuring membrane thicknesses of light resistors
JP7400901B2 (en) 2021-05-13 2023-12-19 東洋製罐株式会社 Inspection equipment and inspection method

Similar Documents

Publication Publication Date Title
KR101509054B1 (en) Rotating-Element Ellipsometer and method for measuring Mueller-matirx elements of the sample using the same
RU2514157C1 (en) Method of surface control and device for surface control over steel sheet coated with gum
US9170156B2 (en) Normal-incidence broadband spectroscopic polarimeter containing reference beam and optical measurement system
US7505150B2 (en) Device and method for the measurement of the curvature of a surface
US20140313511A1 (en) Rotating-element ellipsometer and method for measuring properties of the sample using the same
JP5186129B2 (en) Method and apparatus for measuring groove pattern depth
US8514408B2 (en) Method and apparatus for real-time determination of curvature and azimuthal asymmetry of a surface
KR101793584B1 (en) Inspecting apparatus and inspecting method
JP2004138519A (en) Film thickness measuring device, reflectivity measuring device, foreign matter inspection device, reflectivity measuring method and foreign matter inspection method
JP2020517093A (en) Advanced advanced optical sensor, system and method for etching process monitoring
TWI746863B (en) System and method of controlling and measuring polarization for inspection of a sample
JP2008076324A (en) Optical anisotropy parameter measuring apparatus
JPH02263105A (en) Film thickness measuring apparatus
US8976360B2 (en) Surface plasmon sensor and method of measuring refractive index
TW201423086A (en) Film thickness, refractive index, and extinction coefficient determination for film curve creation and defect sizing in real time
JP2000031229A (en) Inspection method of semiconductor thin film and manufacture of semiconductor thin film by use thereof
JP2007010475A (en) Thickness of membrane measuring device and method
KR101036455B1 (en) Ellipsometer using Half Mirror
EP2577266B1 (en) Apparatus and method for compensating for sample misalignment
JP2010048604A (en) Apparatus and method for measuring film thickness
JP2002286632A (en) Method for optically evaluating sample to be measured and device therefor
WO2009048003A1 (en) Surface examining device
JPH047852A (en) Film thickness measuring method
JPH11352054A (en) Ellipsometry apparatus
JP2007212330A (en) Optical anisotropic parameter measuring method and measuring instrument