JP2007010366A - Monolithic structure, measuring instrument and method, and program - Google Patents

Monolithic structure, measuring instrument and method, and program Download PDF

Info

Publication number
JP2007010366A
JP2007010366A JP2005188839A JP2005188839A JP2007010366A JP 2007010366 A JP2007010366 A JP 2007010366A JP 2005188839 A JP2005188839 A JP 2005188839A JP 2005188839 A JP2005188839 A JP 2005188839A JP 2007010366 A JP2007010366 A JP 2007010366A
Authority
JP
Japan
Prior art keywords
electromagnetic wave
measured
response
integrated structure
gap
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005188839A
Other languages
Japanese (ja)
Other versions
JP4724822B2 (en
Inventor
Hideshi Kato
英志 加藤
Akimichi Kawase
晃道 川瀬
Yuichi Ogawa
雄一 小川
Shinichiro Hayashi
伸一郎 林
Yoshinori Tsukamoto
義則 塚本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Advantest Corp
RIKEN Institute of Physical and Chemical Research
Mizkan Group Corp
Original Assignee
Advantest Corp
RIKEN Institute of Physical and Chemical Research
Mizkan Group Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Advantest Corp, RIKEN Institute of Physical and Chemical Research, Mizkan Group Corp filed Critical Advantest Corp
Priority to JP2005188839A priority Critical patent/JP4724822B2/en
Publication of JP2007010366A publication Critical patent/JP2007010366A/en
Application granted granted Critical
Publication of JP4724822B2 publication Critical patent/JP4724822B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To advantageously handle a measuring target measured by irradiation with an electromagnetic wave. <P>SOLUTION: In a filled lattice 2, the measuring target 20 of which the characteristics are measured by the irradiation with the electromagnetic wave is arranged (charged) in the gap parts 12 of a lattice 1 wherein the gap parts (openings) 12 surrounded by a conductor plate 10 are arranged in X- and Y-directions of an XY plane. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、電磁波を照射して測定する被測定物の取り扱いに関する。   The present invention relates to handling of an object to be measured that is measured by irradiation with electromagnetic waves.

従来より、テラヘルツ波を被測定物に照射した際の透過率に基づき、被測定物を分析することが知られている(例えば、特許文献1を参照)。また、金属板に孔をあけたものに電磁波を照射した際の透過率も知られている(例えば、非特許文献1を参照)。さらに、金属板に孔をあけたものを位相差板として利用することも知られている(例えば、特許文献2を参照)。   Conventionally, it is known to analyze an object to be measured based on transmittance when the object to be measured is irradiated with a terahertz wave (see, for example, Patent Document 1). Moreover, the transmittance | permeability at the time of irradiating electromagnetic waves to what opened the hole in the metal plate is also known (for example, refer nonpatent literature 1). Furthermore, it is also known to use a metal plate having a hole as a retardation plate (see, for example, Patent Document 2).

特開2004−108905号公報JP 2004-108905 A 特開2004−117703号公報JP 2004-117703 A K.F. Renk and L. Genzel “Interference Filters and Fabry-PerotInterferometers for the Far Infrared”, APPLIED OPTICS, Vol. 1, No. 5, 1962年9月K.F.Renk and L. Genzel “Interference Filters and Fabry-PerotInterferometers for the Far Infrared”, APPLIED OPTICS, Vol. 1, No. 5, September 1962

しかしながら、上記のような先行技術は、電磁波が照射される被測定物をどのように取り扱えば有利かということを開示していない。   However, the prior art as described above does not disclose how it is advantageous to handle a measurement object irradiated with electromagnetic waves.

そこで、本発明は、電磁波が照射されることによって測定される被測定物を有利に取り扱うことを課題とする。   Then, this invention makes it a subject to handle the to-be-measured object measured by irradiating electromagnetic waves advantageously.

本発明にかかる一体型構造体は、電磁波を照射することにより特性が測定される被測定物と、所定の平面において導体で囲まれた空隙部が配置された空隙配置構造体とを備えるように構成される。   An integrated structure according to the present invention includes an object to be measured whose characteristics are measured by irradiating an electromagnetic wave, and a void arrangement structure in which a void surrounded by a conductor is arranged on a predetermined plane. Composed.

上記のように構成された一体型構造体によれば、被測定物が、電磁波を照射することにより特性が測定される。空隙配置構造体が、所定の平面において導体で囲まれた空隙部が配置されている。   According to the integrated structure configured as described above, the characteristic is measured when the object to be measured is irradiated with electromagnetic waves. The space | gap part which the space | gap arrangement structure body was enclosed with the conductor in the predetermined plane is arrange | positioned.

また、本発明にかかる一体型構造体は、前記被測定物が前記空隙部の内部に配置されているようにしてもよい。   In the integrated structure according to the present invention, the object to be measured may be arranged inside the gap.

また、本発明にかかる一体型構造体は、前記被測定物が配置されている配置部材を備え、前記配置部材は前記空隙配置構造体の表面に配置されているようにしてもよい。   The integrated structure according to the present invention may include an arrangement member on which the object to be measured is arranged, and the arrangement member may be arranged on the surface of the gap arrangement structure.

また、本発明にかかる一体型構造体は、前記空隙配置構造体が、同一形状の前記空隙部が所定の方向に一定の間隔で配置されているようにしてもよい。   Moreover, the integrated structure concerning this invention WHEREIN: The said space | gap arrangement structure body may make it the said same-shaped said space | gap part arrange | positioned at a fixed space | interval in the predetermined direction.

また、本発明にかかる一体型構造体は、前記空隙配置構造体は、導体を貫通する開口が縦方向および横方向に配列された二次元格子であるようにしてもよい。   In the integrated structure according to the present invention, the gap arrangement structure may be a two-dimensional lattice in which openings penetrating the conductors are arranged in the vertical direction and the horizontal direction.

また、本発明にかかる一体型構造体は、前記空隙配置構造体は、前記導体が配置される基部を有するようにしてもよい。   Moreover, as for the integrated structure concerning this invention, you may make it the said space | gap arrangement structure have a base part by which the said conductor is arrange | positioned.

また、本発明にかかる一体型構造体は、前記基部に前記導体が印刷されるようにしてもよい。   In the integrated structure according to the present invention, the conductor may be printed on the base.

また、本発明にかかる一体型構造体は、前記空隙部に前記被測定物が配置されている配置部分と、前記空隙部に前記被測定物が配置されていない非配置部分とを有するようにしてもよい。   In addition, the integrated structure according to the present invention has an arrangement portion in which the object to be measured is arranged in the gap and a non-arrangement portion in which the object to be measured is not arranged in the gap. May be.

また、本発明にかかる一体型構造体は、前記空隙部に配置された前記被測定物が二種類以上あるようにしてもよい。   In the integrated structure according to the present invention, there may be two or more types of the objects to be measured arranged in the gap.

本発明にかかる測定装置は、一体型構造体に第一電磁波を照射する第一電磁波照射手段と、照射された前記第一電磁波に対する前記一体型構造体による応答である第一応答電磁波を検出する第一電磁波検出手段と、前記空隙部に前記被測定物が配置されていない前記空隙配置構造体に第二電磁波を照射する第二電磁波照射手段と、照射された前記第二電磁波に対する前記空隙配置構造体による応答である第二応答電磁波を検出する第二電磁波検出手段と、前記第一電磁波検出手段の検出結果および前記第二電磁波検出手段の検出結果に基づき、前記被測定物の特性を測定する特性測定手段とを備えるように構成される。   A measuring apparatus according to the present invention detects a first electromagnetic wave irradiating means for irradiating an integrated structure with a first electromagnetic wave, and a first response electromagnetic wave that is a response by the integrated structure to the irradiated first electromagnetic wave. A first electromagnetic wave detecting means; a second electromagnetic wave irradiating means for irradiating the gap arrangement structure in which the measured object is not arranged in the gap portion; and the gap arrangement for the irradiated second electromagnetic wave. Based on the second electromagnetic wave detection means for detecting the second response electromagnetic wave, which is a response by the structure, the detection result of the first electromagnetic wave detection means and the detection result of the second electromagnetic wave detection means, the characteristics of the object to be measured are measured. And a characteristic measuring means.

上記のように構成された測定装置によれば、第一電磁波照射手段は、一体型構造体に第一電磁波を照射する。第一電磁波検出手段は、照射された前記第一電磁波に対する前記一体型構造体による応答である第一応答電磁波を検出する。第二電磁波照射手段は、前記空隙部に前記被測定物が配置されていない前記空隙配置構造体に第二電磁波を照射する。第二電磁波検出手段は、照射された前記第二電磁波に対する前記空隙配置構造体による応答である第二応答電磁波を検出する。特性測定手段は、前記第一電磁波検出手段の検出結果および前記第二電磁波検出手段の検出結果に基づき、前記被測定物の特性を測定する。   According to the measuring apparatus configured as described above, the first electromagnetic wave irradiation means irradiates the integrated electromagnetic wave with the first electromagnetic wave. The first electromagnetic wave detection means detects a first response electromagnetic wave that is a response by the integrated structure to the irradiated first electromagnetic wave. The second electromagnetic wave irradiation means irradiates the second electromagnetic wave to the gap arrangement structure in which the object to be measured is not arranged in the gap. The second electromagnetic wave detection means detects a second response electromagnetic wave that is a response by the gap arrangement structure to the irradiated second electromagnetic wave. The characteristic measurement unit measures the characteristic of the object to be measured based on the detection result of the first electromagnetic wave detection unit and the detection result of the second electromagnetic wave detection unit.

本発明にかかる測定装置は、一体型構造体における配置部分に第一電磁波を照射する第一電磁波照射手段と、照射された前記第一電磁波に対する前記配置部分による応答である第一応答電磁波を検出する第一電磁波検出手段と、前記非配置部分に第二電磁波を照射する第二電磁波照射手段と、照射された前記第二電磁波に対する前記非配置部分による応答である第二応答電磁波を検出する第二電磁波検出手段と、前記第一電磁波検出手段の検出結果および前記第二電磁波検出手段の検出結果に基づき、前記被測定物の特性を測定する特性測定手段とを備えるように構成される。   The measuring apparatus according to the present invention detects a first electromagnetic wave irradiation means that irradiates a first electromagnetic wave to an arrangement part in an integrated structure, and a first response electromagnetic wave that is a response by the arrangement part to the irradiated first electromagnetic wave. First electromagnetic wave detecting means, second electromagnetic wave irradiating means for irradiating the non-arranged portion with the second electromagnetic wave, and second response electromagnetic wave that is a response by the non-arranged portion to the irradiated second electromagnetic wave. Two electromagnetic wave detection means, and a characteristic measurement means for measuring the characteristic of the object to be measured based on the detection result of the first electromagnetic wave detection means and the detection result of the second electromagnetic wave detection means.

上記のように構成された測定装置によれば、第一電磁波照射手段は、一体型構造体における配置部分に第一電磁波を照射する。第一電磁波検出手段は、照射された前記第一電磁波に対する前記配置部分による応答である第一応答電磁波を検出する。第二電磁波照射手段は、前記非配置部分に第二電磁波を照射する。第二電磁波検出手段は、照射された前記第二電磁波に対する前記非配置部分による応答である第二応答電磁波を検出する。特性測定手段は、前記第一電磁波検出手段の検出結果および前記第二電磁波検出手段の検出結果に基づき、前記被測定物の特性を測定する。   According to the measuring apparatus configured as described above, the first electromagnetic wave irradiation means irradiates the first electromagnetic wave to the arrangement portion in the integrated structure. The first electromagnetic wave detecting means detects a first response electromagnetic wave that is a response by the arrangement portion to the irradiated first electromagnetic wave. The second electromagnetic wave irradiation means irradiates the non-arranged portion with the second electromagnetic wave. The second electromagnetic wave detection means detects a second response electromagnetic wave that is a response by the non-arranged portion to the irradiated second electromagnetic wave. The characteristic measurement unit measures the characteristic of the object to be measured based on the detection result of the first electromagnetic wave detection unit and the detection result of the second electromagnetic wave detection unit.

本発明にかかる測定装置は、一体型構造体における各々の種類の前記被測定物に電磁波を照射する電磁波照射手段と、照射された前記電磁波に対する前記一体型構造体による応答である応答電磁波を検出する電磁波検出手段と、前記電磁波検出手段の検出結果に基づき、前記被測定物の特性を測定する特性測定手段とを備えるように構成される。   The measuring apparatus according to the present invention detects an electromagnetic wave irradiation means for irradiating each type of the measurement object in the integrated structure with an electromagnetic wave, and a response electromagnetic wave that is a response by the integrated structure to the irradiated electromagnetic wave. Electromagnetic wave detecting means for performing measurement, and characteristic measuring means for measuring the characteristic of the object to be measured based on the detection result of the electromagnetic wave detecting means.

上記のように構成された測定装置によれば、電磁波照射手段は、一体型構造体における各々の種類の前記被測定物に電磁波を照射する。電磁波検出手段は、照射された前記電磁波に対する前記一体型構造体による応答である応答電磁波を検出する。特性測定手段は、前記電磁波検出手段の検出結果に基づき、前記被測定物の特性を測定する。   According to the measuring apparatus configured as described above, the electromagnetic wave irradiation means irradiates each type of the measurement object in the integrated structure with electromagnetic waves. The electromagnetic wave detecting means detects a response electromagnetic wave that is a response by the integrated structure to the irradiated electromagnetic wave. The characteristic measuring unit measures the characteristic of the object to be measured based on the detection result of the electromagnetic wave detecting unit.

また、本発明にかかる測定装置は、前記特性測定手段が、前記第一電磁波検出手段の検出結果および前記第二電磁波検出手段の検出結果に基づき、電磁波の透過率を測定する透過率測定手段と、測定された前記透過率に基づき、前記被測定物の屈折率を導出する屈折率導出手段とを有するようにしてもよい。   Further, the measuring device according to the present invention includes a transmittance measuring unit that measures the transmittance of the electromagnetic wave based on the detection result of the first electromagnetic wave detecting unit and the detection result of the second electromagnetic wave detecting unit. And a refractive index deriving means for deriving the refractive index of the object to be measured based on the measured transmittance.

また、本発明にかかる測定装置は、前記屈折率導出手段が、周波数Aにおける前記第一電磁波検出手段の検出結果に基づき測定された透過率と、周波数Bにおける前記第二電磁波検出手段の検出結果に基づき測定された透過率とが等しい場合に、前記被測定物の屈折率をAおよびBに基づき導出するようにしてもよい。   Further, in the measuring apparatus according to the present invention, the refractive index deriving unit measures the transmittance measured based on the detection result of the first electromagnetic wave detecting unit at the frequency A and the detection result of the second electromagnetic wave detecting unit at the frequency B. The refractive index of the object to be measured may be derived based on A and B when the transmittance measured based on

また、本発明にかかる測定装置は、周波数特性調整部材を備え、前記周波数Bの近傍において、前記透過率の周波数に対する傾きが、前記周波数特性調整部材が無い場合よりも大きくなるようにしてもよい。   Moreover, the measuring apparatus according to the present invention may include a frequency characteristic adjusting member, and in the vicinity of the frequency B, the slope of the transmittance with respect to the frequency may be larger than that without the frequency characteristic adjusting member. .

本発明は、電磁波を照射することにより特性が測定される被測定物と、所定の平面において導体で囲まれた空隙部が配置された空隙配置構造体とを有する一体型構造体に第一電磁波を照射する第一電磁波照射工程と、照射された前記第一電磁波に対する前記一体型構造体による応答である第一応答電磁波を検出する第一電磁波検出工程と、前記空隙部に前記被測定物が配置されていない前記空隙配置構造体に第二電磁波を照射する第二電磁波照射工程と、照射された前記第二電磁波に対する前記空隙配置構造体による応答である第二応答電磁波を検出する第二電磁波検出工程と、前記第一電磁波検出工程の検出結果および前記第二電磁波検出工程の検出結果に基づき、前記被測定物の特性を測定する特性測定工程とを備えた測定方法である。   The present invention provides a first electromagnetic wave in an integrated structure having an object to be measured whose characteristics are measured by irradiating an electromagnetic wave, and a void arrangement structure in which a void surrounded by a conductor is arranged in a predetermined plane. A first electromagnetic wave irradiation step of irradiating the first electromagnetic wave, a first electromagnetic wave detection step of detecting a first response electromagnetic wave that is a response by the integrated structure to the irradiated first electromagnetic wave, and the object to be measured in the gap A second electromagnetic wave irradiation step of irradiating the second electromagnetic wave to the void arrangement structure that is not arranged, and a second electromagnetic wave that detects a second response electromagnetic wave that is a response by the gap arrangement structure to the irradiated second electromagnetic wave A measurement method comprising: a detection step; and a characteristic measurement step of measuring a characteristic of the object to be measured based on a detection result of the first electromagnetic wave detection step and a detection result of the second electromagnetic wave detection step.

本発明は、電磁波を照射することにより特性が測定される被測定物と、所定の平面において導体で囲まれた空隙部が配置された空隙配置構造体とを有する一体型構造体における前記空隙部に前記被測定物が配置されている配置部分に第一電磁波を照射する第一電磁波照射工程と、照射された前記第一電磁波に対する前記配置部分による応答である第一応答電磁波を検出する第一電磁波検出工程と、前記一体型構造体における前記空隙部に前記被測定物が配置されていない非配置部分に第二電磁波を照射する第二電磁波照射工程と、照射された前記第二電磁波に対する前記非配置部分による応答である第二応答電磁波を検出する第二電磁波検出工程と、前記第一電磁波検出工程の検出結果および前記第二電磁波検出工程の検出結果に基づき、前記被測定物の特性を測定する特性測定工程とを備えた測定方法である。   The present invention provides the void portion in an integrated structure having an object to be measured whose characteristics are measured by irradiating electromagnetic waves and a void arrangement structure in which a void portion surrounded by a conductor is arranged in a predetermined plane. A first electromagnetic wave irradiation step of irradiating a first electromagnetic wave to an arrangement portion where the object to be measured is arranged, and a first response electromagnetic wave that is a response by the arrangement portion to the irradiated first electromagnetic wave An electromagnetic wave detecting step, a second electromagnetic wave irradiating step of irradiating a second electromagnetic wave to a non-arranged portion in which the object to be measured is not arranged in the gap portion in the integrated structure, and the second electromagnetic wave irradiating the second electromagnetic wave Based on the second electromagnetic wave detection step of detecting a second response electromagnetic wave that is a response by the non-arranged portion, the detection result of the first electromagnetic wave detection step, and the detection result of the second electromagnetic wave detection step, It is a measuring method and a characteristic measuring step of measuring a characteristic of the object to be measured.

本発明は、電磁波を照射することにより特性が測定される被測定物と、所定の平面において導体で囲まれた空隙部が配置された空隙配置構造体とを有する一体型構造体であって、前記空隙部に配置された前記被測定物が二種類以上ある一体型構造体における各々の種類の前記被測定物に電磁波を照射する電磁波照射工程と、照射された前記電磁波に対する前記一体型構造体による応答である応答電磁波を検出する電磁波検出工程と、前記電磁波検出工程の検出結果に基づき、前記被測定物の特性を測定する特性測定工程とを備えた測定方法である。   The present invention is an integrated structure having an object to be measured whose characteristics are measured by irradiating an electromagnetic wave, and a void arrangement structure in which a void surrounded by a conductor is arranged in a predetermined plane, An electromagnetic wave irradiating step of irradiating each type of the measurement object in the integrated structure having two or more types of the measurement object arranged in the gap, and the integrated structure for the irradiated electromagnetic wave An electromagnetic wave detection step for detecting a response electromagnetic wave, which is a response by, and a characteristic measurement step for measuring the characteristic of the object to be measured based on the detection result of the electromagnetic wave detection step.

本発明は、電磁波を照射することにより特性が測定される被測定物と、所定の平面において導体で囲まれた空隙部が配置された空隙配置構造体とを有する一体型構造体に第一電磁波を照射する第一電磁波照射手段と、照射された前記第一電磁波に対する前記一体型構造体による応答である第一応答電磁波を検出する第一電磁波検出手段と、前記空隙部に前記被測定物が配置されていない前記空隙配置構造体に第二電磁波を照射する第二電磁波照射手段と、照射された前記第二電磁波に対する前記空隙配置構造体による応答である第二応答電磁波を検出する第二電磁波検出手段と、を備えた測定装置における測定処理をコンピュータに実行させるためのプログラムであって、前記第一電磁波検出手段の検出結果および前記第二電磁波検出手段の検出結果に基づき、前記被測定物の特性を測定する特性測定処理をコンピュータに実行させるためのプログラムである。   The present invention provides a first electromagnetic wave in an integrated structure having an object to be measured whose characteristics are measured by irradiating an electromagnetic wave, and a void arrangement structure in which a void surrounded by a conductor is arranged in a predetermined plane. A first electromagnetic wave irradiating means for irradiating the first electromagnetic wave, a first electromagnetic wave detecting means for detecting a first response electromagnetic wave that is a response by the integrated structure to the irradiated first electromagnetic wave, and the object to be measured in the gap. Second electromagnetic wave irradiation means for irradiating the second electromagnetic wave to the void arrangement structure that is not arranged, and a second electromagnetic wave for detecting a second response electromagnetic wave that is a response by the gap arrangement structure to the irradiated second electromagnetic wave A program for causing a computer to execute a measurement process in a measuring device including a detection unit, the detection result of the first electromagnetic wave detection unit, and the second electromagnetic wave detection unit Out based on the result, the a program for executing a characteristic measurement process of measuring the characteristics of the object to be measured to the computer.

本発明は、電磁波を照射することにより特性が測定される被測定物と、所定の平面において導体で囲まれた空隙部が配置された空隙配置構造体とを有する一体型構造体における前記空隙部に前記被測定物が配置されている配置部分に第一電磁波を照射する第一電磁波照射手段と、照射された前記第一電磁波に対する前記配置部分による応答である第一応答電磁波を検出する第一電磁波検出手段と、前記一体型構造体における前記空隙部に前記被測定物が配置されていない非配置部分に第二電磁波を照射する第二電磁波照射手段と、照射された前記第二電磁波に対する前記非配置部分による応答である第二応答電磁波を検出する第二電磁波検出手段と、を備えた測定装置における測定処理をコンピュータに実行させるためのプログラムであって、前記第一電磁波検出手段の検出結果および前記第二電磁波検出手段の検出結果に基づき、前記被測定物の特性を測定する特性測定処理をコンピュータに実行させるためのプログラムである。   The present invention provides the void portion in an integrated structure having an object to be measured whose characteristics are measured by irradiating electromagnetic waves and a void arrangement structure in which a void portion surrounded by a conductor is arranged in a predetermined plane. A first electromagnetic wave irradiation means for irradiating a first electromagnetic wave to an arrangement portion where the object to be measured is arranged, and a first response electromagnetic wave that is a response by the arrangement portion to the irradiated first electromagnetic wave An electromagnetic wave detecting means; a second electromagnetic wave irradiating means for irradiating a second electromagnetic wave to a non-arranged portion in which the object to be measured is not arranged in the gap portion of the integrated structure; and the second electromagnetic wave irradiating means. A second electromagnetic wave detecting means for detecting a second response electromagnetic wave that is a response by a non-arranged part, and a program for causing a computer to execute a measurement process in a measuring device Wherein based on the detection result of the detection result and the second electromagnetic wave detection means of the first electromagnetic wave detecting means, wherein a program for executing a characteristic measurement process of measuring the characteristics of the object to be measured to the computer.

本発明は、電磁波を照射することにより特性が測定される被測定物と、所定の平面において導体で囲まれた空隙部が配置された空隙配置構造体とを有する一体型構造体であって、前記空隙部に配置された前記被測定物が二種類以上ある一体型構造体における各々の種類の前記被測定物に電磁波を照射する電磁波照射手段と、照射された前記電磁波に対する前記一体型構造体による応答である応答電磁波を検出する電磁波検出手段と、を備えた測定装置における測定処理をコンピュータに実行させるためのプログラムであって、前記電磁波検出手段の検出結果に基づき、前記被測定物の特性を測定する特性測定処理をコンピュータに実行させるためのプログラムである。   The present invention is an integrated structure having an object to be measured whose characteristics are measured by irradiating an electromagnetic wave, and a void arrangement structure in which a void surrounded by a conductor is arranged in a predetermined plane, Electromagnetic wave irradiation means for irradiating each type of the measurement object in the integrated structure having two or more types of the measurement object arranged in the gap, and the integrated structure for the irradiated electromagnetic wave A program for causing a computer to execute a measurement process in a measuring device including a response electromagnetic wave that is a response electromagnetic wave, and a characteristic of the object to be measured based on a detection result of the electromagnetic wave detection unit This is a program for causing a computer to execute a characteristic measurement process for measuring.

以下、本発明の実施形態を図面を参照しながら説明する。   Embodiments of the present invention will be described below with reference to the drawings.

第一の実施形態
図1は、本発明の第一の実施形態にかかる格子(空隙配置構造体)1の斜視図である。格子(空隙配置構造体)1は、導体板10を有する。導体板10は、例えば金属板である。導体板10の厚みの方向は、Z方向である。導体板10には、空隙部(開口)12が開けられている。空隙部12はZ方向に導体板10を貫通する。空隙部12は、XY平面において開口する。空隙部12は、縦方向(Y方向)および横方向(X方向)に配列されている。すなわち、格子1は、二次元格子である。
First Embodiment FIG. 1 is a perspective view of a lattice (gap arrangement structure) 1 according to a first embodiment of the present invention. The lattice (gap arrangement structure) 1 includes a conductor plate 10. The conductor plate 10 is, for example, a metal plate. The direction of the thickness of the conductor plate 10 is the Z direction. A gap (opening) 12 is opened in the conductor plate 10. The gap 12 penetrates the conductor plate 10 in the Z direction. The gap 12 opens in the XY plane. The gaps 12 are arranged in the vertical direction (Y direction) and the horizontal direction (X direction). That is, the lattice 1 is a two-dimensional lattice.

図2は、第一の実施形態にかかる格子(空隙配置構造体)1のXY平面図(図2(a))および充填格子(一体型構造体)2のXY平面図(図2(b))である。   2A and 2B are an XY plan view of the lattice (gap arrangement structure) 1 according to the first embodiment (FIG. 2A) and an XY plan view of the filling lattice 2 (integrated structure) 2 (FIG. 2B). ).

図2(a)を参照して、格子(空隙配置構造体)1は、XY平面において、空隙部(開口)12が二方向(X方向およびY方向)に配列されている。空隙部12は、正方形の開口であり、X方向およびY方向の一辺の長さ(アパーチャー:aperture)はともに等しい(aであるとする)。また、空隙部12のX方向のピッチおよびY方向のピッチ(pitch)はともに等しい(pであるとする)。なお、aおよびpが数十ミクロン程度なので、格子1は、いわゆるメッシュであるともいえる。   Referring to FIG. 2A, in the lattice (gap arrangement structure) 1, the gaps (openings) 12 are arranged in two directions (X direction and Y direction) on the XY plane. The gap 12 is a square opening, and the lengths of one side (aperture) in the X direction and the Y direction are equal (assuming that they are a). Further, the pitch in the X direction and the pitch in the Y direction of the gap 12 are equal (assuming that they are p). Since a and p are about several tens of microns, it can be said that the lattice 1 is a so-called mesh.

図2(b)を参照して、充填格子(一体型構造体)2は、格子1の空隙部12の内部に被測定物20が配置されているものである。被測定物20は、電磁波を照射することにより特性(例えば、電磁波の透過率、屈折率など)が測定されるものである。被測定物20は、例えば、油脂、生体分子(DNAなど)などである。被測定物20が油脂のようなものであれば、空隙部12に被測定物20を充填すれば(空隙部12に隙間があいていてもよい)、空隙部12に被測定物20を配置したことになる。   With reference to FIG. 2 (b), the filling grid (integrated structure) 2 is configured such that the DUT 20 is disposed inside the gap 12 of the grid 1. The object to be measured 20 has characteristics (for example, electromagnetic wave transmittance, refractive index, etc.) measured by irradiating with electromagnetic waves. The object to be measured 20 is, for example, oil or fat, biomolecule (DNA or the like). If the object to be measured 20 is oil or fat, the object to be measured 20 is disposed in the gap 12 if the gap 12 is filled with the object to be measured 20 (a gap may be formed in the gap 12). It will be done.

図3は、格子1の空隙部12の一つの近傍を表示した平面図である。空隙部12は、XY平面において、導体板10の一部である導体14で囲まれているものといえる。このような空隙部12がX方向およびY方向に配列されている。   FIG. 3 is a plan view showing one vicinity of the gap 12 of the lattice 1. It can be said that the gap 12 is surrounded by the conductor 14 which is a part of the conductor plate 10 in the XY plane. Such voids 12 are arranged in the X direction and the Y direction.

図4は、充填格子(一体型構造体)4のXY平面図である。充填格子4は、格子1の空隙部12に被測定物20が配置されていない非配置部分4aと、格子1の空隙部12に被測定物20が配置されている配置部分4bとを有する。   FIG. 4 is an XY plan view of the filling grid (integrated structure) 4. The packed lattice 4 includes a non-arranged portion 4 a where the object to be measured 20 is not disposed in the gap portion 12 of the lattice 1 and an arrangement portion 4 b where the object to be measured 20 is disposed in the gap portion 12 of the lattice 1.

なお、図17に示すように、非配置部分4aに、配置部分4bに配置された被測定物とは異なる別の被測定物を配置することも考えられる。図17(a)は、非配置部分4aに別の被測定物を配置した場合の充填格子4のXY平面図である。非配置部分4aには被測定物20aが、配置部分4bには被測定物20bが配置されている。   In addition, as shown in FIG. 17, it is also conceivable to arrange another measurement object different from the measurement object arranged in the arrangement part 4b in the non-arrangement part 4a. FIG. 17A is an XY plan view of the packed grating 4 when another object to be measured is arranged in the non-arranged portion 4a. An object to be measured 20a is arranged in the non-arranged portion 4a, and an object to be measured 20b is arranged in the arranged portion 4b.

また、図17(b)に示すように、充填格子4に三種類の被測定物を配置してもよい。図17(b)は、三種類の被測定物を配置した充填格子4のXY平面図である。すなわち、第一配置部分4cには被測定物20aが、第二配置部分4dには被測定物20bが、第三配置部分4eには被測定物20cが配置されている。このように、充填格子4に三種類以上の被測定物を配置してもよい。   Further, as shown in FIG. 17B, three kinds of objects to be measured may be arranged on the filling grid 4. FIG. 17B is an XY plan view of the packed grating 4 in which three types of objects to be measured are arranged. That is, the DUT 20a is arranged in the first arrangement portion 4c, the DUT 20b is arranged in the second arrangement portion 4d, and the DUT 20c is arranged in the third arrangement portion 4e. In this way, three or more kinds of objects to be measured may be arranged on the filling grid 4.

図5は、格子1の変形例について説明するためのXY平面図である。図5(a)は、空隙部12が一方向(X方向)にしか配列されていない。すなわち、一次元に配列されたものである。図5(b)は、空隙部12がX方向、Y1方向およびY2方向(Y方向ではない)に配列されている。どちらも、格子1として使用できる。ただし、図5に示すように同一形状(同じ形かつ同じ大きさ)の空隙部12が所定のピッチ(または間隔)で配置されていることを要する。また、格子1の空隙部12は正方形でなくてもよく、円形でもよいし、三角形や四角形でも可能である。すなわち、二次元的な図形であればよい。さらに、図14に示すように、空隙部12が一個だけの場合も格子1として使用できる。   FIG. 5 is an XY plan view for explaining a modification of the grating 1. In FIG. 5A, the gaps 12 are arranged only in one direction (X direction). That is, they are arranged one-dimensionally. In FIG. 5B, the gaps 12 are arranged in the X direction, the Y1 direction, and the Y2 direction (not the Y direction). Either can be used as the grating 1. However, as shown in FIG. 5, it is necessary that the gaps 12 having the same shape (the same shape and the same size) are arranged at a predetermined pitch (or interval). Further, the gap portion 12 of the lattice 1 may not be a square, may be a circle, and may be a triangle or a rectangle. That is, it may be a two-dimensional figure. Furthermore, as shown in FIG. 14, even when there is only one gap 12, it can be used as the lattice 1.

なお、これまで格子1に被測定物20を配置する例として、格子1の空隙部12に被測定物20を配置したものを説明してきた。しかし、格子1に被測定物20を配置する方法は、これに限定されない。例えば、格子1の表面に被測定物20を配置することが考えられる。   Heretofore, an example in which the device under test 20 is arranged in the gap portion 12 of the lattice 1 has been described as an example of arranging the device under test 20 in the grid 1. However, the method of arranging the DUT 20 on the grid 1 is not limited to this. For example, it is conceivable to arrange the object 20 to be measured on the surface of the grating 1.

図18は、格子1の表面に被測定物20を配置した一体型構造体7のXY平面図(図18(a))およびb−b断面図(図18(b))である。一体型構造体7は、シート(配置部材)15を有する。シート15は、格子1の表面に載せられている。図18(a)を参照すると、シート15が格子1の空隙部12を覆い隠して見えないようにしている状態であることがわかる。また、図18(b)を参照すると、シート15の裏面は格子1の表面に接しており、シート15の表面には被測定物20(例えばDNAであり、Y字状の図形として図示している)が配置(例えば、固定)されている。シート15は、例えば、DNAのハイブリダイゼーションに用いられるナイロン膜である。被測定物20であるDNAは、ナイロン膜であるシート15にしみこませることにより、シート15に固定できる。   18A and 18B are an XY plan view (FIG. 18A) and a bb cross-sectional view (FIG. 18B) of the integrated structure 7 in which the DUT 20 is arranged on the surface of the grating 1. FIG. The integrated structure 7 has a sheet (arrangement member) 15. The sheet 15 is placed on the surface of the grid 1. Referring to FIG. 18A, it can be seen that the sheet 15 covers the gap 12 of the lattice 1 so that it cannot be seen. Referring to FIG. 18B, the back surface of the sheet 15 is in contact with the surface of the grid 1, and the object to be measured 20 (for example, DNA, which is illustrated as a Y-shaped figure on the surface of the sheet 15). Are arranged (for example, fixed). The sheet 15 is, for example, a nylon membrane used for DNA hybridization. DNA to be measured 20 can be fixed to the sheet 15 by soaking into the sheet 15 which is a nylon film.

図6は、第一の実施形態にかかる充填格子(一体型構造体)2の被測定物20の屈折率を測定するための測定装置の構成を示す図である。測定装置は、放射制御部32、電磁波照射部(第一電磁波照射手段および第二電磁波照射手段)34、電磁波検出部(第一電磁波検出手段および第二電磁波検出手段)36、特性測定部40を備える。   FIG. 6 is a diagram illustrating a configuration of a measuring apparatus for measuring the refractive index of the object 20 to be measured of the packed grating (integrated structure) 2 according to the first embodiment. The measurement apparatus includes a radiation control unit 32, an electromagnetic wave irradiation unit (first electromagnetic wave irradiation unit and second electromagnetic wave irradiation unit) 34, an electromagnetic wave detection unit (first electromagnetic wave detection unit and second electromagnetic wave detection unit) 36, and a characteristic measurement unit 40. Prepare.

放射制御部32は、電磁波のパワーP1、電磁波の周波数fを指定して、電磁波照射部34に電磁波を放射させる。指定したパワーP1および周波数fは、特性測定部40の透過率測定部42にも与えられる。   The radiation control unit 32 designates the electromagnetic wave power P1 and the electromagnetic wave frequency f, and causes the electromagnetic wave irradiation unit 34 to emit the electromagnetic wave. The designated power P1 and frequency f are also given to the transmittance measuring unit 42 of the characteristic measuring unit 40.

電磁波照射部(第一電磁波照射手段および第二電磁波照射手段)34は、パワーP1および周波数fの電磁波を放射する。放射された電磁波は格子1または充填格子2に照射される。あるいは、放射された電磁波は充填格子4の非配置部分4aまたは配置部分4bに照射される。   The electromagnetic wave irradiation unit (first electromagnetic wave irradiation means and second electromagnetic wave irradiation means) 34 emits an electromagnetic wave having power P1 and frequency f. The emitted electromagnetic wave is applied to the grating 1 or the filling grating 2. Alternatively, the radiated electromagnetic wave is applied to the non-arranged portion 4 a or the arranged portion 4 b of the filling grid 4.

ここで、充填格子2に照射される電磁波を第一電磁波といい、格子1に照射される電磁波を第二電磁波という。また、配置部分4bに照射される電磁波を第一電磁波といい、非配置部分4aに照射される電磁波を第二電磁波という。   Here, the electromagnetic wave irradiated to the filling grid 2 is referred to as a first electromagnetic wave, and the electromagnetic wave irradiated to the grid 1 is referred to as a second electromagnetic wave. Moreover, the electromagnetic wave irradiated to the arrangement | positioning part 4b is called 1st electromagnetic wave, and the electromagnetic wave irradiated to the non-arrangement part 4a is called 2nd electromagnetic wave.

電磁波検出部(第一電磁波検出手段および第二電磁波検出手段)36は、格子1または充填格子2もしくは充填格子4を透過した電磁波を検出し、パワーP2を測定し、特性測定部40の透過率測定部42に与える。なお、透過した電磁波ではなく反射した電磁波を検出することも考えられる。   The electromagnetic wave detection unit (first electromagnetic wave detection unit and second electromagnetic wave detection unit) 36 detects an electromagnetic wave that has passed through the grid 1, the filled grid 2, or the filled grid 4, measures the power P 2, and transmits the transmittance of the characteristic measurement unit 40. It gives to the measurement part 42. It is also conceivable to detect reflected electromagnetic waves instead of transmitted electromagnetic waves.

すなわち、照射された第一電磁波に対する充填格子2による応答(例えば、透過、反射)である第一応答電磁波および照射された第二電磁波に対する格子1による応答(例えば、透過、反射)である第二応答電磁波を検出すればよい。または、照射された第一電磁波に対する配置部分4bによる応答(例えば、透過、反射)である第一応答電磁波および照射された第二電磁波に対する非配置部分4aによる応答(例えば、透過、反射)である第二応答電磁波を検出すればよい。   In other words, the first response electromagnetic wave that is a response (for example, transmission and reflection) by the filled grating 2 to the irradiated first electromagnetic wave and the second response (for example, transmission and reflection) by the grating 1 to the irradiated second electromagnetic wave. What is necessary is just to detect a response electromagnetic wave. Or it is the response (for example, transmission, reflection) by the non-arrangement part 4a with respect to the 1st response electromagnetic wave which is the response (for example, permeation, reflection) by the arrangement part 4b with respect to the irradiated first electromagnetic wave. What is necessary is just to detect a 2nd response electromagnetic wave.

特性測定部40は、電磁波検出部36の検出結果に基づき、被測定物20の特性を測定する。特性測定部40は、透過率測定部42、透過率記録部44、屈折率導出部46を有する。   The characteristic measurement unit 40 measures the characteristic of the DUT 20 based on the detection result of the electromagnetic wave detection unit 36. The characteristic measuring unit 40 includes a transmittance measuring unit 42, a transmittance recording unit 44, and a refractive index deriving unit 46.

透過率測定部42は、電磁波検出部36の検出結果に基づき、電磁波の透過率を測定する。すなわち、充填格子2および格子1の電磁波の透過率を測定する。または、配置部分4bおよび非配置部分4aの電磁波の透過率を測定する。透過率は、P2/P1により求められる。ただし、反射が無視できない場合は、厚さの異なる同一物について、P2を測定してやれば、反射の影響をキャンセルできる。これについては周知なので詳細には説明をしない。   The transmittance measuring unit 42 measures the transmittance of the electromagnetic wave based on the detection result of the electromagnetic wave detecting unit 36. That is, the electromagnetic wave transmittance of the filling grating 2 and the grating 1 is measured. Or the transmittance | permeability of the electromagnetic waves of the arrangement | positioning part 4b and the non-arrangement | positioning part 4a is measured. The transmittance is obtained by P2 / P1. However, if the reflection cannot be ignored, the influence of the reflection can be canceled by measuring P2 for the same object having a different thickness. This is well known and will not be described in detail.

透過率記録部44は、透過率測定部42が測定した透過率を電磁波の周波数に対応づけて記録する。   The transmittance recording unit 44 records the transmittance measured by the transmittance measuring unit 42 in association with the frequency of the electromagnetic wave.

屈折率導出部46は、測定された透過率に基づき、被測定物20の屈折率を導出する。すなわち、周波数Aにおける第一応答電磁波の検出結果に基づき測定された透過率と、周波数Bにおける第二応答電磁波の検出結果に基づき測定された透過率とが等しい場合に、被測定物20の屈折率をAおよびBに基づき導出する。   The refractive index deriving unit 46 derives the refractive index of the DUT 20 based on the measured transmittance. That is, when the transmittance measured based on the detection result of the first response electromagnetic wave at the frequency A is equal to the transmittance measured based on the detection result of the second response electromagnetic wave at the frequency B, the refraction of the DUT 20 The rate is derived based on A and B.

次に、第一の実施形態の動作を説明する。   Next, the operation of the first embodiment will be described.

図7は、第一の実施形態にかかる測定装置の動作を示すフローチャートである。図8は、被測定物20の屈折率の決定法を説明するためのグラフである。   FIG. 7 is a flowchart showing the operation of the measuring apparatus according to the first embodiment. FIG. 8 is a graph for explaining a method for determining the refractive index of the DUT 20.

なお、格子1および充填格子2の散乱および吸収は無視できるものとする。例えば、格子1および充填格子2の材質がそのような条件を満たすものである。または、格子1および充填格子2の厚さがそのような条件を満たすものである。   Note that the scattering and absorption of the grating 1 and the packed grating 2 are negligible. For example, the materials of the lattice 1 and the filling lattice 2 satisfy such a condition. Or the thickness of the grating | lattice 1 and the filling grating | lattice 2 satisfy | fills such conditions.

一般的に、強度がI0の入射波が物質中をxだけ進行した点での強度をI(x)とすると、入射波の減衰(吸収)は、I(x)
= I0exp-αxのように表せる。
In general, if the intensity at the point where an incident wave with an intensity of I 0 travels through the substance by x is I (x), the attenuation (absorption) of the incident wave is I (x)
= I 0 exp -αx

上記の式のα(材質によって定まる)かx(厚さ)が非常に小さい場合に吸収が無視できる。   Absorption is negligible when α (determined by the material) or x (thickness) in the above equation is very small.

まず、格子1(または非配置部分4a)を電磁波照射部34および電磁波検出部36の間に配置して、電磁波照射部34から所定の帯域の第二電磁波を放射する。電磁波検出部36は、透過した電磁波(第二応答電磁波)を検出する。そして、透過率測定部42が格子1(または非配置部分4a)の透過率を測定する(S10)。透過率は、P2/P1により求められる。測定された透過率は第二電磁波の周波数に対応付けられて透過率記録部44に記録される。ただし、測定装置は屈折率n0(例えば、1)の空気中で使用するものとする。 First, the grid 1 (or the non-arranged portion 4a) is disposed between the electromagnetic wave irradiation unit 34 and the electromagnetic wave detection unit 36, and the second electromagnetic wave in a predetermined band is radiated from the electromagnetic wave irradiation unit 34. The electromagnetic wave detection unit 36 detects the transmitted electromagnetic wave (second response electromagnetic wave). Then, the transmittance measuring unit 42 measures the transmittance of the grating 1 (or the non-arranged portion 4a) (S10). The transmittance is obtained by P2 / P1. The measured transmittance is recorded in the transmittance recording unit 44 in association with the frequency of the second electromagnetic wave. However, the measuring device is used in air having a refractive index n 0 (for example, 1).

図8に示す例では、所定の帯域として0THzを超えて6THz(テラヘルツ)までの帯域をとり、格子1(または非配置部分4a)の透過率を測定したグラフG1が図示されている。このグラフG1は、Tn0(f)と表現できる。すなわち、透過率Tは、屈折率n0および周波数fの関数である。 In the example shown in FIG. 8, a graph G1 is illustrated in which the predetermined band is a band exceeding 0 THz and reaching 6 THz (terahertz), and the transmittance of the grating 1 (or the non-arranged portion 4a) is measured. This graph G1 can be expressed as T n0 (f). That is, the transmittance T is a function of the refractive index n 0 and frequency f.

次に、充填格子2(または配置部分4b)を電磁波照射部34および電磁波検出部36の間に配置して、電磁波照射部34から周波数Aの第一電磁波を放射する。電磁波検出部36は、透過した電磁波(第一応答電磁波)を検出する。そして、透過率測定部42が充填格子2(または配置部分4b)の透過率を測定する(S12)。透過率は、P2/P1により求められる。   Next, the packed grid 2 (or the arrangement portion 4 b) is arranged between the electromagnetic wave irradiation unit 34 and the electromagnetic wave detection unit 36, and the first electromagnetic wave with the frequency A is emitted from the electromagnetic wave irradiation unit 34. The electromagnetic wave detection unit 36 detects the transmitted electromagnetic wave (first response electromagnetic wave). And the transmittance | permeability measurement part 42 measures the transmittance | permeability of the filling grating | lattice 2 (or arrangement | positioning part 4b) (S12). The transmittance is obtained by P2 / P1.

図8に示す例では、周波数A=1THzとして、充填格子2(または配置部分4b)の透過率=40%を得る(グラフG2)。このグラフG2は、Tnx(A)と表現できる。すなわち、周波数Aにおける充填格子2(または配置部分4b)の透過率Tnxは、被測定物20の屈折率nxおよび周波数A(=1THz)の関数である。 In the example shown in FIG. 8, the transmittance A = 40% of the filling grating 2 (or the arrangement portion 4b) is obtained with the frequency A = 1 THz (graph G2). This graph G2 can be expressed as T nx (A). That is, the transmittance T nx filling grating 2 (or placement portion 4b) in the frequency A is a function of the refractive indices n x and frequency A of the object to be measured 20 (= 1 THz).

次に、屈折率導出部46が、透過率記録部44の記録内容および透過率測定部42の測定した充填格子2(または配置部分4b)の透過率に基づき、対応周波数Bを決定する(S14)。すなわち、図8を参照して、屈折率導出部46が、周波数A(=1THz)における電磁波検出部36の検出結果(グラフG2)に基づき測定された透過率(=40%)と、対応周波数Bにおける電磁波検出部36の検出結果に基づき測定された透過率とが等しくなるような、対応周波数Bを決定する。対応周波数Bは3.4THzとなる。   Next, the refractive index deriving unit 46 determines the corresponding frequency B based on the recorded content of the transmittance recording unit 44 and the transmittance of the filled grating 2 (or the arrangement portion 4b) measured by the transmittance measuring unit 42 (S14). ). That is, with reference to FIG. 8, the refractive index deriving unit 46 transmits the transmittance (= 40%) measured based on the detection result (graph G2) of the electromagnetic wave detecting unit 36 at the frequency A (= 1 THz) and the corresponding frequency. The corresponding frequency B is determined such that the transmittance measured based on the detection result of the electromagnetic wave detection unit 36 in B becomes equal. The corresponding frequency B is 3.4 THz.

これは、Tn0(B) = Tnx(A)ということを意味する。 This means that T n0 (B) = T nx (A).

最後に、屈折率導出部46が、被測定物20の屈折率を導出する(S16)。すなわち、被測定物20の屈折率=B/Aとして、被測定物20の屈折率nxを導出する。図8に示す例では、屈折率nx=3.4THz/1THz=3.4となる。これは、B=nx・Aということを用いて、被測定物20の屈折率nxを導出したものである。 Finally, the refractive index deriving unit 46 derives the refractive index of the DUT 20 (S16). That is, the refractive index = B / A of the object to be measured 20, derives the refractive indices n x of the object to be measured 20. In the example shown in FIG. 8, the refractive index n x = 3.4 THz / 1 THz = 3.4. This uses the fact that B = n x · A, is obtained by deriving the refractive indices n x of the object to be measured 20.

なお、図17(a)に示す充填格子4を利用する場合も同様に、電磁波を照射して、非配置部分4aおよび配置部分4bの透過率の測定を行う。この場合、特性測定部40は、被測定物20aおよび被測定物20bの透過率の差を測定できる。また、図17(b)に示す充填格子4を利用する場合は、電磁波を照射して、第一配置部分4cの透過率の測定、第二配置部分4dの透過率の測定、および、第三配置部分4eの透過率の測定を行う。この場合、特性測定部40は、被測定物20a、20b、20cの透過率の差を測定できる。   In the case of using the packed grid 4 shown in FIG. 17A, similarly, the transmittance of the non-arranged part 4a and the arranged part 4b is measured by irradiating electromagnetic waves. In this case, the characteristic measurement unit 40 can measure the difference in transmittance between the device under test 20a and the device under test 20b. When the packed grid 4 shown in FIG. 17B is used, electromagnetic waves are applied to measure the transmittance of the first arrangement portion 4c, measure the transmittance of the second arrangement portion 4d, and third. The transmittance of the arrangement portion 4e is measured. In this case, the characteristic measurement unit 40 can measure the difference in transmittance between the objects to be measured 20a, 20b, and 20c.

第一の実施形態にかかる充填格子(一体型構造体)2によれば、被測定物20を有利に取り扱うことができる。例えば、充填格子2の空隙部12の内部に配置されている被測定物20の特性(例えば、屈折率)を容易に測定できる。   According to the packed grid (integrated structure) 2 according to the first embodiment, the DUT 20 can be handled with advantage. For example, it is possible to easily measure the characteristics (for example, the refractive index) of the object 20 to be measured disposed inside the gap portion 12 of the packed grid 2.

第一の実施形態にかかる測定装置によれば、充填格子(一体型構造体)2および格子(空隙配置構造体)1における電磁波の透過率を測定することにより、被測定物20の特性(例えば、屈折率)を容易に測定できる。   According to the measuring apparatus according to the first embodiment, by measuring the transmittance of electromagnetic waves in the filling grid (integrated structure) 2 and the grid (gap-arranged structure) 1, the characteristics of the object to be measured 20 (for example, , Refractive index) can be easily measured.

第一の実施形態にかかる充填格子(一体型構造体)4によれば、格子1を利用しなくても(充填格子2を格子1に差し替えなくても)、被測定物20の特性(例えば、屈折率)を測定できる。   According to the packed grid (integrated structure) 4 according to the first embodiment, the characteristics (for example, the measured object 20) can be obtained without using the grid 1 (without replacing the filled grid 2 with the grid 1). , Refractive index).

図9は、格子1(または非配置部分4a)の透過率を測定したグラフG1の、アパーチャーaおよびピッチpに対する変化を説明するための図である。aおよびpが小さいと(グラフG1−1)、傾きが小さく、aおよびpが大きいと(グラフG1−2)、傾きが大きい。   FIG. 9 is a diagram for explaining changes of the graph G1 in which the transmittance of the grating 1 (or the non-arranged portion 4a) is measured with respect to the aperture a and the pitch p. When a and p are small (graph G1-1), the inclination is small, and when a and p are large (graph G1-2), the inclination is large.

対応周波数Bの最大値は、透過率が極大値をとる周波数F1(グラフG1−1)、周波数F2(グラフG1−2)である。対応周波数Bの最大値が大きい程、より大きな屈折率を測定できる。よって、aおよびpが小さいと(グラフG1−1)、広い範囲の屈折率を測定できる。逆に、aおよびpが大きいと(グラフG1−2)、高精度に屈折率を測定できる。屈折率がわずかに異なっても、透過率が大きく変化するからである。   The maximum value of the corresponding frequency B is the frequency F1 (graph G1-1) and the frequency F2 (graph G1-2) at which the transmittance is a maximum value. The larger the maximum value of the corresponding frequency B, the larger the refractive index can be measured. Therefore, when a and p are small (graph G1-1), a wide range of refractive indexes can be measured. Conversely, when a and p are large (graph G1-2), the refractive index can be measured with high accuracy. This is because the transmittance varies greatly even if the refractive index is slightly different.

よって、広い範囲の屈折率を測定したいならばアパーチャーaおよびピッチpを小さくした充填格子2、4を利用するとよい。高精度に屈折率を測定したいならばアパーチャーaおよびピッチpを大きくした充填格子2、4を利用するとよい。   Therefore, if it is desired to measure the refractive index in a wide range, it is preferable to use the filled gratings 2 and 4 with the apertures a and the pitch p made small. If it is desired to measure the refractive index with high accuracy, it is preferable to use the packed gratings 2 and 4 with the larger apertures a and pitches p.

第二の実施形態
第二の実施形態は、格子(周波数特性調整部材)6を、格子1および充填格子2に平行に配置して使用する(または充填格子4に平行に配置して使用する)点が第一の実施形態と異なる。
Second Embodiment In the second embodiment, the grating (frequency characteristic adjusting member) 6 is used in parallel with the grating 1 and the filling grating 2 (or used in parallel with the filling grating 4). The point is different from the first embodiment.

図10は、第二の実施形態にかかる充填格子(一体型構造体)2の被測定物20の屈折率を測定するための測定装置の構成を示す図である。第二の実施形態にかかる測定装置は、格子(周波数特性調整部材)6のみが第一の実施形態と異なる。他の部分は第一の実施形態と同様であり説明を省略する。   FIG. 10 is a diagram showing a configuration of a measuring apparatus for measuring the refractive index of the object 20 to be measured of the packed grating (integrated structure) 2 according to the second embodiment. The measuring apparatus according to the second embodiment is different from the first embodiment only in the grating (frequency characteristic adjusting member) 6. Other parts are the same as those in the first embodiment, and a description thereof will be omitted.

格子(周波数特性調整部材)6は、格子1と同じものでよい。ただし、充填格子2の被測定物20(または充填格子4の配置部分4b)と、格子6とが重なりあっていることを要する。しかも、格子6と、格子1、充填格子2および充填格子4との間隔d=(λ/2)・n(ただし、nは自然数)であることを要する。なお、λは対応周波数Bに対応する電磁波の波長である。なお、格子6は格子1と同じ形状であってもよいが、上記の要件を満たし、しかも電磁波を一部透過かつ一部を反射するならば、別の形状であってもかまわない。   The grating (frequency characteristic adjusting member) 6 may be the same as the grating 1. However, it is necessary that the object to be measured 20 of the packed grid 2 (or the arrangement portion 4b of the packed grid 4) and the grid 6 overlap each other. In addition, the distance between the grating 6 and the grating 1, the filling grating 2, and the filling grating 4 needs to be d = (λ / 2) · n (where n is a natural number). Note that λ is the wavelength of the electromagnetic wave corresponding to the corresponding frequency B. The grating 6 may have the same shape as the grating 1, but may have another shape as long as the above requirements are satisfied and the electromagnetic wave is partially transmitted and partially reflected.

図11は、格子6を格子1(または充填格子4の非配置部分4a)に平行に配置したときの透過率のグラフG1および格子6を配置しないときの透過率のグラフG1’を示す図である。格子6を格子1に平行に配置したときは対応周波数Bにおいて共振が成立するので、対応周波数Bの近傍部分における透過率の周波数に対する傾きが、格子6を配置しないときよりも大きくなる。   FIG. 11 is a diagram showing a transmittance graph G1 when the grating 6 is arranged in parallel to the grating 1 (or the non-arranged portion 4a of the filled grating 4) and a transmittance graph G1 ′ when the grating 6 is not arranged. is there. When the grating 6 is arranged parallel to the grating 1, resonance is established at the corresponding frequency B, so that the slope of the transmittance with respect to the frequency in the vicinity of the corresponding frequency B becomes larger than when the grating 6 is not arranged.

すなわち、格子6を格子1に平行に配置したときの透過率のグラフG1は、波打った線になる。言換えれば、格子6を格子1に平行に配置した構成はファブリペローエタロン共振器と同等の構造なので、透過率のグラフG1は、周期的に透過量のピークをもつ。ここで、被測定物20として屈折率のわずかに異なる試料、例えば、DNAの1本鎖、2本鎖や構造の異なる数種類のタンパク質を考える。このような被測定物20の透過率をそれぞれ測定する。屈折率がわずかに異なるだけなので、格子6を配置しなければ、透過率もわずかにしか異ならない。しかし、格子6を配置すれば、わずかな屈折率の違いでも、透過率が大きく異なる。よって、被測定物20のそれぞれについて異なる透過率が得られるため、DNAの結合状態やタンパク質の構造の違いを判別できる。ここで、DNAの1本鎖を図17(a)に示す非配置部分4aに被測定物20aとして、DNAの2本鎖を図17(a)に示す配置部分4bに被測定物20bとして配置すれば、DNAの1本鎖の透過率と2本鎖の透過率が得られる。   That is, the transmittance graph G1 when the grating 6 is arranged in parallel to the grating 1 is a wavy line. In other words, since the configuration in which the grating 6 is arranged in parallel to the grating 1 has a structure equivalent to that of a Fabry-Perot etalon resonator, the transmittance graph G1 periodically has a peak of the transmission amount. Here, a sample having a slightly different refractive index, for example, a single-stranded DNA, a double-stranded DNA, and several types of proteins having different structures are considered as the DUT 20. The transmittance of the object to be measured 20 is measured. Since the refractive indexes are only slightly different, the transmittance is only slightly different if the grating 6 is not arranged. However, if the grating 6 is arranged, the transmittance varies greatly even with a slight difference in refractive index. Therefore, different transmittances can be obtained for each of the objects 20 to be measured, so that a difference in DNA binding state and protein structure can be determined. Here, a single strand of DNA is arranged as the measured object 20a in the non-arranged portion 4a shown in FIG. 17 (a), and a double strand of DNA is arranged as the measured object 20b in the arranged portion 4b shown in FIG. 17 (a). Then, the single-strand transmittance and double-strand transmittance of DNA can be obtained.

なお、第二の実施形態の動作は第一の実施形態と同様である。ただし、格子1(または非配置部分4a)を電磁波照射部34および電磁波検出部36の間に配置するかわりに、格子1および格子6(または非配置部分4aおよび格子6)を電磁波照射部34および電磁波検出部36の間に配置する。さらに、充填格子2(または配置部分4b)を電磁波照射部34および電磁波検出部36の間に配置するかわりに、充填格子2および格子6(または配置部分4bおよび格子6)を電磁波照射部34および電磁波検出部36の間に配置する。   The operation of the second embodiment is the same as that of the first embodiment. However, instead of disposing the grid 1 (or the non-arranged portion 4a) between the electromagnetic wave irradiation unit 34 and the electromagnetic wave detection unit 36, the grid 1 and the grid 6 (or the non-arranged portion 4a and the grid 6) are disposed in the electromagnetic wave irradiation unit 34 and It arrange | positions between the electromagnetic wave detection parts 36. Further, instead of arranging the filling grid 2 (or the arrangement part 4b) between the electromagnetic wave irradiation unit 34 and the electromagnetic wave detection unit 36, the filling grid 2 and the grid 6 (or the arrangement part 4b and the grating 6) are arranged in the electromagnetic wave irradiation unit 34 and It arrange | positions between the electromagnetic wave detection parts 36.

第二の実施形態によれば、第一の実施形態に比べて高精度に被測定物20の屈折率を測定できる。よって、被測定物20として屈折率のわずかに異なる試料、例えば、DNAの1本鎖、2本鎖や構造の異なる数種類のタンパク質を使用しても、DNAの結合状態やタンパク質の構造の違いを判別できる。   According to the second embodiment, the refractive index of the DUT 20 can be measured with higher accuracy than in the first embodiment. Therefore, even if a sample having a slightly different refractive index is used as the object to be measured 20, such as DNA single-stranded or double-stranded or several types of proteins having different structures, the difference in DNA binding state and protein structure can be detected. Can be determined.

第三の実施形態
第三の実施形態は、充填格子(一体型構造体)8が、基部11を有し、導体14が基部11に印刷されている点が第一の実施形態と異なる。
Third Embodiment A third embodiment is different from the first embodiment in that a filling grid (integrated structure) 8 has a base 11 and a conductor 14 is printed on the base 11.

図12は、第三の実施形態にかかる充填格子(一体型構造体)8の平面図である。充填格子8は、基部11、導体14および被測定物20を備える。基部11は、照射される電磁波の周波数帯域において、電磁波の透過率が高く、かつほぼ一定であることを要する。基部11は、紙または薄いプラスチック(例えばOHPシート)であることが好ましい。導体14は基部11に印刷される。導体14により形成された空隙部12に被測定物20が配置(あるいは充填)される。   FIG. 12 is a plan view of the filling grid (integrated structure) 8 according to the third embodiment. The packed grid 8 includes a base portion 11, a conductor 14, and a device under test 20. The base 11 needs to have high electromagnetic wave transmittance and substantially constant in the frequency band of the electromagnetic wave to be irradiated. The base 11 is preferably paper or thin plastic (for example, an OHP sheet). The conductor 14 is printed on the base 11. An object to be measured 20 is arranged (or filled) in the gap 12 formed by the conductor 14.

図13は、充填格子8の導体14の拡大斜視図である。なお、図示の便宜上、被測定物20を省略して図示している。導体14により空隙部12が形成されている。より詳しくは、XY平面において導体14により空隙部12が囲まれている。かかる空隙部12に被測定物20が配置(あるいは充填)されると、XY平面において導体14により被測定物20が囲まれることになる。なお、空隙部12が縦方向(Y方向)および横方向(X方向)に配列されていることは第一の実施形態と同様である。また、空隙部12が配置されていれば(例えば、図5および図14参照)、縦方向(Y方向)および横方向(X方向)に配列されていなくてもよい。   FIG. 13 is an enlarged perspective view of the conductor 14 of the filling grid 8. For convenience of illustration, the DUT 20 is omitted from the illustration. A gap 12 is formed by the conductor 14. More specifically, the gap portion 12 is surrounded by the conductor 14 in the XY plane. When the object to be measured 20 is arranged (or filled) in the gap portion 12, the object to be measured 20 is surrounded by the conductor 14 in the XY plane. In addition, it is the same as that of 1st embodiment that the space | gap part 12 is arranged in the vertical direction (Y direction) and the horizontal direction (X direction). Moreover, as long as the space | gap part 12 is arrange | positioned (for example, refer FIG. 5 and FIG. 14), it does not need to be arranged in the vertical direction (Y direction) and the horizontal direction (X direction).

第三の実施形態にかかる測定装置およびその動作は第一の実施形態と同様である。   The measuring device and its operation according to the third embodiment are the same as those of the first embodiment.

第三の実施形態にかかる充填格子8によれば、被測定物20を有利に取り扱うことができる。例えば、被測定物20の屈折率を容易に測定できる。   According to the packed grid 8 according to the third embodiment, the DUT 20 can be handled with advantage. For example, the refractive index of the device under test 20 can be easily measured.

第四の実施形態
第四の実施形態にかかる測定装置は、充填格子4にテラヘルツ波を照射し、二次元走査を行う点で第一の実施形態と異なる。
Fourth Embodiment A measurement apparatus according to the fourth embodiment is different from the first embodiment in that a terahertz wave is irradiated onto the packed grating 4 and two-dimensional scanning is performed.

図15は、第四の実施形態にかかる充填格子4の被測定物20の屈折率を測定するための測定装置の構成を示す図である。第四の実施形態にかかる測定装置は、充填格子4、電磁波照射部30、X−Yステージ50、電磁波検出部60、制御・演算部70、放物面ミラー80a、80b、80c、80d、ミラー90を備える。   FIG. 15 is a diagram illustrating a configuration of a measurement apparatus for measuring the refractive index of the DUT 20 of the packed grating 4 according to the fourth embodiment. The measurement apparatus according to the fourth embodiment includes a packed grating 4, an electromagnetic wave irradiation unit 30, an XY stage 50, an electromagnetic wave detection unit 60, a control / calculation unit 70, parabolic mirrors 80a, 80b, 80c, 80d, and a mirror. 90.

電磁波照射部30、テラヘルツ波を放射する。X−Yステージ50は、充填格子4をX方向およびY方向に移動させる。電磁波検出部60は、充填格子4を透過したテラヘルツ波を検出する。制御・演算部70は、X−Yステージ50を制御し、かつ、電磁波検出部60の検出結果に基づき、充填格子4の被測定物20の特性(例えば、透過率、屈折率など)を演算する。   The electromagnetic wave irradiation unit 30 emits terahertz waves. The XY stage 50 moves the filling grid 4 in the X direction and the Y direction. The electromagnetic wave detection unit 60 detects the terahertz wave that has passed through the filling grating 4. The control / calculation unit 70 controls the XY stage 50 and calculates the characteristics (for example, transmittance, refractive index, etc.) of the DUT 20 of the packed grating 4 based on the detection result of the electromagnetic wave detection unit 60. To do.

放物面ミラー80aは、ミラー90から与えられたテラヘルツ波を反射して放物面ミラー80bに与える。放物面ミラー80bは、放物面ミラー80aから与えられたテラヘルツ波を反射して充填格子4に照射する。テラヘルツ波は、充填格子4上の一点(「焦点」という)に照射される。放物面ミラー80cは、充填格子4を透過したテラヘルツ波を反射して放物面ミラー80dに与える。放物面ミラー80dは、放物面ミラー80cから与えられたテラヘルツ波を反射して電磁波検出部60に与える。ミラー90は、電磁波照射部30の放射したテラヘルツ波を反射して、放物面ミラー80aに与える。   The parabolic mirror 80a reflects the terahertz wave given from the mirror 90 and gives it to the parabolic mirror 80b. The parabolic mirror 80b reflects the terahertz wave given from the parabolic mirror 80a and irradiates the filling grating 4 with it. The terahertz wave is irradiated to one point (referred to as “focus”) on the filling grating 4. The parabolic mirror 80c reflects the terahertz wave that has passed through the filling grating 4 and supplies the reflected wave to the parabolic mirror 80d. The parabolic mirror 80d reflects the terahertz wave given from the parabolic mirror 80c and gives it to the electromagnetic wave detection unit 60. The mirror 90 reflects the terahertz wave emitted from the electromagnetic wave irradiation unit 30 and gives it to the parabolic mirror 80a.

なお、図示しないディスプレイを制御・演算部70に接続して、屈折率および透過率を表示することもできる。また、画像処理(屈折率または吸収率が大きい程に白く、小さい程に黒く)を施してディスプレイに表示してもよい。   A display (not shown) can be connected to the control / calculation unit 70 to display the refractive index and the transmittance. Further, image processing (white as the refractive index or absorptance increases, and black as it decreases) may be displayed on the display.

次に、第四の実施形態の動作を説明する。   Next, the operation of the fourth embodiment will be described.

電磁波照射部30により放射されたテラヘルツ波は、ミラー90および放物面ミラー80a、80bにより反射され、充填格子4に照射される。ここで、X−Yステージ50は、制御・演算部70の制御を受け、充填格子4の空隙部12(被測定物20が配置されているものも、いないものもある)の各々がテラヘルツ波を受けるように、すなわち焦点が空隙部12にあうように、X方向およびY方向に移動させる。すなわち、二次元走査させる。充填格子4の空隙部12を透過したテラヘルツ波は放物面ミラー80c、80dにより反射され、電磁波検出部60に与えられる。電磁波検出部60は、充填格子4を透過したテラヘルツ波を検出する。制御・演算部70は、電磁波検出部60の検出結果に基づき、充填格子4の被測定物20の特性(例えば、透過率、屈折率など)を演算する。演算法は、第一、第二および第三の実施形態と同様であり説明を省略する。   The terahertz wave radiated from the electromagnetic wave irradiation unit 30 is reflected by the mirror 90 and the parabolic mirrors 80a and 80b, and is applied to the filling grating 4. Here, the XY stage 50 is controlled by the control / arithmetic unit 70, and each of the gaps 12 of the filling grating 4 (some of which the object to be measured 20 is arranged and some of which are not) are terahertz waves. Is moved in the X direction and the Y direction so that the focal point matches the gap 12. That is, two-dimensional scanning is performed. The terahertz wave that has passed through the gap 12 of the packed grating 4 is reflected by the parabolic mirrors 80 c and 80 d and applied to the electromagnetic wave detection unit 60. The electromagnetic wave detection unit 60 detects the terahertz wave that has passed through the filling grating 4. The control / calculation unit 70 calculates the characteristics (for example, transmittance, refractive index, etc.) of the DUT 20 of the packed grating 4 based on the detection result of the electromagnetic wave detection unit 60. The calculation method is the same as in the first, second, and third embodiments, and a description thereof is omitted.

第四の実施形態によれば、充填格子4の空隙部12の各々の透過率、屈折率が測定できるので、充填格子4の被測定物20の特性を詳細かつ精密に測定することができる。   According to the fourth embodiment, since the transmittance and the refractive index of each of the gap portions 12 of the packed grating 4 can be measured, the characteristics of the object 20 to be measured of the packed grating 4 can be measured in detail and precisely.

なお、上記の実施形態において、格子1(非配置部分4a)および充填格子2(配置部分4b)の透過率を計測すると、透過率が極大値をとる周波数が移動することがわかる。図16は、格子1および充填格子2によって透過率が極大値をとる周波数の移動を示す図である。図16に示すように、透過率が極大値をとる周波数Fa(格子1:グラフGa)がFb(充填格子2:グラフGb)に移動する。これにより、被測定物20が何であるか(これも被測定物20の特性の一種)を特定するようなこともできる。また、被測定物20の空隙部12への充填の具合によって、透過率の特性が変化する。これにより、充填の具合(つまりすぎかといったことなど)を特定するようなこともできる。   In the above embodiment, when the transmittance of the grating 1 (non-arranged portion 4a) and the filled grating 2 (arranged portion 4b) is measured, it can be seen that the frequency at which the transmittance reaches a maximum value moves. FIG. 16 is a diagram showing the shift of the frequency at which the transmittance reaches the maximum value by the grating 1 and the filling grating 2. As shown in FIG. 16, the frequency Fa (grid 1: graph Ga) at which the transmittance reaches a maximum value moves to Fb (filled lattice 2: graph Gb). Thereby, what the device under test 20 is (which is also a kind of characteristic of the device under test 20) can be specified. Further, the transmittance characteristic changes depending on the filling state of the object to be measured 20 into the gap portion 12. Thereby, it is possible to specify the degree of filling (that is, whether it is too much).

なお、上記の実施形態は、以下のようにして実現できる。CPU、ハードディスク、メディア(フロッピー(登録商標)ディスク、CD−ROMなど)読み取り装置を備えたコンピュータのメディア読み取り装置に、上記の各部分(例えば、特性測定部40)を実現するプログラムを記録したメディアを読み取らせて、ハードディスクにインストールする。このような方法でも、上記の実施形態を実現できる。   In addition, said embodiment is realizable as follows. A medium in which a program for realizing each of the above-described parts (for example, the characteristic measurement unit 40) is recorded in a medium reading device of a computer having a CPU, a hard disk, and a medium (floppy (registered trademark) disk, CD-ROM, etc.) And install it on the hard disk. The above embodiment can also be realized by such a method.

なお、上記のような格子1および充填格子2を用いた屈折率測定は、格子1の機構的なサイズを適切に設計することでどのような周波数においても測定可能である。特に周波数がミリ波帯〜テラヘルツ帯(周波数:100GHz〜10THz、波長:3mm〜30μm)においては、被測定物20を配置(例えば、充填)する際に必要とされる被測定物20の量が少量で済むという点が有利である。   Note that the refractive index measurement using the grating 1 and the filling grating 2 as described above can be measured at any frequency by appropriately designing the mechanical size of the grating 1. In particular, when the frequency is in the millimeter wave band to the terahertz band (frequency: 100 GHz to 10 THz, wavelength: 3 mm to 30 μm), the amount of the object to be measured 20 required when arranging (for example, filling) the object to be measured 20 is It is advantageous that only a small amount is required.

より詳細には、上記の帯域よりも周波数が低い帯域と比べた場合は、格子1のサイズを小さくでき、少量の被測定物20で済んでしまう。上記の帯域よりも周波数が高い帯域(波長が光のように短い(すなわち、1μm以下)近赤外領域)と比べた場合は、被測定物20を配置または充填することが容易である。   More specifically, when compared with a band having a frequency lower than the above band, the size of the grating 1 can be reduced, and a small amount of the object to be measured 20 is required. When compared with a band having a higher frequency than the above band (a near-infrared region having a wavelength as short as light (that is, 1 μm or less)), it is easy to place or fill the DUT 20.

産業応用の観点からも、ミリ波帯〜テラヘルツ帯で、上記のような測定方法を適用すると、小型のDNAチップやタンパクチップなどを容易に製造でき、生体高分子の相互作用測定などに適用できるものと思われる。生体高分子の相互作用測定には近赤外領域で表面プラズモン共鳴現象を利用し、センサーの微小な屈折率の変化を検出する分析装置が開発されているが、流路系を用いてセンサーに液体試料を流し続けるため大量の試料を要する、装置が大型、高価である等の欠点がある。   From the viewpoint of industrial application, if the above measurement method is applied in the millimeter wave band to the terahertz band, a small DNA chip, protein chip, etc. can be easily manufactured, and it can be applied to biopolymer interaction measurement, etc. It seems to be. Analytical devices have been developed that use surface plasmon resonance in the near-infrared region to detect biopolymer interactions, and detect minute changes in the refractive index of the sensor. There are drawbacks that a large amount of sample is required to keep the liquid sample flowing, the apparatus is large, and expensive.

本発明の第一の実施形態にかかる格子(空隙配置構造体)1の斜視図である。1 is a perspective view of a lattice (gap arrangement structure) 1 according to a first embodiment of the present invention. 第一の実施形態にかかる格子(空隙配置構造体)1のXY平面図(図2(a))および充填格子(一体型構造体)2のXY平面図(図2(b))である。FIG. 2 is an XY plan view (FIG. 2A) of a lattice (gap arrangement structure) 1 according to the first embodiment and an XY plan view (FIG. 2B) of a filling lattice (integrated structure) 2. FIG. 格子1の空隙部12の一つの近傍を表示した平面図である。FIG. 3 is a plan view showing one vicinity of a gap 12 of the lattice 1. 充填格子(一体型構造体)4のXY平面図である。FIG. 6 is an XY plan view of a filling grid (integrated structure) 4. 格子1の定義について説明するためのXY平面図である。4 is an XY plan view for explaining the definition of the lattice 1; FIG. 第一の実施形態にかかる充填格子(一体型構造体)2の被測定物20の屈折率を測定するための測定装置の構成を示す図である。It is a figure which shows the structure of the measuring apparatus for measuring the refractive index of the to-be-measured object 20 of the filling grating | lattice (integral structure) 2 concerning 1st embodiment. 第一の実施形態にかかる測定装置の動作を示すフローチャートである。It is a flowchart which shows operation | movement of the measuring apparatus concerning 1st embodiment. 被測定物20の屈折率の決定法を説明するためのグラフである。4 is a graph for explaining a method of determining a refractive index of a device under test 20. 格子1(または非配置部分4a)の透過率を測定したグラフG1の、アパーチャーaおよびピッチpに対する変化を説明するための図である。It is a figure for demonstrating the change with respect to the aperture a and the pitch p of the graph G1 which measured the transmittance | permeability of the grating | lattice 1 (or non-arranged part 4a). 第二の実施形態にかかる充填格子(一体型構造体)2の被測定物20の屈折率を測定するための測定装置の構成を示す図である。It is a figure which shows the structure of the measuring apparatus for measuring the refractive index of the to-be-measured object 20 of the filling grating | lattice (integral structure) 2 concerning 2nd embodiment. 格子6を格子1(または充填格子4の非配置部分4a)に平行に配置したときの透過率のグラフG1および格子6を配置しないときの透過率のグラフG1’を示す図である。It is a figure which shows the transmittance | permeability graph G1 'when not arrange | positioning the transmittance | permeability graph G1 when the grating | lattice 6 is arrange | positioned in parallel with the grating | lattice 1 (or the non-arranged part 4a of the filling grating | lattice 4). 第三の実施形態にかかる充填格子(一体型構造体)8の平面図である。It is a top view of the filling grid | lattice (integral structure) 8 concerning 3rd embodiment. 充填格子8の導体14の拡大斜視図である。FIG. 6 is an enlarged perspective view of a conductor 14 of a filling grid 8. 空隙部12が一個だけの場合の格子1のXY平面図である。It is an XY plan view of the lattice 1 when there is only one gap portion 12. 第四の実施形態にかかる充填格子4の被測定物20の屈折率を測定するための測定装置の構成を示す図である。It is a figure which shows the structure of the measuring apparatus for measuring the refractive index of the to-be-measured object 20 of the filling grating | lattice 4 concerning 4th embodiment. 格子1および充填格子2によって透過率が極大値をとる周波数の移動を示す図である。It is a figure which shows the movement of the frequency from which the transmittance | permeability takes the maximum value with the grating | lattice 1 and the filling grating | lattice 2. FIG. 非配置部分4aに別の被測定物を配置した場合の充填格子4のXY平面図(図17(a))、および三種類の被測定物を配置した充填格子4のXY平面図(図17(b))である。An XY plan view of the filling grid 4 when another object to be measured is arranged in the non-arranged portion 4a (FIG. 17A) and an XY plan view of the filling grid 4 in which three kinds of objects to be measured are arranged (FIG. 17). (B)). 格子1の表面に被測定物20を配置したもののXY平面図である。FIG. 3 is an XY plan view of the object to be measured 20 disposed on the surface of the grating 1.

符号の説明Explanation of symbols

1 格子(空隙配置構造体)
10 導体板
11 基部
12 空隙部(開口)
14 導体
2 充填格子(一体型構造体)
20 被測定物
4 充填格子(一体型構造体)
4a 非配置部分
4b 配置部分
6 格子(周波数特性調整部材)
8 充填格子(一体型構造体)
32 放射制御部
34 電磁波照射部(第一電磁波照射手段および第二電磁波照射手段)
36 電磁波検出部(第一電磁波検出手段および第二電磁波検出手段)
40 特性測定部
42 透過率測定部
44 透過率記録部
46 屈折率導出部
1 Lattice (void arrangement structure)
10 conductive plate 11 base 12 gap (opening)
14 Conductor 2 Filling grid (integrated structure)
20 DUT 4 Packing grid (integrated structure)
4a Non-arranged part 4b Arranged part 6 Lattice (frequency characteristic adjusting member)
8 Filling grid (integrated structure)
32 radiation control part 34 electromagnetic wave irradiation part (first electromagnetic wave irradiation means and second electromagnetic wave irradiation means)
36 Electromagnetic wave detection unit (first electromagnetic wave detection means and second electromagnetic wave detection means)
40 Characteristic Measuring Unit 42 Transmittance Measuring Unit 44 Transmittance Recording Unit 46 Refractive Index Deriving Unit

Claims (21)

電磁波を照射することにより特性が測定される被測定物と、
所定の平面において導体で囲まれた空隙部が配置された空隙配置構造体と、
を備えた一体型構造体。
An object to be measured whose characteristics are measured by irradiating electromagnetic waves;
A gap arrangement structure in which a gap surrounded by a conductor is arranged in a predetermined plane;
Integrated structure with
請求項1に記載の一体型構造体であって、
前記被測定物が前記空隙部の内部に配置されている、
一体型構造体。
An integrated structure according to claim 1,
The object to be measured is disposed inside the gap,
Integrated structure.
請求項1に記載の一体型構造体であって、
前記被測定物が配置されている配置部材を備え、
前記配置部材は前記空隙配置構造体の表面に配置されている、
一体型構造体。
An integrated structure according to claim 1,
An arrangement member in which the object to be measured is arranged;
The arrangement member is arranged on the surface of the gap arrangement structure.
Integrated structure.
請求項1ないし3のいずれか一項に記載の一体型構造体であって、
前記空隙配置構造体は、同一形状の前記空隙部が所定の方向に一定の間隔で配置されている、
一体型構造体。
An integrated structure according to any one of claims 1 to 3,
In the gap arrangement structure, the gap portions having the same shape are arranged at predetermined intervals in a predetermined direction.
Integrated structure.
請求項4に記載の一体型構造体であって、
前記空隙配置構造体は、導体を貫通する開口が縦方向および横方向に配列された二次元格子である、
一体型構造体。
An integrated structure according to claim 4, wherein
The gap arrangement structure is a two-dimensional lattice in which openings penetrating a conductor are arranged in a vertical direction and a horizontal direction.
Integrated structure.
請求項1ないし3のいずれか一項に記載の一体型構造体であって、
前記空隙配置構造体は、前記導体が配置される基部を有する、
一体型構造体。
An integrated structure according to any one of claims 1 to 3,
The gap arrangement structure has a base on which the conductor is arranged.
Integrated structure.
請求項6に記載の一体型構造体であって、
前記基部に前記導体が印刷される、
一体型構造体。
An integrated structure according to claim 6,
The conductor is printed on the base;
Integrated structure.
請求項1ないし7のいずれか一項に記載の一体型構造体であって、
前記空隙部に前記被測定物が配置されている配置部分と、
前記空隙部に前記被測定物が配置されていない非配置部分と、
を有する一体型構造体。
An integrated structure according to any one of claims 1 to 7,
An arrangement part in which the object to be measured is arranged in the gap; and
A non-arranged part in which the object to be measured is not arranged in the gap,
Integrated structure having
請求項1ないし7のいずれか一項に記載の一体型構造体であって、
前記空隙部に配置された前記被測定物が二種類以上ある、
一体型構造体。
An integrated structure according to any one of claims 1 to 7,
There are two or more objects to be measured arranged in the gap,
Integrated structure.
請求項1ないし7のいずれか一項に記載の一体型構造体に第一電磁波を照射する第一電磁波照射手段と、
照射された前記第一電磁波に対する前記一体型構造体による応答である第一応答電磁波を検出する第一電磁波検出手段と、
前記空隙部に前記被測定物が配置されていない前記空隙配置構造体に第二電磁波を照射する第二電磁波照射手段と、
照射された前記第二電磁波に対する前記空隙配置構造体による応答である第二応答電磁波を検出する第二電磁波検出手段と、
前記第一電磁波検出手段の検出結果および前記第二電磁波検出手段の検出結果に基づき、前記被測定物の特性を測定する特性測定手段と、
を備えた測定装置。
First electromagnetic wave irradiation means for irradiating the integrated structure according to any one of claims 1 to 7 with a first electromagnetic wave;
First electromagnetic wave detection means for detecting a first response electromagnetic wave that is a response by the integrated structure to the irradiated first electromagnetic wave;
A second electromagnetic wave irradiation means for irradiating the gap arrangement structure body in which the measurement object is not arranged in the gap portion with a second electromagnetic wave;
A second electromagnetic wave detecting means for detecting a second response electromagnetic wave that is a response by the gap arrangement structure to the irradiated second electromagnetic wave;
Based on the detection result of the first electromagnetic wave detection means and the detection result of the second electromagnetic wave detection means, characteristic measurement means for measuring the characteristic of the object to be measured;
Measuring device.
請求項8に記載の一体型構造体における配置部分に第一電磁波を照射する第一電磁波照射手段と、
照射された前記第一電磁波に対する前記配置部分による応答である第一応答電磁波を検出する第一電磁波検出手段と、
前記非配置部分に第二電磁波を照射する第二電磁波照射手段と、
照射された前記第二電磁波に対する前記非配置部分による応答である第二応答電磁波を検出する第二電磁波検出手段と、
前記第一電磁波検出手段の検出結果および前記第二電磁波検出手段の検出結果に基づき、前記被測定物の特性を測定する特性測定手段と、
を備えた測定装置。
First electromagnetic wave irradiation means for irradiating the first electromagnetic wave to the arrangement portion in the integrated structure according to claim 8;
First electromagnetic wave detection means for detecting a first response electromagnetic wave that is a response by the arrangement portion to the irradiated first electromagnetic wave;
A second electromagnetic wave irradiation means for irradiating the non-arranged portion with a second electromagnetic wave;
A second electromagnetic wave detecting means for detecting a second response electromagnetic wave that is a response by the non-arranged portion to the irradiated second electromagnetic wave;
Based on the detection result of the first electromagnetic wave detection means and the detection result of the second electromagnetic wave detection means, characteristic measurement means for measuring the characteristic of the object to be measured;
Measuring device.
請求項9に記載の一体型構造体における各々の種類の前記被測定物に電磁波を照射する電磁波照射手段と、
照射された前記電磁波に対する前記一体型構造体による応答である応答電磁波を検出する電磁波検出手段と、
前記電磁波検出手段の検出結果に基づき、前記被測定物の特性を測定する特性測定手段と、
を備えた測定装置。
Electromagnetic wave irradiation means for irradiating each type of the measurement object in the integrated structure according to claim 9 with electromagnetic waves;
Electromagnetic wave detecting means for detecting a response electromagnetic wave that is a response by the integrated structure to the electromagnetic wave irradiated;
Based on the detection result of the electromagnetic wave detection means, characteristic measurement means for measuring the characteristic of the object to be measured;
Measuring device.
請求項10ないし12のいずれか一項に記載の測定装置であって、
前記特性測定手段が、
前記第一電磁波検出手段の検出結果および前記第二電磁波検出手段の検出結果に基づき、電磁波の透過率を測定する透過率測定手段と、
測定された前記透過率に基づき、前記被測定物の屈折率を導出する屈折率導出手段と、
を有する測定装置。
A measuring device according to any one of claims 10 to 12,
The characteristic measuring means comprises:
Based on the detection result of the first electromagnetic wave detection means and the detection result of the second electromagnetic wave detection means, a transmittance measurement means for measuring the transmittance of the electromagnetic wave,
A refractive index deriving means for deriving a refractive index of the object to be measured based on the measured transmittance;
Measuring device.
請求項13に記載の測定装置であって、
前記屈折率導出手段は、周波数Aにおける前記第一電磁波検出手段の検出結果に基づき測定された透過率と、周波数Bにおける前記第二電磁波検出手段の検出結果に基づき測定された透過率とが等しい場合に、前記被測定物の屈折率をAおよびBに基づき導出する、
測定装置。
The measuring device according to claim 13,
In the refractive index deriving unit, the transmittance measured based on the detection result of the first electromagnetic wave detecting unit at the frequency A is equal to the transmittance measured based on the detection result of the second electromagnetic wave detecting unit at the frequency B. A refractive index of the object to be measured is derived based on A and B,
measuring device.
請求項14に記載の測定装置であって、
周波数特性調整部材を備え、
前記周波数Bの近傍において、前記透過率の周波数に対する傾きが、前記周波数特性調整部材が無い場合よりも大きくなる、測定装置。
15. The measuring device according to claim 14, wherein
With a frequency characteristic adjustment member,
In the vicinity of the frequency B, the measurement apparatus in which the slope of the transmittance with respect to the frequency is larger than when the frequency characteristic adjusting member is not provided.
電磁波を照射することにより特性が測定される被測定物と、所定の平面において導体で囲まれた空隙部が配置された空隙配置構造体とを有する一体型構造体に第一電磁波を照射する第一電磁波照射工程と、
照射された前記第一電磁波に対する前記一体型構造体による応答である第一応答電磁波を検出する第一電磁波検出工程と、
前記空隙部に前記被測定物が配置されていない前記空隙配置構造体に第二電磁波を照射する第二電磁波照射工程と、
照射された前記第二電磁波に対する前記空隙配置構造体による応答である第二応答電磁波を検出する第二電磁波検出工程と、
前記第一電磁波検出工程の検出結果および前記第二電磁波検出工程の検出結果に基づき、前記被測定物の特性を測定する特性測定工程と、
を備えた測定方法。
A first electromagnetic wave is irradiated to an integrated structure having an object to be measured whose characteristics are measured by irradiating an electromagnetic wave and a void arrangement structure in which a void surrounded by a conductor is arranged on a predetermined plane. One electromagnetic wave irradiation process;
A first electromagnetic wave detection step of detecting a first response electromagnetic wave that is a response by the integrated structure to the irradiated first electromagnetic wave;
A second electromagnetic wave irradiation step of irradiating a second electromagnetic wave to the gap arrangement structure in which the object to be measured is not arranged in the gap;
A second electromagnetic wave detection step of detecting a second response electromagnetic wave that is a response by the gap arrangement structure to the irradiated second electromagnetic wave;
Based on the detection result of the first electromagnetic wave detection step and the detection result of the second electromagnetic wave detection step, a characteristic measurement step of measuring the characteristic of the object to be measured;
Measuring method.
電磁波を照射することにより特性が測定される被測定物と、所定の平面において導体で囲まれた空隙部が配置された空隙配置構造体とを有する一体型構造体における前記空隙部に前記被測定物が配置されている配置部分に第一電磁波を照射する第一電磁波照射工程と、
照射された前記第一電磁波に対する前記配置部分による応答である第一応答電磁波を検出する第一電磁波検出工程と、
前記一体型構造体における前記空隙部に前記被測定物が配置されていない非配置部分に第二電磁波を照射する第二電磁波照射工程と、
照射された前記第二電磁波に対する前記非配置部分による応答である第二応答電磁波を検出する第二電磁波検出工程と、
前記第一電磁波検出工程の検出結果および前記第二電磁波検出工程の検出結果に基づき、前記被測定物の特性を測定する特性測定工程と、
を備えた測定方法。
The object to be measured in the void portion in an integral structure having an object to be measured whose characteristics are measured by irradiating electromagnetic waves and a void arrangement structure in which a void portion surrounded by a conductor is arranged on a predetermined plane A first electromagnetic wave irradiation step of irradiating a first electromagnetic wave to an arrangement part where an object is arranged;
A first electromagnetic wave detection step of detecting a first response electromagnetic wave that is a response by the arrangement portion to the irradiated first electromagnetic wave;
A second electromagnetic wave irradiation step of irradiating a second electromagnetic wave to a non-arranged portion in which the object to be measured is not arranged in the gap in the integrated structure;
A second electromagnetic wave detection step of detecting a second response electromagnetic wave that is a response by the non-arranged portion to the irradiated second electromagnetic wave;
Based on the detection result of the first electromagnetic wave detection step and the detection result of the second electromagnetic wave detection step, a characteristic measurement step of measuring the characteristic of the object to be measured;
Measuring method.
電磁波を照射することにより特性が測定される被測定物と、所定の平面において導体で囲まれた空隙部が配置された空隙配置構造体とを有する一体型構造体であって、前記空隙部に配置された前記被測定物が二種類以上ある一体型構造体における各々の種類の前記被測定物に電磁波を照射する電磁波照射工程と、
照射された前記電磁波に対する前記一体型構造体による応答である応答電磁波を検出する電磁波検出工程と、
前記電磁波検出工程の検出結果に基づき、前記被測定物の特性を測定する特性測定工程と、
を備えた測定方法。
An integrated structure having an object to be measured whose characteristics are measured by irradiating an electromagnetic wave, and a void arrangement structure in which a void surrounded by a conductor is arranged in a predetermined plane, An electromagnetic wave irradiation step of irradiating each type of the measurement object in the integrated structure having two or more types of the measurement object arranged; and
An electromagnetic wave detection step of detecting a response electromagnetic wave that is a response by the integrated structure to the irradiated electromagnetic wave;
Based on the detection result of the electromagnetic wave detection step, a characteristic measurement step for measuring the characteristic of the object to be measured,
Measuring method.
電磁波を照射することにより特性が測定される被測定物と、所定の平面において導体で囲まれた空隙部が配置された空隙配置構造体とを有する一体型構造体に第一電磁波を照射する第一電磁波照射手段と、
照射された前記第一電磁波に対する前記一体型構造体による応答である第一応答電磁波を検出する第一電磁波検出手段と、
前記空隙部に前記被測定物が配置されていない前記空隙配置構造体に第二電磁波を照射する第二電磁波照射手段と、
照射された前記第二電磁波に対する前記空隙配置構造体による応答である第二応答電磁波を検出する第二電磁波検出手段と、
を備えた測定装置における測定処理をコンピュータに実行させるためのプログラムであって、
前記第一電磁波検出手段の検出結果および前記第二電磁波検出手段の検出結果に基づき、前記被測定物の特性を測定する特性測定処理をコンピュータに実行させるためのプログラム。
A first electromagnetic wave is irradiated to an integrated structure having an object to be measured whose characteristics are measured by irradiating an electromagnetic wave and a void arrangement structure in which a void surrounded by a conductor is arranged on a predetermined plane. One electromagnetic wave irradiation means;
First electromagnetic wave detection means for detecting a first response electromagnetic wave that is a response by the integrated structure to the irradiated first electromagnetic wave;
A second electromagnetic wave irradiation means for irradiating the gap arrangement structure body in which the measurement object is not arranged in the gap portion with a second electromagnetic wave;
A second electromagnetic wave detecting means for detecting a second response electromagnetic wave that is a response by the gap arrangement structure to the irradiated second electromagnetic wave;
A program for causing a computer to execute a measurement process in a measurement apparatus comprising:
A program for causing a computer to execute a characteristic measurement process for measuring the characteristic of the object to be measured based on the detection result of the first electromagnetic wave detection means and the detection result of the second electromagnetic wave detection means.
電磁波を照射することにより特性が測定される被測定物と、所定の平面において導体で囲まれた空隙部が配置された空隙配置構造体とを有する一体型構造体における前記空隙部に前記被測定物が配置されている配置部分に第一電磁波を照射する第一電磁波照射手段と、
照射された前記第一電磁波に対する前記配置部分による応答である第一応答電磁波を検出する第一電磁波検出手段と、
前記一体型構造体における前記空隙部に前記被測定物が配置されていない非配置部分に第二電磁波を照射する第二電磁波照射手段と、
照射された前記第二電磁波に対する前記非配置部分による応答である第二応答電磁波を検出する第二電磁波検出手段と、
を備えた測定装置における測定処理をコンピュータに実行させるためのプログラムであって、
前記第一電磁波検出手段の検出結果および前記第二電磁波検出手段の検出結果に基づき、前記被測定物の特性を測定する特性測定処理をコンピュータに実行させるためのプログラム。
The object to be measured in the void portion in an integral structure having an object to be measured whose characteristics are measured by irradiating electromagnetic waves and a void arrangement structure in which a void portion surrounded by a conductor is arranged on a predetermined plane A first electromagnetic wave irradiation means for irradiating the first electromagnetic wave to the arrangement part where the object is arranged;
First electromagnetic wave detection means for detecting a first response electromagnetic wave that is a response by the arrangement portion to the irradiated first electromagnetic wave;
A second electromagnetic wave irradiation means for irradiating a second electromagnetic wave to a non-arranged portion in which the object to be measured is not arranged in the gap in the integrated structure;
A second electromagnetic wave detecting means for detecting a second response electromagnetic wave that is a response by the non-arranged portion to the irradiated second electromagnetic wave;
A program for causing a computer to execute a measurement process in a measurement apparatus comprising:
A program for causing a computer to execute a characteristic measurement process for measuring the characteristic of the object to be measured based on the detection result of the first electromagnetic wave detection means and the detection result of the second electromagnetic wave detection means.
電磁波を照射することにより特性が測定される被測定物と、所定の平面において導体で囲まれた空隙部が配置された空隙配置構造体とを有する一体型構造体であって、前記空隙部に配置された前記被測定物が二種類以上ある一体型構造体における各々の種類の前記被測定物に電磁波を照射する電磁波照射手段と、
照射された前記電磁波に対する前記一体型構造体による応答である応答電磁波を検出する電磁波検出手段と、
を備えた測定装置における測定処理をコンピュータに実行させるためのプログラムであって、
前記電磁波検出手段の検出結果に基づき、前記被測定物の特性を測定する特性測定処理をコンピュータに実行させるためのプログラム。
An integrated structure having an object to be measured whose characteristics are measured by irradiating an electromagnetic wave, and a void arrangement structure in which a void surrounded by a conductor is arranged in a predetermined plane, Electromagnetic wave irradiation means for irradiating electromagnetic waves to each type of the measurement object in an integrated structure having two or more types of the measurement object arranged; and
Electromagnetic wave detecting means for detecting a response electromagnetic wave that is a response by the integrated structure to the electromagnetic wave irradiated;
A program for causing a computer to execute a measurement process in a measurement apparatus comprising:
A program for causing a computer to execute a characteristic measurement process for measuring the characteristic of the object to be measured based on the detection result of the electromagnetic wave detection means.
JP2005188839A 2005-06-28 2005-06-28 Integrated structure, measuring apparatus, method and program Expired - Fee Related JP4724822B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005188839A JP4724822B2 (en) 2005-06-28 2005-06-28 Integrated structure, measuring apparatus, method and program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005188839A JP4724822B2 (en) 2005-06-28 2005-06-28 Integrated structure, measuring apparatus, method and program

Publications (2)

Publication Number Publication Date
JP2007010366A true JP2007010366A (en) 2007-01-18
JP4724822B2 JP4724822B2 (en) 2011-07-13

Family

ID=37749095

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005188839A Expired - Fee Related JP4724822B2 (en) 2005-06-28 2005-06-28 Integrated structure, measuring apparatus, method and program

Country Status (1)

Country Link
JP (1) JP4724822B2 (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008093729A1 (en) * 2007-01-31 2008-08-07 Advantest Corporation Measuring apparatus and measuring method
JP2008275595A (en) * 2007-04-02 2008-11-13 Canon Inc Image forming device and method
WO2011048992A1 (en) * 2009-10-19 2011-04-28 株式会社村田製作所 Measuring device and measuring method for measuring properties of a subject to be measured
JP2012145369A (en) * 2011-01-07 2012-08-02 Murata Mfg Co Ltd Method for measuring measured object
US8274052B1 (en) 2009-09-29 2012-09-25 Kabushiki Kaisha Toshiba Specimen identification system and specimen identification device
WO2012132111A1 (en) * 2011-03-31 2012-10-04 株式会社村田製作所 Measurement structure, method for producing same, and measurement method using same
WO2012165052A1 (en) 2011-06-01 2012-12-06 株式会社村田製作所 Measurement method for object to be measured
WO2013035371A1 (en) 2011-09-06 2013-03-14 株式会社村田製作所 Measurement device and feature measurement method of object to be measured employing same
WO2014017266A1 (en) 2012-07-27 2014-01-30 株式会社村田製作所 Void-arranged structure and measurement method using same
WO2014050328A1 (en) 2012-09-27 2014-04-03 株式会社村田製作所 Production method for perforated structural body, measurement device, and measurement method
US9063078B2 (en) 2009-12-22 2015-06-23 Murata Manufacturing Co., Ltd Method and apparatus for measuring characteristics of object
US9417181B2 (en) 2014-05-08 2016-08-16 Advantest Corporation Dynamic measurement of density using terahertz radiation with real-time thickness measurement for process control
US9606054B2 (en) 2013-09-30 2017-03-28 Advantest Corporation Methods, sampling device and apparatus for terahertz imaging and spectroscopy of coated beads, particles and/or microparticles
JP2019049453A (en) * 2017-09-08 2019-03-28 東芝テック株式会社 Detector and detection method
JP2021081214A (en) * 2019-11-14 2021-05-27 株式会社豊田中央研究所 Sample holder, infrared absorption spectrophotometer, and measurement method of infrared absorption spectra

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63171342A (en) * 1987-09-02 1988-07-15 Japan Spectroscopic Co Specimen holder for measuring infrared spectrum
JPH07167779A (en) * 1993-09-17 1995-07-04 Boehringer Mannheim Gmbh Quantitative analysis method of sample liquid
JPH10142142A (en) * 1996-11-06 1998-05-29 S T Japan:Kk Sample holder
JP2002277393A (en) * 2001-03-15 2002-09-25 Tochigi Nikon Corp Measuring method and instrument, and imaging method and device
JP2003121355A (en) * 2001-10-10 2003-04-23 Tochigi Nikon Corp Sample information-acquiring method and terahertz light apparatus
JP2003270132A (en) * 2002-01-11 2003-09-25 Canon Inc Device and medium of chemical sensor and inspection method using the same
JP2004108905A (en) * 2002-09-18 2004-04-08 Inst Of Physical & Chemical Res Difference imaging method using terahertz wave and device
JP2004117703A (en) * 2002-09-25 2004-04-15 Osaka Industrial Promotion Organization Optical retardation plate

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63171342A (en) * 1987-09-02 1988-07-15 Japan Spectroscopic Co Specimen holder for measuring infrared spectrum
JPH07167779A (en) * 1993-09-17 1995-07-04 Boehringer Mannheim Gmbh Quantitative analysis method of sample liquid
JPH10142142A (en) * 1996-11-06 1998-05-29 S T Japan:Kk Sample holder
JP2002277393A (en) * 2001-03-15 2002-09-25 Tochigi Nikon Corp Measuring method and instrument, and imaging method and device
JP2003121355A (en) * 2001-10-10 2003-04-23 Tochigi Nikon Corp Sample information-acquiring method and terahertz light apparatus
JP2003270132A (en) * 2002-01-11 2003-09-25 Canon Inc Device and medium of chemical sensor and inspection method using the same
JP2004108905A (en) * 2002-09-18 2004-04-08 Inst Of Physical & Chemical Res Difference imaging method using terahertz wave and device
JP2004117703A (en) * 2002-09-25 2004-04-15 Osaka Industrial Promotion Organization Optical retardation plate

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008185552A (en) * 2007-01-31 2008-08-14 Tohoku Univ Measuring instrument and measuring method
WO2008093729A1 (en) * 2007-01-31 2008-08-07 Advantest Corporation Measuring apparatus and measuring method
US8492718B2 (en) 2007-01-31 2013-07-23 Advantest Corporation Measurement apparatus and measurement method
US8253103B2 (en) 2007-01-31 2012-08-28 Advantest Corporation Terahertz wave measuring apparatus having space arrangement structure and measuring method
JP2008275595A (en) * 2007-04-02 2008-11-13 Canon Inc Image forming device and method
US8274052B1 (en) 2009-09-29 2012-09-25 Kabushiki Kaisha Toshiba Specimen identification system and specimen identification device
WO2011048992A1 (en) * 2009-10-19 2011-04-28 株式会社村田製作所 Measuring device and measuring method for measuring properties of a subject to be measured
US9063078B2 (en) 2009-12-22 2015-06-23 Murata Manufacturing Co., Ltd Method and apparatus for measuring characteristics of object
JP2012145369A (en) * 2011-01-07 2012-08-02 Murata Mfg Co Ltd Method for measuring measured object
WO2012132111A1 (en) * 2011-03-31 2012-10-04 株式会社村田製作所 Measurement structure, method for producing same, and measurement method using same
CN103477204A (en) * 2011-03-31 2013-12-25 株式会社村田制作所 Measurement structure, method for producing same, and measurement method using same
US8912497B2 (en) 2011-03-31 2014-12-16 Murata Manufacturing Co., Ltd. Measurement structure, method of manufacturing same, and measuring method using same
JP5418721B2 (en) * 2011-03-31 2014-02-19 株式会社村田製作所 Measuring structure, manufacturing method thereof, and measuring method using the same
WO2012165052A1 (en) 2011-06-01 2012-12-06 株式会社村田製作所 Measurement method for object to be measured
US9366620B2 (en) 2011-06-01 2016-06-14 Murata Manufacturing Co., Ltd. Specimen measuring method
CN103814288B (en) * 2011-09-06 2016-01-06 株式会社村田制作所 Mensuration equipment and use its characteristic measurement method of determinand
WO2013035371A1 (en) 2011-09-06 2013-03-14 株式会社村田製作所 Measurement device and feature measurement method of object to be measured employing same
US9075006B2 (en) 2011-09-06 2015-07-07 Murata Manufactruring Co., Ltd. Measurement device and feature measurement method of object to be measured employing same
CN103814288A (en) * 2011-09-06 2014-05-21 株式会社村田制作所 Measurement device and feature measurement method of object to be measured employing same
US9341561B2 (en) 2012-07-27 2016-05-17 Murata Manufacturing Co., Ltd. Aperture array structure and measurement method using the same
CN104380083A (en) * 2012-07-27 2015-02-25 株式会社村田制作所 Void-arranged structure and measurement method using same
KR20150023814A (en) 2012-07-27 2015-03-05 가부시키가이샤 무라타 세이사쿠쇼 Void-arranged structure and measurement method using same
WO2014017266A1 (en) 2012-07-27 2014-01-30 株式会社村田製作所 Void-arranged structure and measurement method using same
US9329125B2 (en) 2012-09-27 2016-05-03 Murata Manufacturing Co., Ltd. Perforated-structure body, manufacturing method therefor, and measurement apparatus and measurement method
WO2014050328A1 (en) 2012-09-27 2014-04-03 株式会社村田製作所 Production method for perforated structural body, measurement device, and measurement method
US9606054B2 (en) 2013-09-30 2017-03-28 Advantest Corporation Methods, sampling device and apparatus for terahertz imaging and spectroscopy of coated beads, particles and/or microparticles
US9417181B2 (en) 2014-05-08 2016-08-16 Advantest Corporation Dynamic measurement of density using terahertz radiation with real-time thickness measurement for process control
JP2019049453A (en) * 2017-09-08 2019-03-28 東芝テック株式会社 Detector and detection method
JP2021081214A (en) * 2019-11-14 2021-05-27 株式会社豊田中央研究所 Sample holder, infrared absorption spectrophotometer, and measurement method of infrared absorption spectra
JP7103332B2 (en) 2019-11-14 2022-07-20 株式会社豊田中央研究所 Infrared absorption spectrophotometer and infrared absorption spectrum measurement method

Also Published As

Publication number Publication date
JP4724822B2 (en) 2011-07-13

Similar Documents

Publication Publication Date Title
JP4724822B2 (en) Integrated structure, measuring apparatus, method and program
JP4911965B2 (en) Measuring structure, measuring apparatus, method and program
US8510082B2 (en) Optimized method for LID biosensor resonance detection
EP2405255A1 (en) Single mode (sm) fiber optical reader system and method for interrogating resonant waveguide-grating sensor(s)
US8508744B2 (en) Surface plasmon resonance sensing method and sensing system
JPWO2008093729A1 (en) Measuring apparatus and measuring method
KR101002357B1 (en) Terahertz waveguide device and detection method using the same
KR20130018553A (en) Film thickness measurement apparatus
KR20090132537A (en) Apparatus and method for measuring thickness of film
KR101371122B1 (en) Plasmon tomography
JP2008014732A (en) Surface plasmon resonance measuring instrument
JP6538844B2 (en) Sample Measurement Chip, Sample Measurement Device, and Sample Measurement Method
JP2006017648A (en) Measuring instrument
JP4682022B2 (en) Periodic structure, element using periodic structure, and method for manufacturing periodic structure
KR20090132538A (en) Apparatus for measuring thickness of film
JP2013509596A (en) Multi-wavelength reference microplate for label-independent optical reader
JP4911964B2 (en) Contained structure, measuring device, method and program
JP2012185116A (en) Optical characteristics evaluation device and optical characteristics evaluation method
Chaudhery et al. Angle-scanning photonic crystal enhanced fluorescence microscopy
JP6964254B2 (en) Photodetector
JP2006153852A (en) Sensor for analyzing or identifying property of object, sensing apparatus and method using the same
JP2009092569A (en) Refractive index meter
WO2011048992A1 (en) Measuring device and measuring method for measuring properties of a subject to be measured
JP4173746B2 (en) measuring device
US20110130969A1 (en) Resonant-Wavelength Measurement Method For Label-Independent Scanning Optical Reader

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080619

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20080618

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100707

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100927

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101224

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110221

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110310

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110316

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140422

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S801 Written request for registration of abandonment of right

Free format text: JAPANESE INTERMEDIATE CODE: R311801

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees