JP2007009976A - Rolling bearing device - Google Patents

Rolling bearing device Download PDF

Info

Publication number
JP2007009976A
JP2007009976A JP2005189525A JP2005189525A JP2007009976A JP 2007009976 A JP2007009976 A JP 2007009976A JP 2005189525 A JP2005189525 A JP 2005189525A JP 2005189525 A JP2005189525 A JP 2005189525A JP 2007009976 A JP2007009976 A JP 2007009976A
Authority
JP
Japan
Prior art keywords
annular member
ring
rolling
phase difference
raceway surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2005189525A
Other languages
Japanese (ja)
Inventor
Masahiro Harada
昌寛 原田
Hiroshi Ueno
弘 上野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JTEKT Corp
Original Assignee
JTEKT Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JTEKT Corp filed Critical JTEKT Corp
Priority to JP2005189525A priority Critical patent/JP2007009976A/en
Publication of JP2007009976A publication Critical patent/JP2007009976A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/80Technologies aiming to reduce greenhouse gasses emissions common to all road transportation technologies
    • Y02T10/86Optimisation of rolling resistance, e.g. weight reduction 

Landscapes

  • Rolling Contact Bearings (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a rolling bearing device incorporated in the inside of equipment and capable of measuring rolling resistance of the bearing itself in an operation condition. <P>SOLUTION: This rolling bearing device is provided with an inner ring 11, an outer ring 12, and a first rolling body 13 provided between them. The outer ring 12 has an inner ring-like member 2 and an outer ring-like member 3 capable of rotating relatively and a second rolling body 4 provided between them so as to roll. This rolling bearing device is constituted to give predetermined turn energizing force between the inner ring-like member 2 and the outer ring-like member 3 when these members 2, 3 rotate relatively by different shape raceway surfaces formed in the inner ring-like member 2 and the outer ring-like member 3. The outer ring 7 has a sensor 7, which detects torque generated between the inner ring-like member 2 and the outer ring-like member 3 by measuring difference in phase caused by relative rotation of the inner ring-like member 2 and the outer ring-like member 3. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

この発明は、内輪と外輪とこれらの間に介在している転動体を有している転がり軸受装置に関するものであり、軸受自身に作用しているトルクを検出することができるものに関する。   The present invention relates to a rolling bearing device having an inner ring, an outer ring, and rolling elements interposed between the inner ring and the outer ring, and relates to an apparatus capable of detecting torque acting on the bearing itself.

現在、転がり軸受はさまざまな機器に用いられているが、機器内部に組み込まれた状態で、この軸受自身の転がり抵抗(トルク)を運転中において正確に測定することは困難とされている。転がり軸受におけるトルクを測定する方法としては、例えば特許文献1に示しているような装置を用いることができる。この装置は、一対の玉軸受を構成する各内輪にアキシアル荷重を加えつつ、前記玉軸受の内外に設けた内筒と外筒との間の動トルクをロードセルにより測定している。そして、動トルクが所望の値となった状態で各内輪を内筒に固定して軸受ユニットを構成している。   Currently, rolling bearings are used in various devices. However, it is difficult to accurately measure the rolling resistance (torque) of the bearing itself during operation when the rolling bearing is incorporated in the device. As a method for measuring the torque in the rolling bearing, for example, an apparatus as shown in Patent Document 1 can be used. In this device, an axial load is applied to each inner ring constituting a pair of ball bearings, and dynamic torque between an inner cylinder and an outer cylinder provided inside and outside the ball bearing is measured by a load cell. Then, each inner ring is fixed to the inner cylinder in a state where the dynamic torque becomes a desired value to constitute a bearing unit.

特開2002−257134号公報(図1)JP 2002-257134 A (FIG. 1)

特許文献1に記載されている装置を用いることにより、転がり軸受を機器内へ取り付ける前において、予圧の調整や転がり抵抗を測定することができるが、構造が複雑であり、転がり軸受が機器内部に組み込まれてかつ運転状態においてその転がり抵抗を測定することはできない。
そこで、この発明は、前記問題点に鑑みてなされたものであり、機器内部に組み込まれかつ運転状態において、軸受自身の転がり抵抗(トルク)を測定することができる転がり軸受装置を提供することを目的とする。
By using the device described in Patent Document 1, it is possible to adjust the preload and measure the rolling resistance before mounting the rolling bearing in the device, but the structure is complicated, and the rolling bearing is inside the device. The rolling resistance cannot be measured in the integrated and operating state.
Accordingly, the present invention has been made in view of the above-described problems, and provides a rolling bearing device that can be incorporated in an apparatus and can measure the rolling resistance (torque) of the bearing itself in an operating state. Objective.

前記目的を達成するためのこの発明の転がり軸受装置は、内輪及び外輪と、これら内外輪間に介在している第一の転動体とを備え、前記内輪と前記外輪のいずれか一方は、径方向の内側と外側とに配設されている内側部材と外側部材と、これら内側部材と外側部材とが相対回転可能となるように当該内側部材の外周面と当該外側部材の内周面との間に転動可能に介在している第二の転動体と、前記内側部材と前記外側部材との相対回転により生じる位相差を計測するためのセンサとを有し、前記内側部材の外周面と前記外側部材の内周面の少なくとも一方が、前記内側部材と前記外側部材との相対回転に伴い前記第二転動体を転動させつつ当該第二転動体の挟持間隔を漸次狭くして、前記相対回転により生じた位相差に応じて当該位相差を解消する方向に所定の大きさの回動付勢力を当該内側部材と当該外側部材との間に付与する異形軌道面を少なくとも一部に有していることを特徴としている。   In order to achieve the above object, a rolling bearing device of the present invention comprises an inner ring and an outer ring, and a first rolling element interposed between the inner and outer rings, and either the inner ring or the outer ring has a diameter. An inner member and an outer member disposed on the inner side and the outer side of the direction, and an outer peripheral surface of the inner member and an inner peripheral surface of the outer member so that the inner member and the outer member can be rotated relative to each other. A second rolling element interposed between the inner member and the outer member, and a sensor for measuring a phase difference caused by relative rotation between the inner member and the outer member, and an outer peripheral surface of the inner member; At least one of the inner peripheral surfaces of the outer member rolls the second rolling element along with the relative rotation of the inner member and the outer member, gradually reducing the holding interval of the second rolling element, The phase difference is solved according to the phase difference caused by the relative rotation. The predetermined size turn biasing force of the direction is characterized in that it comprises at least in part deformed raceway surface which imparts between the inner member and the outer member.

このような構成によれば、転がり軸受装置の外輪が、内側部材と外側部材と第二の転動体を有する構成とした場合、転がり軸受装置における外輪と内輪の間に転がり抵抗(トルク)が生じると、それが内側部材に伝わって内側部材と外側部材との間において回転力が発生する。この回転力によって内側部材と外側部材との間において相対的な回転が生じることとなる。つまり、転がり軸受装置における外輪と内輪との間の転がり抵抗は、内側部材と外側部材との間の位相差として現れる。そして、内側部材と外側部材とがある位相差を有すると、その位相差を解消する方向であって所定の大きさの回動付勢力が相互間に生じるようにされているため、センサによりこの位相差を求めることで、内側部材と外側部材との間に生じている回動付勢力を検出できる。この回動付勢力は、内側部材と外側部材との間に発生した前記回転力とつり合って相互間に所定の位相差を生じさせているため、当該回転力の値を検出できる。従って、この転がり軸受装置は、機器内に設けられてかつ運転状態において、軸受自身に作用している転がり抵抗を検出できる。
なお、転がり軸受装置の内輪が内側部材と外側部材と第二転動体を有する構成とした場合においても同様であり、内輪の内側部材と外側部材との間に生じている回転力を検出できる。
また、内側部材と外側部材との間に別の転動体を設けることなく、第二転動体によってラジアル荷重を支持することができる。
According to such a configuration, when the outer ring of the rolling bearing device includes the inner member, the outer member, and the second rolling element, a rolling resistance (torque) is generated between the outer ring and the inner ring in the rolling bearing device. Then, it is transmitted to the inner member and a rotational force is generated between the inner member and the outer member. This rotational force causes a relative rotation between the inner member and the outer member. That is, the rolling resistance between the outer ring and the inner ring in the rolling bearing device appears as a phase difference between the inner member and the outer member. If the inner member and the outer member have a certain phase difference, a rotational biasing force having a predetermined magnitude is generated between them in the direction in which the phase difference is eliminated. By obtaining the phase difference, it is possible to detect the rotational biasing force generated between the inner member and the outer member. Since this rotational biasing force balances with the rotational force generated between the inner member and the outer member to cause a predetermined phase difference between them, the value of the rotational force can be detected. Therefore, this rolling bearing device can detect the rolling resistance that is provided in the apparatus and that acts on the bearing itself in the operating state.
The same applies when the inner ring of the rolling bearing device has an inner member, an outer member, and a second rolling element, and the rotational force generated between the inner member and the outer member of the inner ring can be detected.
Further, the radial load can be supported by the second rolling element without providing another rolling element between the inner member and the outer member.

また、前記センサは、前記内側部材と前記外側部材との相対回転による当該内側部材と当該外側部材との間隔の変化を測定する変位センサであるのが好ましい。
この構成によれば、内側部材と外側部材との位相差と、この位相差における内側部材と外側部材との間隔の関係を予め求めておけば、変位センサで当該間隔の変化を測定することによって、内側部材と外側部材との位相差を求めることができる。このため、簡単な構成により内側部材と外側部材との位相差を求めることができる。
さらに、この変位センサを内側部材の外周部又は外側部材の内周部に取り付ければ、内側部材と外側部材との径方向の間においてセンサ部を構成させることができ、転がり軸受装置をコンパクトにできる。
The sensor is preferably a displacement sensor that measures a change in a distance between the inner member and the outer member due to relative rotation between the inner member and the outer member.
According to this configuration, if the phase difference between the inner member and the outer member and the relationship between the interval between the inner member and the outer member in this phase difference are obtained in advance, the displacement sensor measures the change in the interval. The phase difference between the inner member and the outer member can be obtained. For this reason, the phase difference between the inner member and the outer member can be obtained with a simple configuration.
Furthermore, if this displacement sensor is attached to the outer peripheral portion of the inner member or the inner peripheral portion of the outer member, the sensor portion can be configured between the inner member and the outer member in the radial direction, and the rolling bearing device can be made compact. .

本発明の転がり軸受装置によれば、機器に組み込まれた状態において、かつ運転中に軸受自身の転がり抵抗を測定することができる。   According to the rolling bearing device of the present invention, it is possible to measure the rolling resistance of the bearing itself in a state where it is incorporated in an apparatus and during operation.

以下、この発明の実施の形態について図面を参照しながら説明する。
図1はこの発明の実施の一形態に係る転がり軸受装置を示す断面図である。この転がり軸受装置は、外輪12と、径方向内外に分割されている内輪11と、これら内外輪11,12間に転動可能に介在している第一の転動体としての円筒ころ13とを備えている。第一転動体としての円筒ころ13は、内輪11の外周に形成されている内軌道面14と外輪12の内周に形成されている外軌道面15との間に周方向に複数個配設されており、両軌道面14,15の間において転動可能とされている。
Embodiments of the present invention will be described below with reference to the drawings.
FIG. 1 is a sectional view showing a rolling bearing device according to an embodiment of the present invention. This rolling bearing device includes an outer ring 12, an inner ring 11 that is divided radially inward and outer, and a cylindrical roller 13 as a first rolling element that is interposed between the inner and outer rings 11 and 12 so as to allow rolling. I have. A plurality of cylindrical rollers 13 as first rolling elements are arranged in the circumferential direction between an inner raceway surface 14 formed on the outer periphery of the inner ring 11 and an outer raceway surface 15 formed on the inner periphery of the outer ring 12. It is possible to roll between the raceway surfaces 14 and 15.

図1に示している転がり軸受装置において、外輪12は1個の環状部材とされているが、内輪11は径方向内側と外側とに分割された構成であり、内環状部材(内側部材)2と、外環状部材(外側部材)3と、これら内環状部材2と外環状部材3との間に介在している第二の転動体としての円筒ころ4を有している。内環状部材2と外環状部材3とは、同軸状でかつ相互間に環状の空間部が形成されるように配設されており、その空間部に円筒ころ4が介在して、内環状部材2と外環状部材3とは相対的に回転可能とされている。内環状部材2と外環状部材3の共通する回転中心が転がり軸受装置の軸中心Xと一致する。
従って、相対的に回転する軸(図示せず)とハウジング(図示せず)を有する機器に対する、この転がり軸受装置の取り付けは、内輪11の内環状部材2を軸に外嵌させ、外輪12をハウジングの内周面に嵌め込むことによって行われる。これにより転がり軸受装置は、軸とハウジングとの間に取り付けられた状態となる。
In the rolling bearing device shown in FIG. 1, the outer ring 12 is a single annular member, but the inner ring 11 is divided into a radially inner side and an outer side, and an inner annular member (inner member) 2. And an outer annular member (outer member) 3 and a cylindrical roller 4 as a second rolling element interposed between the inner annular member 2 and the outer annular member 3. The inner annular member 2 and the outer annular member 3 are coaxially arranged so that an annular space is formed between them, and the cylindrical roller 4 is interposed in the space, and the inner annular member 2 and the outer annular member 3 are relatively rotatable. The common rotation center of the inner annular member 2 and the outer annular member 3 coincides with the axial center X of the rolling bearing device.
Accordingly, the rolling bearing device is attached to a device having a relatively rotating shaft (not shown) and a housing (not shown). The inner ring member 2 of the inner ring 11 is fitted on the shaft, and the outer ring 12 is attached. This is done by fitting into the inner peripheral surface of the housing. As a result, the rolling bearing device is attached between the shaft and the housing.

内輪11において、内環状部材2と外環状部材3とを相対的に支持している円筒ころ4を含む支持部5は、後に詳しく説明するが、内環状部材2と外環状部材3とが相対回転して所定の位相差が生じると、当該位相差を解消する方向で所定の大きさの回動付勢力を相互間に付与することができる。なお、位相差が大きくなると回動付勢力は大きくなる関係を持つ。つまり、内環状部材2と外環状部材3との間にねじりばね性(周方向の弾力性)を持たせることができる。この位相差と回動付勢力(ねじりばね力)との関係は、内環状部材2の外周面と外環状部材3の内周面の形状や、円筒ころ4の力学的性質などによって、予め設計的に求めたり、予め測定されて求めることができる。
さらに、この転がり軸受装置は、外輪12と内輪11との間に生じる転がり抵抗の検出
が可能とされており、そのために、内輪11は、内環状部材2と外環状部材3との相対回転により生じる位相差(捩れ角)を求めるためのセンサ7を有している。センサ7については後に詳しく説明する。
In the inner ring 11, the support portion 5 including the cylindrical rollers 4 that relatively support the inner annular member 2 and the outer annular member 3 will be described in detail later, but the inner annular member 2 and the outer annular member 3 are relative to each other. When a predetermined phase difference is generated by the rotation, a rotational biasing force having a predetermined magnitude can be applied between them in a direction to eliminate the phase difference. Note that the rotational biasing force increases as the phase difference increases. That is, a torsion spring property (elasticity in the circumferential direction) can be provided between the inner annular member 2 and the outer annular member 3. The relationship between the phase difference and the rotational biasing force (torsion spring force) is designed in advance according to the shape of the outer peripheral surface of the inner annular member 2 and the inner peripheral surface of the outer annular member 3, the mechanical properties of the cylindrical rollers 4, and the like. Or can be determined in advance.
Furthermore, this rolling bearing device can detect the rolling resistance generated between the outer ring 12 and the inner ring 11. For this reason, the inner ring 11 is caused by relative rotation between the inner annular member 2 and the outer annular member 3. A sensor 7 is provided for determining a phase difference (twist angle) generated. The sensor 7 will be described in detail later.

この転がり軸受装置における外輪12と内輪11の間に生じる転がり抵抗の検出について、概略を説明する。
外輪12と内輪11の間に転がり抵抗が生じると、それによる力が内輪11のうちの外環状部材3に伝わって、外環状部材3と内環状部材2との間において回転力(トルク)が生じる。この回転力によって外環状部材3は内環状部材2に対して回転して位相差が生ずるが、それに伴って当該位相差を解消する方向の回動付勢力(ねじりばね力)が支持部5に発生する(回動付勢力の発生については後に詳しく説明する)。転がり抵抗による回転力と、反力として生ずるこの回動付勢力とがやがてつり合って、外環状部材3と内環状部材2とは所定の位相差でつり合い状態(相対的に静止した状態)となる。つまり、転がり軸受装置における外輪12と内輪11との間の転がり抵抗は、内輪11の外環状部材3と内環状部材2との間の位相差として現れる。従って、センサ7が、つり合い状態となった外環状部材3と内環状部材2との位相差を検出することによって、位相差と回動付勢力との関係から、外環状部材3と内環状部材2との間に生じている回動付勢力を検出できる。この回動付勢力は前記転がり抵抗(回転力)とつり合って所定の位相差を生じさせているため、当該転がり抵抗の値を求めることができる。
An outline of detection of the rolling resistance generated between the outer ring 12 and the inner ring 11 in this rolling bearing device will be described.
When rolling resistance is generated between the outer ring 12 and the inner ring 11, the resulting force is transmitted to the outer annular member 3 of the inner ring 11, and a rotational force (torque) is generated between the outer annular member 3 and the inner annular member 2. Arise. Due to this rotational force, the outer annular member 3 rotates relative to the inner annular member 2 to cause a phase difference. Along with this, a rotational biasing force (torsion spring force) in a direction to eliminate the phase difference is applied to the support portion 5. (The generation of the rotational biasing force will be described in detail later). The rotational force due to the rolling resistance and the rotational urging force generated as a reaction force eventually balance, and the outer annular member 3 and the inner annular member 2 are in a balanced state (relatively stationary state) with a predetermined phase difference. Become. That is, the rolling resistance between the outer ring 12 and the inner ring 11 in the rolling bearing device appears as a phase difference between the outer annular member 3 and the inner annular member 2 of the inner ring 11. Therefore, when the sensor 7 detects the phase difference between the outer annular member 3 and the inner annular member 2 in the balanced state, the outer annular member 3 and the inner annular member are derived from the relationship between the phase difference and the rotational biasing force. 2 can be detected. Since this rotational biasing force balances with the rolling resistance (rotational force) to generate a predetermined phase difference, the value of the rolling resistance can be obtained.

内輪11における内環状部材2と外環状部材3との間の支持部5の具体的な構成と、その構成によって生ずる回動付勢力の発生について説明する。図3は図1の転がり軸受装置のうち内輪11のみを示している断面図である。
この内輪11の支持部5は、内環状部材2の外周面と外環状部材3の内周面との間に転動可能に介在している第二の転動体としての円筒ころ4を有している。従って、内環状部材2の外周面は円筒ころ4が転動可能となる内側軌道面21とされ、外環状部材3の内周面は円筒ころ4が転動可能となる外側軌道面31とされている。
A specific configuration of the support portion 5 between the inner annular member 2 and the outer annular member 3 in the inner ring 11 and generation of a rotation urging force generated by the configuration will be described. FIG. 3 is a sectional view showing only the inner ring 11 in the rolling bearing device of FIG.
The support portion 5 of the inner ring 11 has a cylindrical roller 4 as a second rolling element interposed between the outer peripheral surface of the inner annular member 2 and the inner peripheral surface of the outer annular member 3 so as to allow rolling. ing. Accordingly, the outer circumferential surface of the inner annular member 2 is an inner raceway surface 21 on which the cylindrical roller 4 can roll, and the inner circumferential surface of the outer annular member 3 is an outer raceway surface 31 on which the cylindrical roller 4 can roll. ing.

内側軌道面21と外側軌道面31の形状は、転がり軸受装置の軸中心(回転軸)Xを中心とした円周面とはされていない。つまり、内側軌道面21は、回転軸Xを中心とする円周面とは異なる異形軌道面、すなわち内側異形軌道面2kの連続により構成されている。外側軌道面31は、異形軌道面としての外側異形軌道面3kの連続により構成されている。内側軌道面21を構成する4個の内側異形軌道面2kはすべて同一形状であり、外側軌道面31を構成する4個の外側異形軌道面3kもすべて同一形状である。内側軌道面21は周方向に均等に(90度ごとに)4分割され、各分割部分がそれぞれ内側異形軌道面2kとされている。同様に、外側軌道面31も周方向に均等に(90度ごとに)4分割され、各分割部分がそれぞれ外側異形軌道面3kとされている。
そして、各異形軌道面2k,3k間に1個ずつ円筒ころ4が配置されている。内側異形軌道面2k及び外側異形軌道面3kにより、内環状部材2と外環状部材3の間には、円筒ころ4の周方向側方に、軌道面間隔が周方向に漸次狭くなる漸縮空間部(くさび状空間部)が形成されており、内環状部材2と外環状部材3との相対回転に伴い所謂くさび効果によって円筒ころ4が圧縮弾性変形する。上記の如く、内側軌道面21及び外側軌道面31をそれぞれ異形軌道面2k、3kの連続により形成することで、内側軌道面21及び外側軌道面31はそれぞれ異形軌道面2k,3kのみによって占められている。しかも、各異形軌道面2k,3kは周方向に等配されている。よって、各異形軌道面2k,3kの周方向範囲はそれぞれ最大限に拡げられており、ねじりばね力(周方向の弾性力)が得られる周方向範囲の拡大に寄与している。
The shapes of the inner raceway surface 21 and the outer raceway surface 31 are not circumferential surfaces around the axis center (rotation axis) X of the rolling bearing device. That is, the inner raceway surface 21 is constituted by a continuous irregular raceway surface that is different from the circumferential surface around the rotation axis X, that is, the inner variant raceway surface 2k. The outer raceway surface 31 is composed of a continuous outer variant raceway surface 3k as a variant raceway surface. The four inner modified raceway surfaces 2k constituting the inner raceway surface 21 have the same shape, and the four outer variant raceway surfaces 3k constituting the outer raceway surface 31 are also identical in shape. The inner raceway surface 21 is equally divided into four in the circumferential direction (every 90 degrees), and each divided portion is an inner deformed raceway surface 2k. Similarly, the outer raceway surface 31 is also equally divided into four in the circumferential direction (every 90 degrees), and each divided portion is an outer deformed raceway surface 3k.
One cylindrical roller 4 is disposed between each of the irregular raceway surfaces 2k and 3k. Due to the inner deformed raceway surface 2k and the outer deformed raceway surface 3k, the space between the inner annular member 2 and the outer annular member 3 is gradually reduced in the circumferential direction side of the cylindrical roller 4 so that the raceway surface interval gradually decreases in the circumferential direction. A portion (wedge-shaped space portion) is formed, and the cylindrical roller 4 is compressed and elastically deformed by a so-called wedge effect with the relative rotation of the inner annular member 2 and the outer annular member 3. As described above, the inner raceway surface 21 and the outer raceway surface 31 are formed by continuation of the deformed raceway surfaces 2k and 3k, respectively, so that the inner raceway surface 21 and the outer raceway surface 31 are occupied only by the deformed raceway surfaces 2k and 3k, respectively. ing. In addition, the deformed raceway surfaces 2k and 3k are equally arranged in the circumferential direction. Accordingly, the circumferential ranges of the deformed raceway surfaces 2k and 3k are each expanded to the maximum, which contributes to the expansion of the circumferential range in which torsion spring force (circumferential elastic force) is obtained.

各異形軌道面2k,3kについて説明すると、各異形軌道面2k,3kは、回転軸Xとは異なる位置に曲率中心を有する曲面とされている。
まず、外側軌道面31を構成する4個の外側異形軌道面3kは、それぞれ凹曲面とされている。具体的には、外側異形軌道面3kは軸中心Xよりも軌道面(当該外側異形軌道面3k)に近くなる側に位置する外側軌道曲率中心Coを中心とする円弧面(円周面)とされている。この外側異形軌道面3kの曲率半径groは、外側軌道面31の断面輪郭線に外接する円の半径(外側軌道面31と軸中心Xとの距離の最大値)である外側軌道基準半径Roよりも小さい。また、断面視において、4つの各外側異形軌道面3kのそれぞれに関し、外側軌道曲率中心Coは、軸中心Xからの距離が外側異形軌道面3k上において最大値となる外側最大径位置3mと、軸中心Xと、を含む直線p3上にある。
The deformed raceway surfaces 2k and 3k will be described. Each of the deformed track surfaces 2k and 3k is a curved surface having a center of curvature at a position different from the rotation axis X.
First, each of the four outer deformed track surfaces 3k constituting the outer track surface 31 is a concave curved surface. Specifically, the outer deformed track surface 3k is an arc surface (circumferential surface) centered on the outer track curvature center Co located closer to the track surface (the outer deformed track surface 3k) than the axis center X. Has been. The curvature radius gro of the outer deformed raceway surface 3k is based on the outer track reference radius Ro which is the radius of the circle circumscribing the cross-sectional outline of the outer raceway surface 31 (the maximum value of the distance between the outer raceway surface 31 and the axis center X). Is also small. Further, in a cross-sectional view, with respect to each of the four outer deformed track surfaces 3k, the outer track curvature center Co has an outer maximum radial position 3m at which the distance from the axial center X becomes a maximum value on the outer deformed track surface 3k, It is on a straight line p3 including the axis center X.

次に、内側軌道面21を構成する4個の内側異形軌道面2kは、それぞれ凸曲面とされている。具体的には、内側異形軌道面2kは軸中心Xよりも軌道面(当該内側異形軌道面2k)から遠くなる側に位置する内側軌道曲率中心Ciを中心とする円弧面(円周面)とされている。この内側異形軌道面2kの曲率半径griは、内側軌道面21の断面輪郭線に内接する円の半径(内側軌道面21と軸中心Xとの距離の最小値)である内側軌道基準半径Riよりも大きい。また、断面視において、4つの各内側異形軌道面2kのそれぞれに関し、内側軌道曲率中心Ciは、軸中心Xからの距離が内側異形軌道面2k上において最小値となる内側最小径位置2mと、軸中心Xと、を含む直線p2上にある。   Next, each of the four inner deformed track surfaces 2k constituting the inner track surface 21 is a convex curved surface. Specifically, the inner deformed raceway surface 2k is an arcuate surface (circumferential surface) centered on the inner orbital curvature center Ci located on the side farther from the track surface (the inner deformed track surface 2k) than the axis center X. Has been. The curvature radius gri of the inner deformed raceway surface 2k is based on the inner raceway reference radius Ri, which is the radius of the circle inscribed in the cross-sectional outline of the inner raceway surface 21 (the minimum value of the distance between the inner raceway surface 21 and the axis center X). Is also big. Further, in a cross-sectional view, for each of the four inner deformed raceway surfaces 2k, the inner track curvature center Ci has an inner minimum radial position 2m at which the distance from the axial center X becomes the minimum value on the inner deformed track surface 2k, It lies on a straight line p2 including the axis center X.

以上のような形状の内側軌道面21と外側軌道面31とを有する支持部5は、内環状部材2と外環状部材3との間に周方向のねじりばね力としての回動付勢力を生じさせることができるねじりばね機能(回転付勢機能)を有している。この点について説明する。
この支持部5において、内側軌道面21及び外側軌道面31がいずれも軸中心Xを中心とする円周面ではないため、内側軌道面21と外側軌道面31との間の空間(転動空間)の形状は内環状部材2と外環状部材3との相対位相関係により変化するが、図3の状態は、外側軌道面31の外側最大径位置3mと内側軌道面21の内側最小径位置2mとが同位相とされた状態である。以下、この状態を基準状態ということとする。基準状態において、各円筒ころ4は、内側最小径位置2m及び外側最大径位置3mと接する周方向位置に配置される(図3参照)。この基準状態は、円筒ころ4の挟持間隔(円筒ころ4の接触位置における軌道面間隔)が最も広い状態である。よって、この基準状態では、両軌道面2k、3kから円筒ころ4に作用する圧縮力は最小値(たとえば0)となる。
なお、基準状態における内側最小径位置2mと外側最大径位置3mとの間の径方向距離は円筒ころ4の直径と略一致させるが、若干のラジアル隙間(プラス隙間又はマイナス隙間)を与えても良い。
The support portion 5 having the inner raceway surface 21 and the outer raceway surface 31 having the shape as described above generates a rotational biasing force as a circumferential torsion spring force between the inner annular member 2 and the outer annular member 3. It has a torsion spring function (rotation urging function) that can be applied. This point will be described.
In this support portion 5, since neither the inner raceway surface 21 nor the outer raceway surface 31 is a circumferential surface centered on the axis center X, a space (rolling space) between the inner raceway surface 21 and the outer raceway surface 31. ) Changes depending on the relative phase relationship between the inner annular member 2 and the outer annular member 3, but the state of FIG. 3 is the outer maximum diameter position 3 m of the outer raceway surface 31 and the inner minimum diameter position 2 m of the inner raceway surface 21. Are in the same phase. Hereinafter, this state is referred to as a reference state. In the reference state, each cylindrical roller 4 is disposed at a circumferential position in contact with the inner minimum diameter position 2m and the outer maximum diameter position 3m (see FIG. 3). This reference state is a state in which the holding interval of the cylindrical rollers 4 (the track surface interval at the contact position of the cylindrical rollers 4) is the widest. Therefore, in this reference state, the compressive force acting on the cylindrical roller 4 from both the raceway surfaces 2k and 3k becomes a minimum value (for example, 0).
Note that the radial distance between the inner minimum diameter position 2m and the outer maximum diameter position 3m in the reference state is substantially the same as the diameter of the cylindrical roller 4, but even if a slight radial gap (plus gap or minus gap) is given. good.

次に、この基準状態から外環状部材3が内環状部材2に対して回転すると、円筒ころ4が両軌道面21,31を転動するとともに、当該円筒ころ4の挟持間隔は漸次狭くなる。よってこの回転に伴い円筒ころ4は内側軌道面21及び外側軌道面31により圧縮されて弾性圧縮変形する。これにより、前記回転によって生じた位相差を解消する方向の回動付勢力が内環状部材2と外環状部材3との間に発生する。そして、この回動付勢力が、内環状部材2と外環状部材3との間のねじりばね力(周方向の弾性力)として作用する。つまり、支持部5は、内環状部材2と外環状部材3とを回転方向に弾性的に連結していることとなる。さらに、円筒ころ4によって内環状部材2と外環状部材3との間におけるラジアル荷重を支持できる。   Next, when the outer annular member 3 rotates with respect to the inner annular member 2 from this reference state, the cylindrical roller 4 rolls on both raceway surfaces 21 and 31, and the holding interval of the cylindrical roller 4 gradually decreases. Therefore, with this rotation, the cylindrical roller 4 is compressed by the inner raceway surface 21 and the outer raceway surface 31 and elastically deformed. Thereby, a rotational biasing force in a direction to eliminate the phase difference generated by the rotation is generated between the inner annular member 2 and the outer annular member 3. This rotational biasing force acts as a torsion spring force (circumferential elastic force) between the inner annular member 2 and the outer annular member 3. In other words, the support portion 5 elastically connects the inner annular member 2 and the outer annular member 3 in the rotational direction. Furthermore, the radial load between the inner annular member 2 and the outer annular member 3 can be supported by the cylindrical rollers 4.

支持部5において回動付勢力(ねじりばね力)が生じる点について更に詳細に説明する。図4は、発生する回動付勢力について説明するための断面図であり、理解しやすいように内側異形軌道面2kの一部、外側異形軌道面3kの一部、及び、円筒ころ4のそれぞれの輪郭線のみを示している。図4は、固定状態としている内環状部材2に対して、外環状部材3を反時計回りに角度θだけ回転させて静止させたつり合い状態を示している。基準状態では、外側最大径位置3mは図4のx軸上の位置3miに位置し、且つ内側最小径位置2mもx軸上にある。またこの基準状態では円筒ころ4の中心Prもx軸上にある。かかる基準状態から外環状部材3を角度θだけ反時計回りに回転させると、円筒ころ4が図4に示す位置まで反時計回りに転動する。この転動による円筒ころ4の公転角度は、内側軌道曲率中心Ciに対して角度φiである。このとき、内側異形軌道面2kと円筒ころ4との接触位置の中心をPi、外側異形軌道面3kと円筒ころ4との接触位置の中心をPoとすると、PiとPoとの間の間隔は、基準状態における内側最小径位置2mと外側最大径位置3mとの間の間隔よりも狭くなっており、且つ、円筒ころ4の直径(円筒ころ4の半径Rrの2倍)よりも狭くなっている。よって、円筒ころ4は、内側軌道面21から垂直力Qiを受けるとともに、外側軌道面31から垂直力Qoを受けて圧縮弾性変形する。つり合って静止している状態では、円筒ころ4に接線力は殆ど働かず、図4に示すように点Ci,Co,Pi,Pr,Poは直線L1上に並ぶこととなる。そして、上記垂直力Qi及び垂直力Qoのベクトルの向きも直線L1と同じ向きとなり、内環状部材2が円筒ころ4から受ける垂直力Qi′、及び、外環状部材3が円筒ころ4から受ける垂直力Qo′も直線L1と同じ向きとなる。そして、外環状部材3が円筒ころ4から受ける垂直力Qo′は、転がり軸受装置の径方向(円筒ころ4との接触位置の中心Poと軸中心Xとを結ぶ直線の方向)と相違しており、当該径方向の成分とともに時計回りの成分を有することとなる。このようにして、外環状部材3は、回動付勢力(ねじりばね力)として発生させる時計回り方向のモーメント(以下、回転付勢モーメントともいう)を受ける。回転付勢モーメントの大きさは、〔(ベクトルQo′の大きさ)×(軸中心Xから直線L1までの距離U1)〕となる。図4のつり合い状態では回転付勢モーメントが外環状部材3を反時計回りに回そうとする外力のモーメント(転がり軸受装置における転がり抵抗によるトルク)とつり合っている。   The point at which the rotation urging force (torsion spring force) is generated in the support portion 5 will be described in more detail. FIG. 4 is a cross-sectional view for explaining the generated rotational biasing force. For easy understanding, a part of the inner deformed raceway surface 2k, a part of the outer deformed raceway surface 3k, and the cylindrical roller 4 are shown. Only the outline is shown. FIG. 4 shows a balanced state in which the outer annular member 3 is rotated counterclockwise by an angle θ relative to the inner annular member 2 in a fixed state. In the reference state, the outer maximum diameter position 3m is located at a position 3mi on the x axis in FIG. 4, and the inner minimum diameter position 2m is also on the x axis. In this reference state, the center Pr of the cylindrical roller 4 is also on the x axis. When the outer annular member 3 is rotated counterclockwise by an angle θ from this reference state, the cylindrical roller 4 rolls counterclockwise to the position shown in FIG. The revolution angle of the cylindrical roller 4 due to this rolling is an angle φi with respect to the inner track curvature center Ci. At this time, if the center of the contact position between the inner deformed raceway surface 2k and the cylindrical roller 4 is Pi and the center of the contact position between the outer deformed track surface 3k and the cylindrical roller 4 is Po, the distance between Pi and Po is The distance between the inner minimum diameter position 2m and the outer maximum diameter position 3m in the reference state is narrower than the diameter of the cylindrical roller 4 (twice the radius Rr of the cylindrical roller 4). Yes. Therefore, the cylindrical roller 4 receives the vertical force Qi from the inner raceway surface 21 and also receives the vertical force Qo from the outer raceway surface 31 and undergoes compression elastic deformation. In a balanced and stationary state, almost no tangential force acts on the cylindrical roller 4, and the points Ci, Co, Pi, Pr, Po are aligned on the straight line L1 as shown in FIG. The directions of the vectors of the vertical force Qi and the vertical force Qo are also the same as the straight line L1. The vertical force Qi ′ received by the inner annular member 2 from the cylindrical roller 4 and the vertical force received by the outer annular member 3 from the cylindrical roller 4 The force Qo ′ is also in the same direction as the straight line L1. The vertical force Qo ′ that the outer annular member 3 receives from the cylindrical roller 4 is different from the radial direction of the rolling bearing device (the direction of the straight line connecting the center Po of the contact position with the cylindrical roller 4 and the shaft center X). Therefore, it has a clockwise component together with the radial component. In this way, the outer annular member 3 receives a clockwise moment (hereinafter also referred to as a rotation biasing moment) generated as a rotation biasing force (torsion spring force). The magnitude of the rotation urging moment is [(size of vector Qo ′) × (distance U1 from axis center X to straight line L1)]. In the balanced state of FIG. 4, the rotational urging moment is balanced with the moment of external force (torque due to rolling resistance in the rolling bearing device) that tries to rotate the outer annular member 3 counterclockwise.

上述したように、内側異形軌道面2kは凸曲面であり、且つ、外側異形軌道面3kは凹曲面である。しかも、各内側異形軌道面2k及び各外側異形軌道面3kは滑らかに連続した曲面を構成している。内側軌道面21において滑らかに連続した曲面となっていないのは、隣り合った内側異形軌道面2k同士間の境界位置21bのみであり(図3参照)、外側軌道面31において滑らかに連続した曲面となっていないのは、隣り合った外側異形軌道面3k同士間の境界位置31bのみである(図3参照)。したがって、円筒ころ4の側方に形成されている漸縮空間部は、円筒ころ4と軌道面21,31との接触位置がこれら境界位置21b,31bのいずれかに達するまで、内環状部材2と外環状部材3との相対回転に伴う円筒ころ4接触位置における軌道面間隔は漸次(徐々に)変化する形状とされている。そして、図4を用いて説明した上記機構により、外環状部材3の回転により生じた位相差を解消する方向の回動付勢力(ねじりばね力)が内環状部材2と外環状部材3の間に付与される。   As described above, the inner deformed track surface 2k is a convex curved surface, and the outer deformed track surface 3k is a concave curved surface. In addition, each inner deformed track surface 2k and each outer deformed track surface 3k form a smoothly continuous curved surface. Only the boundary position 21b between the adjacent inner deformed raceway surfaces 2k is not a smoothly continuous curved surface in the inner raceway surface 21 (see FIG. 3), and the smoothly continuous curved surface in the outer raceway surface 31. Only the boundary position 31b between the adjacent outer deformed raceway surfaces 3k is not (see FIG. 3). Accordingly, the gradually reducing space portion formed on the side of the cylindrical roller 4 has the inner annular member 2 until the contact position between the cylindrical roller 4 and the raceway surfaces 21 and 31 reaches one of the boundary positions 21b and 31b. The space between the raceway surfaces at the contact position of the cylindrical roller 4 due to the relative rotation between the outer ring member 3 and the outer ring member 3 is gradually changed. Then, by the mechanism described with reference to FIG. 4, a rotational biasing force (torsion spring force) in a direction to eliminate the phase difference caused by the rotation of the outer annular member 3 is generated between the inner annular member 2 and the outer annular member 3. To be granted.

このような支持部5によれば、ねじりコイルバネを用いることなく内環状部材2と外環状部材3との間にねじりばね性を持たせることができ、その構成を簡素化できる。更に、この支持部5では、ねじり剛性(ばね定数)等の設計自由度が極めて高くされている。すなわち、異形軌道面2k,3kの設計(曲率、曲率中心の位置等)や円筒ころ4の剛性等によりねじり剛性等を自在に設計できる。従って、部材のサイズ(体格)を変えなくても、異形軌道面2k,3kの形状の変更により、ねじり剛性等の特性を広範囲に亘って設定することができる。更に、ねじりコイルバネを用いた場合では位相差(ねじれ角)とねじり剛性との関係は線形(一定)であるが、この支持部5によれば、異形軌道面2k,3kの形状の変更により、位相差(ねじれ角)に対してねじり剛性を非線形に変化させる等、位相差に応じてねじり剛性を自在に変化させることもできる。なお、外環状部材3の内環状部材2に対する回転角度をθとした場合に、その回転角度θとねじり剛性との関係を示した一例を図5に示している。このように、回転角度θ(位相差)とねじり剛性とは単調増加の関係にあり、位相差と回動付勢力とは所定の関係にある。   According to such a support portion 5, it is possible to provide a torsion spring property between the inner annular member 2 and the outer annular member 3 without using a torsion coil spring, and the configuration can be simplified. Further, the support portion 5 has a very high degree of design freedom such as torsional rigidity (spring constant). That is, the torsional rigidity and the like can be freely designed by designing the irregular raceway surfaces 2k and 3k (curvature, position of the center of curvature, etc.) and the rigidity of the cylindrical roller 4. Therefore, characteristics such as torsional rigidity can be set over a wide range by changing the shapes of the deformed raceway surfaces 2k and 3k without changing the size (physique) of the member. Furthermore, in the case of using a torsion coil spring, the relationship between the phase difference (twist angle) and the torsional rigidity is linear (constant), but according to this support portion 5, by changing the shapes of the deformed raceway surfaces 2k and 3k, It is also possible to freely change the torsional rigidity according to the phase difference, such as changing the torsional rigidity non-linearly with respect to the phase difference (torsion angle). FIG. 5 shows an example of the relationship between the rotational angle θ and the torsional rigidity when the rotational angle of the outer annular member 3 with respect to the inner annular member 2 is θ. Thus, the rotation angle θ (phase difference) and the torsional rigidity are in a monotonically increasing relationship, and the phase difference and the rotational biasing force are in a predetermined relationship.

また図3に示している支持部5において、周方向に等配された4個の内輪異形軌道面2kの連続により構成された内輪軌道面21と、周方向に等配された4個の外輪異形軌道面3kの連続により構成された外輪軌道面31と、4個の円筒ころ4とを備え、外環状部材3の回転に伴い全ての円筒ころ4において、円筒ころ4の挟持間隔はそれぞれ均等に変化する構成としている。これにより、内環状部材2と外環状部材3の間で生ずるねじりばね力の方向及び大きさを全円筒ころ4において均等とすることができ、周方向に均一にねじりばね性が生ずることとなる。   Further, in the support portion 5 shown in FIG. 3, an inner ring raceway surface 21 constituted by a continuous series of four inner ring deformed raceway surfaces 2k equally distributed in the circumferential direction, and four outer rings equally distributed in the circumferential direction. The outer ring raceway surface 31 formed by the continuous raceway surface 3k and the four cylindrical rollers 4 are provided, and the cylindrical rollers 4 are equally spaced in all the cylindrical rollers 4 as the outer annular member 3 rotates. It is set as the structure which changes to. Thereby, the direction and magnitude | size of the torsion spring force produced between the inner annular member 2 and the outer annular member 3 can be made uniform in all the cylindrical rollers 4, and torsion spring property will arise uniformly in the circumferential direction. .

また、支持部5について、図1と図3では4個の円筒ころ4を等間隔で配設して構成した4等配型としたが、これに限らず、3個の円筒ころからなる3等配型や、5等配型以上であってもよい。
さらに、異形軌道面を内環状部材2の内側軌道面21と外環状部材3の外側軌道面31の双方にそれぞれ形成したが、異形軌道面は、内側軌道面21と外側軌道面31の少なくとも一方に形成されていればよい。つまり、図示しないが、外輪軌道面31は図3と同様に4つの連続した外輪異形軌道面3kで構成されているが、内輪軌道面21は軸中心Xを中心とする円周面(真円)であってもよい。または、内輪軌道面21は図3と同様に4つの連続した内輪異形軌道面2kで構成されているが、外輪軌道面31は軸中心Xを中心とした円周面(真円)であってもよい。異形軌道面の成形を一方のみとすることにより加工が容易となる。
1 and 3, the support portion 5 is a four-element type in which four cylindrical rollers 4 are arranged at equal intervals. However, the present invention is not limited to this, and the support portion 5 includes three cylindrical rollers 3. It may be a uniform distribution or a five or more distribution.
Further, the deformed raceway surface is formed on both the inner raceway surface 21 of the inner annular member 2 and the outer raceway surface 31 of the outer annular member 3. The deformed raceway surface is at least one of the inner raceway surface 21 and the outer raceway surface 31. What is necessary is just to be formed. That is, although not shown, the outer ring raceway surface 31 is constituted by four continuous outer ring raceway surfaces 3k as in FIG. 3, but the inner ring raceway surface 21 is a circumferential surface (round circle) centered on the axis center X. ). Alternatively, the inner ring raceway surface 21 is composed of four continuous inner ring raceway surfaces 2k as in FIG. 3, but the outer ring raceway surface 31 is a circumferential surface (perfect circle) centered on the axis center X. Also good. By forming the deformed raceway surface on only one side, processing becomes easy.

次に、内環状部材2と外環状部材3との相対回転により生じる位相差を計測するためのセンサ7について説明する。センサ7は、例えば内環状部材2と外環状部材3の間の位相差を直接的に角度として検出するロータリーエンコーダのような角度センサとすることができるが、図1と図3においては、内環状部材2の内側軌道面21と外環状部材3の外側軌道面31との間隔の変化を測定している非接触式の変位センサ7としている。
このような非接触式の変位センサ7により前記位相差を検出することができるのは、第二転動体としての円筒ころ4の周方向側方に形成されている漸縮空間部において、内側異形軌道面2kと外側異形軌道面3kの形状が前記のとおり所定の形状で形成されており、この異形軌道面2k,3kの形状により、内環状部材2と外環状部材3とが相対回転すると異形軌道面2k,3k上の周方向所定位置(例えば非接触センサ7の計測位置)における当該内環状部材2の内側軌道面21と当該外環状部材3の外側軌道面31との間隔が所定の関係で連続的に変化するようされているからである。つまり、内環状部材2と外環状部材3との位相差と、内側軌道面21と外側軌道面31との間隔との関係を予め求めておくことで可能となる。
Next, the sensor 7 for measuring the phase difference caused by the relative rotation between the inner annular member 2 and the outer annular member 3 will be described. For example, the sensor 7 can be an angle sensor such as a rotary encoder that directly detects the phase difference between the inner annular member 2 and the outer annular member 3 as an angle. The contactless displacement sensor 7 is used to measure a change in the distance between the inner raceway surface 21 of the annular member 2 and the outer raceway surface 31 of the outer annular member 3.
The phase difference can be detected by such a non-contact type displacement sensor 7 because the inner deformed shape is formed in the gradually reducing space portion formed in the circumferential direction side of the cylindrical roller 4 as the second rolling element. The shape of the raceway surface 2k and the outer deformed raceway surface 3k is formed in a predetermined shape as described above, and when the inner ring member 2 and the outer ring member 3 are rotated relative to each other, the deformed raceway surfaces 2k and 3k are deformed. The distance between the inner raceway surface 21 of the inner annular member 2 and the outer raceway surface 31 of the outer annular member 3 at a predetermined circumferential position on the raceway surfaces 2k and 3k (for example, a measurement position of the non-contact sensor 7) is a predetermined relationship. This is because it changes continuously. That is, it is possible to obtain the relationship between the phase difference between the inner annular member 2 and the outer annular member 3 and the distance between the inner raceway surface 21 and the outer raceway surface 31 in advance.

すなわち、図1と図3の変位センサ7は内環状部材2の外周部に設けられており、検出方向が径方向外向きとされて、対向している外環状部材3の外側軌道面31までの距離を計測している。変位センサ7は隣り合う内側異形軌道面2k,2k間の境界位置に設けられており、基準状態において変位センサ7は外側軌道面31までの最小間隔寸法を計測する。そして、内環状部材2と外環状部材3とが相対回転して所定の位相差でつり合った状態となった際、変位センサ7がその計測位置における外側軌道面31までの距離を計測する。内側軌道面21と外側軌道面31との間隔と、内環状部材2と外環状部材3との位相差との関係は予め求められているため、これにより、基準状態からの計測値(間隔)の変化(差)を検出することができ、その変化によって基準状態からの位相差を求めることができる。
また、図示しないが変位センサ7を外環状部材3の内周部に、検出方向を径方向内向きとして設けてもよく、この変位センサ7によって内環状部材2と外環状部材3との位相差を求めることができる。
That is, the displacement sensor 7 of FIGS. 1 and 3 is provided on the outer peripheral portion of the inner annular member 2, and the detection direction is set to the radially outward direction to the outer raceway surface 31 of the opposing outer annular member 3. The distance is measured. The displacement sensor 7 is provided at the boundary position between the adjacent inner deformed track surfaces 2k, 2k, and the displacement sensor 7 measures the minimum distance dimension to the outer track surface 31 in the reference state. When the inner annular member 2 and the outer annular member 3 are rotated relative to each other and balanced with a predetermined phase difference, the displacement sensor 7 measures the distance to the outer raceway surface 31 at the measurement position. Since the relationship between the interval between the inner raceway surface 21 and the outer raceway surface 31 and the phase difference between the inner annular member 2 and the outer annular member 3 is obtained in advance, the measured value (interval) from the reference state is thereby obtained. Change (difference) can be detected, and the phase difference from the reference state can be obtained by the change.
Although not shown, the displacement sensor 7 may be provided on the inner peripheral portion of the outer annular member 3 so that the detection direction is radially inward. The phase difference between the inner annular member 2 and the outer annular member 3 is detected by the displacement sensor 7. Can be requested.

以上のような転がり軸受装置によれば、機器に組み込まれた状態において、かつ運転中に軸受自身の転がり抵抗を測定することができる。これにより、例えば、内輪と外輪の間の潤滑状態を監視することができる。つまり、攪拌抵抗によって生ずる転がり抵抗の大小を検知することができ、さらに、潤滑フィードバック制御を行うことが容易となる。また、転がり抵抗の検出により軌道面における剥離の発生を予め検知することができ、軌道面における異常の発生を早期に知ることができる。
また、支持部5におけるねじりばね力を小さく(弱く)設定することにより、転がり軸受装置における転がり抵抗の小さな変化を検出することができる。例えばこの転がり軸受装置を工作機械の旋削具取り付け部に用いることができる。特に、その加工部(取り付け部)におけるトルクの変化が加工精度に大きな影響を及ぼすことのある、繊細な加工を施すための工作機械に適用すれば、加工部における小さなトルク変動を検出でき、それを工作機械の出力に反映させることで精密な加工が可能となる。
According to the rolling bearing device as described above, it is possible to measure the rolling resistance of the bearing itself in a state of being incorporated in an apparatus and during operation. Thereby, for example, the lubrication state between the inner ring and the outer ring can be monitored. That is, it is possible to detect the magnitude of the rolling resistance caused by the stirring resistance, and it becomes easy to perform the lubrication feedback control. Further, the occurrence of separation on the raceway surface can be detected in advance by detecting the rolling resistance, so that the occurrence of an abnormality on the raceway surface can be known at an early stage.
Further, by setting the torsion spring force in the support portion 5 to be small (weak), a small change in the rolling resistance in the rolling bearing device can be detected. For example, this rolling bearing device can be used for a turning tool mounting portion of a machine tool. In particular, if applied to a machine tool for performing delicate machining, a change in torque at the machined part (attachment part) can have a large effect on machining accuracy, and small torque fluctuations at the machined part can be detected. Is reflected in the output of the machine tool to enable precise machining.

なお、支持部5における円筒ころ4(第二転動体)の形状等は特に限定されず、外環状部材3と内環状部材2との相対回転に伴い転動するものであればよい。よって、上述した実施形態のように円筒ころ4に限られず、例えば球や円すいころ等でもよく、従来の内輪と外輪とを有する転がり軸受で用いていた転動体を適宜応用することができる。また、ねじり剛性の設定自由度を高めるため、弾性圧縮変形しやすい中空の転動体(例えば中空の円筒ころや中空の球)等を用いることもできる。   The shape of the cylindrical roller 4 (second rolling element) in the support portion 5 is not particularly limited as long as it rolls with the relative rotation between the outer annular member 3 and the inner annular member 2. Therefore, it is not limited to the cylindrical roller 4 as in the above-described embodiment, and may be, for example, a ball or a tapered roller, and a rolling element used in a conventional rolling bearing having an inner ring and an outer ring can be appropriately applied. In order to increase the degree of freedom in setting torsional rigidity, a hollow rolling element (for example, a hollow cylindrical roller or a hollow sphere) that is easily elastically compressed and deformed can be used.

本発明の転がり軸受装置は、内輪11と外輪12のいずれか一方が、内環状部材2と、外環状部材3と、これらを支持している第二転動体としての円筒ころ4と、内環状部材2と外環状部材3との相対回転により生じる位相差(捩れ角)を求めるためのセンサ7とを有していればよい。
そして、図2は、本発明の転がり軸受装置の他の実施形態であり、外輪12がこれらを有している形態である。すなわち、内輪11が1個の環状部材とされており、外輪12が、内環状部材(内側部材)2と、外環状部材(外側部材)3と、第二転動体としての円筒ころ4を有している。内環状部材2と外環状部材3とは、同軸状でかつ相互間に環状の空間部が形成されるように配設されており、その空間部に円筒ころ4が介在して、内環状部材2と外環状部材3とは相対的に回転可能とされている。内環状部材2と外環状部材3の共通する回転中心が転がり軸受装置の軸中心Xと一致する。
従って、相対的に回転する軸(図示せず)とハウジング(図示せず)を有する機器に対する、この転がり軸受装置の取り付けは、内輪11を軸に外嵌させ、外輪12の外環状部材3をハウジングの内周面に嵌め込むことによって行われ、転がり軸受装置は、軸とハウジングとの間に取り付けられた状態となる。
In the rolling bearing device of the present invention, any one of an inner ring 11 and an outer ring 12 has an inner annular member 2, an outer annular member 3, a cylindrical roller 4 as a second rolling element supporting them, and an inner annular member. What is necessary is just to have the sensor 7 for calculating | requiring the phase difference (torsion angle) produced by the relative rotation of the member 2 and the outer annular member 3.
FIG. 2 shows another embodiment of the rolling bearing device of the present invention, in which the outer ring 12 has these. That is, the inner ring 11 is an annular member, and the outer ring 12 has an inner annular member (inner member) 2, an outer annular member (outer member) 3, and a cylindrical roller 4 as a second rolling element. is doing. The inner annular member 2 and the outer annular member 3 are coaxially arranged so that an annular space is formed between them, and the cylindrical roller 4 is interposed in the space, and the inner annular member 2 and the outer annular member 3 are relatively rotatable. The common rotation center of the inner annular member 2 and the outer annular member 3 coincides with the axial center X of the rolling bearing device.
Therefore, when the rolling bearing device is attached to a device having a relatively rotating shaft (not shown) and a housing (not shown), the inner ring 11 is fitted on the shaft, and the outer annular member 3 of the outer ring 12 is attached. The rolling bearing device is mounted between the shaft and the housing, by being fitted on the inner peripheral surface of the housing.

外輪12において、内環状部材2と外環状部材3とを相対的に支持している円筒ころ4を含む支持部5は、図1の内輪11の場合と同様に、内環状部材2と外環状部材3とが相対回転して所定の位相差が生じると、当該位相差を解消する方向で所定の大きさの回動付勢力を相互間に付与することができる。なお、位相差が大きくなると回動付勢力は大きくなる関係を持つ。つまり、内環状部材2と外環状部材3との間にねじりばね性(周方向の弾力性)を持たせることができる。この位相差と回動付勢力(ねじりばね力)との関係は、内環状部材2の外周面と外環状部材3の内周面の形状や、円筒ころ4の力学的性質などによって、予め設計的に求めたり、予め測定されて求めることができる。
さらに、この転がり軸受装置は外輪12と内輪11の間に生じる転がり抵抗の検出が可能とされており、そのために、内輪11は、内環状部材2と外環状部材3との相対回転により生じる位相差(捩れ角)を求めるためのセンサ7を有している。
In the outer ring 12, the support portion 5 including the cylindrical rollers 4 that relatively support the inner annular member 2 and the outer annular member 3 is similar to the inner annular member 2 and the outer annular member as in the case of the inner ring 11 of FIG. 1. When a predetermined phase difference is generated due to relative rotation with the member 3, it is possible to apply a rotational biasing force having a predetermined magnitude in a direction in which the phase difference is eliminated. Note that the rotational biasing force increases as the phase difference increases. That is, a torsion spring property (elasticity in the circumferential direction) can be provided between the inner annular member 2 and the outer annular member 3. The relationship between the phase difference and the rotational biasing force (torsion spring force) is designed in advance according to the shape of the outer peripheral surface of the inner annular member 2 and the inner peripheral surface of the outer annular member 3, the mechanical properties of the cylindrical rollers 4, and the like. Or can be determined in advance.
Further, this rolling bearing device can detect the rolling resistance generated between the outer ring 12 and the inner ring 11. For this reason, the inner ring 11 has a position generated by relative rotation between the inner annular member 2 and the outer annular member 3. A sensor 7 for obtaining a phase difference (twist angle) is provided.

この転がり軸受装置における外輪12と内輪11の間に生じる転がり抵抗の検出について説明する。
外輪12と内輪11の間に転がり抵抗が生じると、それによる力が外輪12のうちの内環状部材2に伝わって、内環状部材2と外環状部材3との間において回転力(トルク)が生じる。この回転力によって内環状部材2は外環状部材3に対して回転して位相差が生ずるが、それに伴って当該位相差を解消する方向の回動付勢力(ねじりばね力)が支持部5に発生する。転がり抵抗による回転力と、反力として生ずるこの回動付勢力とがやがてつり合って、内環状部材2と外環状部材3とは所定の位相差でつり合い状態(相対的に静止した状態)となる。つまり、転がり軸受装置における外輪12と内輪11との間の転がり抵抗は、外輪12の内環状部材2と外環状部材3との間の位相差として現れる。従って、センサ7が、つり合い状態となった内環状部材2と外環状部材3との位相差を検出することによって、位相差と回動付勢力との関係から、内環状部材2と外環状部材3との間に生じている回動付勢力を検出できる。この回動付勢力は前記転がり抵抗(回転力)とつり合って所定の位相差を生じさせているため、当該転がり抵抗の値を求めることができる。
The detection of the rolling resistance generated between the outer ring 12 and the inner ring 11 in this rolling bearing device will be described.
When rolling resistance occurs between the outer ring 12 and the inner ring 11, the resulting force is transmitted to the inner annular member 2 of the outer ring 12, and a rotational force (torque) is generated between the inner annular member 2 and the outer annular member 3. Arise. Due to this rotational force, the inner annular member 2 rotates with respect to the outer annular member 3 to produce a phase difference. Along with this, a rotational biasing force (torsion spring force) in a direction to eliminate the phase difference is applied to the support portion 5. appear. The rotational force due to the rolling resistance and the rotational urging force generated as a reaction force are eventually balanced, and the inner annular member 2 and the outer annular member 3 are in a balanced state (relatively stationary state) with a predetermined phase difference. Become. That is, the rolling resistance between the outer ring 12 and the inner ring 11 in the rolling bearing device appears as a phase difference between the inner annular member 2 and the outer annular member 3 of the outer ring 12. Therefore, when the sensor 7 detects the phase difference between the inner annular member 2 and the outer annular member 3 in the balanced state, the inner annular member 2 and the outer annular member are determined from the relationship between the phase difference and the rotational biasing force. 3 can be detected. Since this rotational biasing force balances with the rolling resistance (rotational force) to generate a predetermined phase difference, the value of the rolling resistance can be obtained.

外輪12における内環状部材2と外環状部材3との間の支持部5の具体的な構成と、その構成によって生ずる回動付勢力の発生については、図1と図3における前記説明と同様であり、その説明を省略する。
また、外輪12が有している変位センサ7についても図1と図3のものと同様に、非接触式のセンサとされている。図2の変位センサ7は、外環状部材3の内周部に設けられており、検出方向が径方向内向きとされて、対向している内環状部材2の内側軌道面21までの距離を計測している。そして、変位センサ7は隣り合う外側異形軌道面3k,3k間の境界位置に設けられており、基準状態において変位センサ7は内側軌道面21までの最小間隔寸法を計測する。そして、内環状部材2と外環状部材3とが相対回転して所定の位相差でつり合った状態となった際、変位センサ7がその計測位置における内側軌道面21までの距離を計測する。内側軌道面21と外側軌道面31との間隔と、内環状部材2と外環状部材3との位相差との関係は予め求められているため、これにより、基準状態からの計測値(間隔)の変化(差)を検出することができ、その変化によって基準状態からの位相差を求めることができる。
The specific configuration of the support portion 5 between the inner annular member 2 and the outer annular member 3 in the outer ring 12 and the generation of the rotational biasing force generated by the configuration are the same as described above with reference to FIGS. 1 and 3. Yes, the description is omitted.
Further, the displacement sensor 7 of the outer ring 12 is also a non-contact type sensor as in the case of FIGS. The displacement sensor 7 in FIG. 2 is provided on the inner peripheral portion of the outer annular member 3, and the detection direction is radially inward, and the distance to the inner raceway surface 21 of the opposing inner annular member 2 is determined. Measuring. The displacement sensor 7 is provided at a boundary position between the adjacent outer deformed track surfaces 3k, 3k, and the displacement sensor 7 measures the minimum distance to the inner track surface 21 in the reference state. When the inner annular member 2 and the outer annular member 3 are rotated relative to each other and balanced with a predetermined phase difference, the displacement sensor 7 measures the distance to the inner raceway surface 21 at the measurement position. Since the relationship between the interval between the inner raceway surface 21 and the outer raceway surface 31 and the phase difference between the inner annular member 2 and the outer annular member 3 is obtained in advance, the measured value (interval) from the reference state is thereby obtained. Change (difference) can be detected, and the phase difference from the reference state can be obtained by the change.

以上のような転がり軸受装置によれば、機器に組み込まれた状態において、かつ運転中に軸受自身の転がり抵抗を測定することができる。これにより、例えば、内輪と外輪の間の潤滑状態を監視することができる。   According to the rolling bearing device as described above, it is possible to measure the rolling resistance of the bearing itself in a state of being incorporated in an apparatus and during operation. Thereby, for example, the lubrication state between the inner ring and the outer ring can be monitored.

さらに、図1と図2の実施形態において、本発明の転がり軸受装置は、図示する形態に限らずこの発明の範囲内において他の形態のものであっても良く、第一転動体を例えば球や円すいころ等としてもよく、従来、内輪と外輪とを有する転がり軸受で用いていた転動体を適宜応用することができる。また、図2において内側部材を環状の部材として説明したが、これに限らず内側部材を軸と一体化させた中実部材としてもよい。
また、図1の転がり軸受装置は、センサ7を内輪11側に有しているため、外輪12がその外側にあるハウジングと共に回転する機器に用いるのが好ましい。
また、図2の転がり軸受装置は、センサ7を外輪12側に有しているため、内輪11がその内側にある軸(図示せず)と共に回転する機器に対して用いるのが好ましい。
Further, in the embodiment of FIGS. 1 and 2, the rolling bearing device of the present invention is not limited to the illustrated form, and may be of another form within the scope of the present invention. Alternatively, a rolling element that has been used in a rolling bearing having an inner ring and an outer ring can be appropriately applied. Although the inner member has been described as an annular member in FIG. 2, the present invention is not limited to this, and the inner member may be a solid member integrated with the shaft.
Further, since the rolling bearing device of FIG. 1 has the sensor 7 on the inner ring 11 side, it is preferably used for a device in which the outer ring 12 rotates together with the housing on the outer side.
Further, since the rolling bearing device of FIG. 2 has the sensor 7 on the outer ring 12 side, it is preferably used for a device in which the inner ring 11 rotates together with a shaft (not shown) on the inner side.

本発明の実施の一形態に係る転がり軸受装置を示す断面図である。It is sectional drawing which shows the rolling bearing apparatus which concerns on one Embodiment of this invention. 転がり軸受装置の他の実施形態を示す断面図である。It is sectional drawing which shows other embodiment of a rolling bearing apparatus. 図1の転がり軸受装置のうち内輪を示している断面図である。It is sectional drawing which shows the inner ring | wheel among the rolling bearing apparatuses of FIG. ねじりばね力が生ずる原理を説明するための図である。It is a figure for demonstrating the principle which a torsion spring force produces. 回転角度とねじり剛性の関係を示すグラフである。It is a graph which shows the relationship between a rotation angle and torsional rigidity.

符号の説明Explanation of symbols

2 内環状部材(内側部材)
3 外環状部材(外側部材)
4 円筒ころ(第二の転動体)
5 支持部
7 センサ
11 内輪
12 外輪
13円筒ころ(第一の転動体)
21 内側軌道面(外周面)
2k 内側異形軌道面
31 外側軌道面(内周面)
3k 外側異形軌道面
X 軸中心
2 Inner ring member (inner member)
3 Outer ring member (outer member)
4 Cylindrical roller (second rolling element)
5 Supporting part 7 Sensor 11 Inner ring 12 Outer ring 13 Cylindrical roller (first rolling element)
21 Inner raceway surface (outer peripheral surface)
2k Inner deformed raceway surface 31 Outer raceway surface (inner circumferential surface)
3k Outer profile surface X axis center

Claims (2)

内輪及び外輪と、これら内外輪間に介在している第一の転動体と、を備え、
前記内輪と前記外輪のいずれか一方は、径方向の内側と外側とに配設されている内側部材と外側部材と、これら内側部材と外側部材とが相対回転可能となるように当該内側部材の外周面と当該外側部材の内周面との間に転動可能に介在している第二の転動体と、前記内側部材と前記外側部材の相対回転により生じる位相差を計測するためのセンサと、を有し、
前記内側部材の外周面と前記外側部材の内周面の少なくとも一方が、前記内側部材と前記外側部材の相対回転に伴い前記第二転動体を転動させつつ当該第二転動体の挟持間隔を漸次狭くして、前記相対回転により生じた位相差に応じて当該位相差を解消する方向に所定の大きさの回動付勢力を当該内側部材と当該外側部材との間に付与する異形軌道面を少なくとも一部に有していることを特徴とする転がり軸受装置。
An inner ring and an outer ring, and a first rolling element interposed between the inner and outer rings,
One of the inner ring and the outer ring includes an inner member and an outer member disposed on the inner side and the outer side in the radial direction, and the inner member and the outer member so that the inner member and the outer member can be relatively rotated. A second rolling element interposed between the outer peripheral surface and the inner peripheral surface of the outer member in a rollable manner, and a sensor for measuring a phase difference caused by relative rotation of the inner member and the outer member; Have
At least one of the outer peripheral surface of the inner member and the inner peripheral surface of the outer member rolls the second rolling member with the relative rotation of the inner member and the outer member, and the holding interval of the second rolling member is increased. A deformed raceway surface that gradually narrows and applies a rotational biasing force of a predetermined magnitude between the inner member and the outer member in a direction to eliminate the phase difference according to the phase difference caused by the relative rotation. A rolling bearing device having at least a part thereof.
前記センサは、前記内側部材と前記外側部材との相対回転による当該内側部材と当該外側部材との間隔の変化を測定する変位センサである請求項1に記載の転がり軸受装置。   The rolling bearing device according to claim 1, wherein the sensor is a displacement sensor that measures a change in a distance between the inner member and the outer member due to relative rotation between the inner member and the outer member.
JP2005189525A 2005-06-29 2005-06-29 Rolling bearing device Withdrawn JP2007009976A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005189525A JP2007009976A (en) 2005-06-29 2005-06-29 Rolling bearing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005189525A JP2007009976A (en) 2005-06-29 2005-06-29 Rolling bearing device

Publications (1)

Publication Number Publication Date
JP2007009976A true JP2007009976A (en) 2007-01-18

Family

ID=37748764

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005189525A Withdrawn JP2007009976A (en) 2005-06-29 2005-06-29 Rolling bearing device

Country Status (1)

Country Link
JP (1) JP2007009976A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114046315A (en) * 2021-11-26 2022-02-15 中国航发哈尔滨轴承有限公司 Bearing of flexible raceway

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114046315A (en) * 2021-11-26 2022-02-15 中国航发哈尔滨轴承有限公司 Bearing of flexible raceway
CN114046315B (en) * 2021-11-26 2024-01-23 中国航发哈尔滨轴承有限公司 Bearing with deformable roller path

Similar Documents

Publication Publication Date Title
US9739672B2 (en) Torque sensor unit
US10570956B2 (en) Sensorized roller
JP2007298080A (en) Double row roller bearing with displacement sensor and abnormality diagnostic method for double row roller bearing
JP2022035500A (en) Bearing gap measurement device
JP2018529897A (en) Rolling bearing assembly with strain sensor device
TWM552594U (en) Bearing monitoring device
JP2007009976A (en) Rolling bearing device
JP2006337356A (en) Rolling bearing unit with displacement measuring instrument, and rolling bearing unit with load measuring instrument
JP5831338B2 (en) Apparatus and method for measuring induced axial load
JP2005133891A (en) Preload measuring method and device for bearing
JP2006090511A (en) Rolling bearing device with sensor
JP2011149812A (en) Washer type load cell and thrust load detecting mechanism
JP2011038557A (en) Rolling bearing device
JPH11264779A (en) Torque and thrust detecting device
JP2010090982A (en) Wheel bearing with sensor
JP2010054256A (en) Load measuring device for rolling bearing unit
JP7484173B2 (en) Bearing device and signal processing device
JP2006258801A (en) Rolling bearing unit with displacement measuring device and rolling bearing unit with load cell device
WO2024101268A1 (en) Bearing device with sensor, and spindle device for machine tool
JP7480257B1 (en) Bearing device with load sensor
Ricci Ball bearings subjected to a variable eccentric thrust load
JP7480256B1 (en) Bearing device with strain sensor and spindle device for machine tool
JP6586808B2 (en) Rolling bearing with sensor device
WO2015005282A1 (en) Vehicle-wheel bearing device with sensor
JP2024068106A (en) Bearing device with strain sensor and spindle device for machine tool

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080422

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20081215