JP2007009839A - Exhaust emission device - Google Patents

Exhaust emission device Download PDF

Info

Publication number
JP2007009839A
JP2007009839A JP2005193730A JP2005193730A JP2007009839A JP 2007009839 A JP2007009839 A JP 2007009839A JP 2005193730 A JP2005193730 A JP 2005193730A JP 2005193730 A JP2005193730 A JP 2005193730A JP 2007009839 A JP2007009839 A JP 2007009839A
Authority
JP
Japan
Prior art keywords
exhaust gas
discharge
reactor
nox
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005193730A
Other languages
Japanese (ja)
Other versions
JP4479610B2 (en
Inventor
Hideo Yahagi
秀夫 矢作
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2005193730A priority Critical patent/JP4479610B2/en
Publication of JP2007009839A publication Critical patent/JP2007009839A/en
Application granted granted Critical
Publication of JP4479610B2 publication Critical patent/JP4479610B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/023Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles
    • F01N3/027Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles using electric or magnetic heating means
    • F01N3/0275Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles using electric or magnetic heating means using electric discharge means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2240/00Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being
    • F01N2240/04Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being an electric, e.g. electrostatic, device other than a heater

Abstract

<P>PROBLEM TO BE SOLVED: To accelerate storage and reduction of NOx in an exhaust emission device using NOx storage reduction catalyst. <P>SOLUTION: This device is provided with a first reactor 20 discharging in an upstream side of a honeycomb carrier 31 carrying NOx storage reduction catalyst, a second reactor 3 discharging inside of the honeycomb carrier 31, a high voltage power source 50 and ECU 60 controlling the first and the second reactor 20, 38. The ECU 60 makes the first reactor 20 operate at the time of storage by the NOx storage reduction catalyst and makes the second reactor 38 operate at the time of reduction by the NOx storage reduction catalyst. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、排ガス浄化装置、特にガス中に含まれる窒素酸化物(NOx)を浄化するための触媒を備えた排ガス浄化装置に関する。   The present invention relates to an exhaust gas purification device, and more particularly to an exhaust gas purification device including a catalyst for purifying nitrogen oxide (NOx) contained in a gas.

ディーゼルエンジンやリーンバーンエンジン等の排ガス中のNOxを除去するための技術として、NOx吸蔵還元触媒が開発され、実用化されている。このNOx吸蔵還元触媒は、NOxの浄化が困難なリーンバーン時には、NOxを硝酸塩として触媒内に吸蔵し、NOx吸蔵量が増加してくると、定期的な燃料過濃燃焼(リッチスパイク)を行うことで、触媒に吸蔵されたNOxを放出してNOx吸蔵能力を回復すると共に、NOxをNに浄化する。 As a technique for removing NOx in exhaust gas such as diesel engines and lean burn engines, NOx storage reduction catalysts have been developed and put into practical use. This NOx occlusion reduction catalyst stores NOx as nitrate in the catalyst during lean burn when it is difficult to purify NOx, and performs periodic fuel rich combustion (rich spike) when the NOx occlusion amount increases. As a result, NOx occluded in the catalyst is released to restore the NOx occlusion capability, and NOx is purified to N 2 .

また、NOx吸蔵還元触媒の硫黄被毒を抑制するために、NOx吸蔵還元触媒の上流側にプラズマ発生装置を配置した装置が提案されている(特許文献1)。この装置では、プラズマ発生装置で発生させた水素Hを、NOx吸蔵還元触媒に作用させ、この水素の還元力によって排ガス中のNOxを浄化すると共に、SOの酸化を防ぐことで、排ガス中の硫黄分によるNOx吸蔵還元触媒の硫黄被毒を抑制している。
特開2004−270587号公報
In addition, in order to suppress sulfur poisoning of the NOx storage reduction catalyst, an apparatus in which a plasma generator is arranged upstream of the NOx storage reduction catalyst has been proposed (Patent Document 1). In this apparatus, the hydrogen H generated by the plasma generator is made to act on the NOx storage reduction catalyst, and the NOx in the exhaust gas is purified by the reducing power of this hydrogen, and the oxidation of SO 2 is prevented, thereby preventing the oxidation in the exhaust gas. Sulfur poisoning of the NOx occlusion reduction catalyst due to sulfur content is suppressed.
JP 2004-270588 A

ところで、NOx吸蔵還元触媒におけるNOxの還元の際に、排ガスから得られる活性力の高いH,OH,HCラジカル等を利用できれば好都合である。しかし、これらのラジカルは寿命が短いため、特許文献1のようにプラズマ発生装置の後方にNOx吸蔵還元触媒を配置するシステムでは、これらのラジカルがプラズマ発生装置で生成したとしても、NOx吸蔵還元触媒に入る前に他の成分と反応してしまい、その活性力によって触媒上で還元に必要な活性種(NOやアンモニア等)を生成できない。 By the way, when NOx is reduced in the NOx storage reduction catalyst, it is advantageous if H, OH, HC radicals or the like having high activity obtained from exhaust gas can be used. However, since these radicals have a short lifetime, in a system in which a NOx storage reduction catalyst is disposed behind the plasma generator as in Patent Document 1, even if these radicals are generated by the plasma generator, the NOx storage reduction catalyst It reacts with other components before entering, and the active species (NO 3 , ammonia, etc.) necessary for reduction cannot be generated on the catalyst due to its activity.

そこで本発明の目的は、NOx吸蔵還元触媒を用いる排ガス浄化装置において、NOxの吸蔵および還元を促進することにある。   Accordingly, an object of the present invention is to promote NOx occlusion and reduction in an exhaust gas purification apparatus using a NOx occlusion reduction catalyst.

本発明による排ガス浄化装置は、NOx吸蔵還元触媒が担持された担体の上流側で放電を行う第1の放電装置と、前記担体の内部で放電を行う第2の放電装置と、前記第1および第2の放電装置を制御する制御手段と、を備え、前記制御手段は、前記NOx吸蔵還元触媒による吸蔵時に前記第1の放電装置を動作させ、前記NOx吸蔵還元触媒による還元時に前記第2の放電装置を動作させることを特徴とする。   An exhaust gas purifying apparatus according to the present invention includes a first discharge device that discharges upstream of a carrier on which a NOx storage reduction catalyst is supported, a second discharge device that discharges inside the carrier, Control means for controlling the second discharge device, wherein the control means operates the first discharge device during storage by the NOx storage reduction catalyst, and the second discharge device during reduction by the NOx storage reduction catalyst. The discharge device is operated.

本発明では、NOx吸蔵還元触媒による吸蔵時に、NOx吸蔵還元触媒が担持された担体の上流側で第1の放電装置を動作させ、NOx吸蔵還元触媒による還元時に、担体の内部の第2の放電装置を動作させる。第1の放電装置の動作によって、排ガス中のNOからNO2が生成されてNOx吸蔵還元触媒に供給され、NOxの吸蔵が促進される。還元時には、触媒から排出されたNOがNに還元され、その際に、第2の放電装置の動作によって生成された活性力の高いH,OH,HCラジカル等によって、還元反応が促進される。 In the present invention, the first discharge device is operated on the upstream side of the carrier carrying the NOx occlusion reduction catalyst during occlusion by the NOx occlusion reduction catalyst, and the second discharge inside the carrier during reduction by the NOx occlusion reduction catalyst. Operate the device. By the operation of the first discharge device, NO2 is generated from NO in the exhaust gas and supplied to the NOx storage reduction catalyst, and NOx storage is promoted. At the time of reduction, NO 2 discharged from the catalyst is reduced to N 2 , and at that time, the reduction reaction is promoted by the highly active H, OH, HC radicals, etc. generated by the operation of the second discharge device. The

このように本発明では、第2の放電装置をNOx吸蔵還元触媒が担持された担体の内部に設置したので、この第2の放電装置によって生成されたH,OH,HCラジカル等の寿命の短い物質を還元反応に利用できる。また、H,OH,HCラジカル等の寿命の短い物質を、吸蔵時のNOx吸蔵還元触媒に作用させると、触媒に吸蔵されているNOxを排出させてしまうおそれがあるが、本実施形態では第2の放電装置を還元時に動作させることとしたので、このようなNOxの望ましくない排出を抑制できる。   As described above, in the present invention, since the second discharge device is installed inside the carrier on which the NOx storage reduction catalyst is supported, the lifetime of H, OH, HC radicals, etc. generated by the second discharge device is short. The substance can be used for the reduction reaction. In addition, when a substance having a short lifetime such as H, OH, and HC radicals is allowed to act on the NOx occlusion reduction catalyst during occlusion, NOx occluded in the catalyst may be discharged. Since the second discharge device is operated at the time of reduction, such undesirable discharge of NOx can be suppressed.

本発明では、前記担体は排ガスが中を通る多数のセルを含み、前記第2の放電装置は放電電極と受電極とを含み、前記放電電極および前記受電極は、前記セルを挟んで排ガスの流れ方向の前後に配置されているのが好適である。この場合には、放電電極と受電極との間の放電が、セル内を経路として、すなわち多数のセルの表面あるいは表面の近傍を経路として行われることになるので、放電によって生じた活性力の高い物質によって、還元反応を好適に促進することができる。   In the present invention, the carrier includes a large number of cells through which the exhaust gas passes, the second discharge device includes a discharge electrode and a receiving electrode, and the discharge electrode and the receiving electrode sandwich the cell with the exhaust gas. It is preferable that they are arranged before and after the flow direction. In this case, since the discharge between the discharge electrode and the receiving electrode is performed along the path within the cell, that is, along the surface of a large number of cells or in the vicinity of the surface, the active force generated by the discharge is reduced. The reduction reaction can be favorably promoted by a high substance.

本発明では、前記担体に還元剤を供給する還元剤供給手段を更に備え、前記制御手段は、前記還元剤がその供給点から前記担体に到達するまでの所要時間に関連するパラメータに基づいて、前記第2の放電手段を制御するのが特に好適である。この場合には、還元剤が担体に到達するまでの時間を考慮して第2の放電手段の放電タイミングを決定することにより、吸蔵されているNOxを好適に還元させることができる。   In the present invention, further comprising a reducing agent supply means for supplying a reducing agent to the carrier, the control means based on a parameter related to the time required for the reducing agent to reach the carrier from its supply point, It is particularly preferable to control the second discharging means. In this case, the stored NOx can be suitably reduced by determining the discharge timing of the second discharge means in consideration of the time until the reducing agent reaches the carrier.

本発明の実施形態につき、以下に図面に従って説明する。図1において、本発明の実施形態の排ガス浄化装置1は、車両のエンジン70からの排気経路に設置されるものであり、ほぼ円筒形のケース10と、このケース10内に設置された第1リアクタ20および触媒装置30を含んでいる。エンジン70は、軽油を燃料とするディーゼルエンジンである。   Embodiments of the present invention will be described below with reference to the drawings. In FIG. 1, an exhaust gas purification apparatus 1 according to an embodiment of the present invention is installed in an exhaust path from an engine 70 of a vehicle, and has a substantially cylindrical case 10 and a first case installed in the case 10. A reactor 20 and a catalytic device 30 are included. The engine 70 is a diesel engine using light oil as fuel.

ケース10は、金属等の耐熱導電性材料により概ね円筒形に形成されている。ケース10内には、エンジン70からの排ガスが、その軸方向すなわち図中矢印A方向に導入される。   The case 10 is formed in a substantially cylindrical shape from a heat-resistant conductive material such as metal. The exhaust gas from the engine 70 is introduced into the case 10 in the axial direction, that is, in the direction of arrow A in the figure.

図2に示されるように、第1リアクタ20は、プラズマリアクタまたはコロナリアクタであって、ほぼ円筒形の絶縁性フレーム21の内部に、複数の放電電極22と、複数の受電極23とを有する。絶縁性フレーム21は、アルミナまたはセラミックス等の電気絶縁材料からなり、円筒部21aと、複数の平板部21bとを有する。絶縁性フレーム21の外周面は、可撓性を有するアルミナマット27を介して、ケース10に保持されている。   As shown in FIG. 2, the first reactor 20 is a plasma reactor or a corona reactor, and has a plurality of discharge electrodes 22 and a plurality of receiving electrodes 23 inside a substantially cylindrical insulating frame 21. . The insulating frame 21 is made of an electrically insulating material such as alumina or ceramics, and includes a cylindrical portion 21a and a plurality of flat plate portions 21b. The outer peripheral surface of the insulating frame 21 is held by the case 10 via a flexible alumina mat 27.

複数の平板部21bのうち図2中上から奇数番目の平板部21bには、放電電極22が固定されている。放電電極22は、導体からなる平板を2箇所で直角に同方向に屈曲してなり、側面視において門形またはU字型の断面形状を有する。放電電極22の上流側(図2における左側)の端部は、ピン24を介して、集合板25に一体的に固定されている。   The discharge electrode 22 is fixed to the odd-numbered flat plate portion 21b from the top in FIG. 2 among the plurality of flat plate portions 21b. The discharge electrode 22 is formed by bending a flat plate made of a conductor at two right angles in the same direction, and has a gate-shaped or U-shaped cross-sectional shape in a side view. The upstream end (the left side in FIG. 2) of the discharge electrode 22 is integrally fixed to the collective plate 25 via a pin 24.

他方、複数の平板部21bのうち偶数番目の平板部21bには、受電極23が固定されている。受電極23は、導体からなる平板であり、絶縁性フレーム21の平板部21bに設けられたスリットに下流側から挿入されることで固定されている。受電極23の下流側(図2における右側)の端部は、その両側縁に設けられた舌片23aにおいて、導体からなる集合筒26に一体的に固定されている。集合筒26の外周面は、ケース10に固定されており、これによって、全ての受電極23とケース10との間が導通されている。ケース10は電気的に接地されている。   On the other hand, the receiving electrode 23 is fixed to the even-numbered flat plate portion 21b among the plurality of flat plate portions 21b. The receiving electrode 23 is a flat plate made of a conductor, and is fixed by being inserted from a downstream side into a slit provided in the flat plate portion 21 b of the insulating frame 21. An end portion on the downstream side (right side in FIG. 2) of the receiving electrode 23 is integrally fixed to a collective cylinder 26 made of conductors at tongue pieces 23a provided on both side edges thereof. The outer peripheral surface of the collecting cylinder 26 is fixed to the case 10, whereby all the receiving electrodes 23 and the case 10 are electrically connected. Case 10 is electrically grounded.

図3に示されるように、放電電極22は、排ガスの流れ方向に直交する断面において、その幅が、当該放電電極22に上下方向に隣接する受電極23(すなわち、当該放電電極22と排ガス流路を挟んで対向する受電極23)の幅よりも小さいか、あるいは当該受電極23の幅と等しくされている。   As shown in FIG. 3, the discharge electrode 22 has a cross-section perpendicular to the flow direction of the exhaust gas, and the width of the discharge electrode 22 is adjacent to the discharge electrode 22 in the vertical direction (that is, the discharge electrode 22 and the exhaust gas flow). It is smaller than the width of the receiving electrode 23) facing each other across the path, or equal to the width of the receiving electrode 23.

再び図2において、ケース10の上流側の端部に形成されたテーパ部10aには、外方に向かう概ね円錐台形の凹部10bが設けられており、凹部10bの底部を貫いて、給電プラグ40が固定されている。給電プラグ40は、ケース10の外部に設置される高電圧電源50(図1参照)からの電力を、放電電極22に給電するために用いられる。給電プラグ40は、碍子40aと、この碍子40aの軸心を貫通するプラグ電極40bとを有する。碍子40aは、放電電極22への給電経路とケース10との間を電気的に絶縁する。碍子40aの外周には、いわゆるコルゲーション状の凹凸が設けられており、この凹凸によって、沿面距離が延長され沿面放電の抑制が図られている。   In FIG. 2 again, the tapered portion 10a formed at the upstream end portion of the case 10 is provided with a substantially truncated cone-shaped concave portion 10b that extends outward, and penetrates the bottom of the concave portion 10b to pass through the power supply plug 40. Is fixed. The power supply plug 40 is used to supply power from the high voltage power supply 50 (see FIG. 1) installed outside the case 10 to the discharge electrode 22. The power supply plug 40 includes an insulator 40a and a plug electrode 40b that penetrates the axis of the insulator 40a. The insulator 40a electrically insulates the power supply path to the discharge electrode 22 and the case 10 from each other. The outer periphery of the insulator 40a is provided with a so-called corrugation-like unevenness, and this unevenness extends the creepage distance and suppresses creeping discharge.

プラグ電極40bの先端(図2における上側の端部)と、集合板25とは、L字形の連結板40cによって連結されている。プラグ電極40b、連結板40c、ピン24および集合板25により、ケース10の外部に設置される高電圧電源50からの電力を放電電極22に給電するための給電経路が構成される。   The tip of the plug electrode 40b (the upper end in FIG. 2) and the collective plate 25 are connected by an L-shaped connecting plate 40c. The plug electrode 40 b, the connecting plate 40 c, the pin 24, and the collective plate 25 constitute a power supply path for supplying power from the high voltage power supply 50 installed outside the case 10 to the discharge electrode 22.

触媒装置30は、触媒物質が担持されたハニカム担体31の内部に、放電電極32および受電極33a,33bからなる第2リアクタ38を備えたものである。図4に示されるように、ハニカム担体31は、上流側部分31aおよび下流側部分31bからなり、これら上流側部分31aおよび下流側部分31bは、いずれも多孔質の隔壁11により仕切られた多数の細長いセル12すなわち排ガス通路を備えており、各セル12の長手方向はいずれも排ガスの流入方向(図2中A方向)に平行である。   The catalyst device 30 includes a second reactor 38 including a discharge electrode 32 and receiving electrodes 33a and 33b inside a honeycomb carrier 31 on which a catalyst material is supported. As shown in FIG. 4, the honeycomb carrier 31 includes an upstream portion 31 a and a downstream portion 31 b, and the upstream portion 31 a and the downstream portion 31 b are both divided by a large number of porous partition walls 11. An elongated cell 12, that is, an exhaust gas passage, is provided, and the longitudinal direction of each cell 12 is parallel to the inflow direction of the exhaust gas (A direction in FIG. 2).

ハニカム担体31は、例えばアルミナAlなどの多孔質の絶縁体によって形成するのが好適である。なお、ハニカム担体31の材料として他の材料を使用する場合には、ハニカム担体31の表面にアルミナコートを施すのが好適である。なお、ハニカム担体31としては、排ガス通路を交互に栓詰してPM(particulate matter;粒子状物質)を濾過するものや、PMを静電気力で吸着するものなど、他の様々な構造のものを用いることができる。 The honeycomb carrier 31 is preferably formed of a porous insulator such as alumina Al 2 O 3 . In addition, when using another material as the material of the honeycomb carrier 31, it is preferable to apply an alumina coat to the surface of the honeycomb carrier 31. The honeycomb carrier 31 may be of various other structures such as one that alternately plugs exhaust gas passages to filter PM (particulate matter), and one that adsorbs PM by electrostatic force. Can be used.

ハニカム担体31の隔壁11には、触媒物質として、NOx吸蔵還元触媒(NSR;NOx Storage Reduction catalysis)がコーティングされている。NOx吸蔵還元触媒としては、カリウムK、ナトリウムNa、リチウムLi、セシウムCsのようなアルカリ金属、バリウムBa、カルシウムCaのようなアルカリ土類、ランタンLa、イットリウムYのような希土類から選ばれた少なくとも一つと、白金Ptのような貴金属との組合せが好適である。   The partition walls 11 of the honeycomb carrier 31 are coated with a NOx storage reduction catalyst (NSR) as a catalyst material. The NOx occlusion reduction catalyst is at least selected from alkali metals such as potassium K, sodium Na, lithium Li and cesium Cs, alkaline earths such as barium Ba and calcium Ca, and rare earths such as lanthanum La and yttrium Y. A combination of one and a noble metal such as platinum Pt is preferred.

放電電極32は、円筒形の外枠34と、この外枠34の内周面に多数互いに平行に固定された平板状の電極板35とを有する。電極板35はいずれも水平にされている。放電を促進するために、各電極板35の上流側および下流側の端部には、鋸刃状の凹凸が設けられている。放電電極32には、図1に示されるように引出し線46が接続され、引き出し線46は、ケース10に固定された筒状の絶縁碍子45を通って、高電圧電源50に接続されている。   The discharge electrode 32 includes a cylindrical outer frame 34 and a flat electrode plate 35 which is fixed to the inner peripheral surface of the outer frame 34 in parallel with each other. The electrode plates 35 are all horizontal. In order to promote discharge, saw-blade irregularities are provided at the upstream and downstream ends of each electrode plate 35. As shown in FIG. 1, a lead wire 46 is connected to the discharge electrode 32, and the lead wire 46 is connected to a high voltage power supply 50 through a cylindrical insulator 45 fixed to the case 10. .

受電極33a,33bは、円筒形の外枠36a,36bと、これら外枠36a,36bの内周面に多数互いに平行に固定された平板状の電極板37a,37bとを有する。電極板37a,37bはいずれも鉛直にされている。放電を促進するために、電極板37aの下流側の端部、および電極板37bの上流側の端部には、それぞれ鋸刃状の凹凸が設けられている。受電極33a,33bはケース10に固定され、これによって電気的に接地されている。   The receiving electrodes 33a and 33b have cylindrical outer frames 36a and 36b, and flat plate-like electrode plates 37a and 37b fixed in parallel to each other on the inner peripheral surfaces of the outer frames 36a and 36b. The electrode plates 37a and 37b are both vertical. In order to promote discharge, sawtooth-shaped irregularities are provided on the downstream end of the electrode plate 37a and the upstream end of the electrode plate 37b, respectively. The receiving electrodes 33a and 33b are fixed to the case 10 and are thereby electrically grounded.

放電電極32と受電極33a、および放電電極32と受電極33bは、それぞれハニカム担体31a,31bを挟んで設置される。したがって、図5に示されるように、第2リアクタ38の放電電極32と受電極33a,33bとは、ハニカム担体31の作用面であるセル12を挟んで排ガスの流れ方向の前後に配置される。   The discharge electrode 32 and the receiving electrode 33a, and the discharge electrode 32 and the receiving electrode 33b are installed with the honeycomb carriers 31a and 31b interposed therebetween, respectively. Therefore, as shown in FIG. 5, the discharge electrode 32 and the receiving electrodes 33 a and 33 b of the second reactor 38 are arranged before and after the flow direction of the exhaust gas across the cell 12 that is the working surface of the honeycomb carrier 31. .

第1リアクタ20のプラグ電極40b、および第2リアクタ38の放電電極32は、高電圧電源50の高圧側出力端子に接続されている。高電圧電源50は、インバータ回路・トランス・整流用のダイオード・平滑回路等を含んでおり、バッテリ51からの直流を昇圧して第1リアクタ20および第2リアクタ38に選択的に給電可能に構成されている。高電圧電源50からの給電の方式は、直流、直流パルス波、交流、交流パルス波、または直流と直流パルスとの重畳など任意の波形および電圧のうちから選択することができる。   The plug electrode 40 b of the first reactor 20 and the discharge electrode 32 of the second reactor 38 are connected to the high voltage side output terminal of the high voltage power supply 50. The high voltage power source 50 includes an inverter circuit, a transformer, a rectifying diode, a smoothing circuit, and the like, and is configured to boost the direct current from the battery 51 and selectively supply power to the first reactor 20 and the second reactor 38. Has been. The method of feeding from the high voltage power supply 50 can be selected from any waveform and voltage such as direct current, direct current pulse wave, alternating current, alternating current pulse wave, or superposition of direct current and direct current pulse.

ECU60は、CPU、ROM、RAM、記憶装置、入出力インターフェイス、A/DコンバータおよびD/Aコンバータを含む周知のワンチップマイクロプロセッサとして構成されており、各種センサの検出値および設定値に基づいて、所定のプログラムに従って後述のとおり制御信号を出力する。   The ECU 60 is configured as a well-known one-chip microprocessor including a CPU, a ROM, a RAM, a storage device, an input / output interface, an A / D converter, and a D / A converter, and is based on detection values and setting values of various sensors. A control signal is output as described later according to a predetermined program.

ECU60の入力インターフェイスには、エンジン70のクランク軸の近傍に設けられエンジン回転数を検出するクランク角センサ81、エンジン70の吸気経路に設けられたスロットル弁の開度を検出するスロットルポジションセンサ82などの各種センサが接続されている。ECU60の出力インターフェイスには、高電圧電源50などの各種アクチュエータが接続されている。   The input interface of the ECU 60 includes a crank angle sensor 81 provided in the vicinity of the crankshaft of the engine 70 for detecting the engine speed, a throttle position sensor 82 for detecting the opening of a throttle valve provided in the intake path of the engine 70, and the like. The various sensors are connected. Various actuators such as a high voltage power supply 50 are connected to the output interface of the ECU 60.

以上のとおり構成された本実施形態の動作について説明する。動作の際には、第1リアクタ20および第2リアクタ38に、高電圧電源50からの高電圧が選択的に加えられる。   The operation of the present embodiment configured as described above will be described. In operation, a high voltage from the high voltage power supply 50 is selectively applied to the first reactor 20 and the second reactor 38.

エンジンが始動されると、ECU60の制御によって、高電圧電源50が常時動作させられる。所定のリーン運転条件が成立している間、ECU60の制御によって、高電圧電源50から第1リアクタ20に電力が供給される。放電電極22と受電極23との間にコロナ放電などの放電が生じると、排ガス中に含まれるNOxがプラズマのエネルギによってNOに変化し、触媒装置30に供給される。このNOはNOx吸蔵還元触媒に吸蔵される。 When the engine is started, the high voltage power supply 50 is always operated under the control of the ECU 60. While the predetermined lean operation condition is satisfied, electric power is supplied from the high voltage power supply 50 to the first reactor 20 under the control of the ECU 60. When the discharge such as corona discharge between the discharge electrode 22 and receiving electrode 23 occurs, NOx contained in the exhaust gas is changed into NO 2 by the energy of the plasma, it is supplied to the catalytic converter 30. This NO 2 is stored in the NOx storage reduction catalyst.

所定のリッチスパイク条件(例えば、前回のリッチスパイク実行からの累積運転時間が所定値を上回り、且つエンジン水温などから推定される触媒装置30の温度が所定の活性温度を上回っていること)が成立すると、ECU60の制御によって、エンジン70の燃料噴射量および空燃比が制御されて、排ガスが所定のリッチスパイク時間Δt1に亘ってリッチ(過濃)にされる。   Predetermined rich spike conditions (for example, the cumulative operation time from the previous rich spike execution exceeds a predetermined value, and the temperature of the catalyst device 30 estimated from the engine water temperature or the like exceeds a predetermined activation temperature) are established. Then, the fuel injection amount and the air-fuel ratio of the engine 70 are controlled by the control of the ECU 60, and the exhaust gas is made rich (over-rich) over a predetermined rich spike time Δt1.

ECU60はまた、リッチにされた排ガスがその供給点であるエンジン70から触媒装置30に到達するまでの所要時間に関連するパラメータ、例えばエンジン回転数およびスロットル弁開度に基づいて、排ガスの流速で経路長を除することにより、エンジン70から触媒装置30までの排ガスの移動の所要時間tdを演算する。   The ECU 60 also determines the flow rate of the exhaust gas based on parameters related to the time required for the rich exhaust gas to reach the catalyst device 30 from the engine 70 that is the supply point, for example, the engine speed and the throttle valve opening. By dividing the path length, the required time td for the movement of the exhaust gas from the engine 70 to the catalyst device 30 is calculated.

そして、リッチにされた排ガスが触媒装置30に到達するタイミングで(すなわち、リッチスパイク時から所要時間tdの経過後に)、ECU60によって高電圧電源50が制御され、第1リアクタ20への給電が停止されると共に、触媒装置30内の第2リアクタ38への給電が、所定の給電時間Δt2に亘って行われる(図6参照)。給電時間Δt2は、リッチスパイク時間Δt1と等しくても異なっていてもよい。この給電時間Δt2の経過の条件に、ECU60によって高電圧電源50が制御され、第2リアクタ38への給電が停止されると共に、第1リアクタ20への給電が再開される。   The ECU 60 controls the high voltage power supply 50 at the timing when the rich exhaust gas reaches the catalyst device 30 (that is, after the time td has elapsed since the rich spike), and the power supply to the first reactor 20 is stopped. In addition, power is supplied to the second reactor 38 in the catalyst device 30 over a predetermined power supply time Δt2 (see FIG. 6). The power supply time Δt2 may be equal to or different from the rich spike time Δt1. The high voltage power supply 50 is controlled by the ECU 60 under the condition that the power supply time Δt2 has elapsed, power supply to the second reactor 38 is stopped, and power supply to the first reactor 20 is resumed.

この給電時間Δt2にわたる給電によって、第2リアクタ38の放電電極32と受電極33a,33bとの間にコロナ放電などの放電が生じ、排ガス中の酸素Oおよび炭化水素HCからH,OH,HCラジカル等が生成される。これによって、担体31に担持されたNOx吸蔵還元触媒に吸蔵されたNOが還元され、Nなどに変換されて排出される。 By this power supply over the power supply time Δt2, a discharge such as a corona discharge occurs between the discharge electrode 32 and the receiving electrodes 33a and 33b of the second reactor 38, and the oxygen O 2 and hydrocarbons HC in the exhaust gas are converted into H, OH, HC. Radicals etc. are generated. As a result, NO 2 stored in the NOx storage reduction catalyst supported on the carrier 31 is reduced, converted into N 2, etc. and discharged.

ここで、第2リアクタ38の放電電極32と受電極33a,33bとは、ハニカム担体31の作用面であるセル12を挟んで排ガスの流れ方向の前後に配置されているので、放電電極32と受電極33a,33bとの間の放電は、ハニカム担体31のセル12内を経路として、すなわち多数のセル12の表面あるいは表面の近傍を経路として行われることになる。   Here, since the discharge electrode 32 and the receiving electrodes 33a and 33b of the second reactor 38 are arranged before and after the exhaust gas flow direction with the cell 12 serving as the working surface of the honeycomb carrier 31 interposed therebetween, The discharge between the receiving electrodes 33a and 33b is performed using the inside of the cells 12 of the honeycomb carrier 31 as a route, that is, using the surface of a large number of cells 12 or the vicinity of the surface as a route.

以上のとおり、本実施形態では、NOx吸蔵還元触媒による吸蔵時に、触媒装置30の上流側で第1リアクタ20が給電され、NOx吸蔵還元触媒による還元時に、触媒装置30内の第2リアクタ38が給電される。第1リアクタ20の動作によって、排ガス中のNOからNOが生成されて触媒装置30に供給され、NOxの吸蔵が促進される。還元時には、触媒装置30のNOx吸蔵物質から排出されたNOがNに還元され、その際に、第2リアクタ38への給電によって生成された活性力の高いH,OH,HCラジカル等によって、還元反応が促進される。 As described above, in the present embodiment, the first reactor 20 is supplied with power on the upstream side of the catalyst device 30 during the storage by the NOx storage reduction catalyst, and the second reactor 38 in the catalyst device 30 is supplied during the reduction by the NOx storage reduction catalyst. Power is supplied. By the operation of the first reactor 20, NO 2 is generated from NO in the exhaust gas and supplied to the catalyst device 30, and NOx occlusion is promoted. At the time of reduction, NO 2 discharged from the NOx occlusion material of the catalyst device 30 is reduced to N 2 , and at that time, the highly active H, OH, HC radicals, etc. generated by feeding power to the second reactor 38. , The reduction reaction is promoted.

このように本実施形態では、第2リアクタ38をNOx吸蔵還元触媒が担持された担体31の内部に設置したので、この第2リアクタ38によって生成されたH,OH,HCラジカル等の寿命の短い物質を還元反応に利用できる。また、H,OH,HCラジカル等の寿命の短い物質を、吸蔵時のNOx吸蔵還元触媒に作用させると、触媒に吸蔵されているNOxを排出させてしまうおそれがあるが、本実施形態では第2リアクタ38を還元時に動作させることとしたので、このようなNOxの望ましくない排出を抑制できる。   Thus, in this embodiment, since the second reactor 38 is installed inside the carrier 31 on which the NOx storage reduction catalyst is supported, the lifetime of H, OH, HC radicals, etc. generated by the second reactor 38 is short. The substance can be used for the reduction reaction. In addition, when a substance having a short lifetime such as H, OH, and HC radicals is allowed to act on the NOx occlusion reduction catalyst during occlusion, NOx occluded in the catalyst may be discharged. Since the two reactors 38 are operated at the time of reduction, such undesirable emission of NOx can be suppressed.

また、本実施形態では、第2リアクタ38の放電電極32と受電極33a,33bとが、ハニカム担体31の作用面であるセル12を挟んで排ガスの流れ方向の前後に配置されているので、放電電極32と受電極33a,33bとの間の放電が、ハニカム担体31のセル12内を経路として、すなわち多数のセル12の表面あるいは表面の近傍を経路として行われることになる。したがって本実施形態では、放電によって生じた活性力の高いH,OH,HCラジカル等によって、還元反応を好適に促進することができる。   Further, in the present embodiment, the discharge electrode 32 and the receiving electrodes 33a and 33b of the second reactor 38 are arranged before and after the flow direction of the exhaust gas across the cell 12 which is the working surface of the honeycomb carrier 31. The discharge between the discharge electrode 32 and the receiving electrodes 33a and 33b is performed using the inside of the cells 12 of the honeycomb carrier 31 as a route, that is, using the surface of a large number of cells 12 or the vicinity of the surface as a route. Therefore, in this embodiment, the reduction reaction can be favorably promoted by H, OH, HC radicals and the like having high activity generated by discharge.

また、本実施形態では、還元剤として走行用の燃料を使用し、ECU60は、還元剤を含むリッチな排ガスがその供給点であるエンジン70から担体31に到達するまでの所要時間に関連するパラメータに基づいて、第2リアクタ38を制御し、還元剤が担体31に到達するまでの所要時間tdを考慮して第2リアクタ38の放電タイミングを決定するので、吸蔵されているNOxを好適に還元させることができる。   In the present embodiment, traveling fuel is used as the reducing agent, and the ECU 60 is a parameter related to the time required for the rich exhaust gas containing the reducing agent to reach the carrier 31 from the engine 70 as the supply point. Based on the above, the second reactor 38 is controlled, and the discharge timing of the second reactor 38 is determined in consideration of the time td required for the reducing agent to reach the carrier 31. Therefore, the stored NOx is suitably reduced. Can be made.

なお、上記実施形態および各変形例では、本発明をある程度の具体性をもって説明したが、本発明については、特許請求の範囲に記載された発明の精神や範囲から離れることなしに、さまざまな改変や変更が可能であることは理解されなければならない。すなわち、本発明は特許請求の範囲およびその等価物の範囲および趣旨に含まれる修正および変更を包含するものである。   Although the present invention has been described with a certain degree of specificity in the above-described embodiments and modifications, various modifications can be made to the present invention without departing from the spirit and scope of the invention described in the claims. It must be understood that changes are possible. That is, the present invention includes modifications and changes that fall within the scope and spirit of the appended claims and their equivalents.

特に、第1および第2の放電装置の構造については、各種の変形が可能である。例えば、第2リアクタにおける放電電極および受電極の構造は、平板状の電極板を縦横に組み合わせた格子状としてもよく、また、多数の棒状導体からなる網状またはメッシュ状としてもよい。また上記実施形態では、第1リアクタ20と触媒装置30とを単一のケース10に収容したが、これらは個別のケースに収容され互いに連結されていてもよい。   In particular, various modifications can be made to the structures of the first and second discharge devices. For example, the structure of the discharge electrode and the receiving electrode in the second reactor may be a lattice shape in which flat electrode plates are combined vertically and horizontally, or may be a mesh shape or a mesh shape composed of a large number of rod-shaped conductors. Moreover, in the said embodiment, although the 1st reactor 20 and the catalyst apparatus 30 were accommodated in the single case 10, these may be accommodated in the separate case and mutually connected.

また、上記実施形態のように還元剤として走行用の燃料を利用する構成のほか、還元剤を貯蔵するタンクを含む構成であってもよい。また、上記各実施形態では第1リアクタ20と第2リアクタ38とに単一の高電圧電源50から給電することとしたが、各リアクタに給電するための個別の高電圧電源を備えてもよい。   Moreover, the structure containing the tank which stores a reducing agent other than the structure which uses the fuel for driving | running | working as a reducing agent like the said embodiment may be sufficient. In each of the above embodiments, the first reactor 20 and the second reactor 38 are supplied with power from a single high-voltage power supply 50. However, individual high-voltage power supplies for supplying power to each reactor may be provided. .

また、上記実施形態では本発明をディーゼルエンジンの排ガス処理に適用したが、本発明はガソリンエンジンや気体燃料エンジンの排ガス処理にも適用できる。また、上記実施形態では本発明を車両の内燃機関の排ガスの浄化のために適用したが、本発明は車両のほか船舶、航空機、発電機など各種内燃機関の排ガスの浄化のために適用することも可能であり、いずれも本発明の範疇に属するものである。   Moreover, in the said embodiment, although this invention was applied to the exhaust gas process of a diesel engine, this invention is applicable also to the exhaust gas process of a gasoline engine or a gaseous fuel engine. In the above embodiment, the present invention is applied to purify exhaust gas from an internal combustion engine of a vehicle. However, the present invention is applied to purify exhaust gas from various internal combustion engines such as ships, aircrafts, and generators in addition to vehicles. These are all possible and belong to the category of the present invention.

本発明の実施形態に係る排ガス浄化装置の概略を示す側面図である。It is a side view showing the outline of the exhaust gas purification device concerning the embodiment of the present invention. 本発明の実施形態に係る排ガス浄化装置の要部を示す側面図である。It is a side view which shows the principal part of the exhaust gas purification apparatus which concerns on embodiment of this invention. 第1リアクタの正面図である。It is a front view of a 1st reactor. 第2リアクタの分解斜視図である。It is a disassembled perspective view of a 2nd reactor. 第2リアクタの要部を示す側面図である。It is a side view which shows the principal part of a 2nd reactor. リッチスパイクおよび第2リアクタへの給電の各タイミングを示すタイムチャートである。It is a time chart which shows each timing of the electric power feeding to a rich spike and a 2nd reactor.

符号の説明Explanation of symbols

1 排ガス浄化装置
10 ケース
20 第1リアクタ
30 触媒装置
22,32 放電電極
23,33a,33b 受電極
31 ハニカム担体
50 高電圧電源
60 ECU
70 エンジン
DESCRIPTION OF SYMBOLS 1 Exhaust gas purification device 10 Case 20 1st reactor 30 Catalytic device 22, 32 Discharge electrode 23, 33a, 33b Receiving electrode 31 Honeycomb carrier 50 High voltage power supply 60 ECU
70 engine

Claims (3)

NOx吸蔵還元触媒が担持された担体の上流側で放電を行う第1の放電装置と、
前記担体の内部で放電を行う第2の放電装置と、
前記第1および第2の放電装置を制御する制御手段と、を備え、
前記制御手段は、前記NOx吸蔵還元触媒による吸蔵時に前記第1の放電装置を動作させ、前記NOx吸蔵還元触媒による還元時に前記第2の放電装置を動作させることを特徴とする排ガス浄化装置。
A first discharge device for discharging on the upstream side of the carrier on which the NOx storage reduction catalyst is supported;
A second discharge device for discharging inside the carrier;
Control means for controlling the first and second discharge devices,
The exhaust gas purifying apparatus, wherein the control means operates the first discharge device during storage by the NOx storage reduction catalyst and operates the second discharge device during reduction by the NOx storage reduction catalyst.
請求項1に記載の排ガス浄化装置であって、
前記担体は排ガスが中を通る多数のセルを含み、
前記第2の放電装置は、放電電極と受電極とを含み、
前記放電電極および前記受電極は、前記セルを挟んで排ガスの流れ方向の前後に配置されていることを特徴とする排ガス浄化装置。
The exhaust gas purification device according to claim 1,
The carrier includes a number of cells through which exhaust gas passes,
The second discharge device includes a discharge electrode and a receiving electrode,
The exhaust gas purifying apparatus, wherein the discharge electrode and the receiving electrode are arranged before and after the flow direction of the exhaust gas across the cell.
請求項1または2に記載の排ガス浄化装置であって、
前記担体に還元剤を供給する還元剤供給手段を更に備え、
前記制御手段は、前記還元剤が前記還元剤供給手段による供給点から前記担体に到達するまでの所要時間に関連するパラメータに基づいて、前記第2の放電装置を制御することを特徴とする排ガス浄化装置。

The exhaust gas purifying apparatus according to claim 1 or 2,
A reducing agent supply means for supplying a reducing agent to the carrier;
The control means controls the second discharge device based on a parameter related to a time required for the reducing agent to reach the carrier from a supply point by the reducing agent supply means. Purification equipment.

JP2005193730A 2005-07-01 2005-07-01 Exhaust gas purification device Expired - Fee Related JP4479610B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005193730A JP4479610B2 (en) 2005-07-01 2005-07-01 Exhaust gas purification device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005193730A JP4479610B2 (en) 2005-07-01 2005-07-01 Exhaust gas purification device

Publications (2)

Publication Number Publication Date
JP2007009839A true JP2007009839A (en) 2007-01-18
JP4479610B2 JP4479610B2 (en) 2010-06-09

Family

ID=37748664

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005193730A Expired - Fee Related JP4479610B2 (en) 2005-07-01 2005-07-01 Exhaust gas purification device

Country Status (1)

Country Link
JP (1) JP4479610B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011011106A (en) * 2009-06-30 2011-01-20 Acr Co Ltd Plasma reactor
DE102009041092A1 (en) * 2009-09-14 2011-03-24 Emitec Gesellschaft Für Emissionstechnologie Mbh Exhaust treatment device with two honeycomb bodies for generating an electrical potential
JP2012057602A (en) * 2010-09-13 2012-03-22 Nissan Motor Co Ltd Exhaust emission control system
WO2012035033A1 (en) * 2010-09-15 2012-03-22 Emitec Gesellschaft Für Emissionstechnologie Mbh Device for producing an electric field in an exhaust gas system
JP2013007564A (en) * 2012-10-12 2013-01-10 Osaka Gas Co Ltd Open type burning appliance
JP2013050071A (en) * 2011-08-31 2013-03-14 Honda Motor Co Ltd Exhaust emission control device

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011011106A (en) * 2009-06-30 2011-01-20 Acr Co Ltd Plasma reactor
DE102009041092A1 (en) * 2009-09-14 2011-03-24 Emitec Gesellschaft Für Emissionstechnologie Mbh Exhaust treatment device with two honeycomb bodies for generating an electrical potential
JP2013504412A (en) * 2009-09-14 2013-02-07 エミテック ゲゼルシヤフト フユア エミツシオンス テクノロギー ミツト ベシユレンクテル ハフツング Exhaust gas treatment device having two honeycomb bodies for generating electric potential
US8628606B2 (en) 2009-09-14 2014-01-14 Emitec Gesellschaft Fuer Emissionstechnologie Mbh Exhaust gas treatment device having two honeycomb bodies for generating an electric potential, method for treating exhaust gas and motor vehicle having the device
JP2012057602A (en) * 2010-09-13 2012-03-22 Nissan Motor Co Ltd Exhaust emission control system
WO2012035033A1 (en) * 2010-09-15 2012-03-22 Emitec Gesellschaft Für Emissionstechnologie Mbh Device for producing an electric field in an exhaust gas system
JP2013540936A (en) * 2010-09-15 2013-11-07 エミテック ゲゼルシヤフト フユア エミツシオンステクノロギー ミツト ベシユレンクテル ハフツング Apparatus for generating an electric field in an exhaust gas system
US8790448B2 (en) 2010-09-15 2014-07-29 Emitec Gesellschaft Fuer Emissionstechnologie Mbh Device for producing an electrical field in an exhaust gas system
JP2013050071A (en) * 2011-08-31 2013-03-14 Honda Motor Co Ltd Exhaust emission control device
JP2013007564A (en) * 2012-10-12 2013-01-10 Osaka Gas Co Ltd Open type burning appliance

Also Published As

Publication number Publication date
JP4479610B2 (en) 2010-06-09

Similar Documents

Publication Publication Date Title
JP4263711B2 (en) Exhaust gas purification device for internal combustion engine
EP1309390B1 (en) Process and apparatus for removing nox from engine exhaust gases
US7946111B2 (en) Apparatus and method for PM purification
JP4479610B2 (en) Exhaust gas purification device
EP1669563B1 (en) Exhaust gas purifying device
US9903248B2 (en) Method and apparatus for exhaust purification for an internal combustion engine
US20100058742A1 (en) Exhaust emission control apparatus for internal combustion engine
JP2002266626A (en) Exhaust emission control device for internal combustion engine
US9926825B2 (en) Method and apparatus for exhaust purification for an internal combustion engine
JP4941284B2 (en) Exhaust gas treatment system for internal combustion engine
EP1077078A2 (en) System for converting particulate matter in gasoline engine exhaust gas
JP4453700B2 (en) Exhaust gas purification device for internal combustion engine
EP2075422A1 (en) Exhaust gas treatment system for an internal combustion engine
JP4299019B2 (en) Plasma reactor
EP1479430A1 (en) An exhaust gas purifying apparatus and method of using the same
JP2008163871A (en) Exhaust emission control device for internal combustion engine
US6787002B2 (en) Compact plasma reactor
JP2005344688A (en) Exhaust emission control device of internal combustion engine
JP2004181418A (en) PLASMA ASSISTING CATALYTIC APPARATUS FOR REMOVING NOx AND EXHAUST GAS CLEANING METHOD
US11795849B1 (en) Apparatus for purifying exhaust gas
JP6957283B2 (en) Engine system
KR20010105140A (en) An apparatus for purificating exhaust gas of the internal combustion engine
JP4717755B2 (en) Nitrogen oxide treatment apparatus and method
JP2023161518A (en) exhaust system
JP2011214561A (en) Exhaust emission control device for internal combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080218

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100223

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100225

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100308

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130326

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4479610

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130326

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140326

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees