JP2011214561A - Exhaust emission control device for internal combustion engine - Google Patents

Exhaust emission control device for internal combustion engine Download PDF

Info

Publication number
JP2011214561A
JP2011214561A JP2010086070A JP2010086070A JP2011214561A JP 2011214561 A JP2011214561 A JP 2011214561A JP 2010086070 A JP2010086070 A JP 2010086070A JP 2010086070 A JP2010086070 A JP 2010086070A JP 2011214561 A JP2011214561 A JP 2011214561A
Authority
JP
Japan
Prior art keywords
exhaust gas
ozone
catalyst
gas temperature
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010086070A
Other languages
Japanese (ja)
Inventor
Yohei Kinoshita
洋平 木下
Kotaro Hayashi
孝太郎 林
Gao Watabe
雅王 渡部
Hideaki Suzuki
秀明 鈴木
Koji Yoshida
浩二 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Industries Corp
Toyota Motor Corp
Original Assignee
Toyota Industries Corp
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Industries Corp, Toyota Motor Corp filed Critical Toyota Industries Corp
Priority to JP2010086070A priority Critical patent/JP2011214561A/en
Publication of JP2011214561A publication Critical patent/JP2011214561A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Exhaust Gas After Treatment (AREA)
  • Processes For Solid Components From Exhaust (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an exhaust emission control device for an internal combustion engine, high in purifying efficiency with ozone.SOLUTION: The exhaust emission control device for the internal combustion engine includes an NOcatalyst, a DPF (Diesel Particulate Filter), an ozone supply means, an exhaust gas temperature detecting means and an ozone supply control means, and controls the ozone supply means to supply ozone to the NOcatalyst but not to the particle filter when an exhaust gas temperature is lower than 200°C, to supply ozone to the NOcatalyst and the particle filter when the exhaust gas temperature is in a range of 200°C or higher and 250°C or lower, to supply ozone to the particle filter but not to the NOcatalyst when the exhaust gas temperature is higher than 250°C and equal to or lower than 300°C, and to supply ozone to neither the NOcatalyst nor the particle filer when the exhaust gas temperature is higher than 300°C.

Description

本発明は、内燃機関の排気ガス浄化装置に関し、さらに詳しくは内燃機関から排出される排気ガス中のNOおよび粒子状物質の浄化において高いオゾン浄化効率を達成し得る内燃機関の排気ガス浄化装置に関する。 TECHNICAL FIELD The present invention relates to an exhaust gas purification device for an internal combustion engine, and more particularly, to an exhaust gas purification device for an internal combustion engine that can achieve high ozone purification efficiency in purification of NO x and particulate matter in exhaust gas discharged from the internal combustion engine. About.

一般に、ディーゼルエンジンの排ガスには、炭素を主成分とする粒子状物質(以下、PMと略記する。PM:Particulate Matter)が含まれ、大気汚染の原因となることから、このような粒子状物質を捕集して除去するための装置が提案されている。その1つとして、燃料を強制的に噴射供給することにより粒子フィルタ(ディーゼルパティキュレートフィルタともいう。以下、DPFと略記する。)の温度を上昇させて捕集したPMを酸化・燃焼させる方法が知られている。   In general, exhaust gas from diesel engines contains particulate matter mainly composed of carbon (hereinafter abbreviated as PM; PM: Particulate Matter), which causes air pollution. Devices have been proposed for collecting and removing. As one of them, there is a method in which the collected PM is oxidized and burned by forcibly supplying fuel to raise the temperature of a particle filter (also referred to as a diesel particulate filter, hereinafter abbreviated as DPF). Are known.

しかし、この燃料を強制的に噴射供給する方法は、燃費の悪化やPMの急激な燃焼によるDPFの破損の問題を有している。このため、最近、酸化力の強いオゾン(O)を用いてPMを酸化して処理する技術が提案された。
例えば、特許文献1には、排気通路内に配置されて排気ガス中の未燃焼成分を酸化する酸化触媒と、その下流側の排気通路内に設置された粒子状物質を捕集する粒子フィルタと、その下流側に設置されたNO触媒と、粒子フィルタとNO触媒との間のオゾン供給手段と、排気通路内の温度に基づいてオゾン供給手段を制御する制御手段とを備えた内燃機関の排気浄化装置が記載されている。そして、前記浄化装置においては、オゾン供給手段からNO触媒にオゾンが供給され、粒子フィルタにはオゾンは供給されない。
However, this method of forcibly supplying fuel has a problem of DPF breakage due to deterioration of fuel consumption or rapid combustion of PM. Therefore, recently, a technique for oxidizing and treating PM using ozone (O 3 ) having strong oxidizing power has been proposed.
For example, Patent Document 1 discloses an oxidation catalyst that is disposed in an exhaust passage and oxidizes unburned components in exhaust gas, and a particle filter that collects particulate matter installed in the exhaust passage on the downstream side thereof. An internal combustion engine comprising a NO X catalyst installed downstream thereof, an ozone supply means between the particle filter and the NO X catalyst, and a control means for controlling the ozone supply means based on the temperature in the exhaust passage Exhaust gas purification devices are described. Then, in the purifier is supplied with ozone to the NO X catalyst from the ozone supply means, the particle filter ozone is not supplied.

また、特許文献2には、排ガス通路内に設置されて排ガス中の粒子状物質を捕集する粒子状物質捕集装置と、その上流側の粒子状物質捕集装置にオゾンを供給可能なオゾン供給手段と、さらにその上流側に配置したNO酸化触媒と、粒子状物質捕集装置を通る排ガスの温度を測定する排ガス温度検知手段と、検知された温度に基づいて粒子状物質捕集装置にオゾンを供給するオゾン供給手段を制御するオゾン供給制御手段とを備えた排ガス浄化装置が記載されている。そして、前記浄化装置においては、オゾン供給手段から粒子フィルタにオゾンが供給され、NO触媒にはオゾンは供給されない。 Patent Document 2 discloses a particulate matter collection device that is installed in an exhaust gas passage and collects particulate matter in exhaust gas, and ozone that can supply ozone to the upstream particulate matter collection device. Supply means, NO X oxidation catalyst disposed further upstream thereof, exhaust gas temperature detection means for measuring the temperature of exhaust gas passing through the particulate matter collection device, and particulate matter collection device based on the detected temperature An exhaust gas purifying apparatus including ozone supply control means for controlling ozone supply means for supplying ozone is described. Then, in the purification device, ozone is supplied from the ozone supply means to the particle filter, is the NO X catalyst ozone is not supplied.

特開2007−289844号公報JP 2007-289844 A 特開2007−327460号公報JP 2007-327460 A

しかし、これら公知の排気ガス浄化装置によってもオゾンによる浄化効率が十分ではなく、さらに改善が求められている。
従って、本発明の目的は、オゾンによる浄化効率の高い内燃機関の排気ガス浄化装置を提供することである。
However, even with these known exhaust gas purification devices, the purification efficiency by ozone is not sufficient, and further improvement is required.
Accordingly, an object of the present invention is to provide an exhaust gas purification device for an internal combustion engine having high purification efficiency by ozone.

本発明は、内燃機関の排気ガス流路に配置されて排気ガス中のNOを浄化するNO触媒と、排気ガス中の粒子状物質を捕集する粒子フィルタと、該NO触媒および粒子フィルタに各々オゾンを供給可能なオゾン供給手段と、排気ガス温度検知手段と、前記排気ガス温度検知手段により検知された排気ガス温度に基づいて前記2つのオゾン供給手段を制御するオゾン供給制御手段とを備え、排気ガス温度が200℃未満であるときは、オゾンを、NO触媒に供給するが、粒子フィルタには供給しない、排気ガス温度が200℃以上250℃以下の範囲であるときは、オゾンを、NO触媒および粒子フィルタに供給する、排気ガス温度が250℃より高く300℃以下の範囲であるときは、オゾンを、NO触媒には供給しないが、粒子フィルタには供給する、排気ガス温度が300℃より高いときは、オゾンを、NO触媒、粒子フィルタのいずれにも供給しない、ように前記オゾン供給手段を制御することを特徴とする内燃機関の排気浄化装置に関する。 The present invention includes a particulate filter for collecting the NO X catalyst for purifying NO X in the exhaust gas flow path arranged in the exhaust gas of an internal combustion engine, the particulate matter in the exhaust gas, the NO X catalyst and particles Ozone supply means capable of supplying ozone to the filter; exhaust gas temperature detection means; ozone supply control means for controlling the two ozone supply means based on the exhaust gas temperature detected by the exhaust gas temperature detection means; When the exhaust gas temperature is less than 200 ° C., ozone is supplied to the NO X catalyst, but not supplied to the particle filter. When the exhaust gas temperature is in the range of 200 ° C. or more and 250 ° C. or less, ozone is supplied to the nO X catalyst and particulate filter, when the exhaust gas temperature is in the range of 300 ° C. or less higher than 250 ° C. is ozone, but not supplied to the nO X catalyst Supplying the particulate filter, when the exhaust gas temperature is higher than 300 ° C. is ozone, NO X catalyst, the internal combustion engine and controls the ozone supply means either to not also supplied, as in the particle filter The present invention relates to an exhaust purification device.

本発明の内燃機関の排気ガス浄化装置によれば、オゾンによる高い浄化効率を達成することができる。   According to the exhaust gas purification apparatus for an internal combustion engine of the present invention, high purification efficiency by ozone can be achieved.

図1は、本発明の排気ガス浄化装置の一実施態様を示す模式図である。FIG. 1 is a schematic view showing an embodiment of the exhaust gas purifying apparatus of the present invention. 図2は、本発明の実施態様のオゾン供給制御手段における処理の一例を示すフロー図である。FIG. 2 is a flowchart showing an example of processing in the ozone supply control means of the embodiment of the present invention. 図3は、本発明の排気ガス浄化装置の模擬試験におけるオゾンによるNO酸化率と排気ガス温度との関係を示すグラフである。Figure 3 is a graph showing the relationship between the NO X oxidation rate by ozone with the exhaust gas temperature at the simulation test of the exhaust gas purifying apparatus of the present invention. 図4は、本発明の排気ガス浄化装置の模擬試験におけるオゾンによるPM酸化率と排気ガス温度との関係を示すグラフである。FIG. 4 is a graph showing the relationship between the PM oxidation rate by ozone and the exhaust gas temperature in the simulation test of the exhaust gas purification apparatus of the present invention.

本発明の実施態様において、内燃機関の排気ガス浄化装置1は、図1に示すように内燃機関の排気ガス流路2に配置されて排気中のNOを浄化する、排気ガスの流れ方向の上流に位置するするNO触媒3と、排気ガス中の粒子状物質(PM)を捕集する、排気ガスの流れ方向の下流に位置する粒子フィルタ(DPF)4と、該NO触媒3および粒子フィルタ4に各々オゾンを供給可能なオゾン供給手段5、15と、排気ガス温度検知手段6と、前記排気ガス温度検知手段6により検知された排気ガス温度Tに基づいて前記2つのオゾン供給手段を制御する電子制御ユニット(ECU)であるオゾン供給制御手段7とを備え、排気ガス温度が200℃未満であるときは、オゾンを、NO触媒3に供給するが、DPF4には供給しない、排気ガス温度が200℃以上250℃以下の範囲であるときは、オゾンを、NO触媒3およびDPF4に供給する、排気ガス温度が250℃より高く300℃以下の範囲であるときは、オゾンを、NO触媒3には供給しないが、DPF4には供給する、排気ガス温度が300℃より高いときは、オゾンを、NO触媒3および粒子フィルタ4のいずれにも供給しない、ように前記オゾン供給手段7を制御する。 In an embodiment of the present invention, an exhaust gas purification device for an internal combustion engine is disposed in an exhaust gas passage 2 of an internal combustion engine as shown in FIG. 1 for purifying NO X in the exhaust gas, the exhaust gas flow direction NO X catalyst 3 located upstream, particulate filter (DPF) 4 located downstream in the exhaust gas flow direction for collecting particulate matter (PM) in the exhaust gas, NO X catalyst 3 and Ozone supply means 5, 15 capable of supplying ozone to the particle filter 4, exhaust gas temperature detection means 6, and the two ozone supply means based on the exhaust gas temperature T detected by the exhaust gas temperature detection means 6. And ozone supply control means 7 which is an electronic control unit (ECU) for controlling the ozone, and when the exhaust gas temperature is less than 200 ° C., ozone is supplied to the NO X catalyst 3 but not to the DPF 4 , When the exhaust gas temperature is in the range of 200 ° C. or higher 250 ° C. or less, the ozone is supplied to the NO X catalyst 3 and DPF 4, when the exhaust gas temperature is in the range of 300 ° C. or less higher than 250 ° C. is ozone Is not supplied to the NO X catalyst 3, but is supplied to the DPF 4. When the exhaust gas temperature is higher than 300 ° C., ozone is not supplied to either the NO X catalyst 3 or the particle filter 4 The ozone supply means 7 is controlled.

本発明の排気ガス浄化装置においては、NO触媒3およびDPF4のいずれにもオゾン供給手段5、15によってそれぞれオゾンを供給し得る前記構成と、前記の排気ガス温度検知手段6により検知された排気ガス温度Tに基づいてオゾンの供給手段を制御するオゾン供給制御手段7とを組み合わせ、且つ前記のオゾン供給制御手段における前記フローによりオゾンを供給するオゾン供給手段の制御が重要であり、この構成によってオゾンによる高い浄化効率を達成し得る。
前記のNO触媒3とDPF4との位置関係は、図1に示すようにNO触媒3が粒子フィルタ4に対して排気ガスの流れ方向の上流側に位置していることが好適である。
In the exhaust gas purifying apparatus of the present invention, the exhaust gas detected by the exhaust gas temperature detecting means 6 and the above-described configuration capable of supplying ozone to both the NO X catalyst 3 and the DPF 4 by the ozone supplying means 5 and 15, respectively. In combination with the ozone supply control means 7 for controlling the ozone supply means based on the gas temperature T, and the control of the ozone supply means for supplying ozone by the flow in the ozone supply control means is important. High purification efficiency by ozone can be achieved.
The positional relationship between the NO X catalyst 3 and the DPF 4 is preferably such that the NO X catalyst 3 is located upstream of the particle filter 4 in the exhaust gas flow direction as shown in FIG.

本発明においてオゾンを供給する制御は、排気ガス温度検知手段6により検知された排気温度Tが設定温度である200℃、250℃および300℃と比較して低い温度、等しい温度、高い温度のいずれかであるかを判断し、図2に示すフローに基づいてNO触媒3および粒子フィルタ4にオゾンを供給するか供給しないことによって制御するものである。
ステップS10で検知した排気ガス温度(T)が200℃未満であるか否かを比較し、T<200℃であるすなわちYであればステップS40に進み、オゾンを、NO触媒3に供給するが、DPF4には供給しないで、排気ガス温度検知に戻る。
T≧200℃であるすなわちNであればステップS20に進み、排気ガス温度(T)が250℃未満であるか否かを比較し、T<250℃であるすなわちYであればステップ50に進み、オゾンを、NO触媒3およびDPF4に供給し、排気ガス温度検知に戻る。
T≧250℃であるすなわちNであればステップS30に進み、排気ガス温度(T)が300℃未満であるか否かを比較し、T<300℃であるすなわちYであればステップS60に進み、オゾンを、NO触媒3には供給しないが、DPF4には供給し、排気ガス温度検知に戻る。
T≧300℃であるすなわちNであればステップ70に進み、オゾンを、NO触媒3、粒子フィルタ4のいずれにも供給しないで、排気ガス温度検知に戻る、フローをエンジン停止まで続ける。
In the present invention, ozone is supplied by controlling the exhaust temperature T detected by the exhaust gas temperature detection means 6 at a lower temperature, equal temperature, or higher temperature than the set temperatures of 200 ° C., 250 ° C. and 300 ° C. determines the whether or is for controlling by not supplying either deliver ozone to the nO X catalyst 3 and the particulate filter 4 based on the flow shown in FIG.
Exhaust gas temperature detected in step S10 (T) is compared whether less than 200 ° C., and supplies the process proceeds to step S40 if it i.e. a Y T <200 ° C., ozone, the NO X catalyst 3 However, it returns to exhaust gas temperature detection without supplying to DPF4.
If T ≧ 200 ° C., that is, N, the process proceeds to step S20, and whether or not the exhaust gas temperature (T) is less than 250 ° C. is compared. If T <250 ° C., that is, Y, the process proceeds to step 50. the ozone was supplied to the NO X catalyst 3 and DPF 4, it returns to the exhaust gas temperature sensing.
If T ≧ 250 ° C., that is, if N, the process proceeds to step S30 to compare whether the exhaust gas temperature (T) is less than 300 ° C. If T <300 ° C., that is, if Y, the process proceeds to step S60. , Ozone is not supplied to the NO X catalyst 3, but is supplied to the DPF 4, and the process returns to the exhaust gas temperature detection.
Proceeds to it if the step 70 is a is namely N T ≧ 300 ° C., ozone, NO X catalyst 3, not also supplied to any of the particle filter 4, the flow returns to the exhaust gas temperature sensing, continued flow until the engine stops.

本発明のオゾン供給制御においては、前記のフローに示すように排気ガス温度Tが外気温度〜250℃(250℃未満)の温度範囲でNO触媒3にオゾンを供給することが必要である。この温度範囲でNO触媒3にオゾンを供給することによりオゾンによる高い浄化効率が得られる理論的根拠は明らかになっていないが、図3に示すように外気温度〜250℃(250℃未満)、特に外気温度〜225℃の範囲で後述の実施例の欄に詳述する実験法に基づいて実施される排気ガス浄化試験によって高いNO酸化率が得られていることが理解される。
これは、前記温度範囲でNO触媒にOを添加すると、NOとOとが優先的に反応し、Oが熱分解して発生するOラジカルとNOとが反応しないか反応が抑制されることによると考えられる。
In the ozone supply control of the present invention, it is necessary that the exhaust gas temperature T, as shown in the flow of supplying ozone to the NO X catalyst 3 in a temperature range of ambient temperature to 250 DEG ° C. (less than 250 ° C.). Although rationale for high purification efficiency by ozone is obtained is not clear by supplying ozone to the NO X catalyst 3 in this temperature range, the outside air temperature to 250 DEG ° C. As shown in FIG. 3 (below 250 ° C.) It is understood to be particularly high NO X oxidation ratio by the exhaust gas purification test performed on the basis of the experimental method described in detail in the column below examples within the range of ambient temperature to 225 ° C. is obtained.
This is because if NO 3 is added to the NO X catalyst within the above temperature range, NO and O 3 react preferentially, and O radicals generated by thermal decomposition of O 3 and NO X do not react. It is thought to be due to being suppressed.

さらに、本発明のオゾン供給制御においては、前記のフローに示すように排気ガス温度が200℃(以上)〜300℃(未満)の温度範囲でDPF4にオゾンを供給することが必要である。この温度範囲でDPF4にオゾンを供給することによりオゾンによる高い浄化効率が得られる理論的根拠は明らかになっていないが、図4に示すように200℃(以上)〜300℃(未満)、好適には225〜300℃(未満)の範囲、特に225〜275℃(未満)の範囲で後述の実施例の欄に詳述する実験法に基づいて実施される排気浄化試験によって高いPM酸化率が得られていることが理解される。
これは、前記温度範囲でDPFにOを添加すると、Oが熱分解して発生するOラジカルとOとが共存するとPMが効率的に燃焼することによると考えられる。
本発明における前記オゾン供給制御の設定温度である200℃、250℃および300℃は、より好ましい温度範囲を規定するために225℃、250℃および275℃とすることも可能である。
Furthermore, in the ozone supply control of the present invention, it is necessary to supply ozone to the DPF 4 in the exhaust gas temperature range of 200 ° C. (above) to 300 ° C. (less than) as shown in the above flow. Although the theoretical basis for obtaining high purification efficiency by ozone by supplying ozone to the DPF 4 in this temperature range has not been clarified, as shown in FIG. 4, it is preferably 200 ° C. (above) to 300 ° C. (less than). In the range of 225 to 300 ° C. (less than), particularly in the range of 225 to 275 ° C. (less than), a high PM oxidation rate is obtained by an exhaust purification test carried out based on an experimental method described in detail in the section of the examples below. It is understood that it is obtained.
This, the addition of O 3 in the DPF at the temperature range, when the O radical and O 3 that O 3 is generated by thermal decomposition coexist PM is believed to be due to burn efficiently.
The set temperatures of the ozone supply control in the present invention, 200 ° C., 250 ° C. and 300 ° C., can be set to 225 ° C., 250 ° C. and 275 ° C. in order to define a more preferable temperature range.

本発明におけるNO触媒としては、特に制限はなく例えば吸蔵還元型NO触媒(NSR:NO Storage Reduction)又は選択還元型NO触媒(SCR:Selective Catalytic Reduction)が挙げられる。
前記吸蔵還元型NO触媒としては、アルミナAl等の酸化物からなる基材表面に、触媒成分としての白金Ptのような貴金属と、NO吸収成分とが担持されて構成されている。NO吸収成分は、例えばK、Na、Li、Csのようなアルカリ金属、Ba、Caのようなアルカリ土類、La、Yのような希土類が挙げられる。
The NO X catalyst in the present invention is not particularly limited, and examples thereof include an occlusion reduction type NO X catalyst (NSR: NO X Storage Reduction) or a selective reduction type NO X catalyst (SCR: Selective Catalytic Reduction).
As the storage reduction NO X catalyst, on a substrate surface made of oxide such as alumina Al 2 O 3, and a noble metal such as platinum Pt as a catalyst component, and the NO X absorbing component is composed it is carried Yes. Examples of the NO X absorbing component include alkali metals such as K, Na, Li and Cs, alkaline earths such as Ba and Ca, and rare earths such as La and Y.

そしてNO触媒が吸蔵還元型NO触媒の場合、これに流入される排気の空燃比が所定値(典型的には理論空燃比)よりリーンのときにはNOを吸収し、これに流入される排気中の酸素濃度が低下すると吸収したNOを放出するという、NOの吸放出作用を行う。本実施形態ではディーゼルエンジンが使用されているため、通常時の排気空燃比はリーンであり、NO触媒3は排気中のNOの吸収を行う。また、NO触媒3にて還元剤が供給され、流入排気ガスの空燃比がリッチになると、NO触媒3は吸収したNOの放出を行い得る。そしてこの放出されたNOは還元剤と反応して還元浄化され得る。 When the NO X catalyst is a NOx storage reduction catalyst, when the air-fuel ratio of the exhaust gas flowing into the NO X catalyst is leaner than a predetermined value (typically the theoretical air-fuel ratio), NO X is absorbed and flows into this. that the oxygen concentration in the exhaust gas to release NO X absorbed to decrease, perform absorption and release action of NO X. In this embodiment, since a diesel engine is used, the exhaust air-fuel ratio at normal times is lean, and the NO X catalyst 3 absorbs NO X in the exhaust. The reducing agent is supplied at the NO X catalyst 3, the air-fuel ratio of the inflowing exhaust gas becomes rich, NO X catalyst 3 may perform the release of the absorbed NO X. The released NO X can be reduced and purified by reacting with the reducing agent.

また、前記選択還元型NO触媒としては、ゼオライトまたはアルミナ等の基材表面にPtなどの貴金属を担持したものや、その基材表面にCu等の遷移金属をイオン交換して担持させたもの、その基材表面にチタニア/バナジウム触媒(V/WO/TiO)を担持させたもの等が挙げられる。
この選択還元型NO触媒においては、流入排気ガスの空燃比がリーンという条件下で、排気ガス中の炭化水素(HC)、NOが反応されてN、CO、HOを生成して浄化される。ただしNOの浄化にはHCの存在が必要で、空燃比がリーンであっても排気ガス中には未燃HCが必ず含まれているので、これを利用してNOの還元浄化が可能である。また、前記吸蔵還元型NO触媒のようにリッチスパイクを実施して還元剤を供給してもよい。この場合、還元剤としては前記に例示したもののほか、アンモニアや尿素を使用することもできる。
In addition, the selective reduction type NO X catalyst is a catalyst in which a noble metal such as Pt is supported on the surface of a base material such as zeolite or alumina, or a transition metal such as Cu is supported on the surface of the base material by ion exchange. And those having a titania / vanadium catalyst (V 2 O 5 / WO 3 / TiO 2 ) supported on the surface of the substrate.
In this selective reduction type NO X catalyst, hydrocarbon (HC) and NO X in the exhaust gas are reacted to generate N 2 , CO 2 , and H 2 O under the condition that the air-fuel ratio of the inflowing exhaust gas is lean. To be purified. However, NO x purification requires the presence of HC, and even if the air-fuel ratio is lean, exhaust gas always contains unburned HC, so this can be used to reduce and purify NO x. It is. Further, by carrying out the rich spike may be supplied reducing agent as the occlusion reduction type NO X catalyst. In this case, ammonia or urea can be used as the reducing agent in addition to those exemplified above.

本発明における粒子フィルタ4としては、特に制限はなく例えば多孔質セラミックからなるハニカム構造体を備えたいわゆるウォールフロー型であり得て、ハニカム構造体は、コージェライト、シリカ、アルミナ等のセラミックス材料で形成され得る。排気は図1で矢印にて示されるように図1中左から右に向かって流れる。
通常、ハニカム構造体にはセルとも称される通路、上流側に詰栓が施された通路と、下流側に詰栓が施された他の通路とが交互に区画形成され、ハニカム状をなしている。排気ガスは多孔質セラミックの流路壁面を通過して通路に流入し下流側に流れる。このとき、排気ガス中のPMは多孔質のセラミックスによって捕集され、PMの大気への放出が防止される。このように排気が流路壁面を通過し、その際にPMを濾過捕集するフィルタ形式がウォールフロー型と称される。
The particle filter 4 in the present invention is not particularly limited, and may be a so-called wall flow type having a honeycomb structure made of a porous ceramic, for example, and the honeycomb structure is made of a ceramic material such as cordierite, silica, or alumina. Can be formed. Exhaust gas flows from left to right in FIG. 1 as indicated by arrows in FIG.
Usually, the honeycomb structure is formed into a honeycomb shape by alternately forming a passage called a cell, a passage having a plug on the upstream side, and another passage having a plug on the downstream side. ing. The exhaust gas passes through the wall surface of the porous ceramic and flows into the passage and flows downstream. At this time, PM in the exhaust gas is collected by the porous ceramics, and release of PM into the atmosphere is prevented. A filter type in which exhaust gas passes through the wall surface of the flow path and collects PM at that time is called a wall flow type.

本発明におけるオゾン供給手段5、15としては、オゾン供給ノズル(図示せず)が挙げられる。オゾン供給ノズルにはオゾン供給源としてのオゾン発生器(図示せず)が接続されている。オゾン発生器で発生したオゾンが、オゾン供給通路51、52を介してオゾン供給ノズルに供給されると共に、このオゾン供給ノズルから各々下流側のNO触媒3およびDPF4に向かって排気ガス通路内に噴射供給される。
このオゾン供給ノズルは、各々NO触媒3およびDPF4の直上流位置に配置され、そこからNO触媒3およびDPF4に向かってオゾンを供給することが好適である。
または、オゾン供給ノズルは、各々NO触媒3およびDPF4の装置内に設けてもよい。
Examples of the ozone supply means 5 and 15 in the present invention include an ozone supply nozzle (not shown). An ozone generator (not shown) as an ozone supply source is connected to the ozone supply nozzle. Ozone generated by the ozone generator is supplied to the ozone supply nozzle via the ozone supply passage 51, 52, each downstream of the NO X catalyst 3 and the exhaust gas passage toward DPF4 from the ozone supply nozzle It is supplied by injection.
The ozone supply nozzle, each disposed immediately upstream position of the NO X catalyst 3 and DPF 4, it is preferable to supply ozone therefrom toward the NO X catalyst 3 and DPF 4.
Or, ozone supply nozzle may be respectively provided in the apparatus of the NO X catalyst 3 and DPF 4.

前記のオゾン発生器としては、特に制限はなく例えば高電圧を印加可能な放電管内に、原料となる乾燥した空気または酸素を流しつつオゾンを発生させる形態や、他の任意の形式のものを用いることができる。ここで原料となる乾燥した空気または酸素は、排気流路2外から取り込まれる気体、例えば外気に含まれる気体が好適である。   There is no restriction | limiting in particular as said ozone generator, For example, the form which generate | occur | produces ozone, flowing dry air or oxygen used as a raw material in the discharge tube which can apply a high voltage, and the thing of other arbitrary forms are used. be able to. Here, the dry air or oxygen used as a raw material is preferably a gas taken from outside the exhaust passage 2, for example, a gas contained in the outside air.

本発明における排気ガス温度検出手段6としては、排気ガス通路内の温度を検出する手段、例えば温度センサが挙げられ、温度センサにより検知された排気ガス温度に基づいて電子制御ユニット(ECU)であるオゾン供給制御手段7に電気的に接続されている。
また、本発明における排気ガス温度検出手段として、温度センサに限定されず、エンジンの運転状況等に基づいてオゾン供給制御手段内に保存されたエンジン特性マップデータ等を用いて排気ガス温度を推定する手段であってもよい。
The exhaust gas temperature detection means 6 in the present invention includes a means for detecting the temperature in the exhaust gas passage, for example, a temperature sensor, and is an electronic control unit (ECU) based on the exhaust gas temperature detected by the temperature sensor. The ozone supply control means 7 is electrically connected.
Further, the exhaust gas temperature detection means in the present invention is not limited to the temperature sensor, and the exhaust gas temperature is estimated using engine characteristic map data stored in the ozone supply control means based on the operating condition of the engine or the like. It may be a means.

本発明の排気ガス浄化装置は、上記の構成を有することによってオゾンによる高い浄化効率を達成することができる。しかし、前記効果を低減しない限り、内燃機関の排気浄化装置に適用し得る任意の他の機能を有する部材を加えることが可能であり、例えば任意の位置に排気中のHC、COを酸化して浄化し得る酸化触媒を加え得る。
本発明の排気ガス浄化装置によれば、ディーゼルエンジンだけでなくNOおよびPMを発生し得る全ての内燃機関、例えば、直噴の火点火式内燃機関であるリーンバーンガソリンエンジンにも適用し得る。
The exhaust gas purification apparatus of the present invention can achieve high purification efficiency by ozone by having the above-described configuration. However, as long as the effect is not reduced, a member having any other function that can be applied to the exhaust gas purification apparatus for an internal combustion engine can be added. For example, HC and CO in the exhaust gas are oxidized at an arbitrary position. An oxidation catalyst that can be purified can be added.
According to the exhaust gas purifying apparatus of the present invention, all of the internal combustion engine capable of generating NO X and PM as well diesel engines, for example, also applicable to a lean-burn gasoline engine is a fire-ignition internal combustion engine of direct injection .

以下に、実施例に基づいて本発明を説明する。本発明は以下の実施例に限定されない。
以下の実験は、本発明の構成による作用・効果を確認するためのものである。
Hereinafter, the present invention will be described based on examples. The present invention is not limited to the following examples.
The following experiment is for confirming the action and effect of the configuration of the present invention.

実験条件1
後述する模擬ガス(オゾンを含む)を用いて、石英管内に配置されたNO酸化触媒を通過させ排気ガスダクトから外部に排出した。石英管の外周部に電気ヒータを設置し、NO酸化触媒の温度を室温(20℃前後)〜400℃で温度を一定速度で上昇させた。NO酸化触媒の直上流位置における温度を計測するための温度センサを設けた。排出される排気ガス中のNO濃度をFID式ガス分析計(堀場製作所、MEXA−7100)により連続的に測定し、NO酸化率を求めた。
模擬ガス条件を以下に示す。
流量:15L/min
NO:200ppm
:400−500ppm
:7%
CO:10%
:balance
Experimental condition 1
Using a simulation gas (including ozone), which will be described later, the NO X oxidation catalyst disposed in the quartz tube was passed through and discharged to the outside from the exhaust gas duct. An electric heater was installed on the outer periphery of the quartz tube, and the temperature of the NO x oxidation catalyst was raised at a constant rate from room temperature (around 20 ° C.) to 400 ° C. A temperature sensor for measuring the temperature immediately upstream of the NO X oxidation catalyst was provided. The NO X concentration in the exhaust gas discharged was continuously measured with a FID gas analyzer (Horiba, MEXA-7100) to determine the NO X oxidation rate.
The simulated gas conditions are shown below.
Flow rate: 15L / min
NO: 200ppm
O 3: 400-500ppm
O 2 : 7%
CO 2 : 10%
N 2 : balance

実験条件2
後述する模擬ガス(オゾンを含む)を用いて、石英管内に配置されたPM付着した小容量DPFを通過させ、排気ガスダクトから外部に排出した。石英管の外周部に電気ヒータを設置し、DPFの温度を50℃から400℃まで、50℃きざみで温度を設定し、Oを含むガスの流通前後で、PM付DPFの質量を比較することにより、PM酸化率(PM質量減少率)を求めた。
模擬ガス条件を以下に示す。
流量:10L/min
:1000ppm
:8%
CO:10%
:balance
Experimental condition 2
Using a simulation gas (including ozone) described later, a small-capacity DPF with PM attached disposed in the quartz tube was passed through and discharged to the outside from the exhaust gas duct. Install an electric heater on the outer periphery of the quartz tube, set the temperature of the DPF from 50 ° C to 400 ° C in steps of 50 ° C, and compare the mass of the DPF with PM before and after the circulation of the gas containing O 3 Thus, the PM oxidation rate (PM mass reduction rate) was obtained.
The simulated gas conditions are shown below.
Flow rate: 10L / min
O 3 : 1000 ppm
O 2 : 8%
CO 2 : 10%
N 2 : balance

実施例1および比較例1
以下のDPFを用いて実験を行った。
Example 1 and Comparative Example 1
Experiments were conducted using the following DPF.

1.DPF
直径35mm、長さ50mm、セル壁厚4mil、セル数400のコージェライト製DPF(触媒はコートしていない)にPMを付着させたものを用いた。PMの付着には、ディーゼルエンジンの排気ガス管に、上記DPFに対応した実ガスサンプリングポンプを使用し、10L/minの流量で、PMが約0.3g捕集されるまでサンプリングを行った。このようにしてPMを付着させたDPFを、PMが付着している面を上流側にして、石英管内に配置し、実験を行った。
温度センサで得られた各温度とNO酸化率との関係を図3に、各温度とPM酸化との関係を図4に示す。
1. DPF
A cordierite DPF having a diameter of 35 mm, a length of 50 mm, a cell wall thickness of 4 mil, and a cell number of 400 and having PM adhered thereto was used. For adhesion of PM, an actual gas sampling pump corresponding to the DPF was used for the exhaust gas pipe of the diesel engine, and sampling was performed at a flow rate of 10 L / min until about 0.3 g of PM was collected. The DPF with PM attached in this way was placed in a quartz tube with the surface on which the PM was attached upstream, and an experiment was conducted.
The relationship between each temperature and the NO X oxidation ratio obtained by the temperature sensor in Fig. 3 shows the relationship between each temperature and the PM oxidation in FIG.

図3および図4の結果によれば、外気温度〜250℃(250℃未満)、特に外気温度〜225℃(225℃未満)の範囲で高いNO酸化率を、200℃(以上)〜300℃(未満)、特に225℃(以上)〜275℃(未満)の範囲で高いPM酸化率が得られている。
以上の結果は、図3の結果と図4の結果とを組み合わすことによって、NO浄化とPM酸化浄化とを併せて達成し得ることを示している。
According to the results of FIG. 3 and FIG. 4, the outside air temperature to 250 DEG ° C. (less than 250 ° C.), in particular a high NO X oxidation ratio in the range of ambient temperature to 225 ° C. (less than 225 ° C.), 200 ° C. (or higher) 300 A high PM oxidation rate is obtained in the range of ° C (less), particularly in the range of 225 ° C (above) to 275 ° C (less than).
The above results show that NO X purification and PM oxidation purification can be achieved in combination by combining the results of FIG. 3 and the results of FIG.

本発明の排気ガス浄化装置は、オゾンによる高い浄化効率を達成することができで、内燃機関の排気ガス浄化およびオゾンの使用効率の向上を実現し得る。   The exhaust gas purification apparatus of the present invention can achieve high purification efficiency by ozone, and can realize exhaust gas purification of an internal combustion engine and improvement of ozone use efficiency.

1 内燃機関の排気ガス浄化装置
2 排気ガス流路
3 NO触媒
4 粒子フィルタ(DPF)
5、15 オゾン供給手段
6 排気ガス温度検知手段
7 オゾン供給制御手段
51、52 オゾン供給通路
DESCRIPTION OF SYMBOLS 1 Exhaust gas purification apparatus of internal combustion engine 2 Exhaust gas flow path 3 NO X catalyst 4 Particle filter (DPF)
5, 15 Ozone supply means 6 Exhaust gas temperature detection means 7 Ozone supply control means 51, 52 Ozone supply passage

Claims (2)

内燃機関の排気ガス流路に配置されて排気中のNOを浄化するNO触媒と、排気ガス中の粒子状物質を捕集する粒子フィルタと、該NO触媒および粒子フィルタに各々オゾンを供給可能なオゾン供給手段と、排気ガス温度検知手段と、前記排気ガス温度検知手段により検知された排気ガス温度に基づいて前記2つのオゾン供給手段を制御するオゾン供給制御手段とを備え、排気ガス温度が200℃未満であるときは、オゾンを、NO触媒に供給するが、粒子フィルタには供給しない、排気ガス温度が200℃以上250℃以下の範囲であるときは、オゾンを、NO触媒および粒子フィルタに供給する、排気ガス温度が250℃より高く300℃以下の範囲であるときは、オゾンを、NO触媒には供給しないが、粒子フィルタには供給する、排気ガス温度が300℃より高いときは、オゾンを、NO触媒および粒子フィルタのいずれにも供給しない、ように前記オゾン供給手段を制御することを特徴とする内燃機関の排気ガス浄化装置。 And NO X catalyst for purifying NO X in the exhaust gas is arranged in an exhaust gas passage of an internal combustion engine, a particulate filter for collecting particulate matter in the exhaust gas, each ozone to the NO X catalyst and the particle filter An ozone supply means capable of supplying; an exhaust gas temperature detection means; and an ozone supply control means for controlling the two ozone supply means based on the exhaust gas temperature detected by the exhaust gas temperature detection means. when the temperature is lower than 200 ° C. is ozone, supplied to the nO X catalyst is not supplied to the particulate filter, when the exhaust gas temperature is in the range of 200 ° C. or higher 250 ° C. or less, ozone, nO X catalyst and supplied to the particulate filter, when the exhaust gas temperature is in the range of 300 ° C. or less higher than 250 ° C. is ozone, but not supplied to the nO X catalyst, particle filter Supplies, when the exhaust gas temperature is higher than 300 ° C. is ozone, NO X catalyst and does not supply to any of the particle filter so that the exhaust gas of an internal combustion engine and controls the ozone supply means Purification equipment. 前記NO触媒が、前記粒子フィルタに対して排気の流れ方向の上流側に位置している請求項1に記載の排気ガス浄化装置。 The NO X catalyst, the exhaust gas purifying apparatus according to claim 1 which is located upstream of the exhaust gas flow direction with respect to the particulate filter.
JP2010086070A 2010-04-02 2010-04-02 Exhaust emission control device for internal combustion engine Pending JP2011214561A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010086070A JP2011214561A (en) 2010-04-02 2010-04-02 Exhaust emission control device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010086070A JP2011214561A (en) 2010-04-02 2010-04-02 Exhaust emission control device for internal combustion engine

Publications (1)

Publication Number Publication Date
JP2011214561A true JP2011214561A (en) 2011-10-27

Family

ID=44944527

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010086070A Pending JP2011214561A (en) 2010-04-02 2010-04-02 Exhaust emission control device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP2011214561A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016142206A (en) * 2015-02-03 2016-08-08 株式会社デンソー Ozone supply device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016142206A (en) * 2015-02-03 2016-08-08 株式会社デンソー Ozone supply device

Similar Documents

Publication Publication Date Title
JP4263711B2 (en) Exhaust gas purification device for internal combustion engine
US7207169B2 (en) System and method for purifying an exhaust gas
BRPI0706870A2 (en) APPLIANCE FOR PURIFICATION OF EXHAUST GAS AND METHOD FOR PURIFICATION OF EXHAUST GAS USING THE APPLIANCE FOR PURIFICATION OF EXHAUST GAS
JP2006312921A (en) System and method for purifying exhaust gas of diesel engine
JP2009007948A (en) Nox emission control system and its control method
JP2009270560A (en) Exhaust emission control device
JP4887888B2 (en) Exhaust gas purification device for internal combustion engine
JP2009264285A (en) Exhaust emission control device for internal combustion engine
JP4189337B2 (en) Exhaust gas purification system
JP4453700B2 (en) Exhaust gas purification device for internal combustion engine
JP2007132240A (en) Exhaust emission control device for internal combustion engine
JP2017227181A (en) Oxidization catalyst and exhaust emission control system
JP4582806B2 (en) Exhaust gas purification device
JP2010229929A (en) Exhaust emission control device for internal combustion engine
JP2006132483A (en) Exhaust emission control device, exhaust emission control method and control method
JP2010270695A (en) Exhaust emission control device and exhaust emission control method
JP6360358B2 (en) Deterioration detection / recovery method for exhaust gas oxidation catalyst in heat engine, exhaust gas purification device for heat engine that implements the method, and mechanical device equipped with the exhaust gas purification device
JP2011214561A (en) Exhaust emission control device for internal combustion engine
JP2004211566A (en) Emission control system and emission control method
JP5396959B2 (en) Exhaust gas purification system and control method of exhaust gas purification system
JP2018100600A (en) Exhaust emission control system and poisoning control method for exhaust emission control system
JP5782710B2 (en) Exhaust gas purification apparatus and exhaust gas purification method for internal combustion engine
JP5476770B2 (en) Exhaust gas purification system and control method of exhaust gas purification system
JP2008031884A (en) Exhaust emission control device and exhaust emission control method
JP2004211565A (en) Emission control system and emission control method