JP2007009104A - White phosphor and method for producing the same and white luminescent element - Google Patents
White phosphor and method for producing the same and white luminescent element Download PDFInfo
- Publication number
- JP2007009104A JP2007009104A JP2005193624A JP2005193624A JP2007009104A JP 2007009104 A JP2007009104 A JP 2007009104A JP 2005193624 A JP2005193624 A JP 2005193624A JP 2005193624 A JP2005193624 A JP 2005193624A JP 2007009104 A JP2007009104 A JP 2007009104A
- Authority
- JP
- Japan
- Prior art keywords
- white
- phosphor
- light
- white phosphor
- mol
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Luminescent Compositions (AREA)
- Cathode-Ray Tubes And Fluorescent Screens For Display (AREA)
- Gas-Filled Discharge Tubes (AREA)
Abstract
Description
本発明は、単一母材で白色発光を可能とする白色蛍光体及びそれを用いた白色発光素子に関する。より詳しくは、従来の、赤色、緑色及び青色の3つの光の成分を提供する発光ダイオード等の発光素子を相互に近接して設けて各々を発光させ、拡散混色させて白色光を発生させる白色発光素子とは異なり、単一母材で白色発光を可能とする白色蛍光体及びそれを用いた白色発光素子に関する。 The present invention relates to a white phosphor capable of emitting white light with a single base material and a white light emitting device using the same. More specifically, a conventional white light emitting element such as a light emitting diode that provides three light components of red, green, and blue is provided in close proximity to each other to emit light, and then diffuse and mix to generate white light. Unlike a light emitting element, the present invention relates to a white phosphor capable of emitting white light with a single base material and a white light emitting element using the white phosphor.
従来、白色光源としては、蛍光灯や白熱灯が用いられている。しかし、これらの白色光源は電力消費量や水銀含有による環境負荷、大きさ、動作寿命等の点で問題がある。 Conventionally, fluorescent lamps and incandescent lamps are used as white light sources. However, these white light sources have problems in terms of power consumption, environmental load due to mercury content, size, operating life, and the like.
一方、白色光源として発光ダイオード(LED)を用いた場合、小型で、効率がよく、環境負荷低減の観点から発光素子としての需要が期待できる。また、発光ダイオードは、固体素子であるため、動作寿命が長く、初期駆動特性が良好であり、耐振動性にも優れ、さらに反復的なON/OFF点灯の繰り返しに強いという特性も有する。このため、発光ダイオードは、発光素子として電力消費量が少ない各種インジケータや液晶バックライト等、種々の光源に広く利用されてきている。 On the other hand, when a light emitting diode (LED) is used as a white light source, it is small and efficient, and a demand as a light emitting element can be expected from the viewpoint of reducing environmental load. Further, since the light emitting diode is a solid element, it has a long operating life, good initial drive characteristics, excellent vibration resistance, and resistance to repeated ON / OFF lighting. For this reason, light emitting diodes have been widely used in various light sources such as various indicators and liquid crystal backlights that consume less power as light emitting elements.
また、近年、超高輝度、高効率な赤色、緑色及び青色の発光ダイオードが開発され、これらの発光ダイオードを発光素子として用いた大画面のLEDディスプレイが使用されてきており、小電力で動作可能で、軽量、長寿命であるという利点を有している。このような状況から、蛍光灯や白熱灯に代わるものとして、発光ダイオードを発光素子とした白色発光装置の出現が期待されている。 In recent years, super-bright and high-efficiency red, green, and blue light-emitting diodes have been developed, and large-screen LED displays using these light-emitting diodes as light-emitting elements have been used and can operate with low power. In addition, it has the advantage of being lightweight and having a long life. Under such circumstances, the appearance of a white light emitting device using a light emitting diode as a light emitting element is expected as an alternative to a fluorescent lamp or an incandescent lamp.
しかし、発光ダイオードを発光素子とした場合には、一般的には、発光ダイオードは単色性の強い発光スペクトルしか持たず、白色光を得るために必要な可視光域でブロードな発光スペクトルを有しないという問題がある。 However, when a light emitting diode is used as a light emitting element, in general, the light emitting diode has only a strong monochromatic emission spectrum, and does not have a broad emission spectrum in the visible light range necessary for obtaining white light. There is a problem.
そこで、最近、白色光を得るために、赤色、緑色及び青色の3つの光の成分を提供する発光ダイオード等の発光素子を相互に近接して設けて各々を発光させ、拡散混色させて白色光を発生させる試みがなされ、大型スクリーンのLEDディスプレイとして既に使用されている。 Therefore, recently, in order to obtain white light, light emitting elements such as light emitting diodes that provide three light components of red, green, and blue are provided close to each other to emit light, and diffused and mixed to produce white light. Has already been used as a large screen LED display.
しかるに、この方法では、個々のダイオードの温度特性や経時変化が異なるため、赤色、緑色及び青色の各発光の色調、輝度等にバラツキが生じたり、各発光を均一に混色させることができず、色むらを生じたりする等の問題があり、所望の白色光が得られない。また、各発光ダイオードの材料が一般的には相違し、駆動電力が異なったものとなるため、各々に所定電圧を印加する必要があり、このため駆動回路が複雑になるという問題がある。 However, in this method, the temperature characteristics and temporal changes of the individual diodes are different, so that variations in the color tone, brightness, etc. of each light emission of red, green and blue, or each light emission cannot be uniformly mixed, There are problems such as uneven color, and desired white light cannot be obtained. In addition, since the materials of the respective light emitting diodes are generally different and the driving power is different, it is necessary to apply a predetermined voltage to each of them, which causes a problem that the driving circuit becomes complicated.
白色光を得るための他の方法としては、発光ダイオード等の発光素子により発光された光を蛍光体で吸収し、吸収した光を波長の異なる光に波長転換し、発光ダイオードからの発光と蛍光体により波長変換された発光との拡散混色により白色光を得る方法が提案されている。 As another method for obtaining white light, light emitted from a light emitting element such as a light emitting diode is absorbed by a phosphor, the absorbed light is converted into light having a different wavelength, and light emission and fluorescence from the light emitting diode are obtained. A method has been proposed in which white light is obtained by diffusive color mixing with light that has been wavelength-converted by a body.
特許文献1(特許3503139号公報)には、発光ダイオード(発光素子)として、Inを含む窒素ガリウム系半導体を用い、蛍光体としてセリウム付活ガーネット(Y3Al5O12:Ce等)を用いた発光装置が記載されている。 Patent Document 1 (Japanese Patent No. 3503139) uses a nitrogen gallium-based semiconductor containing In as a light-emitting diode (light-emitting element), and uses cerium-activated garnet (Y 3 Al 5 O 12 : Ce or the like) as a phosphor. A light emitting device was described.
この発光装置では、上記のように発光素子がInを含む窒素ガリウム系半導体で波長420〜490nmの範囲に発光ピークを有し、青色発光が可能であるLEDチップである。蛍光体としてはセリウム付活ガーネット蛍光体(Y3Al5O12:Ce)が用いられ、この蛍光体は上記青色発光のスペクトルの一部を吸収して波長510〜600nm付近に発光ピークを有する。図7に、Inを含む窒素ガリウム系半導体(青色LED)及びセリウム付活ガーネット蛍光体(Y3Al5O12:Ce)の発光スペクトルを示す。 In this light emitting device, as described above, the light emitting element is an LED chip that is a nitrogen gallium semiconductor containing In and has a light emission peak in a wavelength range of 420 to 490 nm and can emit blue light. As the phosphor, a cerium activated garnet phosphor (Y 3 Al 5 O 12 : Ce) is used, and this phosphor absorbs part of the blue emission spectrum and has an emission peak in the vicinity of a wavelength of 510 to 600 nm. . FIG. 7 shows emission spectra of a nitrogen gallium-based semiconductor containing In (blue LED) and a cerium-activated garnet phosphor (Y 3 Al 5 O 12 : Ce).
このセリウム付活ガーネット蛍光体(YAG:Ce系等)と青色LEDの組み合わせによる白色発光装置は、蛍光灯に比べ、消費電力が低く、有毒な水銀も含まないことから、環境負荷低減に配慮した新しい白色照明として期待されている。 The white light-emitting device using a combination of this cerium-activated garnet phosphor (YAG: Ce, etc.) and a blue LED consumes less power than fluorescent lamps and does not contain toxic mercury. It is expected as a new white illumination.
しかしながら、このセリウム付活ガーネット蛍光体は、発光スペクトルが波長510〜600nm付近にピークを有するため、波長580〜650nmの赤色成分が少なく演色性に乏しいものとなり、同装置で照らされた物体は不自然な色合いを示し、一般照明への適用に問題があった。なお、青色成分の波長は概ね400〜480nmであり、緑色成分の波長は概ね480〜560nmである。 However, this cerium-activated garnet phosphor has a light emission spectrum with a peak in the vicinity of a wavelength of 510 to 600 nm, and therefore has a small red component at a wavelength of 580 to 650 nm and poor color rendering, and an object illuminated by the apparatus is not suitable. It showed a natural hue and had a problem in application to general lighting. The wavelength of the blue component is approximately 400 to 480 nm, and the wavelength of the green component is approximately 480 to 560 nm.
一方、特許文献2(特開2005−20010号公報)には、青色LEDと緑色蛍光体組成物及び赤色蛍光体組成物とからなる発光デバイスが記載されている。この発光デバイスは、青色LEDからの発光(青色光)を緑色蛍光体組成物及び赤色蛍光体組成物で各々受光し、それぞれ長波長の光(緑色光及び赤色光)を発光し、青色LEDからの青色光と蛍光体組成物からの緑色光及び青色光との拡散混色により白色光を得るものである。しかし、この発光デバイスでは、複数の蛍光体(組成物)を用いるため、蛍光体同士の相互作用により色目調整が困難であった。 On the other hand, Patent Document 2 (Japanese Patent Laid-Open No. 2005-201010) describes a light emitting device composed of a blue LED, a green phosphor composition, and a red phosphor composition. In this light emitting device, light emitted from a blue LED (blue light) is received by a green phosphor composition and a red phosphor composition, respectively, and light having a long wavelength (green light and red light) is emitted from each blue LED. White light is obtained by diffusive color mixture of blue light and green light and blue light from the phosphor composition. However, in this light emitting device, since a plurality of phosphors (compositions) are used, it is difficult to adjust the color due to the interaction between the phosphors.
また、特許文献3(特開2001−107044号公報)には各種組成の蛍光体が示されているが、本発明にかかる組成及び白色蛍光体を具体的に特定したものではない。 Patent Document 3 (Japanese Patent Laid-Open No. 2001-107044) discloses phosphors having various compositions, but the composition and white phosphor according to the present invention are not specifically specified.
上述したように、従来においては、青色LEDからの発光を吸収して緑色成分から赤色成分までを含むブロードな発光スペクトルを示し、色目調整が容易で、高い演色性を有し、自然光(太陽光)に近い白色光を提供する蛍光体は得られていない。 As described above, conventionally, the light emitted from the blue LED is absorbed to show a broad emission spectrum including the green component to the red component, the color adjustment is easy, the color rendering is easy, and natural light (sunlight A phosphor providing white light close to) has not been obtained.
従って、本発明の目的は、照明用、バックライト用、特殊光源用、偽造防止印刷用として、単一母材で、青色成分から赤色成分までを含む3波長型の発光スペクトルを示し、白色発光を可能とし、色目調整が容易で、高い演色性を有し、自然光(太陽光)に近い白色光を得ることのできる白色蛍光体を提供することにある。 Accordingly, an object of the present invention is to display a three-wavelength emission spectrum including a blue component to a red component on a single base material for illumination, backlight, special light source, and anti-counterfeit printing, and emit white light. An object of the present invention is to provide a white phosphor that can easily adjust the color, has high color rendering properties, and can obtain white light close to natural light (sunlight).
本発明者らは上記課題を解決すべく鋭意検討を行った結果、CaZrO3を結晶母材とし、Eu3+とTb3+を発光中心とする白色蛍光体によって、上記目的が達成し得ることを知見した。 As a result of intensive studies to solve the above problems, the present inventors have found that the above object can be achieved by a white phosphor having CaZrO 3 as a crystal base material and Eu 3+ and Tb 3+ as emission centers. did.
すなわち、本発明は、CaZrO3を結晶母材とし、Eu3+とTb3+を発光中心とする白色蛍光体を提供するものである。従来の各種蛍光体を混合して白色蛍光体を得る場合には、蛍光体同士の相互作用で色目調整が困難であるのに比較して、本発明では一種類の蛍光体で白色発光するため、相互作用が無く、製造に負担がかかることもない。 That is, the present invention provides a white phosphor having CaZrO 3 as a crystal base material and Eu 3+ and Tb 3+ as emission centers. In the case of obtaining a white phosphor by mixing various conventional phosphors, the present invention emits white light with one kind of phosphor as compared to the case where it is difficult to adjust the color due to the interaction between the phosphors. There is no interaction and there is no burden on manufacturing.
本発明に係る上記白色蛍光体は、下記一般式(1)で示されるものが好ましい。
CaxZryO3:Eu、Tb …(1)
(但し、0.8≦x/y≦2.0)
The white phosphor according to the present invention is preferably one represented by the following general formula (1).
Ca x Zr y O 3 : Eu, Tb (1)
(However, 0.8 ≦ x / y ≦ 2.0)
本発明に係る上記白色蛍光体において、上記Eu3+及びTb3+の濃度は、結晶母材に対してそれぞれ0.01〜10モル%であることが望ましく、0.01〜3モル%がさらに望ましい。 In the white phosphor according to the present invention, the concentrations of Eu 3+ and Tb 3+ are preferably 0.01 to 10 mol%, more preferably 0.01 to 3 mol%, respectively, with respect to the crystal base material. .
本発明に係る上記白色蛍光体は、演色性を向上させるために、Pr、Smを色目調整剤として含有させることができる。 The white phosphor according to the present invention can contain Pr and Sm as a color adjusting agent in order to improve color rendering.
本発明に係る上記白色蛍光体は、励起効率の向上のために、Al、Ga等のアルミニウム族元素から選択される1種以上の元素を増感剤として含有させることができる。その含有量は、5モル%以下が好ましい。これらの元素の含有量が5モル%を超えると、異相が多量に析出し、輝度が著しく低下する。 The white phosphor according to the present invention may contain one or more elements selected from aluminum group elements such as Al and Ga as a sensitizer for improving excitation efficiency. The content is preferably 5 mol% or less. When the content of these elements exceeds 5 mol%, a large amount of heterogeneous phases are precipitated, and the luminance is remarkably lowered.
また、本発明に係る上記白色蛍光体は、上記と同様に励起効率の向上のために、Sc、Y、La、Gd、Lu等の希土類族元素から選択される1種以上の元素を増感剤として含有させることができる。その含有量は、5モル%以下が好ましい。これらの元素の含有量が5モル%を超えると、異相が多量に析出し、輝度が著しく低下する。 In addition, the white phosphor according to the present invention sensitizes one or more elements selected from rare earth elements such as Sc, Y, La, Gd, and Lu in order to improve the excitation efficiency as described above. It can be contained as an agent. The content is preferably 5 mol% or less. When the content of these elements exceeds 5 mol%, a large amount of heterogeneous phases are precipitated and the luminance is remarkably lowered.
さらに、本発明に係る上記白色蛍光体は、アルカリ金属元素、Ag+等の1価の陽イオン金属、Cl−、F−、I−等のハロゲンイオンを電荷補償剤として含有させることができる。その含有量は、発光中心Eu3+とTb3+の含有量と等量、即ち、0.01〜10モル%が好ましく、10モル%を超えると、電荷補償効果はなくなり、輝度が低下する。 Furthermore, the white phosphor according to the present invention may contain an alkali metal element, a monovalent cation metal such as Ag + , or a halogen ion such as Cl − , F − , or I − as a charge compensator. The content is preferably the same as the content of the luminescent centers Eu 3+ and Tb 3+ , that is, 0.01 to 10 mol%, and if it exceeds 10 mol%, the charge compensation effect is lost and the luminance is lowered.
また、本発明は、カルシウム化合物成分、ジルコニウム化合物成分及びユウロピウム化合物成分、テルビウム化合物成分を式(1)を満足する量比で含む混合物を空気、酸素、Arなどの不活性ガス又は水素ガスなどの還元性ガスの雰囲気中で焼成することを特徴とする白色蛍光体の製造方法である。 Further, the present invention provides a mixture containing a calcium compound component, a zirconium compound component, a europium compound component, and a terbium compound component in a quantitative ratio satisfying the formula (1), such as an inert gas such as air, oxygen, Ar, or a hydrogen gas. It is a method for producing a white phosphor, characterized by firing in a reducing gas atmosphere.
また、追加工程として、焼成に先立って、空気、酸素、Arなどの不活性ガス又は水素ガスなどの還元性ガスの雰囲気中で仮焼することを特徴とする上記記載の白色蛍光体の製造方法である。 Further, as an additional step, prior to firing, the method for producing a white phosphor according to the above, characterized by calcining in an atmosphere of a reducing gas such as an inert gas such as air, oxygen, or Ar or hydrogen gas It is.
また、本発明は、焼成温度は、900〜1300℃、仮焼温度は800〜1100℃とし、焼成または仮焼を1〜12時間実施することを特徴とする上記の何れかに記載の白色蛍光体の製造方法である。 In the present invention, the firing temperature is 900 to 1300 ° C., the calcination temperature is 800 to 1100 ° C., and the firing or calcination is performed for 1 to 12 hours. It is a manufacturing method of a body.
本発明に係る白色蛍光体は、蛍光スペクトルから明らかなように、波長420nm近傍、540nm近傍、610nm近傍において発光を示し、それぞれ青色成分、緑色成分、赤色成分を包含する演色性の良い発光を示す。また、CaZrO3を単一の結晶母材とするものであることから相互作用がなく、製造に負担がかからない。また、信頼性、耐環境性に優れている。このことから、本発明に係る白色蛍光体は、自然光(太陽光)に近い白色光を要求される一般照明に適用することができる。また、本発明に係る白色蛍光体は、表示デバイス分野でも、液晶のバックライトやPDP、EL、FED、CRT用の蛍光体としても期待できる。 As is apparent from the fluorescence spectrum, the white phosphor according to the present invention emits light near wavelengths of 420 nm, 540 nm, and 610 nm, and emits light with good color rendering including blue, green, and red components, respectively. . In addition, since CaZrO 3 is a single crystal base material, there is no interaction and no burden is imposed on the production. It also has excellent reliability and environmental resistance. For this reason, the white phosphor according to the present invention can be applied to general illumination requiring white light close to natural light (sunlight). Further, the white phosphor according to the present invention can be expected as a phosphor for liquid crystal backlights, PDPs, ELs, FEDs, and CRTs in the field of display devices.
以下、本発明を実施するための最良の形態について説明する。
(本発明に係る白色蛍光体)
本発明に係る白色蛍光体は、CaZrO3を結晶母材とし、Eu3+及びTb3+を発光中心とするペロブスカイト構造を有する蛍光体である。
Hereinafter, the best mode for carrying out the present invention will be described.
(White phosphor according to the present invention)
The white phosphor according to the present invention is a phosphor having a perovskite structure having CaZrO 3 as a crystal matrix and Eu 3+ and Tb 3+ as emission centers.
本発明に係る上記白色蛍光体において、発光中心である上記Eu3+及びTb3+の濃度は、結晶母材に対してそれぞれ0.01〜10モル%であることが望ましく、0.01〜3モル%がさらに望ましい。濃度が0.01モル%未満ではこの成分の含有効果がなく、10モル%を超えると異相が析出し、輝度が著しく低下する。 In the white phosphor according to the present invention, the concentrations of the Eu 3+ and Tb 3+ that are the emission centers are preferably 0.01 to 10 mol% with respect to the crystal base material, respectively, and 0.01 to 3 mol. % Is more desirable. If the concentration is less than 0.01 mol%, the effect of containing this component is not present, and if it exceeds 10 mol%, a heterogeneous phase is precipitated, and the luminance is significantly reduced.
上記一般式(1)において、結晶母材であるCaxZryO3で示される酸化カルシウム及び/又は酸化ジルコニウムの含有割合(但し、0.8≦x/y≦2.0)を、Ca含有量を増やすことで、赤色成分を増加させることができる。 In the above general formula (1), the content of calcium oxide and / or zirconium oxide represented by Ca x Zr y O 3 which is a crystal base material (0.8 ≦ x / y ≦ 2.0) is expressed as Ca The red component can be increased by increasing the content.
本発明に係る上記白色蛍光体は、励起効率の向上のために、Al、Ga等のアルミニウム族元素から選択される1種以上の元素を増感剤として含有させることができる。その含有量は、5モル%以下が好ましい。これらの元素の含有量が5モル%を超えると、異相が多量に析出し、輝度が著しく低下する。 The white phosphor according to the present invention may contain one or more elements selected from aluminum group elements such as Al and Ga as a sensitizer for improving excitation efficiency. The content is preferably 5 mol% or less. When the content of these elements exceeds 5 mol%, a large amount of heterogeneous phases are precipitated, and the luminance is remarkably lowered.
また、本発明に係る上記白色蛍光体は、上記と同様に励起効率の向上のために、Sc、Y、La、Gd、Lu等の希土類族元素から選択される1種以上の元素を増感剤として含有させることができる。その含有量は、5モル%以下が好ましい。これらの元素の含有量が5モル%を超えると、異相が多量に析出し、輝度が著しく低下する。 In addition, the white phosphor according to the present invention sensitizes one or more elements selected from rare earth elements such as Sc, Y, La, Gd, and Lu in order to improve excitation efficiency as described above. It can be contained as an agent. The content is preferably 5 mol% or less. When the content of these elements exceeds 5 mol%, a large amount of heterogeneous phases are precipitated, and the luminance is remarkably lowered.
さらに、本発明に係る上記白色蛍光体は、アルカリ金属元素、Ag+等の1価の陽イオン金属、Cl−、F−、I−等のハロゲンイオンを電荷補償剤として含有させることができる。その含有量は、発光中心Eu3+及びTb3+の含有量と等量、即ち、0.01〜10モル%が好ましく、10モル%を超えると、電荷補償効果はなくなり、輝度が低下する。 Furthermore, the white phosphor according to the present invention may contain an alkali metal element, a monovalent cation metal such as Ag + , or a halogen ion such as Cl − , F − , or I − as a charge compensator. The content is preferably the same as the content of the luminescent centers Eu 3+ and Tb 3+ , that is, 0.01 to 10 mol%, and if it exceeds 10 mol%, the charge compensation effect is lost and the luminance is lowered.
次に、本発明に係る白色蛍光体の好ましい製造方法の一例を説明する。 Next, an example of a preferable method for producing the white phosphor according to the present invention will be described.
本発明に係る白色蛍光体の製造方法では、下記を原料とするのが好ましい。
Ca:CaO,CaCO3等
Zr:ZrO2,Zr(CO3)2等
Eu塩:EuF3,Eu2O3、EuCl3等
Tb塩:TbF3,Tb2O3,TbCl3等
In the method for producing a white phosphor according to the present invention, the following is preferably used as a raw material.
Ca: CaO, CaCO 3 etc. Zr: ZrO 2 , Zr (CO 3 ) 2 etc. Eu salt: EuF 3 , Eu 2 O 3 , EuCl 3 etc. Tb salt: TbF 3 , Tb 2 O 3 , TbCl 3 etc.
本発明に係る製造方法では、上記原料を所定の割合になるように秤量し、混合する。混合は例えばφ3mmのジルコニアボールをメディアに用いてペイントシェーカーやボールミル等で90分程度なされる。 In the production method according to the present invention, the raw materials are weighed and mixed so as to have a predetermined ratio. For example, the mixing is performed for about 90 minutes with a paint shaker or a ball mill using zirconia balls having a diameter of 3 mm as media.
次いで、100μm以下の篩で混合粉体とメディアを分離し、混合粉体を80〜90℃、5〜12時間乾燥する。 Next, the mixed powder and the medium are separated with a sieve of 100 μm or less, and the mixed powder is dried at 80 to 90 ° C. for 5 to 12 hours.
次に、混合粉体を800〜1100℃、1〜12時間、空気、酸素、Ar又は水素ガスの雰囲気中で仮焼する。仮焼温度が800℃未満では、原料に炭酸塩を用いる場合などは、炭酸ガスの分解が不十分であり、また、ハロゲン化物を使う場合は、フラックス効果が十分に得られない。一方、1100℃を超える高温では異常粒成長を起こして、均一な微粒子が得られにくくなる。また、仮焼時間が1時間未満では物質特性に再現性が得られにくく、12時間を超えると物質飛散の増加による組成変動の問題が生じる。 Next, the mixed powder is calcined in an atmosphere of air, oxygen, Ar, or hydrogen gas at 800 to 1100 ° C. for 1 to 12 hours. When the calcination temperature is less than 800 ° C., when carbonate is used as a raw material, the decomposition of carbon dioxide gas is insufficient, and when a halide is used, a sufficient flux effect cannot be obtained. On the other hand, at a high temperature exceeding 1100 ° C., abnormal grain growth occurs and it becomes difficult to obtain uniform fine particles. Also, if the calcining time is less than 1 hour, it is difficult to obtain reproducibility in the material properties, and if it exceeds 12 hours, there arises a problem of composition variation due to an increase in material scattering.
この仮焼後に、さらに混合粉体全体が均一となるように、粉砕混合して、再度仮焼と同じ条件で焼成を行う。すなわち、900〜1300℃、1〜12時間、空気、酸素、Ar又は水素ガス雰囲気中で焼成する。焼成時間や焼成温度が上記範囲から外れると、結晶性の低下や異相の析出などの問題が生じる。 After this calcination, the mixture powder is further pulverized and mixed so that the entire mixed powder becomes uniform, and baked again under the same conditions as calcination. That is, baking is performed in an atmosphere of air, oxygen, Ar, or hydrogen gas at 900 to 1300 ° C. for 1 to 12 hours. If the firing time or firing temperature is out of the above range, problems such as a decrease in crystallinity and precipitation of foreign phases occur.
本発明に係る白色蛍光体は、単一母材で、任意の手段による励起によって、少なくとも、波長420nm±70nm、540nm±50nm、610nm±20nmの領域に発光スペクトルを示し、青色成分から赤色成分までを含む3波長型の発光スペクトルを示すものである。よって、例えば、白色蛍光体の励起光源として紫外発光体を、本発明の白色蛍光体の近傍あるいは重ねて配設することにより、白色発光素子を構成することができる。このようにして製造される本発明に係る白色蛍光体は、一般照明に適用できるほか、表示デバイスの分野でも、液晶のバックライトやPDP、EL、FED、CRT用、あるいは偽造防止印刷用の蛍光体としても期待できる。 The white phosphor according to the present invention is a single base material and exhibits an emission spectrum at least in a region of wavelengths of 420 nm ± 70 nm, 540 nm ± 50 nm, and 610 nm ± 20 nm by excitation by any means, from a blue component to a red component. A three-wavelength emission spectrum including Therefore, for example, a white light emitting element can be configured by arranging an ultraviolet light emitter as an excitation light source of a white phosphor in the vicinity of or overlapping with the white phosphor of the present invention. The white phosphor according to the present invention produced in this way can be applied to general illumination, and also in the field of display devices, it can be used for liquid crystal backlights, PDP, EL, FED, CRT, or anti-counterfeit printing. It can also be expected as a body.
以上に述べてきた白色蛍光体は、高い演色性を示す白色発光素子とすることができる。 The white phosphor described above can be a white light-emitting element exhibiting high color rendering properties.
以下に実施例を示すが、本発明はこれらに限定されて解釈されるものではない。 Examples are shown below, but the present invention is not construed as being limited thereto.
CaCO3、ZrO2及びEuF3、TbF3を原料とし、CaとZrの比(Ca/Zr)を1.0、結晶母材に対してEu濃度が0.5モル%、Tb濃度が1モル%となるように秤量し、これをφ3mmのジルコニアボールをメディアに用いてペイントシェーカーで90分混合した。次いで、100μm以下の篩で混合粉体とメディアを分離し、80℃で6時間乾燥した。次に、1300℃、1時間、Arガス雰囲気中で焼成し、CaZrO3:Eu、Tbで示される白色蛍光体を得た(実施例1)。 Using CaCO 3 , ZrO 2, EuF 3 and TbF 3 as raw materials, the ratio of Ca to Zr (Ca / Zr) is 1.0, the Eu concentration is 0.5 mol% and the Tb concentration is 1 mol with respect to the crystal matrix. %, And this was mixed for 90 minutes with a paint shaker using zirconia balls of 3 mm in diameter as media. Next, the mixed powder and the media were separated with a sieve of 100 μm or less, and dried at 80 ° C. for 6 hours. Next, it was fired in an Ar gas atmosphere at 1300 ° C. for 1 hour to obtain a white phosphor represented by CaZrO 3 : Eu, Tb (Example 1).
この白色蛍光体の蛍光スペクトルを図1に示す。図1から明らかなように、この白色蛍光体は、波長420nm近傍、540nm近傍、610nm近傍において発光し、それぞれ青色成分、緑色成分、赤色成分を包含する演色性の良い発光を示す。ここで、緑、青色発光はTbに起因し、赤色発光はEuに起因すると考えられる。 The fluorescence spectrum of this white phosphor is shown in FIG. As is apparent from FIG. 1, the white phosphor emits light in the vicinity of wavelengths of 420 nm, 540 nm, and 610 nm, and emits light with good color rendering including blue, green, and red components, respectively. Here, it is considered that green and blue light emission is caused by Tb and red light emission is caused by Eu.
(実験例1)
CaCO3、ZrO2及びEuF3を原料とし、CaとZrの比(Ca/Zr)を1.5、結晶母材に対しEu濃度が0.5モル%となるように秤量し、これをφ3mmのジルコニアボールをメディアに用いてペイントシェーカーで90分混合した。次いで、100μm以下の篩で混合粉体とメディアを分離し、80℃で6時間乾燥した。次に、1300℃、1時間、Arガス雰囲気中で焼成し、CaZrO3:Euで示される蛍光体を得た(実験例1)。
(Experiment 1)
Using CaCO 3 , ZrO 2 and EuF 3 as raw materials, the ratio of Ca to Zr (Ca / Zr) is 1.5, and the Eu concentration is 0.5 mol% with respect to the crystal base material. Zirconia balls were used as media and mixed for 90 minutes in a paint shaker. Next, the mixed powder and the media were separated with a sieve of 100 μm or less, and dried at 80 ° C. for 6 hours. Next, it was fired in an Ar gas atmosphere at 1300 ° C. for 1 hour to obtain a phosphor represented by CaZrO 3 : Eu (Experimental Example 1).
この蛍光体の蛍光スペクトルを図3に示す。図3から微弱な青色発光と、強い赤色発光を示す蛍光体であることがわかる。 The fluorescence spectrum of this phosphor is shown in FIG. FIG. 3 shows that the phosphor exhibits weak blue light emission and strong red light emission.
(実験例2)
CaCO3、ZrO2及びTbF3を原料とし、CaとZrの比(Ca/Zr)を1.0、結晶母材に対しTb濃度が1モル%となるように秤量し、これをφ3mmのジルコニアボールをメディアに用いてペイントシェーカーで90分混合した。次いで、100μm以下の篩で混合粉体とメディアを分離し、80℃で6時間乾燥した。次に、1300℃、1時間、Arガス雰囲気中で焼成し、CaZrO3:Tbで示される蛍光体を得た(実験例2)。
(Experimental example 2)
CaCO 3 , ZrO 2 and TbF 3 are used as raw materials, the ratio of Ca to Zr (Ca / Zr) is 1.0, and the Tb concentration is 1 mol% with respect to the crystal base material. This is zirconia having a diameter of 3 mm. The balls were used as media and mixed for 90 minutes with a paint shaker. Next, the mixed powder and the media were separated with a sieve of 100 μm or less, and dried at 80 ° C. for 6 hours. Next, it was fired in an Ar gas atmosphere at 1300 ° C. for 1 hour to obtain a phosphor represented by CaZrO 3 : Tb (Experimental Example 2).
この蛍光体の蛍光スペクトルを図4に示す。図4から青色発光、緑色発光を示すが、赤色発光が不足していることがわかる。 The fluorescence spectrum of this phosphor is shown in FIG. FIG. 4 shows blue light emission and green light emission, but it is understood that red light emission is insufficient.
CaCO3、ZrO2及びEuF3を原料とし、CaとZrの比(Ca/Zr)を1.5、結晶母材に対しEu濃度が0.5モル%となるように秤量し、これをφ3mmのジルコニアボールをメディアに用いてペイントシェーカーで90分混合した。次いで、100μm以下の篩で混合粉体とメディアを分離し、80℃で6時間乾燥した。次に、1300℃、1時間、酸素ガス雰囲気中で焼成し、CaZrO3:Euで示される蛍光体を得た(実施例2−1)。 CaCO 3 , ZrO 2 and EuF 3 are used as raw materials, and the ratio of Ca to Zr (Ca / Zr) is 1.5, and the Eu concentration is 0.5 mol% with respect to the crystal base material. Zirconia balls were used as media and mixed for 90 minutes in a paint shaker. Next, the mixed powder and the media were separated with a sieve of 100 μm or less, and dried at 80 ° C. for 6 hours. Next, it was fired in an oxygen gas atmosphere at 1300 ° C. for 1 hour to obtain a phosphor represented by CaZrO 3 : Eu (Example 2-1).
CaCO3、ZrO2及びTbF3を原料とし、CaとZrの比(Ca/Zr)を1.0、結晶母材に対しTb濃度が1モル%となるように秤量し、これをφ3mmのジルコニアボールをメディアに用いてペイントシェーカーで90分混合した。次いで、100μm以下の篩で混合粉体とメディアを分離し、80℃で6時間乾燥した。次に、1300℃、1時間、Arガス雰囲気中で焼成し、CaZrO3:Tbで示される蛍光体を得た(実施例2−2)。 CaCO 3 , ZrO 2 and TbF 3 are used as raw materials, the ratio of Ca to Zr (Ca / Zr) is 1.0, and the Tb concentration is 1 mol% with respect to the crystal base material. This is zirconia having a diameter of 3 mm. The balls were used as media and mixed for 90 minutes with a paint shaker. Next, the mixed powder and the media were separated with a sieve of 100 μm or less, and dried at 80 ° C. for 6 hours. Next, it was fired in an Ar gas atmosphere at 1300 ° C. for 1 hour to obtain a phosphor represented by CaZrO 3 : Tb (Example 2-2).
実施例2−1で得られた蛍光体と実施例2−2で得られた蛍光体とを混合して白色蛍光体を得た。 The phosphor obtained in Example 2-1 and the phosphor obtained in Example 2-2 were mixed to obtain a white phosphor.
この白色蛍光体の蛍光スペクトルを図2に示す。図2から明らかなように、この白色蛍光体は、実施例1と比較して発光強度が弱いが、波長420nm近傍、540nm近傍、610nm近傍において発光を示し、それぞれ青色成分、緑色成分、赤色成分を包含する演色性の良い発光を示す。 The fluorescence spectrum of this white phosphor is shown in FIG. As is clear from FIG. 2, this white phosphor has lower emission intensity than that of Example 1, but emits light at wavelengths near 420 nm, 540 nm, and 610 nm, and each of a blue component, a green component, and a red component. Light emission with good color rendering properties including
Gd2O2S及びEuF3、TbF3,PrF3を原料とし、結晶母材に対しEu濃度が0.04モル%、Tb濃度が0.01モル%、Pr濃度が0.04モル%となるように秤量し、これをφ3mmのジルコニアボールをメディアに用いてペイントシェーカーで90分混合した。次いで、100μm以下の篩で混合粉体とメディアを分離し、80℃で6時間乾燥した。次に、1050℃、12時間、Arガス雰囲気中で焼成し、Gd2O2S:Eu、Tb,Prで示される蛍光体を得た(比較例1)。 Gd 2 O 2 S and EuF 3 , TbF 3 , PrF 3 are used as raw materials, and the Eu concentration is 0.04 mol%, the Tb concentration is 0.01 mol%, and the Pr concentration is 0.04 mol% with respect to the crystal base material. This was weighed and mixed with a paint shaker for 90 minutes using a zirconia ball having a diameter of 3 mm as a medium. Next, the mixed powder and the media were separated with a sieve of 100 μm or less, and dried at 80 ° C. for 6 hours. Next, it was baked in an Ar gas atmosphere at 1050 ° C. for 12 hours to obtain a phosphor represented by Gd 2 O 2 S: Eu, Tb, Pr (Comparative Example 1).
この蛍光体の蛍光スペクトルを図5に示す。図5から明らかなように、この蛍光体は、波長380〜450nmの青色成分が十分ではなく、白色蛍光体としては十分ではないと考えられる。 The fluorescence spectrum of this phosphor is shown in FIG. As is apparent from FIG. 5, this phosphor does not have a sufficient blue component with a wavelength of 380 to 450 nm, and is considered not sufficient as a white phosphor.
CaCO3、ZrO2及びPrF3を原料とし、CaとZrの比(Ca/Zr)を1.0、結晶母材に対しPr濃度が1モル%となるように秤量し、これをφ3mmのジルコニアボールをメディアに用いてペイントシェーカーで90分混合した。次いで、100μm以下の篩で混合粉体とメディアを分離し、80℃で6時間乾燥した。次に、1300℃、1時間、Arガス雰囲気中で焼成し、CaZrO3:Prで示される緑色蛍光体を得た(実施例3)。 Using CaCO 3 , ZrO 2 and PrF 3 as raw materials, the ratio of Ca to Zr (Ca / Zr) is 1.0, and the Pr concentration is 1 mol% with respect to the crystal matrix, and this is zirconia having a diameter of 3 mm. The balls were used as media and mixed for 90 minutes with a paint shaker. Next, the mixed powder and the media were separated with a sieve of 100 μm or less, and dried at 80 ° C. for 6 hours. Next, 1300 ° C., 1 hour, and fired in an Ar gas atmosphere, CaZrO 3: to obtain a green phosphor represented by Pr (Example 3).
この緑色蛍光体の蛍光スペクトルを図6に示す。本発明に係る上記白色蛍光体は、演色性を向上させるために、Prを緑色成分を補う色目調整剤として含有させることができる。 The fluorescence spectrum of this green phosphor is shown in FIG. The white phosphor according to the present invention can contain Pr as a color adjusting agent that supplements the green component in order to improve color rendering.
CaCO3、ZrO2及びSmF3を原料とし、CaとZrの比(Ca/Zr)を1.0、結晶母材に対しSm濃度が1モル%、となるように秤量し、これをφ3mmのジルコニアボールをメディアに用いてペイントシェーカーで90分混合した。次いで、100μm以下の篩で混合粉体とメディアを分離し、80℃で6時間乾燥した。次に、1300℃、1時間、Arガス雰囲気中で焼成し、CaZrO3:Smで示される赤色蛍光体を得た(実施例4)。 CaCO 3 , ZrO 2 and SmF 3 were used as raw materials, and the ratio of Ca to Zr (Ca / Zr) was 1.0, and the Sm concentration was 1 mol% with respect to the crystal base material. Zirconia balls were used as media and mixed for 90 minutes with a paint shaker. Next, the mixed powder and the media were separated with a sieve of 100 μm or less, and dried at 80 ° C. for 6 hours. Next, it was fired in an Ar gas atmosphere at 1300 ° C. for 1 hour to obtain a red phosphor represented by CaZrO 3 : Sm (Example 4).
この赤色蛍光体の蛍光スペクトルを図7に示す。本発明に係る上記白色蛍光体は、演色性を向上させるために、Smを赤色成分を補う色目調整剤として含有させることができる。 The fluorescence spectrum of this red phosphor is shown in FIG. The white phosphor according to the present invention can contain Sm as a color adjusting agent that supplements the red component in order to improve color rendering.
本発明に係る白色蛍光体は、蛍光スペクトルから明らかなように、波長420nm近傍、540nm近傍、610nm近傍において発光を示し、それぞれ青色成分、緑色成分、赤色成分を包含する演色性の良い発光を示す。また、CaZrO3を単一の結晶母材とするものであることから相互作用がなく、製造に負担がかからない。また、信頼性、耐環境性に優れている。このことから、本発明に係る白色蛍光体は、自然光(太陽光)に近い白色光を要求される一般照明に適用することができる。また、本発明に係る白色蛍光体は、表示デバイス分野でも、液晶のバックライトやPDP、EL、FED、CRT用の蛍光体としても期待できる白色蛍光体を提供すること。 As is apparent from the fluorescence spectrum, the white phosphor according to the present invention emits light near wavelengths of 420 nm, 540 nm, and 610 nm, and emits light with good color rendering including blue, green, and red components, respectively. . In addition, since CaZrO 3 is used as a single crystal base material, there is no interaction and no burden is imposed on production. It also has excellent reliability and environmental resistance. For this reason, the white phosphor according to the present invention can be applied to general illumination requiring white light close to natural light (sunlight). In addition, the white phosphor according to the present invention provides a white phosphor that can be expected as a liquid crystal backlight, a phosphor for PDP, EL, FED, and CRT in the field of display devices.
Claims (7)
CaxZryO3:Eu、Tb …(1)
(但し、0.8≦x/y≦2.0) A white phosphor represented by the following general formula (1).
Ca x Zr y O 3 : Eu, Tb (1)
(However, 0.8 ≦ x / y ≦ 2.0)
The method for producing a white phosphor according to claim 6, wherein the firing temperature is 900 to 1300 ° C, the calcination temperature is 800 to 1100 ° C, and the firing or calcination is performed for 1 to 12 hours.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005193624A JP2007009104A (en) | 2005-07-01 | 2005-07-01 | White phosphor and method for producing the same and white luminescent element |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005193624A JP2007009104A (en) | 2005-07-01 | 2005-07-01 | White phosphor and method for producing the same and white luminescent element |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2007009104A true JP2007009104A (en) | 2007-01-18 |
Family
ID=37748011
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005193624A Pending JP2007009104A (en) | 2005-07-01 | 2005-07-01 | White phosphor and method for producing the same and white luminescent element |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2007009104A (en) |
-
2005
- 2005-07-01 JP JP2005193624A patent/JP2007009104A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100798054B1 (en) | Light emitting devices having silicate fluorescent phosphors | |
US7755276B2 (en) | Aluminate-based green phosphors | |
US7274045B2 (en) | Borate phosphor materials for use in lighting applications | |
US7109648B2 (en) | Light emitting device having thio-selenide fluorescent phosphor | |
JP4524468B2 (en) | Phosphor, method for producing the same, light source using the phosphor, and LED | |
JP2008202044A (en) | Deep red phosphor and method for production thereof | |
TWI390011B (en) | Green phosphor | |
JP4188404B2 (en) | White phosphor and white light emitting element or device | |
JP2005179498A (en) | Red phosphor material, white light-emitting diode using the same, and illuminator using the white light-emitting diode | |
JP4309242B2 (en) | Red phosphor material, white light emitting diode using red phosphor material, and lighting device using white light emitting diode | |
US9045690B2 (en) | Silicate luminescent material and production method thereof | |
JP4810152B2 (en) | Red phosphor and white light emitting device | |
JP2007063366A (en) | Red fluorophor for near-ultraviolet and green-color excitation and method for producing the same, and red light-emitting device | |
US20060244366A1 (en) | Blue excited yellow fluorescent material and white light emitting element using the same | |
JP2007063365A (en) | Yellow fluorophor and method for producing the same, and yellow light-emitting device | |
JP2014001286A (en) | Fluophor and manufacturing method of the same, and light-emitting device using the same | |
JP2007009104A (en) | White phosphor and method for producing the same and white luminescent element | |
JP2008308634A (en) | Manganese-activated rare earth aluminate phosphor and fluorescent lamp using the same | |
JP5014628B2 (en) | Phosphor, method of manufacturing the same, and lamp | |
JP2006089692A (en) | Green light-emitting fluorophor and mercury fluorescent lamp using the same | |
KR100699529B1 (en) | Red Phospher and White Light Emitting Device Using Its | |
JP2004292569A (en) | Green-emitting phosphor, fluorescent lamp, and luminescent element | |
JP2007238815A (en) | Phosphor for light emitting device and light emitting device | |
WO2010010947A1 (en) | Aluminate phosphor, method for producing the same, fluorescent lamp using the phosphor and liquid crystal display | |
KR100945252B1 (en) | Green-emitting phosphor and its manufacture method and fluorescent lamps including phosphor and its manufacture method |