JP2007007586A - Filter medium for air filter, and air filter - Google Patents

Filter medium for air filter, and air filter Download PDF

Info

Publication number
JP2007007586A
JP2007007586A JP2005193207A JP2005193207A JP2007007586A JP 2007007586 A JP2007007586 A JP 2007007586A JP 2005193207 A JP2005193207 A JP 2005193207A JP 2005193207 A JP2005193207 A JP 2005193207A JP 2007007586 A JP2007007586 A JP 2007007586A
Authority
JP
Japan
Prior art keywords
air filter
glass fiber
mass
content
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2005193207A
Other languages
Japanese (ja)
Inventor
Shiro Hayashi
嗣郎 林
Takeshi Yamaguchi
健 山口
Hirokuni Sato
弘邦 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Muki Co Ltd
Original Assignee
Nippon Muki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Muki Co Ltd filed Critical Nippon Muki Co Ltd
Priority to JP2005193207A priority Critical patent/JP2007007586A/en
Publication of JP2007007586A publication Critical patent/JP2007007586A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Filtering Materials (AREA)
  • Filtering Of Dispersed Particles In Gases (AREA)
  • Paper (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a filter medium for an air filter consisting of glass fiber capable of regulating B<SB>2</SB>O<SB>3</SB>content in mixed manufactured paper and reducing the amount of boron produced from the air filter to have a desired clean space, by using glass fiber with low B<SB>2</SB>O<SB>3</SB>content and mixed manufactured paper having glass fiber with higher B<SB>2</SB>O<SB>3</SB>content than this glass fiber as main bodies. <P>SOLUTION: This filter medium for an air filter is formed by adhering a binder to the mixed manufactured paper having glass fiber with a B<SB>2</SB>O<SB>3</SB>content of 0.1 mass% or less and glass fiber with a B<SB>2</SB>O<SB>3</SB>content of 5-15 mass% as the main bodies. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、半導体工場などのクリーンルームにおいて使用され、通風時に濾材からのホウ素発生量が少ないエアフィルタ用濾材およびエアフィルタに関する。   The present invention relates to a filter medium for an air filter and an air filter that are used in a clean room such as a semiconductor factory and generate a small amount of boron from the filter medium during ventilation.

近年、LSI、VLSI等の半導体製品の高集積化や微細化に伴って、エアフィルタには、粒子状汚染物の除去効率が優れることのみならず、半導体製品の品質に影響を及ぼすホウ素等のガス状汚染物質の発生が少ないことが求められている。
従来より、クリーンルームで使用されるエアフィルタ用濾材には、ガラス繊維からなるものが用いられているが、この濾材を構成するガラス繊維は、ガラス繊維紡糸時のガラス溶融温度を下げる目的や、クリーンルーム内の光源による光照射によってガラス繊維が劣化しないように耐候性を付与する目的や、ガラス繊維の強度を向上する目的のため、B23が8〜10質量%配合されたホウ珪酸ガラス繊維からなるものが用いられている。しかしながら、このようなB23の含有量が多いホウ珪酸ガラス繊維からなる濾材は、空気や窒素等の気体が通過する際に、ガラス繊維中からホウ素が発生し、クリーンルーム内を汚染してしまうという問題があった。例えば、ホウ珪酸ガラス繊維からなる濾材を用いたエアフィルタの場合、クリーンルーム内へのホウ素発生量は、100〜300ng/m3と高かった。
In recent years, with the high integration and miniaturization of semiconductor products such as LSI and VLSI, air filters not only have excellent removal efficiency of particulate contaminants, but also boron that affects the quality of semiconductor products. There is a demand for low generation of gaseous pollutants.
Conventionally, air filter media used in clean rooms have been made of glass fibers. The glass fibers that make up this filter media are used to lower the glass melting temperature during glass fiber spinning, A borosilicate glass fiber containing 8 to 10% by mass of B 2 O 3 for the purpose of imparting weather resistance so that the glass fiber is not deteriorated by light irradiation by an internal light source or for the purpose of improving the strength of the glass fiber. The thing which consists of is used. However, such a filter medium made of borosilicate glass fiber having a high B 2 O 3 content generates boron from the glass fiber when a gas such as air or nitrogen passes and contaminates the inside of the clean room. There was a problem that. For example, in the case of an air filter using a filter medium made of borosilicate glass fiber, the amount of boron generated in the clean room was as high as 100 to 300 ng / m 3 .

濾材からのホウ素発生を防止するため、例えば、特許文献1には、純水中へのホウ素溶出量(65℃×120時間)が1.5×10-5g/gを超えない石英ガラス繊維からなる濾材を用いたエアフィルタが開示されている。このエアフィルタを用いた場合は、クリーンルーム内を非常に高い清浄空間とすることができる。
しかしながら、このようなエアフィルタは、石英ガラス繊維が非常に高価であるため、単価が高くなり、クリーンルームの天井全面にエアフィルタを設ける場合は、非常にコストが高くなるという問題があった。
In order to prevent generation of boron from the filter medium, for example, Patent Document 1 discloses a quartz glass fiber whose boron elution amount (65 ° C. × 120 hours) in pure water does not exceed 1.5 × 10 −5 g / g. An air filter using a filter medium made of is disclosed. When this air filter is used, the interior of the clean room can be made a very high clean space.
However, such an air filter has a problem that the quartz glass fiber is very expensive, so that the unit price is high, and when the air filter is provided on the entire ceiling of the clean room, the cost is very high.

また、濾材からのホウ素発生を防止するため、例えば、特許文献2には、エアフィルタ用の濾材として、B23含有量が0.01重量%以下のガラス繊維と有機繊維からなるものが開示されている。この濾材を用いたエアフィルタも、クリーンルーム内を非常に高い清浄空間とすることができる。
しかしながら、このようなエアフィルタも、B23含有量が0.01重量%以下のガラス繊維が非常に高価なものであるため、コストが高くなるという問題があった。また、B23含有量の少ないガラス繊維は、材料と製造方法によっては、繊維強度が弱くなり、このようなガラス繊維からなる濾材をプリーツ加工する際に、繊維がケバ立ってしまう問題があった。また、ガラス繊維の繊維強度が弱いため、このようなガラス繊維からなる濾材は引張強度が弱くなり、濾材としての強度を満たすため有機繊維を配合しなければならないため、有機ガスの発生が増し、燃焼性が悪くなるという問題があった。
特開平6−285318号公報 特開平9− 70512号公報
In order to prevent the generation of boron from the filter medium, for example, Patent Document 2 discloses a filter medium for air filters composed of glass fibers and organic fibers having a B 2 O 3 content of 0.01% by weight or less. It is disclosed. The air filter using this filter medium can also make the clean room a very high clean space.
However, such an air filter also has a problem that the cost increases because glass fibers having a B 2 O 3 content of 0.01% by weight or less are very expensive. Moreover, the glass fiber with a small B 2 O 3 content has a problem that the fiber strength is weak depending on the material and the manufacturing method, and the fiber becomes flared when a filter medium made of such a glass fiber is pleated. there were. In addition, since the fiber strength of the glass fiber is weak, the filter medium made of such glass fiber has a low tensile strength, and the organic fiber has to be blended to satisfy the strength as the filter medium. There was a problem that the flammability deteriorated.
JP-A-6-285318 JP-A-9-70512

ところで、クリーンルーム内で製造する半導体製品のグレード等によっては、エアフィルタからクリーンルーム内へ発生するホウ素量が例えば1ng/m3未満であり、クリーンルーム内を非常に高い清浄空間とするようになるまで、エアフィルタから発生するホウ素量を低減することが必ずしも求められない場合もあった。このような場合に、コストの高いエアフィルタをクリーンルームに設けてしまうと、設備費がかかってしまうという問題があった。
そこで、本発明は、B23含有量の低いガラス繊維と、このガラス繊維よりもB23含有量の多いガラス繊維を主体とする混抄紙を用いることにより、混抄紙中のB23含有量を調整し、所望の清浄空間となるようにエアフィルタから発生するホウ素量を低減することができるガラス繊維からなるエアフィルタ用濾材およびエアフィルタを提供することを目的とする。
By the way, depending on the grade of the semiconductor product manufactured in the clean room, the amount of boron generated from the air filter into the clean room is, for example, less than 1 ng / m 3 , until the clean room becomes a very high clean space. In some cases, it is not always necessary to reduce the amount of boron generated from the air filter. In such a case, if an expensive air filter is provided in a clean room, there is a problem that equipment costs are required.
The present invention, B 2 O 3 and a low glass fibers content, by using a mixed paper made mainly of large glass fibers content of B 2 O 3 than the glass fiber, B 2 in the composite paper An object of the present invention is to provide an air filter medium and an air filter made of glass fibers that can adjust the O 3 content and reduce the amount of boron generated from the air filter so that a desired clean space is obtained.

本発明のエアフィルタ用濾材は、請求項1記載の通り、B23の含有量が0.1質量%以下のガラス繊維と、B23の含有量が5〜15質量%のガラス繊維が主体となる混抄紙にバインダを添着してなるものであることを特徴とする。
また、請求項2記載のエアフィルタ用濾材は、請求項1記載のエアフィルタ用濾材において、前記混抄紙の主体となるガラス繊維が、B23の含有量が0.1質量%以下のガラス繊維40〜80質量%と、B23の含有量が5〜15質量%のガラス繊維60〜20質量%からなることを特徴とする。
また、請求項3記載のエアフィルタ用濾材は、請求項1または2記載のエアフィルタ用濾材において、前記混抄紙をバインダ溶液に浸漬し、バインダを添着してなることを特徴とする。
本発明のエアフィルタは、請求項4記載の通り、請求項1乃至3のいずれかに記載したエアフィルタ用濾材を用いたことを特徴とする。
また、請求項5記載のエアフィルタは、請求項4記載のエアフィルタにおいて、エアフィルタから発生するホウ素量が1〜10ng/m3であることを特徴とする。
Medium for an air filter of the present invention, as claimed in claim 1, the glass fiber content less 0.1 wt% B 2 O 3, the glass content of 5 to 15 mass% of B 2 O 3 It is characterized by being formed by adhering a binder to a mixed paper mainly composed of fibers.
The air filter medium according to claim 2 is the air filter medium according to claim 1, wherein the glass fiber that is the main component of the mixed paper has a B 2 O 3 content of 0.1 mass% or less. and 40 to 80 wt% of glass fiber, the content of B 2 O 3 is characterized by comprising the 60 to 20 wt% 5-15 wt% of glass fibers.
The air filter medium according to claim 3 is characterized in that, in the air filter medium according to claim 1 or 2, the mixed paper is immersed in a binder solution and a binder is attached thereto.
As described in claim 4, the air filter of the present invention is characterized by using the air filter medium described in any one of claims 1 to 3.
The air filter according to claim 5 is characterized in that, in the air filter according to claim 4, the amount of boron generated from the air filter is 1 to 10 ng / m 3 .

本発明のエアフィルタ用濾材は、濾材を構成する混抄紙が、B23含有量が0.1質量%以下のガラス繊維と、このガラス繊維よりもB23含有量が多いガラス繊維の2種類のガラス繊維を主体として混抄紙を形成することによって、混抄紙中のB23含有量を調整することができる。従って、このB23含有量を調整した混抄紙にバインダを添着することによって、ガラス繊維表面をバインダで被覆して、エアフィルタから発生するホウ素量を低減させたエアフィルタ用濾材およびエアフィルタを提供することができる。また、エアフィルタ用濾材が、B23の含有量が0.1質量%以下のガラス繊維と、このガラス繊維よりもB23の含有量が多いガラス繊維の2種類のガラス繊維を主体とした混抄紙からなるものであるため、有機繊維等を混抄することなく、濾材として要求される引張強度を確保することができる。 The filter medium for an air filter according to the present invention includes a glass fiber having a B 2 O 3 content of 0.1% by mass or less and a glass fiber having a B 2 O 3 content higher than that of the glass fiber. The B 2 O 3 content in the mixed paper can be adjusted by forming the mixed paper mainly composed of the two types of glass fibers. Therefore, a filter medium for an air filter and an air filter in which the glass fiber surface is coated with a binder and the amount of boron generated from the air filter is reduced by attaching a binder to the mixed paper whose B 2 O 3 content is adjusted. Can be provided. In addition, the filter medium for air filter includes two types of glass fibers: a glass fiber having a B 2 O 3 content of 0.1% by mass or less and a glass fiber having a B 2 O 3 content higher than that of the glass fiber. Since it is made of a mixed paper made mainly, it is possible to ensure the tensile strength required as a filter medium without mixing organic fibers and the like.

本発明のエアフィルタ用濾材は、B23の含有量が0.1質量%以下のガラス繊維と、B23の含有量が5〜15質量%のガラス繊維が主体となる混抄紙にバインダを添着してなるものである。 The filter medium for an air filter of the present invention is a mixed paper mainly composed of glass fibers having a B 2 O 3 content of 0.1% by mass or less and glass fibers having a B 2 O 3 content of 5 to 15% by mass. It is made by attaching a binder.

本発明のエアフィルタ用濾材に用いるB23の含有量が0.1質量%以下のガラス繊維としては、溶融石英ガラス繊維、高珪酸ガラス繊維、ゾルゲル法シリカガラス繊維、珪酸ガラス繊維などを使用することができる。
溶融石英ガラス繊維とは、溶融石英ガラスを火炎ジェットで吹き飛ばし、再溶融して繊維化したものであり、SiO2の含有量が99.99質量%のものである。また、高珪酸ガラス繊維とは、無アルカリガラス(Eガラス)繊維を酸処理などでシリカ以外の成分を溶出させた多孔質ガラス繊維や、この多孔質ガラス繊維を焼成して微孔を潰したガラス繊維や、バイコールガラス(分相ガラス)を出発原料として微細化した多孔質ガラス繊維などであり、いずれのガラス繊維もSiO2の含有量が99.8質量%のものである。ゾルゲル法シリカガラス繊維とは、ガラスを構成するケイ素のアルコキシド溶液の水分量を少なくして紡糸した後、600〜900℃で焼成したガラス繊維であり、SiO2の含有量が99.99質量%のものである。これらのB23の含有量が0.1質量%以下のガラス繊維のうち、SiO2の含有量が99.8質量%の高珪酸ガラス繊維は、汎用性があるため好ましい。
Examples of the glass fiber having a B 2 O 3 content of 0.1% by mass or less used in the air filter medium of the present invention include fused silica glass fiber, high silicate glass fiber, sol-gel silica glass fiber, and silicate glass fiber. Can be used.
The fused silica glass fiber is obtained by blowing fused silica glass with a flame jet and remelting it into a fiber. The SiO 2 content is 99.99% by mass. The high silicate glass fiber is a porous glass fiber obtained by eluting components other than silica by acid treatment or the like in an alkali-free glass (E glass) fiber, or by firing the porous glass fiber to crush the micropores. Glass fiber, porous glass fiber refined using Vycor glass (phase-separated glass) as a starting material, and the like, each glass fiber having a SiO 2 content of 99.8% by mass. The sol-gel silica glass fiber is a glass fiber which is spun at a low water content of the silicon alkoxide solution constituting the glass and then fired at 600 to 900 ° C., and the content of SiO 2 is 99.99 mass%. belongs to. Among these glass fibers having a B 2 O 3 content of 0.1% by mass or less, a high silicate glass fiber having a SiO 2 content of 99.8% by mass is preferable because of its versatility.

また、本発明のエアフィルタ用濾材に用いるB23の含有量が5〜15質量%のガラス繊維としては、ホウ珪酸ガラス、Cガラスからなるガラス繊維を用いることができる。これらのガラスからなるガラス繊維は、現在広く流通している製品であり、価格が安いため好ましい。B23の含有量が5〜15質量%のガラス繊維としては、その組成として、質量%で表示して、SiO2:50〜60%、Na2O:7〜14%、CaO:1〜6%、K2O:1〜5%、Al23:3〜8%、MgO:0〜4%、ZnO:0〜5%、Fe23:0.3%未満、B23:5〜15%、BaO:3〜6%のものを用いることができる。 As the glass fiber content of B 2 O 3 used in the filter medium for an air filter 5 to 15% by weight of the present invention, it is possible to use a glass fiber made of borosilicate glass, C glass. Glass fibers made of these glasses are products that are currently widely distributed and are preferable because of their low price. The glass fiber having a B 2 O 3 content of 5 to 15% by mass is expressed in terms of mass% as a composition, SiO 2 : 50 to 60%, Na 2 O: 7 to 14%, CaO: 1 ~6%, K 2 O: 1~5 %, Al 2 O 3: 3~8%, MgO: 0~4%, ZnO: 0~5%, Fe 2 O 3: less than 0.3%, B 2 O 3 : 5 to 15%, BaO: 3 to 6% can be used.

本発明のエアフィルタ用濾材を構成する混抄紙は、その主体となるガラス繊維の配合量が、B23の含有量が0.1質量%以下のガラス繊維が40〜80質量%、B23の含有量が5〜15質量%のガラス繊維が60〜20質量%からなるものであることが好ましい。
23の含有量が0.1質量%以下のガラス繊維の配合量が80質量%を超えると、濾材からのホウ素発生量は少なくなるものの、クリーンルーム内の光源による光照射によって耐候性が低下し、引張強度が弱くなるため好ましくない。また、B23の含有量が0.1質量%以下のガラス繊維の配合量が40質量%未満であると、混抄紙を構成するガラス繊維自体に含まれるB23の含有量が多くなるため、濾材から発生するホウ素量が多くなり、好ましくない。
Mixed paper constituting the filter medium for an air filter of the present invention, the amount of glass fibers to be the principal, B 2 O 3 content is 0.1 mass% or less of the glass fiber 40 to 80 wt%, B It is preferable that the glass fiber having a content of 2 O 3 of 5 to 15% by mass is composed of 60 to 20% by mass.
When the content of B 2 O 3 is 0.1% by mass or less, the amount of boron generated from the filter medium is reduced when the glass fiber content exceeds 80% by mass. This is not preferable because the tensile strength decreases. Further, if the blending amount of the glass fiber having a content of B 2 O 3 of 0.1% by mass or less is less than 40% by mass, the content of B 2 O 3 contained in the glass fiber itself constituting the mixed paper is obtained. This increases the amount of boron generated from the filter medium, which is not preferable.

本発明に用いるガラス繊維は、例えば、その平均繊維径が0.2〜70μmのものである。クリーンルームで用いられる高性能フィルタとして、サブミクロン粒子を捕集するHEPAフィルタ(高性能フィルタ)やULPAフィルタ(超高性能フィルタ)用の濾材とする場合は、平均繊維径が2.0μm以下のガラス繊維を用いることが好ましい。
また、エアフィルタ用濾材は、通常、プリーツ状に形成するので、濾材の引張強度を向上するために、上記のような平均繊維径をもつガラス繊維に、平均繊維径のやや太いガラス繊維を混合して混抄紙とすることが好ましい。本発明に用いるガラス繊維は、例えば、平均繊維径2.0μm以下のガラス繊維80〜20質量%と、繊維径1〜70μm、繊維長1〜15mmのガラス繊維20〜80質量%を混合することが好ましい。平均繊維径2.0μm以下のガラス繊維の配合量が80質量%を超えると、平均繊維径の太いガラス繊維の配合量が少なくなり、引張強度の低下やプリーツ加工性の低下、圧力損失が増加する等の問題が生じるため好ましくない。平均繊維径2.0μm以下のガラス繊維の配合量が20質量%未満であると、クリーンルーム内のダストの捕集効率が低下するため好ましくない。
The glass fiber used in the present invention has, for example, an average fiber diameter of 0.2 to 70 μm. As a high-performance filter used in a clean room, a glass with an average fiber diameter of 2.0 μm or less is used as a filter medium for HEPA filters (high-performance filters) and ULPA filters (ultra-high performance filters) that collect submicron particles. It is preferable to use fibers.
Moreover, since the filter medium for air filters is usually formed in a pleat shape, in order to improve the tensile strength of the filter medium, a glass fiber having a slightly larger average fiber diameter is mixed with the glass fiber having the average fiber diameter as described above. Thus, a mixed paper is preferable. The glass fiber used in the present invention is, for example, a mixture of 80 to 20% by mass of glass fiber having an average fiber diameter of 2.0 μm or less and 20 to 80% by mass of glass fiber having a fiber diameter of 1 to 70 μm and a fiber length of 1 to 15 mm. Is preferred. When the blending amount of glass fibers having an average fiber diameter of 2.0 μm or less exceeds 80% by mass, the blending amount of glass fibers having a large average fiber diameter decreases, resulting in a decrease in tensile strength, a decrease in pleatability, and an increase in pressure loss. This is not preferable because it causes problems such as When the blending amount of glass fibers having an average fiber diameter of 2.0 μm or less is less than 20% by mass, the dust collection efficiency in the clean room is lowered, which is not preferable.

本発明のエアフィルタ用濾材を構成する混抄紙に添着するバインダとしては、例えば、アクリル樹脂、エポキシ樹脂、スチレン系樹脂、ポリビニルアルコール樹脂、ポリ塩化ビニル樹脂、ポリビニルエーテル樹脂、ポリエステル樹脂、ポリ酢酸ビニル樹脂などを使用することができる。
バインダを混抄紙に添着する方法としては、混抄紙を構成するガラス繊維を工業用水又は水道水に分散させたスラリー中にバインダを添加してバインダとともに混抄紙を抄造することによって、バインダを添着してもよいし、混抄紙をバインダ溶液に浸漬してバインダを添着してもよく、また、この両方の方法によってバインダを添着してもよい。また、混抄紙の上からバインダ溶液を掛け流してバインダを添着してもよく、混抄紙にバインダ溶液を噴霧してバインダを添着してもよい。
混抄紙をバインダ溶液に浸漬し、バインダを添着した場合は、混抄紙を構成するガラス繊維1本1本の表面にバインダが被覆されるため好ましい。
バインダは、混抄紙100質量%に対して、4〜7外質量%添着することが好ましい。混抄紙に添着するバインダが少ないと、混抄紙の引張強度が不足するとともに、ガラス繊維表面に均一にバインダが被覆されないため好ましくない。また、バインダが多いと、バインダが混抄紙を構成するガラス繊維の隙間を塞ぎ、この混抄紙からなる濾材の圧力損失が高くなるため好ましくない。また、バインダが多いと燃焼成分量が増加し、有機ガスの発生が増し、燃焼性が悪くなるため好ましくない。
Examples of the binder to be attached to the mixed paper constituting the air filter medium of the present invention include acrylic resin, epoxy resin, styrene resin, polyvinyl alcohol resin, polyvinyl chloride resin, polyvinyl ether resin, polyester resin, and polyvinyl acetate. Resins can be used.
As a method of attaching the binder to the mixed paper, the binder is attached by adding the binder to the slurry in which the glass fibers constituting the mixed paper are dispersed in industrial water or tap water and making the mixed paper together with the binder. Alternatively, the binder may be attached by immersing the mixed paper in a binder solution, or the binder may be attached by both methods. Further, the binder solution may be applied by pouring the binder solution over the mixed paper, or the binder solution may be applied by spraying the binder solution onto the mixed paper.
It is preferable to immerse the mixed paper in a binder solution and attach the binder because the binder is coated on the surface of each glass fiber constituting the mixed paper.
The binder is preferably 4 to 7% by mass with respect to 100% by mass of the mixed paper. If the binder attached to the mixed paper is small, the tensile strength of the mixed paper is insufficient, and the glass fiber surface is not uniformly coated with the binder, which is not preferable. Also, if the binder is large, the binder closes the gaps between the glass fibers constituting the mixed paper, and the pressure loss of the filter medium made of the mixed paper becomes high. Moreover, when there are many binders, the amount of combustion components increases, generation | occurrence | production of organic gas increases, and combustibility worsens, and is unpreferable.

以下、本発明の実施例を比較例とともに説明するが、本発明は以下の実施例に限定されるものではない。   Examples of the present invention will be described below together with comparative examples, but the present invention is not limited to the following examples.

(実施例1)
23の含有量が0.1質量%以下のガラス繊維として、質量%で表示して、その成分がSiO2:70.0%、Na2O:10.0%、CaO:6.0%、K2O:5.0%、Al23:3.0%、MgO:3.0%、ZnO:1.0%、Fe23:0.2%未満、B23:0.1%未満の組成の平均繊維径0.7μmと平均繊維径3μmの溶融紡糸ガラス繊維と、前記組成の平均繊維径6μmのチョップドストランドガラス繊維から構成されるガラス繊維を用いた。
また、B23の含有量が5〜15質量%のガラス繊維として、質量%で表示して、その成分がSiO2:60.0%、Na2O:10.0%、CaO:5.0%、K2O:3.0%、Al23:6.0%、MgO:1.0%、ZnO:3.0%、Fe23:0.2%未満、B23:10.0%、BaO:4.0%の組成のホウ珪酸ガラスからなる平均繊維径0.7μmと平均繊維径3μmの溶融紡糸ガラス繊維と、前記組成の平均繊維径6μmのチョップドストランドガラス繊維から構成されるガラス繊維を用いた。前記B23の含有量が0.1質量%以下のガラス繊維40質量%と、前記B23の含有量が10.0質量%のガラス繊維60質量%を工業用水中にパルパーで解離し、これらの2種類のガラス繊維を主体として、抄紙機で混抄紙を形成した。この混抄紙を、アクリル系ラテックスとフッ素系界面活性剤の混合液からなるバインダ溶液に浸漬し、混抄紙100質量%に対してバインダ量が6外質量%となるように、混抄紙にバインダを添着し、その後ドライヤーで乾燥して、目付70g/m2のエアフィルタ用濾材を得た。
このエアフィルタ用濾材をジグザグ状に折り畳み、濾材の折り山間隔をリボン材又はセパレータで保持したエアフィルタ用パックを、縦610mm×横610mm×奥行65mmのアルミニウム製の外枠内に収容し、エアフィルタ用パックの周囲をウレタン系樹脂にて接着してエアフィルタを作製した。
Example 1
As a glass fiber having a B 2 O 3 content of 0.1% by mass or less, expressed in mass%, the components are SiO 2 : 70.0%, Na 2 O: 10.0%, CaO: 6. 0%, K 2 O: 5.0 %, Al 2 O 3: 3.0%, MgO: 3.0%, ZnO: 1.0%, Fe 2 O 3: less than 0.2%, B 2 O 3 : Glass fibers composed of melt-spun glass fibers having an average fiber diameter of 0.7 μm and an average fiber diameter of 3 μm having a composition of less than 0.1% and chopped strand glass fibers having an average fiber diameter of 6 μm were used.
Further, the glass fiber having a B 2 O 3 content of 5 to 15% by mass is expressed in mass%, and the components are SiO 2 : 60.0%, Na 2 O: 10.0%, CaO: 5 0.0%, K 2 O: 3.0%, Al 2 O 3 : 6.0%, MgO: 1.0%, ZnO: 3.0%, Fe 2 O 3 : less than 0.2%, B 2 Melted-spun glass fibers having an average fiber diameter of 0.7 μm and an average fiber diameter of 3 μm made of borosilicate glass having a composition of O 3 : 10.0% and BaO: 4.0%, and chopped strands having an average fiber diameter of 6 μm. Glass fiber composed of glass fiber was used. 40% by mass of glass fiber having a B 2 O 3 content of 0.1% by mass or less and 60% by mass of glass fiber having a B 2 O 3 content of 10.0% by mass in industrial water with a pulper The paper was dissociated and a mixed paper was formed using a paper machine mainly composed of these two types of glass fibers. This mixed paper is immersed in a binder solution composed of a mixture of an acrylic latex and a fluorosurfactant, and the binder is added to the mixed paper so that the binder amount is 6% by mass with respect to 100% by mass of the mixed paper. It was attached and then dried with a drier to obtain a filter medium for air filter having a basis weight of 70 g / m 2 .
The air filter pack is folded in a zigzag shape and the air filter pack holding the filter media with a ribbon material or a separator is housed in an aluminum outer frame having a length of 610 mm, a width of 610 mm, and a depth of 65 mm. The periphery of the filter pack was bonded with a urethane resin to produce an air filter.

(実施例2)
実施例1と同様のB23の含有量が0.1質量%以下のガラス繊維50質量%と、実施例1と同様のB23の含有量が10.0質量%のガラス繊維50質量%を主体として混抄紙を形成したこと以外は、実施例1と同様にして、目付70g/m2のエアフィルタ用濾材を得た。このエアフィルタ用濾材を用いて、実施例1と同様にしてエアフィルタを作製した。
(Example 2)
50% by mass of glass fiber having a B 2 O 3 content of 0.1% by mass or less similar to that in Example 1 and a glass fiber having a content of B 2 O 3 of 10.0% by mass as in Example 1 A filter medium for an air filter having a basis weight of 70 g / m 2 was obtained in the same manner as in Example 1 except that the mixed paper was formed mainly with 50% by mass. Using this air filter medium, an air filter was produced in the same manner as in Example 1.

(実施例3)
実施例1と同様のB23の含有量が0.1質量%以下のガラス繊維60質量%と、実施例1と同様のB23の含有量が10.0質量%のガラス繊維40質量%を主体として混抄を形成したこと以外は、実施例1と同様にして、目付70g/m2のエアフィルタ用濾材を得た。このエアフィルタ用濾材を用いて、実施例1と同様にしてエアフィルタを作製した。
(Example 3)
60% by mass of glass fiber having the same B 2 O 3 content of 0.1% by mass or less as in Example 1 and 10.0% by mass of glass fiber having the same B 2 O 3 content as in Example 1 A filter medium for an air filter having a basis weight of 70 g / m 2 was obtained in the same manner as in Example 1 except that a mixed paper was formed mainly with 40% by mass. Using this air filter medium, an air filter was produced in the same manner as in Example 1.

(実施例4)
実施例1と同様のB23の含有量が0.1質量%以下のガラス繊維70質量%と、実施例1と同様のB23の含有量が10.0質量%のガラス繊維30質量%を主体として混抄を形成したこと以外は、実施例1と同様にして、目付70g/m2のエアフィルタ用濾材を得た。このエアフィルタ用濾材を用いて、実施例1と同様にしてエアフィルタを作製した。
Example 4
70% by mass of glass fiber having the same B 2 O 3 content of 0.1% by mass or less as in Example 1 and 10.0% by mass of glass fiber having the same B 2 O 3 content as in Example 1 A filter medium for an air filter having a basis weight of 70 g / m 2 was obtained in the same manner as in Example 1 except that a mixed paper was formed mainly with 30% by mass. Using this air filter medium, an air filter was produced in the same manner as in Example 1.

(実施例5)
実施例1と同様のB23の含有量が0.1質量%以下のガラス繊維80質量%と、実施例1と同様のB23の含有量が10.0質量%のガラス繊維20質量%を主体として混抄を形成したこと以外は、実施例1と同様にして、目付70g/m2のエアフィルタ用濾材を得た。このエアフィルタ用濾材を用いて、実施例1と同様にしてエアフィルタを作製した。
(Example 5)
80% by mass of glass fiber having a B 2 O 3 content of 0.1% by mass or less as in Example 1 and a glass fiber having a content of B 2 O 3 of 10.0% by mass as in Example 1 A filter medium for an air filter having a basis weight of 70 g / m 2 was obtained in the same manner as in Example 1 except that a mixed paper was formed mainly with 20% by mass. Using this air filter medium, an air filter was produced in the same manner as in Example 1.

(実施例6)
実施例1と同様のB23の含有量が0.1質量%以下のガラス繊維90質量%と、実施例1と同様のB23の含有量が10.0質量%のガラス繊維10質量%を主体として混抄を形成したこと以外は、実施例1と同様にして、目付70g/m2のエアフィルタ用濾材を得た。このエアフィルタ用濾材を用いて、実施例1と同様にしてエアフィルタを作製した。
(Example 6)
90% by mass of glass fiber having the same B 2 O 3 content of 0.1% by mass or less as in Example 1 and 10.0% by mass of glass fiber having the same B 2 O 3 content as in Example 1 A filter medium for an air filter having a basis weight of 70 g / m 2 was obtained in the same manner as in Example 1 except that a mixed paper was formed mainly with 10% by mass. Using this air filter medium, an air filter was produced in the same manner as in Example 1.

(実施例7)
実施例3と同様に形成した混抄紙を、実施例1と同様のアクリル系ラテックスとフッ素系界面活性剤の混合液からなるバインダ溶液に浸漬して、前記混抄紙100質量%に対してバインダ量が4外質量%となるようにバインダを添着したこと以外は、実施例1と同様にして、目付70g/m2のエアフィルタ用濾材を得た。このエアフィルタ用濾材を用いて、実施例1と同様にしてエアフィルタを作製した。
(Example 7)
The mixed paper formed in the same manner as in Example 3 was immersed in a binder solution composed of a mixture of an acrylic latex and a fluorosurfactant similar to that in Example 1, and the amount of binder with respect to 100% by mass of the mixed paper. A filter medium for air filters having a basis weight of 70 g / m 2 was obtained in the same manner as in Example 1 except that the binder was added so that the external mass was 4% by mass. Using this air filter medium, an air filter was produced in the same manner as in Example 1.

(実施例8)
実施例3と同様に形成した混抄紙を、実施例1と同様のアクリル系ラテックスとフッ素系界面活性剤の混合液からなるバインダ溶液に浸漬して、前記混抄紙100質量%に対してバインダ量が10外質量%となるようにバインダを添着したこと以外は、実施例1と同様にして、目付70g/m2のエアフィルタ用濾材を得た。このエアフィルタ用濾材を用いて、実施例1と同様にしてエアフィルタを作製した。
(Example 8)
The mixed paper formed in the same manner as in Example 3 was immersed in a binder solution composed of a mixture of an acrylic latex and a fluorosurfactant similar to that in Example 1, and the amount of binder with respect to 100% by mass of the mixed paper. A filter medium for air filters having a basis weight of 70 g / m 2 was obtained in the same manner as in Example 1 except that a binder was attached so that the mass was 10% by mass. Using this air filter medium, an air filter was produced in the same manner as in Example 1.

(実施例9)
実施例3と同様に形成した混抄紙に対し、実施例1と同様のアクリル系ラテックスとフッ素系界面活性剤の混合液からなるバインダ溶液を、前記混抄紙100質量%に対してバインダ量が6外質量%となるように噴霧によって添着したこと以外は、実施例1と同様にして、目付70g/m2のエアフィルタ用濾材を得た。このエアフィルタ用濾材を用いて、実施例1と同様にしてエアフィルタを作製した。
Example 9
For the mixed paper formed in the same manner as in Example 3, a binder solution composed of a mixture of an acrylic latex and a fluorosurfactant similar to that in Example 1 was used with a binder amount of 6 with respect to 100% by mass of the mixed paper. A filter medium for an air filter having a basis weight of 70 g / m 2 was obtained in the same manner as in Example 1 except that the addition was performed by spraying so that the external mass was. Using this air filter medium, an air filter was produced in the same manner as in Example 1.

(従来例1)
実施例1と同様のB23の含有量が10.0質量%のガラス繊維100質量%を主体として形成した混抄紙を用いたこと以外は、実施例1と同様にして、目付70g/m2のエアフィルタ用濾材を得た。このエアフィルタ用濾材を用いて、実施例1と同様にしてエアフィルタを作製した。
(Conventional example 1)
Similar to Example 1, except that a mixed paper mainly composed of 100% by mass of glass fiber having a B 2 O 3 content of 10.0% by mass was used, and a basis weight of 70 g / An air filter medium of m 2 was obtained. Using this air filter medium, an air filter was produced in the same manner as in Example 1.

(従来例2)
実施例1と同様のB23の含有量が0.1質量%以下のガラス繊維100質量%を主体として形成した混抄紙を用いたこと以外は、実施例1と同様にして、目付70g/m2のエアフィルタ用濾材を得た。このエアフィルタ用濾材を用いて、実施例1と同様にしてエアフィルタを作製した。
(Conventional example 2)
The basis weight is 70 g in the same manner as in Example 1 except that a mixed paper made mainly of 100% by mass of glass fiber having a B 2 O 3 content of 0.1% by mass or less is used. A filter medium for air filter of / m 2 was obtained. Using this air filter medium, an air filter was produced in the same manner as in Example 1.

(比較例)
実施例3と同様の混抄紙に、バインダを添着していないこと以外は、実施例1と同様にして、目付70g/m2のエアフィルタ用濾材を得た。このエアフィルタ用濾材を用いて、実施例1と同様にしてエアフィルタを作製した。
(Comparative example)
A filter medium for an air filter having a basis weight of 70 g / m 2 was obtained in the same manner as in Example 1 except that the binder paper was not attached to the same mixed paper as in Example 3. Using this air filter medium, an air filter was produced in the same manner as in Example 1.

実施例1〜9と、従来例1〜2と、比較例のエアフィルタについて、次の試験を行った。結果を表1に示す。   The following test was done about the air filter of Examples 1-9, Conventional Examples 1-2, and a comparative example. The results are shown in Table 1.

(エアフィルタ用濾材中に含まれるホウ素含有量)
エアフィルタ用濾材を酸溶液に溶解し、この溶解液をICP−AESにて定量分析を行い、エアフィルタ用濾材中のホウ素量を測定した。
(Boron content in air filter media)
The filter material for air filters was melt | dissolved in the acid solution, this solution was quantitatively analyzed by ICP-AES, and the amount of boron in the filter media for air filters was measured.

(エアフィルタから発生するホウ素量)
図1にエアフィルタから発生するホウ素量を測定する測定装置を示す。図1に示すように、エアフィルタから発生するホウ素量の測定装置1においては、ファン3とケミカルフィルタ4を通過した清浄空気が、上流側サンプリング室5に流入し、上流側サンプリング室5から試験用エアフィルタ2を通じて下流側サンプリング室6を流通し、流出口7から外部に流出するようになっている。試験用エアフィルタ2には、ファン3とケミカルフィルタ4を通過した清浄空気を、面風速0.35m/sで通過させている。この試験用エアフィルタ2を通過する前の清浄空気と、試験用エアフィルタ2を通過した後の清浄空気を、上流側サンプリング室5と下流側サンプリング室6からそれぞれインピンジャ8,9で2.0L/min、24時間を目安にサンプリングした。サンプリングした捕集液をICP−MSで分析し、上流側サンプリング室5からサンプリングした捕集液中のホウ素濃度と下流側サンプリング室6からサンプリングした捕集液中のホウ素濃度を測定し、このホウ素濃度の差からエアフィルタから発生したホウ素量を算出した。
(Boron amount generated from air filter)
FIG. 1 shows a measuring apparatus for measuring the amount of boron generated from an air filter. As shown in FIG. 1, in the apparatus 1 for measuring the amount of boron generated from an air filter, clean air that has passed through a fan 3 and a chemical filter 4 flows into the upstream sampling chamber 5 and is tested from the upstream sampling chamber 5. The air flows through the downstream sampling chamber 6 through the air filter 2 and flows out from the outlet 7 to the outside. Clean air that has passed through the fan 3 and the chemical filter 4 is passed through the test air filter 2 at a surface wind speed of 0.35 m / s. The clean air before passing through the test air filter 2 and the clean air after passing through the test air filter 2 are 2.0 L from the upstream sampling chamber 5 and the downstream sampling chamber 6 by the impingers 8 and 9, respectively. / Min, sampled for 24 hours as a guide. The sampled collected liquid is analyzed by ICP-MS, and the boron concentration in the collected liquid sampled from the upstream sampling chamber 5 and the boron concentration in the collected liquid sampled from the downstream sampling chamber 6 are measured. The amount of boron generated from the air filter was calculated from the concentration difference.

(クリーンルーム内のホウ素収束濃度)
図2にクリーンルームにエアフィルタを設置した場合のクリーンルーム内のホウ素収束濃度を推定するモデルを示す。クリーンルーム内のホウ素収束濃度とは、クリーンルームを運転した際に、クリーンルーム内のホウ素濃度が安定した時のホウ素濃度をいう。
図2に示すように、クリーンルーム施設10内のクリーンルーム11の天井にエアフィルタ12を設置し、各エアフィルタ12の上流側にファン13を設置する。このファン13の上流側に所定の積載率でケミカルフィルタ14を設置する。クリーンルーム11内の空気は、床部15から排出され、その一部が循環路16を通じて、再び、ケミカルフィルタ14とエアフィルタ12を通過して、クリーンルーム11内に供給されるようになっている。
ここで、クリーンルーム施設10へ供給する空気の風量をQ1とし、この空気中のホウ素濃度をC1とする。クリーンルーム施設10内に流入した空気の風量をQ2とし、この空気中のホウ素濃度をC2とする。ケミカルフィルタ14とエアフィルタ12を通過して、エアフィルタ12から発生するホウ素を含む空気中のホウ素濃度をC3とし、クリーンルーム11内のホウ素収束濃度をC4とする。また、クリーンルーム11の床部15から流出して、循環路16内を循環する空気の風量をQ5とし、この空気中のホウ素濃度をC5とする。クリーンルーム11の床部15から流出し、排出口17を通じて、外部に排出した空気の風量をQ6とし、この空気中のホウ素濃度をC6とする。なお、ケミカルフィルタの積載率をLとし、このケミカルフィルタの除去効率をηとする。また、クリーンルーム11から循環路16を通じて、再びクリーンルーム11内に供給される空気のリターン率をRとする。クリーンルーム11内のホウ素の物質収支は、次式で表すことができる。
(Boron convergence concentration in clean room)
FIG. 2 shows a model for estimating the boron convergence concentration in the clean room when an air filter is installed in the clean room. The boron convergence concentration in the clean room refers to the boron concentration when the boron concentration in the clean room is stabilized when the clean room is operated.
As shown in FIG. 2, an air filter 12 is installed on the ceiling of the clean room 11 in the clean room facility 10, and a fan 13 is installed on the upstream side of each air filter 12. A chemical filter 14 is installed on the upstream side of the fan 13 at a predetermined loading rate. The air in the clean room 11 is discharged from the floor 15, and a part of the air passes through the chemical path 14 and the air filter 12 again through the circulation path 16 and is supplied into the clean room 11.
Here, the air volume supplied to the clean room facility 10 is Q1, and the boron concentration in the air is C1. Let Q2 be the amount of air flowing into the clean room facility 10, and C2 be the boron concentration in the air. The boron concentration in the air containing boron generated from the air filter 12 through the chemical filter 14 and the air filter 12 is C3, and the boron convergence concentration in the clean room 11 is C4. Further, the amount of air flowing out of the floor 15 of the clean room 11 and circulating in the circulation path 16 is defined as Q5, and the boron concentration in the air is defined as C5. The amount of air flowing out from the floor 15 of the clean room 11 and discharged to the outside through the discharge port 17 is Q6, and the boron concentration in the air is C6. Note that the loading rate of the chemical filter is L, and the removal efficiency of the chemical filter is η. Also, let R be the return rate of the air supplied from the clean room 11 through the circulation path 16 into the clean room 11 again. The material balance of boron in the clean room 11 can be expressed by the following equation.

C2・Q2・(1−η・L)+C3・Q2=C4・(Q5+Q6) ・・・(1)   C2 · Q2 · (1−η · L) + C3 · Q2 = C4 · (Q5 + Q6) (1)

ここで、Q2=Q1+Q5、Q1=Q6、Q5=Q2・R、C5=C6=C4、C2・Q2=C1・Q1+C5・Q5として、式(1)をC4について整理すると次式で表すことができる。   Here, when Q2 = Q1 + Q5, Q1 = Q6, Q5 = Q2 · R, C5 = C6 = C4, and C2 · Q2 = C1 · Q1 + C5 · Q5, Equation (1) can be expressed by the following equation when arranged for C4: .

C4={C1・Q1(1−η・L)+C3・Q2}/Q2{R・η・L+(1−R)}
・・・(2)
C4 = {C1 · Q1 (1−η · L) + C3 · Q2} / Q2 {R · η · L + (1−R)}
... (2)

クリーンルーム施設内に供給する空気中には、ホウ素が含まれないと仮定すると、C1=0である。このC1=0を代入して、式(2)を整理すると、次式で表すことができる。   Assuming that boron is not contained in the air supplied into the clean room facility, C1 = 0. Substituting this C1 = 0 and rearranging the equation (2), it can be expressed by the following equation.

C4=C3/{R・η・L+(1−R)} ・・・(3)   C4 = C3 / {R · η · L + (1-R)} (3)

上記式(3)に基づいて、エアフィルタからクリーンルーム内に発生するホウ素量を算出した。なお、ホウ素量の算出に際しては、R=0.96、η=0.8、L=0.2を代入した。   Based on the above formula (3), the amount of boron generated in the clean room from the air filter was calculated. In calculating the amount of boron, R = 0.96, η = 0.8, and L = 0.2 were substituted.

(PAOの捕集効率)
ラスキンノズルで発生させた多分散PAO(polyalphaolefin)粒子を含む空気を、有効面積100cm2のエアフィルタ用濾材に、面風速5.3cm/秒で通風し、エアフィルタ用濾材のPAO捕集効率をリオン社製レーザーパーティクルカウンタで測定した。なお、対象粒径は0.1〜0.15μmとした。
(PAO collection efficiency)
The air containing polydispersed PAO (polyalphaolefin) particles generated by the Ruskin nozzle is passed through a filter medium for air filter having an effective area of 100 cm 2 at a surface air velocity of 5.3 cm / sec to improve the PAO collection efficiency of the filter medium for air filter. It was measured with a laser particle counter manufactured by Rion. The target particle size was 0.1 to 0.15 μm.

(圧力損失)
有効面積100cm2のエアフィルタ用濾材に、面風速5.3cm/秒で通風し、その時のエアフィルタ濾材前後の差圧を微差圧計(マノメータ)で測定した。
(Pressure loss)
The air filter medium having an effective area of 100 cm 2 was ventilated at a surface wind speed of 5.3 cm / sec, and the differential pressure before and after the air filter medium at that time was measured with a fine differential pressure gauge (manometer).

(引張強度)
幅25.4mmのエアフィルタ用濾材を、つかみ間隔102mm、引張速度12.7mm/minで引っ張り、破断時の強度を測定した。従来例1のエアフィルタ用濾材の破断時の強度を100として、この従来例1の破断時の強度との対比による相対評価で濾材の強度を表した。
(Tensile strength)
An air filter medium having a width of 25.4 mm was pulled at a gripping interval of 102 mm and a pulling speed of 12.7 mm / min, and the strength at break was measured. The strength at the time of breakage of the filter medium for air filter of Conventional Example 1 was taken as 100, and the strength of the filter medium was expressed by relative evaluation by comparison with the strength at break of Conventional Example 1.

Figure 2007007586
Figure 2007007586

表1の実施例1〜9に示す通り、エアフィルタ用濾材を構成する混抄紙を、B23含有量が0.1質量%以下のガラス繊維と、B23含有量が5〜15質量%のガラス繊維の2種類のガラス繊維を混抄して得ることで、混抄紙中のB23含有量を適宜調整することができた。この混抄紙にバインダを添着してガラス繊維表面にバインダを被覆したものをエアフィルタ用濾材として用いたエアフィルタによれば、発生するホウ素量を低減することができた。すなわち、実施例1〜9のエアフィルタから発生するホウ素量はその最大量が15ng/m3であり、従来例1のエアフィルタから発生するホウ素量の300ng/m3と比較して、発生するホウ素量が5%に低減されていた。また、実施例1〜6によれば、
エアフィルタから発生するホウ素量が1〜10ng/m3と低く、クリーンルーム内のホウ素収束濃度も5〜50ng/m3と低減することができた。
また、実施例6に示すように、B23含有量が0.1質量%以下のガラス繊維の配合量が80質量%を超えるガラス繊維を主体とした混抄紙からなるエアフィルタ用濾材を用いたエアフィルタは、エアフィルタから発生するホウ素量が1ng/m3未満と非常に低くくなるものの、エアフィルタ用濾材の強度が若干低くなった。
実施例7、8に示すように、バインダの添着量が多くなる程、エアフィルタから発生するホウ素量と、クリーンルーム内のホウ素収束濃度は低くなるが、バインダの添着量が多くなる程、エアフィルタの圧力損失が高くなった。また、実施例9に示すように、混抄紙にバインダ溶液を噴霧してバインダを添着したエアフィルタは、実施例1〜8のように混抄紙をバインダ溶液に浸漬させてバインダを添着したエアフィルタと比較して、エアフィルタから発生するホウ素量と、クリーンルーム内のホウ素収束濃度がともに増大していた。
これに対し、従来例1のエアフィルタは、エアフィルタから発生するホウ素量が300ng/m3、クリーンルーム内のホウ素収束濃度が1550ng/m3と高かった。また、従来例2のように、B23含有量が0.1質量%以下のガラス繊維を主体として抄紙したエアフィルタ用濾材を用いたエアフィルタは、エアフィルタから発生するホウ素量、クリーンルーム内のホウ素収束濃度が1ng/m3未満と低いものの、エアフィルタ用濾材の強度が若干低かった。
比較例のように、B23含有量が0.1質量%以下のガラス繊維と、B23含有量が5〜15質量%のガラス繊維の2種類のガラス繊維を主体とした混抄紙からなるエアフィルタ用濾材を用いたエアフィルタであっても、この混抄紙にバインダを添着しない場合は、エアフィルタから発生するホウ素量が50ng/m3と高く、クリーンルーム内のホウ素収束濃度も258ng/m3と高かった。
As shown in Examples 1-9 of Table 1, the mixed paper constituting the filter medium for an air filter, B 2 and O 3 content of 0.1 wt% or less of the glass fiber, the content of B 2 O 3 5 The B 2 O 3 content in the mixed paper could be appropriately adjusted by obtaining two types of glass fibers of 15% by mass of glass fiber. According to an air filter in which a binder is attached to the mixed paper and the glass fiber surface is coated with the binder, the amount of boron generated can be reduced. That is, the maximum amount of boron generated from the air filters of Examples 1 to 9 is 15 ng / m 3, which is generated in comparison with the boron amount of 300 ng / m 3 generated from the air filter of Conventional Example 1. The boron content was reduced to 5%. Moreover, according to Examples 1-6,
The amount of boron generated from the air filter was as low as 1 to 10 ng / m 3, and the boron concentration in the clean room could be reduced to 5 to 50 ng / m 3 .
Further, as shown in Example 6, an air filter medium comprising a mixed paper mainly composed of glass fibers having a B 2 O 3 content of 0.1% by mass or less and a glass fiber content of more than 80% by mass is provided. In the air filter used, the amount of boron generated from the air filter was very low at less than 1 ng / m 3 , but the strength of the air filter medium was slightly reduced.
As shown in Examples 7 and 8, as the amount of binder attached increases, the amount of boron generated from the air filter and the boron concentration in the clean room decrease, but as the amount of binder attached increases, the air filter The pressure loss increased. In addition, as shown in Example 9, the air filter in which the binder solution was sprayed on the mixed paper and the binder was attached thereto was an air filter in which the mixed paper was immersed in the binder solution and the binder was attached as in Examples 1-8. As compared with, both the amount of boron generated from the air filter and the boron concentration in the clean room increased.
In contrast, the air filter of the conventional example 1, boron amount generated from the air filter 300 ng / m 3, boron convergence concentration in the clean room was as high as 1550ng / m 3. Further, as in Conventional Example 2, an air filter using a filter medium for air filter made mainly of glass fiber having a B 2 O 3 content of 0.1% by mass or less is the amount of boron generated from the air filter, clean room Although the boron concentration inside was as low as less than 1 ng / m 3 , the strength of the air filter medium was slightly low.
As in the comparative example, a mixture mainly composed of two types of glass fibers, glass fibers having a B 2 O 3 content of 0.1% by mass or less and glass fibers having a B 2 O 3 content of 5 to 15% by mass. Even in the case of an air filter using a filter material for air filter made of paper, if the binder is not attached to the mixed paper, the amount of boron generated from the air filter is as high as 50 ng / m 3, and the boron concentration in the clean room is also high. It was as high as 258 ng / m 3 .

エアフィルタから発生するホウ素量を測定する測定装置の概略構成を説明する図The figure explaining schematic structure of the measuring apparatus which measures the amount of boron generated from an air filter エアフィルタを設置したクリーンルーム内のホウ素収束濃度を推定するモデル示す図Diagram showing a model for estimating the boron concentration in a clean room with an air filter

符号の説明Explanation of symbols

1 エアフィルタから発生するホウ素量の測定装置
2 試験用エアフィルタ
3 ファン
4 ケミカルフィルタ
5 上流側サンプリング室
6 下流側サンプリング室
7 流出口
8 インピンジャ
9 インピンジャ
10 クリーンルーム施設
11 クリーンルーム
12 エアフィルタ
13 ファン
14 ケミカルフィルタ
15 床部
16 循環路
17 排出口
DESCRIPTION OF SYMBOLS 1 Measuring apparatus of the amount of boron generated from an air filter 2 Test air filter 3 Fan 4 Chemical filter 5 Upstream sampling chamber 6 Downstream sampling chamber 7 Outlet 8 Impinger 9 Impinger 10 Clean room facility 11 Clean room 12 Air filter 13 Fan 14 Chemical Filter 15 Floor 16 Circulation path 17 Discharge port

Claims (5)

23の含有量が0.1質量%以下のガラス繊維と、B23の含有量が5〜15質量%のガラス繊維が主体となる混抄紙にバインダを添着してなるものであることを特徴とするエアフィルタ用濾材。 In which the content of B 2 O 3 is formed by impregnation with glass fibers 0.1 wt%, the content of B 2 O 3 is from 5 to 15 wt% of glass fiber binder mixed paper consisting mainly There is a filter medium for an air filter. 前記混抄紙の主体となるガラス繊維が、B23の含有量が0.1質量%以下のガラス繊維40〜80質量%と、B23の含有量が5〜15質量%のガラス繊維60〜20質量%からなることを特徴とする請求項1記載のエアフィルタ用濾材。 The glass fiber which is the main component of the mixed paper is 40 to 80% by mass of glass fiber having a B 2 O 3 content of 0.1% by mass or less and 5 to 15% by mass of B 2 O 3 content. The filter medium for an air filter according to claim 1, comprising 60 to 20% by mass of fibers. 前記混抄紙をバインダ溶液に浸漬し、バインダを添着してなることを特徴とする請求項1または2記載のエアフィルタ用濾材。   The filter material for an air filter according to claim 1 or 2, wherein the mixed paper is immersed in a binder solution and a binder is attached thereto. 請求項1乃至3のいずれかに記載したエアフィルタ用濾材を用いたことを特徴とするエアフィルタ。   An air filter using the air filter medium according to any one of claims 1 to 3. エアフィルタから発生するホウ素量が1〜10ng/m3であることを特徴とする請求項4記載のエアフィルタ。 The air filter according to claim 4, wherein the amount of boron generated from the air filter is 1 to 10 ng / m 3 .
JP2005193207A 2005-06-30 2005-06-30 Filter medium for air filter, and air filter Withdrawn JP2007007586A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005193207A JP2007007586A (en) 2005-06-30 2005-06-30 Filter medium for air filter, and air filter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005193207A JP2007007586A (en) 2005-06-30 2005-06-30 Filter medium for air filter, and air filter

Publications (1)

Publication Number Publication Date
JP2007007586A true JP2007007586A (en) 2007-01-18

Family

ID=37746740

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005193207A Withdrawn JP2007007586A (en) 2005-06-30 2005-06-30 Filter medium for air filter, and air filter

Country Status (1)

Country Link
JP (1) JP2007007586A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102877370A (en) * 2012-09-20 2013-01-16 蚌埠凤凰滤清器有限责任公司 Hollow polyester staple fiber doped filter paper for diesel filter and preparation method for filter paper
CN102912688A (en) * 2012-09-25 2013-02-06 蚌埠凤凰滤清器有限责任公司 Preparation method of filter paper for filter containing nanometer titania
CN103938491A (en) * 2014-03-18 2014-07-23 蚌埠市风驰滤清器有限公司 Water and oil resistant oil filter paper added with nano-titanium dioxide and preparation method thereof
CN103966885A (en) * 2014-03-31 2014-08-06 蚌埠德美过滤技术有限公司 Solid, durable and flexible ceramic composite engine oil filter paper and manufacturing method thereof

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102877370A (en) * 2012-09-20 2013-01-16 蚌埠凤凰滤清器有限责任公司 Hollow polyester staple fiber doped filter paper for diesel filter and preparation method for filter paper
CN102912688A (en) * 2012-09-25 2013-02-06 蚌埠凤凰滤清器有限责任公司 Preparation method of filter paper for filter containing nanometer titania
CN103938491A (en) * 2014-03-18 2014-07-23 蚌埠市风驰滤清器有限公司 Water and oil resistant oil filter paper added with nano-titanium dioxide and preparation method thereof
CN103938491B (en) * 2014-03-18 2015-10-28 蚌埠市风驰滤清器有限公司 A kind of Waterproofing/oilproofing oil filter filter paper adding nano titanium oxide and preparation method thereof
CN103966885A (en) * 2014-03-31 2014-08-06 蚌埠德美过滤技术有限公司 Solid, durable and flexible ceramic composite engine oil filter paper and manufacturing method thereof

Similar Documents

Publication Publication Date Title
US8709120B2 (en) Filter media including glass fibers
JP4927329B2 (en) Filter media containing mineral fibers obtained by centrifugation
CN106400599B (en) A kind of preparation method of high temperature resistant filter paper
CN103657258B (en) Air filtration glass fiber cotton composite material of series F5-F9 and manufacturing method thereof
TWI647189B (en) Large diameter slag wool, composition and manufacturing method thereof
JP2007007586A (en) Filter medium for air filter, and air filter
KR101516981B1 (en) Mineral wool fiber composition having improved saline solubility and construction material containing the mineral wool fiber obtained therefrom
CN109481989B (en) High-temperature-resistant dehumidifying ceramic filter element and preparation method thereof
CN111892301B (en) Glass antibacterial micro-beads and glass antibacterial resin
KR20110008153A (en) Filter material for air filters
JP2017060932A (en) Filter paper for filter and production method of the same
JP5536537B2 (en) Air filter media
US10899652B2 (en) Glass fibers
KR100900818B1 (en) A/C pre-filter with micro-pores
JPH0970512A (en) Filter material for air filter and air filter
JP4494325B2 (en) Manufacturing method of glass preform for optical fiber
JP7093732B2 (en) Manufacturing method of glass base material for optical fiber
JP3761239B2 (en) Air filter medium and air filter
JP6964033B2 (en) Filter material for air filter
JP2000300919A (en) Air filter
CN2198964Y (en) Film composite filtering material
JP2008212828A (en) Functional fiber sheet and its manufacturing method
Yinger et al. FUTURE‐PROOFING YOUR DUST COLLECTION SYSTEM BEST PRACTICES IN DUST COLLECTION FOR THE GLASS INDUSTRY
JPH04284803A (en) Glass fiber filter sheet for use in air filter of high performance
JP6941462B2 (en) Filter media for air filters and air filters

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080528

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20090501