JP2007004646A - Power transaction support system and power transaction support program - Google Patents
Power transaction support system and power transaction support program Download PDFInfo
- Publication number
- JP2007004646A JP2007004646A JP2005185896A JP2005185896A JP2007004646A JP 2007004646 A JP2007004646 A JP 2007004646A JP 2005185896 A JP2005185896 A JP 2005185896A JP 2005185896 A JP2005185896 A JP 2005185896A JP 2007004646 A JP2007004646 A JP 2007004646A
- Authority
- JP
- Japan
- Prior art keywords
- power
- price
- data
- distribution
- profit
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000009826 distribution Methods 0.000 claims abstract description 113
- 238000004364 calculation method Methods 0.000 claims abstract description 53
- 230000005611 electricity Effects 0.000 claims description 40
- 238000000034 method Methods 0.000 claims description 13
- 230000007423 decrease Effects 0.000 claims description 2
- 238000005259 measurement Methods 0.000 claims 1
- 238000010586 diagram Methods 0.000 description 14
- 238000007726 management method Methods 0.000 description 6
- 238000010248 power generation Methods 0.000 description 6
- 238000000611 regression analysis Methods 0.000 description 5
- 238000007689 inspection Methods 0.000 description 3
- 230000001186 cumulative effect Effects 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 230000000737 periodic effect Effects 0.000 description 2
- 230000001932 seasonal effect Effects 0.000 description 2
- 238000007619 statistical method Methods 0.000 description 2
- 230000032683 aging Effects 0.000 description 1
- 230000001174 ascending effect Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A30/00—Adapting or protecting infrastructure or their operation
Landscapes
- Supply And Distribution Of Alternating Current (AREA)
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
Abstract
Description
本発明は、電力市場での取引を支援する電力取引支援システム及び電力取引支援プログラムに関する。 The present invention relates to a power trading support system and a power trading support program for supporting trading in a power market.
2005年4月より電力卸取引市場が開設され、日本でも電力自由化が拡大されてきた。電力自由化の1つの目的は競争原理を利用して電力価格を下げることあるが、諸外国の例をみると、2000年の米国カリフォルニア州に見られたように、電力価格が高騰したり、大きく変動したりすることがあり、必ずしも低価格で安定するわけではない。電力市場参加者は、買う場合はより安い価格、売る場合はより高い価格で取引したいと望んでおり、価格は需要と供給の関係によってきまる。2005年4月の時点での日本の卸電力市場では、翌日の30分毎の決められた時間帯に電力を受け渡す取引の市場があり、各時間帯の価格はそれぞれ市場参加者の価格と電力量の電子的な売札と買札をマッチングにより決まる。即ち、取引はマッチング価格より低い価格の売札とマッチング価格より高い価格の買札を入れた市場参加者で成立し、ここで成立した取引価格は一律マッチング価格となる。 The power wholesale transaction market was established in April 2005, and power liberalization has been expanded in Japan. One purpose of electricity liberalization is to lower the price of electricity using the principle of competition, but in other countries, as seen in California in the United States in 2000, It may fluctuate greatly and is not always stable at a low price. Electricity market participants want to trade at a lower price when buying and at a higher price when selling, and the price depends on the relationship between supply and demand. In Japan's wholesale power market as of April 2005, there is a trading market in which electricity is delivered at a fixed time every 30 minutes the next day. It is determined by matching electronic bills and bids for electric energy. That is, the transaction is established by a market participant who puts a bid with a price lower than the matching price and a bid with a price higher than the matching price, and the established transaction price is a uniform matching price.
このように電力市場の電力価格は、需要と供給の関係から決定されるが、電力は基本的に安価な方法で貯蔵することができないので、供給側で発電した電力は瞬間的に需要側で消費されその供給量と消費量は一致させないと事故となる。そのため、電力価格は大きく変動する。例えば、昼の電力価格は夜の電力価格の2倍近くなるが、これは夜の電力需要が一般的に少ないので買い手市場となり、安い価格の売札をいれた市場参加者しか電力を買えない一方で、昼は比較的買い手市場となるため、ある程度高い価格の買札を入れた参加者しか電力を売れないからである。 In this way, the electricity price in the electricity market is determined based on the relationship between demand and supply. However, since electricity cannot be stored basically in an inexpensive manner, the power generated on the supply side is instantaneously on the demand side. If it is consumed and its supply and consumption do not match, an accident will occur. As a result, power prices fluctuate greatly. For example, the electricity price during the day is nearly twice the electricity price at night, but this is a buyer's market because the demand for electricity at night is generally low, and only market participants with low priced bids can buy electricity. On the other hand, since it is a relatively buyer market in the daytime, only participants who have placed a bid with a certain high price can sell power.
電力卸取引所の市場参加者は、電力会社及び発電業者,電力卸業者が主体であり、各業者ともこの電力価格の変動が事業収益に影響を与えるため、電力卸取引所の電力価格の変動が事業収益へ及ぼすリスクを管理する技術が重要となった。 The electricity wholesale exchange market participants are mainly electric power companies, generators, and electric power wholesalers, and fluctuations in the electricity price of the electricity wholesale exchanges are affected by the fluctuations in the electricity price for each of the companies. The technology to manage the risks that the company has on business profits has become important.
従来技術のうち、電力価格を考慮したリスク管理技術については特許文献1の電力価格を考慮した発電設備の運用システムがあげられる。このシステムは、電力取引価格予測値の確率分布と電力需要予測値を入力として、収益の観点から自社で保有する発電設備の最適運転条件の最適性が損なわれるリスク値を算出するシステムである。
Among the prior arts, a risk management technique that takes into account the power price includes a power generation facility operation system that takes into account the power price in
電力需要と価格の関係を考慮した従来のリスク管理システムとしては、文献2があげられる。この管理システムは、リスク低減のためにポートフォリオを組み替え、リスクヘッジのための金融派生商品の価格を決定するシステムで、過去の一定期間の電力需要,価格データと電力需要・価格関係と将来の需要変動予測データとから、将来の電力価格の変動を推定する手段を備える。
入札戦略に関する従来技術としては、文献3の電力売買計画作成方法および装置があげられる。この装置は、ユーザが視覚的に判断して複数の案から最も良い案を取捨選択できるように、供給量が確定している電力と自社の発電設備と市場の想定価格の情報から、入札計画として収益と取引量の関係を算出して表示する装置である。 As a conventional technique related to a bid strategy, there is a power trading plan creation method and apparatus disclosed in Document 3. This device is designed so that the user can visually determine the best plan from multiple plans, based on the information on the power that has already been supplied, the power generation facilities of the company, and the estimated price of the market. As a device for calculating and displaying the relationship between revenue and transaction volume.
電力卸取引所の参加者は、より安い価格でより多く買うか、またはより高い価格で多く売ることを望む。より高い価格で入札すれば、買える確率はより高くなり、売れる確率は低くなる。また、入札量が多ければ、取引が成立するか否かによって収益が大きく異なる。2005年4月時点での日本の電力卸取引所では、取引参加者は複数の札を入札できるので確実に売りたい電力は安く、確実ではないが高い利益を狙いたい場合は、少し高めの価格で入札するなど、複数の札に関して価格と量の組み合わせを考えるとさまざまな入札パターンが考えられる。これらのパターンの中から、リスクとリターンを考慮して入札パターンを決定する必要がある。また、発電機を保有している場合は、自社の発電能力と発電単価、すでに相対などで需要が変動する顧客へ電力を販売する契約を結んでいる取引参加者は変動する需要を考慮しなければならない。 Participants in the power wholesale exchange want to buy more at a cheaper price or sell more at a higher price. The higher the price, the higher the probability of buying and the lower the probability of selling. In addition, if the amount of bids is large, the profit varies greatly depending on whether or not the transaction is established. As of April 2005, in Japan's power wholesale exchange, trading participants can bid on multiple bills, so the power you want to sell is cheap, and if you want to make a high profit, but not sure, a slightly higher price Various bid patterns can be considered when considering the combination of price and quantity for multiple tags, such as bidding. Among these patterns, it is necessary to determine the bidding pattern in consideration of risks and returns. In addition, if you own a generator, trading participants with a contract to sell power to customers whose demand has already fluctuated due to their own power generation capacity and unit price, relative, etc. must consider the fluctuating demand. I must.
特許文献1のシステムでは、電力価格の確率分布をもとに市場価格か自社の収益に及ぼす影響を確率的に求めている。しかし、取引所取引での取引は入札戦略によって、また、落札したか否かによって収益が大きく異なるが、取引所での最適な入札パターンについては考慮されていない。
In the system of
特許文献2のシステムは、過去電力需要と電力価格の関係式および将来の電力需要の予測から、将来の電力価格のランダム変動をモデル化(確率分布)して、さらに、1日や週,年の規則性を考慮した上で、ポートフォリオのリスク量を計算しているが、取引所での入札のような恣意的に決まる量と価格は考慮されていない。また、取引所において落札するか否かによって決まる収益の変動も考慮されていない。
The system of
特許文献3の装置は、基本的に入札計画案を視覚的に表示してユーザが複数案を取捨選択することを支援しており、選択の基準はユーザの主観となる。また、収益の変動幅と取引量の確率分布と市場価格の確率分布を一度に視覚的に把握して、リスクと期待収益の関係を判断して入札計画を策定することはかなりの熟練した技術を必要とすると思われる。本発明の課題は、取引所の入札において、落札した場合としなかった場合の収益の差と、入札価格によってことなる落札確率を考慮して、ある許容リスク以下で収益が最大となる入札パターンを算出すること、さらに、年間の価格変動と入札パターンを考慮して特定期間の収益変動リスクを算出することにより取引入札とリスク管理を支援することにある。 The device of Patent Document 3 basically supports the user to select a plurality of proposals visually by visually displaying the bid plan proposal, and the selection criterion is the user's subjectivity. It is also quite a skill to visually understand the fluctuation range of profits, the probability distribution of transaction volume and the probability distribution of market price at a time, and to determine the relationship between risk and expected profit and to formulate a bid plan. Seems to need. The object of the present invention is to determine a bidding pattern in which profits are maximized below a certain allowable risk, taking into account the difference in profits between successful and unsuccessful bids and the probability of successful bids depending on the bid price. In addition, it is intended to support transaction bidding and risk management by calculating profit fluctuation risk for a specific period in consideration of annual price fluctuations and bidding patterns.
電力の市場価格データと気象予報データと取引データ,電力需要データ,顧客データおよび電力コスト算出データを保持または入力とし、電力市場価格データと気象予報データの関係モデルと誤差分布を推定する電力価格分布推定部と電力価格に対する約定確率を算出する約定確率算出部とある入札がもたらす収益と入札しない場合の期待収益の差を計算する売買損益算出部と期待収益の増分が最大となる入札価格と入札量を計算する入札パターン算出部と将来のある時点における気象予報量分布を算出する気象量分布推定部と収益の増分が最大となる入力パターンでの損益を求める処理を繰り返すように各推定部または算出部を制御し、収益の分布を求める事業リスク算出部とを備えることを特徴とする電力取引支援システムにより解決する。 Electricity price distribution that uses power market price data, weather forecast data, transaction data, power demand data, customer data, and power cost calculation data as input or data, and estimates the relationship model and error distribution between power market price data and weather forecast data The estimation unit, the contract probability calculation unit that calculates the contract probability for the power price, the trading profit / loss calculation unit that calculates the difference between the profit that a certain bid brings and the expected profit when not bidding, and the bid price and bid that maximize the expected profit increase Each estimation unit or the bidding pattern calculation unit that calculates the amount, the weather amount distribution estimation unit that calculates the weather forecast amount distribution at a certain time in the future, and the process of calculating the profit and loss in the input pattern that maximizes the revenue A power transaction support system characterized by comprising a business risk calculation unit that controls the calculation unit and obtains the distribution of revenue .
上記手段により、取引所の入札において、落札した場合としなかった場合の収益の差と、入札価格によってことなる落札確率を考慮して、ある許容リスク以下で収益が最大となる入札パターンを算出すること、さらに、年間の価格変動と入札パターンを考慮して特定期間の収益変動リスクを算出することにより取引入札とリスク管理を支援することにある。 By the above means, the bidding pattern that maximizes the profit below a certain permissible risk is calculated in consideration of the difference between the profits when the bid is made at the exchange and the probability of the successful bid that depends on the bid price. In addition, it is intended to support transaction bidding and risk management by calculating the earnings fluctuation risk for a specific period in consideration of annual price fluctuations and bidding patterns.
以下、図面を用いて本発明の実施形態を説明する。図1は本発明である電力取引支援システムの構成の例を示した図である。電力価格分布推定部301は、電力市場価格データ201と気象予報データ221を入力として、電力価格と気象予報情報データとの関係モデルを推定する。電力需要分布推定部は気象予報データ221と顧客データ241と電力需要データ261より、気象予報データと顧客データと電力需要データの関係モデルを推定する。また、売買損益算出部401は、電力需要データ261あるいは電力需要分布推定部361で推定した電力需要分布と、取引データ271と電力コスト算出データ281より、電力需要に対する期待収益を算出する。約定確率算出部501は、電力価格分布推定部301で推定した関係モデルと誤差分布より、最新の気象予報データのもとでのある価格の約定確率を算出する。入札パターン算出部701では、約定確率算出部501で推定した各価格における約定確率と売買損益算出部401で算出した電力需要に対する期待収益から入札パターンを推定する。気象量分布推定部331は、気象予報データより気象予報の分布を推定する。事業リスク算出部は気象量分布推定部331と電力需要分布推定部361と売電損益算出部401と約定確率算出部501と入札パターン算出部701を制御して、気象量分布からランダムに発生する気象量をもとに電力需要分布,約定確率より、入札パターンを計算、その入札パターンにおける収益を繰り返し計算し、事業収益の頻度分布を算出する。入出力インタフェイスでは、約定確率算出部501や入札パターン算出部701,事業リスク算出部601の結果を表示する。図2は電力価格データの例を表した図である。電力価格データは、各日付,受渡し時間,エリアごとに格納された市場での約定価格である。エリアとは、たとえば、50ヘルツエリアと60ヘルツエリア、北海道エリアと東北エリアなど、任意の取引エリアを指す。図3は気象予報データの例を表した図である。気象データは、各日付,時間,場所および予報日時に対応した気象予報データで、気温,天気,湿度などのデータであるが、必ずしも、予報日時や時間で分ける必要はない。また、このデータは電力価格を説明するのに有効な気象予報データであり、必ずしも気温,天気,湿度のすべてが必要でない。ここで、天気は晴れ,雨,曇りなどに対応するデータで構成される。また、気象予報が1日単位や半日単位などの場合の気温は、最高気温,最低気温,平均気温などでもよい。
Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a diagram showing an example of the configuration of a power trading support system according to the present invention. The power price
図4は、顧客データの例を表した図である。顧客データは、顧客の需要を推定モデルを求めるとき、および、需要を推定するときに使うデータで、各日付と契約に対応するデータで、その日が休日なのか平日なのか、開店/始業,閉店/終業の時間などが記録されている。ここで、顧客は複数の契約を結んでいる場合があるため、顧客ではなく契約ごとに記載されている。 FIG. 4 is a diagram illustrating an example of customer data. Customer data is the data used when estimating the customer's demand and estimating the demand. The data corresponding to each date and contract, whether the day is a holiday or a weekday, opening / opening, closing / The closing time is recorded. Here, since the customer may have a plurality of contracts, it is described for each contract, not for the customer.
図5は電力需要データの例を表した図である。電力需要データは、各日付,契約,時間に対応する電力需要が記されたデータである。 FIG. 5 is a diagram showing an example of power demand data. The power demand data is data in which the power demand corresponding to each date, contract, and time is described.
図6は取引データの例を示した図である。取引データは、各契約に対応する契約電力量,契約単価が記載されたデータである。契約単価は、各時間帯,季節ごとに異なるのでその料金体系にしたがって単価が記述されている。 FIG. 6 is a diagram showing an example of transaction data. The transaction data is data in which a contract power amount and a contract unit price corresponding to each contract are described. Since the contract unit price is different for each time zone and season, the unit price is described according to the charge system.
図7は電力算出データのうち発電機特性に関するデータの例を表した図である。発電機特性に関するデータは各発電機と日付に対応した最大出力,発電費用の近似式の係数が記載されている。検査時などで停止している場合は、最大出力0が記載されている。このデータは、発電機の近似式の係数と定期検査など、発電機が停止する日付のデータを分けて持っていてもよい。また、経年劣化などにより、発電機の性能が落ちる可能性があるので、定期検査の日程と分けて近似式の係数を保存している場合でも、各年月または、各年に対応して予想される近似式の係数データを記録しておいても良い。
FIG. 7 is a diagram showing an example of data relating to generator characteristics in the power calculation data. The data on the generator characteristics includes the maximum output corresponding to each generator and date, and the coefficient of the approximate expression of power generation cost. When stopped at the time of inspection or the like, the
図8は電力算出データのうちインバランス料金に関するデータの例を表した図である。インバランス料金に関するデータは、各種別に対応した単価が記載されている。ここで、インバランスとは、あらかじめ予約した送電線の予約量または、取引量に対して、電力に過不足が発生した場合の料金であり、需要量に対して供給側が余分に送電した場合の余剰電力の引取価格や予め不足することが分かっているときに購入するバックアップ料金なども含まれる。 FIG. 8 is a diagram illustrating an example of data relating to an imbalance fee among the power calculation data. The unit price corresponding to each type is described in the data on the imbalance fee. Here, imbalance is a charge when excess or deficiency occurs in the power with respect to the reserved amount of the transmission line reserved in advance or the transaction amount, and when the supply side transmits extra power to the demand amount. The surplus power take-up price and backup fee to be purchased when it is known that the power is insufficient in advance are also included.
次に、電力価格分布推定部301の関係モデルと誤差分布の算出方法について説明する。図9は電力価格と気象予報データの関係モデルの例を説明するための図である。この図は各電力価格データに対応する気温データを、横軸が気温、縦軸が電力価格のグラフにプロットしたもので、これらの点について最小二乗法などにより誤差が最小になるような1次式が図に記載されている直線である。ここでは、電力価格を説明するための変数が気温データであるが、必ずしも、気温だけとは限らず、天気や湿度、あるいはその組み合わせとなる場合もある。また、曜日なども説明変数になる可能性もある。重回帰分析などの統計手法を用いれば、複数の説明変数で構成される電力価格を推定する式、即ち関係モデルを求めることができる。電力価格分布推定部301では、各説明変数の組み合わせ求めたモデルの中から誤差がもっとも小さくなるモデルを採用する。さらに、電力は、夏は冷房による昼間の消費が多いのに対して、冬は、暖房による夕方から板にかけての消費が多いなどの季節性の影響により、電力価格のモデルも一年中同じモデルを使用するよりも、季節などにより推定式を使い分けたほうがより、誤差が小さくなる可能性が大きい。そこで、1年など長期間のデータを使うのではなく、各モデルを求める際には、当日の直前の数週間と数年間の同じ季節の数週間を使って各モデルを求めた方がより誤差が小さくなる可能性が大きい。ここで、誤差が最小となるモデルは、取引所に上場されている各受渡し時間帯別の商品ごとに求める。重回帰分析などの統計的手法は、例えば、非特許文献1に載っている。
Next, a relation model of the power price
図10は、電力価格を推定するモデルにおける誤差分布の例を表した図である。この場合の誤差分布は、電力価格分布推定部301が推定したモデルに対して、ある予想気温が与えられたときの実際の電力価格との誤差の分布であり、電力価格データと気象予報データの組み合わせと気象予報データから関係モデルにより推定した電力価格との差の分布である。この分布は、1つとは限らず、気象予報データで分類して、そのカテゴリーの中での誤差としてもよい、例えば、気温が15℃未満と15℃以上に分けて誤差分布を作成する。
FIG. 10 is a diagram illustrating an example of an error distribution in a model for estimating a power price. The error distribution in this case is a distribution of errors between the model estimated by the power price
電力価格分布推定部301は、上記のように重回帰分析などの統計技術を用いて、電力価格データと気象予報データについて誤差が最小になるような二つのデータの関係モデルを推定し、さらに、誤差分布を算出し、値を必要に応じて記憶媒体に記憶しておく。
The power price
ここで、誤差分布は期待値に対する実際の値のズレを確率で表しており、ある価格での買い札に対して右側の分布の面積が、落札できる確率になり、売り札であれば、左側の面積が落札できる確率となる。ゆえに、この図10は、価格と約定確率の関係をあらわす例である。価格と約定確率の関係を表す例として、累積確率密度なども有効である。入札パターンを考える場合は、関係モデルに最新の気象予報を入力して得た期待値と分布を表示する。 Here, the error distribution shows the deviation of the actual value with respect to the expected value by the probability, and the area of the distribution on the right side with respect to the bid at a certain price is the probability that it can make a successful bid. The area is the probability of winning a bid. Therefore, FIG. 10 is an example showing the relationship between price and execution probability. As an example showing the relationship between price and execution probability, cumulative probability density is also effective. When considering the bidding pattern, the expected value and distribution obtained by inputting the latest weather forecast into the relational model are displayed.
図11は約定確率と時刻の関係を表示した例である。それぞれのこのカーブは電力価格分布推定部301にて推定した関係モデルに最新の気象予報を入力して得た期待値と累積密度分布から、各時刻にて対応する確率となる価格を見つけて、図11を作成すればよい。
FIG. 11 shows an example in which the relationship between the contract probability and the time is displayed. Each of these curves finds a price with a probability corresponding to each time from the expected value obtained by inputting the latest weather forecast into the relational model estimated by the power price
図12は需要とその出現頻度の分布図である。この分布図は、電力価格を電力需要に置き換えることにより、気象予報データと電力価格データの関係データと同様の方法で、重回帰分析などの統計技術を用いて、気象予報データと電力価格データの関係モデルを求め、電力需要データと気象予報データの組み合わせと気象予報データから関係モデルにより推定した電力価格との差の分布として求めることができる。電力需要は、顧客が多い場合は、各顧客の需要を予測することは、計算が膨大になるのであまり現実てきではないが、顧客が少ない場合は、顧客ごとに需要を予測することが有用となる。その場合、気象予報データに加えて、顧客データも説明変数に加えて、分布を求め、各分布を足し合わせることにより全体の需要分布を作成する。これらの一連の処理を、電力需要分布推定部361が行う。
FIG. 12 is a distribution diagram of demand and its appearance frequency. This distribution map replaces electricity prices with electricity demand, and uses statistical techniques such as multiple regression analysis in the same way as the relationship data between weather forecast data and electricity price data. A relational model can be obtained, and it can be obtained as a distribution of the difference between the combination of power demand data and weather forecast data and the power price estimated by the relational model from the weather forecast data. Electricity demand is not very realistic when it comes to predicting the demand of each customer when there are many customers, because the calculation becomes enormous, but when there are few customers, it is useful to predict demand for each customer. Become. In that case, in addition to the weather forecast data, the customer data is also added to the explanatory variables to obtain the distribution, and the total demand distribution is created by adding the distributions. The power demand
図13は収益と需要の関係の例を示した図である。電力卸業者の場合、安い電気を仕入れ、利益をのせて需要家に販売するので、ある需要までは需要が増加するほど利益が上がる。しかし、仕入れることの出来る安い電力の量は限られているため、その量を需要が上回った場合、高い電力を仕入れなければならない。このため、安い仕入れ単価が、販売単価を上回る電力を購入しなければならなくなった時点で、収益は需要が増えるに従って下降する。発電業者の場合も、効率のよい順に発電機を動かしていって需要を満たすように調節する方法が多くの場合、経済効率がよい。また、販売量が発電能力を超えた場合は、不足電力量を調達して来なければならないが、その調達しなければならない電力が、販売単価より高い場合、電力卸業者と同様の上に凸のカーブとなる。このカーブを図12の需要の出現頻度に対応させ、需要ごとに出現確率と収益の積を足し合わせることにより、期待収益を得ることができる。さらに、取引所で取引しようとする価格と量に対して、収入は価格と量の積から増加分が分かり、費用は、量と電力コスト算出データから算出することができるので、各価格と量に対応した期待収益を得ることができる。これらの一連の操作を電力売買損益算出部401にて行う。すなわち、図12の各需要に対して、取引データから収入を、電力コスト算出データから費用を計算して収入を求め、差分である収益と出現確率の積を足し合わせて、期待収入を求める。この一連の処理を予め決められた入札量と価格の組み合わせを加えたものに対して行う。収益は収入とコストの差分であるが、仮に需要の変動によって変動する成分を変動コストと変動収入とすれば、これらの量にのみ注目すればよいので、電力コスト算出データおよび取引データはこれらの成分を計算できるデータが少なくとも含まれていればよい。したがって、電力コストデータとしては、発電機特性とインバランス料金、取引データとしては、従量料金のデータがすくなくとも含まれていればよい。
FIG. 13 is a diagram showing an example of the relationship between revenue and demand. In the case of electric power wholesalers, they purchase cheap electricity and sell profits to consumers, so profits increase as demand increases up to a certain demand. However, since the amount of cheap power that can be purchased is limited, if the demand exceeds that amount, high power must be purchased. For this reason, when a cheap purchase unit price has to purchase electric power that exceeds the sales unit price, the profit decreases as the demand increases. Even in the case of power producers, there are many ways to adjust the power generators to meet demand by moving them in the order of efficiency, which is economically efficient. In addition, if the sales volume exceeds the power generation capacity, it will be necessary to procure a shortage of electricity, but if the power to be procured is higher than the sales unit price, it will rise upward as in the case of power wholesalers. It becomes the curve of. Expected profit can be obtained by making this curve correspond to the appearance frequency of the demand in FIG. 12 and adding the product of the appearance probability and the profit for each demand. In addition, for the price and quantity to be traded on the exchange, revenue can be calculated from the product of price and quantity, and the cost can be calculated from the quantity and power cost calculation data. You can get the expected profit corresponding to. These series of operations are performed by the power trading profit /
リスク管理の観点から、X%以下で起こりうる最大の損失、または最小の利益を計算することになるが、出現確率と収益の組み合わせにおいて、収益の大きい順番からX%になるまで出現確率を足してゆけば、最後に足した組み合わせの収益が求める、最大損失、もしくは最小の利益を求める一連の処理も電力売買損益算出部401にて行う。
From the viewpoint of risk management, the maximum loss or minimum profit that can occur at X% or less is calculated. However, in the combination of appearance probability and profit, the probability of appearance is added to X% from the largest profit order. If this is the case, the power trading profit /
図14は売買量と入札価格および出現頻度との関係の例を示した例である。入札量と入札価格が決まれば、売買損益算出部401より期待収益が計算できるので、各入札価格と売買量に対して、期待収益を計算して、同じ収益となる組み合わせを線で結べば、図14のうち右側のグラフを描くことができる。一方、左側の図は、約定確率算出部501より算出した約定確率分布を縦軸を入札価格、横軸を出現頻度として表したものである。左右のグラフを使うことにより、ある入札価格と量に対して、落札したときの収益とその約定確率を求めることができる。同様に、落札したときの価格と、そのときの収益も求めることができるので、この入札価格と量での期待収益を計算することができる。
FIG. 14 shows an example of the relationship between the trading volume, the bid price, and the appearance frequency. Once the bid amount and the bid price are determined, the expected profit can be calculated from the trading profit /
複数の札を入札する場合、たとえば、A札が価格を10円/キロワット時、量を1メガワットの売り、B札が価格を11円/キロワット時、量を1メガワットの売りとしたならば、A札の方の価格が安いので、両札とも約定しない確率とそのときの収益、A札のみ約定する確率と期待収益、両札とも約定する確率と期待収益でそれぞれ計算する。また、A札のみ約定した場合は、取引量は約定しなかったときの期待需要に対して1メガ増やした量、両札とも約定した場合は、取引量は約定しなかったときの期待需要に対して2メガ増やした量で計算する。3つ以上の場合も、同様に、各札の約定確率によって取引量を求めた上で入札価格における約定確率と収益の積を足し合わせれば複数札による期待収益を求めることができる。同一需要家が、同一価格の売札と買札をいれることができないならば、発電機の能力,需要家の契約電力量,取引量の最低単位などにそれぞれ制約があるので、入札の組み合わせは有限個となる。この有限個に対して、もっとも期待値が高くなる組み合わせを探す一連の処理を入札パターン算出部が行う。即ち、各入札量と価格のパターンについて、約定確率分布と売買収益から、各札が約定したときとしなかった場合の確率と収益をもとに期待値を計算、期待値のもっとも高い入札パターンを探索する。この探索は、全探索でとくことも可能であるが、線形計画法などの手法を用いれば効率的に解くことが可能である。 When bidding multiple tags, for example, if the A tag sells 1 MW with a price of 10 yen / kWh, and the B tag sells 11 MW / kWh with an amount of 1 megawatt, the A tag Since the price is cheaper, the probability that both tags are not executed and the profit at that time, the probability that only the A tag is executed and the expected profit, and the probability that both tags are executed and the expected profit are calculated. In addition, if only the A bill is executed, the transaction amount is increased by 1 mega to the expected demand when the transaction is not executed. If both bills are executed, the transaction amount is the expected demand when the transaction is not executed. On the other hand, it is calculated by the amount increased by 2 mega. In the case of three or more, similarly, after obtaining the transaction amount by the execution probability of each tag and adding the product of the execution probability and the profit at the bid price, the expected return by a plurality of tags can be obtained. If the same consumer cannot place a bid and a bid with the same price, there are restrictions on the generator's capacity, the consumer's contracted energy, the minimum unit of transaction, etc. Limited number. The bid pattern calculation unit performs a series of processes for searching for a combination having the highest expected value for the finite number. In other words, for each bid volume and price pattern, the expected value is calculated based on the probability and profit when each tag is executed and not based on the execution probability distribution and trading revenue, and the bid pattern with the highest expected value is calculated. Explore. This search can be performed by full search, but can be solved efficiently by using a method such as linear programming.
ある入札パターンに対して、X%以上での最大の損失あるいは、最小の利益を求める方法を述べる。先のA札とB札の例では、両方とも約定しない、A札のみ約定、両方とも約定の3ケースが考えられ、約定確率分布から、3ケースの出現確率も計算できる。また、3ケースとも取引量が分かるので、それぞれのケースについて需要の出現確率と収益を計算できる。よって、それぞれの需要の出現確率に、約定確率を掛け合わせて、条件付確率を求めて、対応する収益の大きい順にX%になるまで足しあげてゆけば、最後に足した出現確率に対応する収益が、求める値となる。この一連の処理は、売買収益算出部にて行われる。各入札パターンにおいて、X%以上で最大の損失がY以上であるという条件の下で収益が最大となる入札パターンを見つける場合は、上記の手順で、最大の損失を算出し、損失がY以上であるという条件を満たさない場合は、選択肢からはずすことにより、リスクを考慮した上で収益を最大とする入札パターンを求めることができる。 A method for obtaining the maximum loss or minimum profit at X% or more for a certain bidding pattern will be described. In the example of the A tag and the B tag, there are three cases in which both are not executed, only the A tag is executed, and both are executed, and the appearance probability of the three cases can be calculated from the execution probability distribution. In addition, since the transaction volume is known in all three cases, the occurrence probability of demand and the profit can be calculated for each case. Therefore, by multiplying the occurrence probability of each demand by the execution probability and obtaining the conditional probability, and adding up to X% in order of the corresponding revenue, it corresponds to the appearance probability added last. Revenue is the desired value. This series of processing is performed by the trading revenue calculation unit. In each bid pattern, when finding a bid pattern that maximizes profit under the condition that X% or more and the maximum loss is Y or more, the maximum loss is calculated according to the above procedure, and the loss is Y or more. If the condition is not satisfied, it is possible to obtain a bid pattern that maximizes the profit in consideration of the risk by removing it from the options.
図15は、気象予報分布の例を表した図である。この分布は、気象予報データの値を数え上げて出現確率分布としたものであり、気象量分布推定部331において算出される。気象分布は季節性があるので、季節ごとに分け算出する。また、気温と天気と湿度の同時分布を求める場合は、変数を区分わけして、その区分の組み合わせごとに条件に合うものを数え上げる。例えば、晴れのときの気温分布,曇りのときの気温分布,雨の時の気温分布というように3つの分布からなる。また、晴れになる確率,雨になる確率,曇りになる確率もあわせて求める。
FIG. 15 is a diagram illustrating an example of a weather forecast distribution. This distribution is the appearance probability distribution obtained by counting the values of the weather forecast data, and is calculated by the meteorological amount
図16は、事業収益出現確率分布の例を表した図である。事業収益の出現確率分布は、気象予報分布よりランダムに発生された気象条件により、約定確率分布推定部より約定確率分布を電力需要分布推定部より電力需要分布をもとめ、最終的にもっとも収益が大きくなる入札パターンを検索する。このとき選択されたパターンでの各札が約定したときの収益分布をもとめ、各収益とその条件付き出現確率を保持する。この一連の流れを繰り返し、繰り返した回数で、保持していた条件付出現確率を割り算、同じ収益となる条件付き確率を足し合わせて、収益の小さい順に並べることによりある時間帯における収益分布が得られる。このようにして、時間帯別,季節別,曜日別の収益分布を求める。これらの分布から評価対象期間での季節,時間帯,曜日により適宜分布を選択し、その分布からランダムに収益を発生させ、評価対象期間の収益として収益の合計を求める。この一連の処理を何度も繰り返すことにより、図16の分布を得ることができる。 FIG. 16 is a diagram illustrating an example of the business revenue appearance probability distribution. The appearance probability distribution of business revenue is determined from the contract probability distribution estimation unit and the contracted probability distribution estimation unit to the power demand distribution estimation unit according to the weather conditions randomly generated from the weather forecast distribution. Search for a bidding pattern. At this time, the profit distribution when each tag in the selected pattern is executed is obtained, and each profit and its conditional appearance probability are held. By repeating this series of steps and dividing the number of repeated conditional occurrence probabilities, adding the conditional probabilities that result in the same revenue, and arranging them in ascending order of revenue, a revenue distribution in a certain time zone is obtained. It is done. In this way, the profit distribution by time, season, and day of the week is obtained. From these distributions, an appropriate distribution is selected according to the season, time zone, and day of the week in the evaluation target period, and revenue is randomly generated from the distribution, and the total profit is obtained as the profit in the evaluation target period. By repeating this series of processes many times, the distribution shown in FIG. 16 can be obtained.
101…電力取引支援システム、201…電力市場価格データ、221…気象予報データ、241…顧客データ、261…電力需要データ、271…取引データ、281…電力コスト算出データ、301…電力価格分布推定部、331…気象量分布推定部、361…電力需要分布推定部、401…売買損益算出部、501…約定確率算出部、601…事業リスク算出部、701…入札パターン算出部、901…入出力インタフェイス。
DESCRIPTION OF SYMBOLS 101 ... Electric power
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005185896A JP2007004646A (en) | 2005-06-27 | 2005-06-27 | Power transaction support system and power transaction support program |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005185896A JP2007004646A (en) | 2005-06-27 | 2005-06-27 | Power transaction support system and power transaction support program |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2007004646A true JP2007004646A (en) | 2007-01-11 |
Family
ID=37690185
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005185896A Pending JP2007004646A (en) | 2005-06-27 | 2005-06-27 | Power transaction support system and power transaction support program |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2007004646A (en) |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101135762B1 (en) | 2010-09-24 | 2012-04-16 | 한국전력공사 | Energy control system and method |
JP2013182448A (en) * | 2012-03-02 | 2013-09-12 | Tokyo Gas Co Ltd | Maximum supply amount prediction system, and maximum supply amount prediction method |
WO2014132370A1 (en) * | 2013-02-27 | 2014-09-04 | 株式会社日立製作所 | Negawatt transaction assistance system |
JP2016185059A (en) * | 2014-07-11 | 2016-10-20 | エンコアード テクノロジーズ インク | Prediction method of power consumption in accordance with consumption characteristics, generation method of power consumption prediction model, and power consumption prediction device |
JP2016207070A (en) * | 2015-04-27 | 2016-12-08 | 株式会社日立製作所 | Device and method for power transaction support, or application apparatus |
KR20170089549A (en) * | 2016-01-27 | 2017-08-04 | 주식회사 케이티 | System and method for managing bid based on intelligent demand response |
JP2018077817A (en) * | 2016-10-31 | 2018-05-17 | 富士通株式会社 | Estimation method, estimation device and estimation program |
US10374547B2 (en) | 2015-09-14 | 2019-08-06 | Kabushiki Kaisha Toshiba | Aggregation management apparatus and aggregation management method |
CN113822550A (en) * | 2021-09-02 | 2021-12-21 | 国网河北省电力有限公司石家庄供电分公司 | Comprehensive energy system planning risk assessment application system and method |
KR20220101875A (en) * | 2021-01-12 | 2022-07-19 | 인하대학교 산학협력단 | Automatic p2p energy trading method based on reinforcement learning using long short-term delayed reward |
US11954728B2 (en) | 2020-11-16 | 2024-04-09 | Kabushiki Kaisha Toshiba | Information processing device, information processing method, and non-transitory computer readable medium |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004145396A (en) * | 2002-10-21 | 2004-05-20 | Toshiba Corp | Electric power transaction risk management method and system |
JP2004252967A (en) * | 2003-01-31 | 2004-09-09 | Toshiba Corp | Power transaction risk management system and power transaction risk management method |
JP2005025377A (en) * | 2003-06-30 | 2005-01-27 | Toshiba Corp | Power transaction price predicting system, power transaction price predicting method and program for predicting power transaction price |
JP2005051866A (en) * | 2003-07-31 | 2005-02-24 | Hitachi Ltd | Method and apparatus for developing electricity trading plan |
-
2005
- 2005-06-27 JP JP2005185896A patent/JP2007004646A/en active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004145396A (en) * | 2002-10-21 | 2004-05-20 | Toshiba Corp | Electric power transaction risk management method and system |
JP2004252967A (en) * | 2003-01-31 | 2004-09-09 | Toshiba Corp | Power transaction risk management system and power transaction risk management method |
JP2005025377A (en) * | 2003-06-30 | 2005-01-27 | Toshiba Corp | Power transaction price predicting system, power transaction price predicting method and program for predicting power transaction price |
JP2005051866A (en) * | 2003-07-31 | 2005-02-24 | Hitachi Ltd | Method and apparatus for developing electricity trading plan |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101135762B1 (en) | 2010-09-24 | 2012-04-16 | 한국전력공사 | Energy control system and method |
JP2013182448A (en) * | 2012-03-02 | 2013-09-12 | Tokyo Gas Co Ltd | Maximum supply amount prediction system, and maximum supply amount prediction method |
WO2014132370A1 (en) * | 2013-02-27 | 2014-09-04 | 株式会社日立製作所 | Negawatt transaction assistance system |
JP2016185059A (en) * | 2014-07-11 | 2016-10-20 | エンコアード テクノロジーズ インク | Prediction method of power consumption in accordance with consumption characteristics, generation method of power consumption prediction model, and power consumption prediction device |
JP2016207070A (en) * | 2015-04-27 | 2016-12-08 | 株式会社日立製作所 | Device and method for power transaction support, or application apparatus |
US10374547B2 (en) | 2015-09-14 | 2019-08-06 | Kabushiki Kaisha Toshiba | Aggregation management apparatus and aggregation management method |
KR102638339B1 (en) * | 2016-01-27 | 2024-02-19 | 주식회사 케이티 | System and method for managing bid based on intelligent demand response |
KR20170089549A (en) * | 2016-01-27 | 2017-08-04 | 주식회사 케이티 | System and method for managing bid based on intelligent demand response |
JP2018077817A (en) * | 2016-10-31 | 2018-05-17 | 富士通株式会社 | Estimation method, estimation device and estimation program |
US11954728B2 (en) | 2020-11-16 | 2024-04-09 | Kabushiki Kaisha Toshiba | Information processing device, information processing method, and non-transitory computer readable medium |
KR20220101875A (en) * | 2021-01-12 | 2022-07-19 | 인하대학교 산학협력단 | Automatic p2p energy trading method based on reinforcement learning using long short-term delayed reward |
KR102503091B1 (en) * | 2021-01-12 | 2023-02-23 | 인하대학교 산학협력단 | Automatic p2p energy trading method based on reinforcement learning using long short-term delayed reward |
CN113822550A (en) * | 2021-09-02 | 2021-12-21 | 国网河北省电力有限公司石家庄供电分公司 | Comprehensive energy system planning risk assessment application system and method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Ketter et al. | The 2020 power trading agent competition | |
JP2007004646A (en) | Power transaction support system and power transaction support program | |
Alipour et al. | Stochastic scheduling of aggregators of plug-in electric vehicles for participation in energy and ancillary service markets | |
US10521867B2 (en) | Decision support system based on energy markets | |
Hatami et al. | A stochastic-based decision-making framework for an electricity retailer: Time-of-use pricing and electricity portfolio optimization | |
US10770899B2 (en) | Resource control by probability tree convolution production cost valuation by iterative equivalent demand duration curve expansion (aka. tree convolution) | |
Li et al. | Risk-constrained bidding strategy with stochastic unit commitment | |
JP6987514B2 (en) | Transaction planning device and transaction planning method | |
KR102094137B1 (en) | Method for relaying electric power trading | |
Delarue et al. | Effect of the accuracy of price forecasting on profit in a price based unit commitment | |
Nazari et al. | Optimal bidding strategy for a GENCO in day-ahead energy and spinning reserve markets with considerations for coordinated wind-pumped storage-thermal system and CO2 emission | |
Ketter et al. | The 2015 power trading agent competition | |
Salehpour et al. | The effect of price responsive loads uncertainty on the risk-constrained optimal operation of a smart micro-grid | |
JP2019046281A (en) | Power price prediction system | |
Darvishi et al. | Bidding strategy of hybrid power plant in day‐ahead market as price maker through robust optimization | |
WO2014132370A1 (en) | Negawatt transaction assistance system | |
Li et al. | Risk-constrained generation asset arbitrage in power systems | |
Shahinzadeh et al. | Optimal Strategy of Retail Companies in the Day-Ahead Markets in the Presence of Non-Dispatchable Renewable Sources and Electric Vehicle Aggregators | |
Pfaffen et al. | Evaluation of business models for the economic exploitation of flexible thermal loads | |
Ozdemir et al. | The strategy and architecture of a winner broker in a renowned agent-based smart grid competition | |
Ansarin et al. | Analyzing and improving the energy balancing market in the power trading agent competition | |
Cramton et al. | Eliminating the flaws in New England's reserve markets | |
Duki | Optimal sizing of CHP for residential complexes by two-stage stochastic programming | |
Shrestha et al. | Generation Scheduling for a price taker Genco in competitive power markets | |
Zhang et al. | Call Option based Risk Management for Wind Power Producers in Day-ahead Electricity Market |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20070927 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20100219 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100302 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100428 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100706 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100906 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20110125 |