WO2014132370A1 - Negawatt transaction assistance system - Google Patents

Negawatt transaction assistance system Download PDF

Info

Publication number
WO2014132370A1
WO2014132370A1 PCT/JP2013/055259 JP2013055259W WO2014132370A1 WO 2014132370 A1 WO2014132370 A1 WO 2014132370A1 JP 2013055259 W JP2013055259 W JP 2013055259W WO 2014132370 A1 WO2014132370 A1 WO 2014132370A1
Authority
WO
WIPO (PCT)
Prior art keywords
bid
trading
energy
demand
negawatt
Prior art date
Application number
PCT/JP2013/055259
Other languages
French (fr)
Japanese (ja)
Inventor
真 宮田
渡辺 徹
将人 内海
正雄 露崎
征司 稲垣
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to PCT/JP2013/055259 priority Critical patent/WO2014132370A1/en
Publication of WO2014132370A1 publication Critical patent/WO2014132370A1/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/06Energy or water supply

Definitions

  • the present invention relates to a system that supports the buying and selling of negawatts that are created by a consumer suppressing the use of electric power.
  • DR Demand response
  • Patent Document 1 predicts a power transaction balance by a simulation using a model that predicts risk factors such as fuel price, power demand, and power price in response to the problem of enabling risk management in power trading.
  • An apparatus for calculating a risk index from the distribution of power transaction balance and occurrence probability predicted by the simulation of the number of times is disclosed.
  • the output of wind power generation is unstable due to wind, and it is not possible to obtain planned power generation output for each time zone, and the power exchange cannot deal with the power generated by wind power generation.
  • the means to predict the power that can be supplied from past power generation results, the means to bid on the power exchange based on the predicted supply amount and obtain the contracted power amount, and the power generation amount of multiple wind power generators And a wind power generation management unit that charges and discharges a surplus or deficiency to a storage battery by charge / discharge control.
  • Patent document 3 calculates the predicted cumulative amount of hot water supply demand based on the past actual data of hot water supply demand in response to the problem of realizing economical operation of an HP (heat pump) type water heater, Calculates the predicted cumulative amount of power demand based on the actual data of the power generation, calculates the predicted value of power generation output based on the past actual power output data and the weather data, the predicted cumulative amount of hot water supply demand, the predicted cumulative power demand
  • An apparatus is disclosed that calculates a heat storage amount of a water heater to be maintained based on the amount and a predicted value of the power generation output, and controls the operation of the water heater so that the calculated heat storage amount is maintained.
  • Patent Document 1 relates to a system for managing the balance of electric power sales and risks and the risk of power generation by ordinary power generation, the factors that influence the balance and risk of power generation are significantly different from the factors that affect the balance and risk of negative wattage, Patent Document 1 cannot be applied to negawatt trading.
  • Patent Document 2 adjusts the imbalance between the contracted result and the output result based on the output prediction of wind power generation by charging and discharging the storage battery, and the main body having the wind power generation and the main body having the storage battery are the same. Because it is assumed that there is, it is not applicable to the trading of negawatts.
  • Patent Document 3 operates a heat pump type hot water heater in accordance with output prediction by solar power generation. Like Patent Document 2, a main body having solar power generation and a main body having a heat pump water heater are the same. Therefore, it is not applicable to buying and selling negawatts.
  • the present invention aims to provide a system capable of supporting the trading of negawatts and a negawatt and a trading support method in order to solve the above-described problems.
  • the present invention includes a control device and a storage device, and the storage device stores a demand prediction information storage area for storing energy demand prediction information, and bid prediction for buying and selling of the energy negative watts.
  • a bid information storage area for storing information the control device creates a demand response scenario for the energy based on the demand prediction information, and based on the created scenario and the bid prediction information It is a negawatt trading support system that formulates a negawatt trading plan and outputs the developed trading plan.
  • negawatt trading plan can be formulated in an optimal form, it is possible to provide a negative wattage trading support system and a negawatt trading support method that can promote effective use of negawatts.
  • the power trading market (hereinafter referred to as the market) is a place where the delivery price and quantity are contracted by matching the demand and supply of power.
  • the market There are spot markets for trading electricity delivered the next day, futures and forward markets for trading electricity delivered the next day, and an imbalanced market for trading electricity delivered on the day.
  • the price contracted in the market fluctuates from moment to moment depending on the supply and demand situation of electricity.
  • the daytime is high on weekdays and cheap on holidays and nights.
  • the midsummer and the midwinter when demand for cooling and heating is large, are high. Electricity prices also rise when the prices of oil, coal and natural gas required for power generation rise. In the case of sudden maintenance or accidents at the power plant, the power price will be high.
  • the ratio of wind power generation or solar power generation is large, the power price fluctuates with respect to wind strength and weather prediction.
  • HP water heater As another DR example, it is assumed that there is a customer having a heat pump water heater with a hot water storage tank (hereinafter referred to as an HP water heater). Since the HP water heater has a heat storage function, it is possible to adjust the operating time to some extent without impairing convenience. In general, the HP water heater is operated at night when the power price is low, to prepare for the demand for hot water during the daytime. For example, one day, a strong wind is expected in the daytime of the next day, and the price of power delivered in the daytime of the next day (due to a sudden increase in supply capacity) falls drastically.
  • the consumer suppresses the operation of the HP water heater at night of the day, sells the amount of power to be suppressed, and operates the HP water heater in the daytime day of the next day when the power price has dropped drastically instead.
  • Power can be procured at a lower cost by purchasing power for operation. It is also possible to procure the power for the night operation on the next day during the day. In other words, either the suppression time zone or the operation time zone may be first. On the other hand, even if the power price of the night rises due to sudden maintenance of the power plant, it is possible to avoid procurement with high power by shifting the operation time to the next day.
  • the first example above is a simple demand-suppressed DR example
  • the second example is a demand-shifted DR example.
  • the increase in negative wattage trading due to demand restraint or demand shift DR as described above will eventually improve the supply-demand balance, suppress excessive fluctuations in power prices, and thus contribute to improving the reliability of the power system. It is considered.
  • the consumer does not directly interact with the market, but the aggregator that collects the consumers performs the above-mentioned buying and selling according to the daily power price, and the consumer's electrical equipment is directly or ( It is often controlled indirectly (by contacting the customer by telephone, etc.).
  • the aggregator makes profits and pays consumers.
  • the role of the aggregator is to position the outsourcing of the business of retailers. Retailers sell electricity by contracting with consumers. Retailers can lead the DR themselves, but in order to buy and sell negawatts in the market, it is necessary to secure a certain number of consumers (collective amount of negawatts). In addition, since it is not always easy to appropriately control electric appliances of a large number of customers and to carry out appropriate transactions in the market, it is often considered to be entrusted to an aggregator. The aggregator leads DR while exchanging necessary information with the retailer.
  • FIG. 1 is a block diagram of a negawatt trading support system 100 according to the present invention.
  • the negawatt trading support system 100 includes a storage unit 102 and a processing unit 104.
  • the storage unit 102 includes a plurality of databases (DB).
  • the database includes a contract performance DB 102A, a bid information DB 102B, a scenario DB 102C, a customer DB 102D, a device characteristic DB 102E, a demand prediction DB 102F, and a heat storage plan DB 102G.
  • the storage unit 102 and the processing unit 104 are realized by a combination of computer hardware resources and software resources.
  • the execution result DB 102A is a DB that stores information on prices and quantities executed in the past in the market, and includes a date, a frame, an execution price, and an execution amount. Data is obtained from the market operator's terminal.
  • the bid information DB 102B is a DB indicating information on buying or selling that is bid in the market, and is configured to include a top, a bid type, a bid price, and a bid amount.
  • the data is acquired from the market operator's terminal or created by the bid prediction unit 104A.
  • Scenario DB102C is DB which shows the information of negawatt to buy and sell, customer ID, equipment ID, DR type, suppression start time, suppression continuation time, suppression amount, earliest wake-up start time, latest wake-up start time, wake-up duration , Configured with an arousal amount.
  • the data is created by the scenario creation unit 104D or acquired from the energy management system 200 of the customer.
  • the customer DB 102D is a DB indicating information belonging to the customer, and is configured to include a customer ID, a device ID, a device type, a unit price of suppression amount, a DR type, a suppression time zone, and a suppression coefficient.
  • the data is acquired from the consumer's energy management system 200 or the retailer's terminal.
  • the demand prediction DB 102F is a DB that indicates a prediction of consumer power consumption and the like, and includes a consumer ID, a device ID, a prediction start time, a prediction end time, a predicted heat consumption, and a predicted power consumption. Data is created by the demand prediction unit 104E.
  • the heat storage plan DB 102G is a DB that indicates a heat storage plan of the hot water storage tank of the HP water heater, and is configured to include a customer ID, a device ID, a plan start time, a plan end time, a plan generated heat amount, and a plan heat storage amount. Data is created by the demand prediction unit 104E.
  • the device characteristic DB 102E is a DB indicating the device characteristics of an electric device, and is configured to include a device ID, a generated heat amount, power consumption, a lower limit heat storage amount, and an upper limit heat storage amount.
  • the data is obtained from a consumer energy management system or a retailer terminal.
  • the processing unit 104 includes a bid prediction unit 104A, a sales meter output unit 104B, a sales plan formulation unit 104C, a scenario creation unit 104D, a demand prediction unit 104E, and a risk evaluation unit 104F.
  • the bid prediction unit 104A predicts the price and quantity of sell or buy that will be bid on the market.
  • the sales plan formulation unit 104C formulates a sales plan and passes the sales plan to the sales plan output unit 104B.
  • the sales plan output unit 104B displays the sales plan formulated by the sales plan formulation unit 104C on a screen or the like.
  • the scenario creation unit 104D creates a DR scenario and records it in the scenario DB 102C.
  • the demand prediction unit 104E creates a demand prediction and records it in the demand prediction DB 102F.
  • a heat storage plan is created and recorded in the heat storage plan DB 102G.
  • the risk evaluation unit 104F repeatedly processes the plurality of demand predictions and bid predictions to calculate the balance, and evaluates the risk of negawatt trading. Details of each processing block of the processing unit 104 and each DB of the storage unit 102 will be described later.
  • FIG. 2 is a block diagram showing the relationship between the negawatt trading support system 100, the consumer energy management system 200A, and the energy management system 200B.
  • the operation result DB 204A is a DB that shows the result of the operation status of the electrical equipment of the customer, and includes the customer ID, device ID, date, time, temperature, actual heat consumption, and actual power consumption.
  • the energy management unit 202A stores the operating status of the consumer's electrical equipment in the operating performance DB 204A. In addition, the energy management unit 202A can transmit the operation status record data stored in the operation record DB 204A and data input by the customer on the screen or the like to the negawatt trading support system 100.
  • FIG. 30 is an example of a screen displayed by the energy management system 200A.
  • the consumer inputs the configuration information of the DR scenario, such as the electrical device, the implementation condition, and the DR type that are the target of the DR.
  • the target equipment area 3000 is an area for inputting information on the electrical equipment of the customer.
  • the execution condition area 3002 is an area for inputting conditions (day of the week, reward unit price) for the customer to perform DR.
  • the demand response type area 3004 is an area for inputting a DR type to be executed.
  • the configuration / function of the energy management system 200A is the same as the energy management system 202B of another customer.
  • the description regarding the energy management system 202A also applies to the energy management system 200B, and the description regarding the energy management system 200B is omitted.
  • the processing blocks and DB configurations of the negative wattage trading support system 100 and the energy management system 200 are not limited to those described above.
  • the demand prediction unit 104E and the demand prediction DB 102F may be constituent elements of the consumer energy management system 200 instead of the constituent elements of the negative power trading support system 100.
  • FIG. 3 is an example of a configuration table of the contract performance DB 102.
  • the contract price and contract quantity are recorded for each date and frame.
  • FIG. 4 is an example of a configuration table of the bid information DB 102B.
  • Bid type buy, sell
  • bid price and bid amount are recorded for each date and frame.
  • FIG. 5 is an example of a configuration table of the scenario DB 102C. For each customer ID and device ID, the DR type, suppression start time, suppression duration, suppression amount, earliest arousal start time, latest awakening start time arousal duration, arousal duration, and arousal amount are recorded.
  • FIG. 6 is an example of a configuration table of the customer DB 102D.
  • Device type, suppression unit price, DR type, suppression time zone, and suppression coefficient are recorded for each customer ID and device ID.
  • FIG. 7 is an example of a configuration table of the demand forecast DB 102F.
  • the prediction start time, the predicted heat consumption, and the predicted power consumption are recorded for each customer ID and device ID.
  • FIG. 8 is an example of a configuration table of the heat storage plan DB 102G.
  • the planned start time, planned end time, planned generated heat amount, and planned heat storage amount are recorded for each customer ID and device ID.
  • FIG. 9 is a diagram showing a configuration of the device characteristic DB 102E.
  • the amount of generated heat, power consumption, the lower limit heat storage amount, and the upper limit heat storage amount are recorded for each device ID.
  • the device characteristics are determined from the relationship between the power consumption of the device and the amount of generated heat, as shown in FIG.
  • FIG. 11 is an example of a configuration table of the operation result DB 204. The time, temperature, actual heat consumption, and actual power consumption are recorded for each customer ID and device ID.
  • FIG. 12 is a hardware configuration diagram of an aggregator terminal 1200 for realizing the negawatt trading support system 100.
  • the basic configuration as an information processing device such as a CPU 1202, an input device 1204, an output device 1206, a communication device 1208, and a storage device 1210 is shown. It has a configuration.
  • Each processing block of the processing unit 104 is stored in the storage device 1210 as a program, and is realized by the CPU 1202 executing the program.
  • each DB in the storage unit 102 is stored in the storage device 1210 in the form of a relational database table or the like, used for processing of a program executed by the CPU 1202, and the processing result data is stored in the storage device 1210.
  • Each processing block and DB can also be realized by hardware such as an integrated circuit.
  • Each processing block and DB may be stored in advance in a storage device in the computer, but a removable storage medium or communication medium (wired, wireless, optical network, or carrier wave or digital signal on the network) It may be introduced to the external storage device when necessary. The same applies to the hardware configuration of the consumer energy management system.
  • the execution system for negawatt trading includes a terminal 1304 equipped with an aggregator negawatt trading support system, a terminal 1306 equipped with a consumer energy management system, a consumer electric device 1308, a market An operator terminal 1300, a retailer terminal 1302, and a network 1310 such as the Internet that connects these terminals to each other are configured. These terminals can transmit and receive data to and from each other via the network 1310. The customer terminal 1306 and the electric device 1308 transmit and receive data via a wireless or wired communication line.
  • FIG. 14 shows an example of the configuration of a consumer's electrical equipment. Electricity is supplied to the heat pump 1406 and the air conditioner 1404 through a power receiving facility 1402 connected to the electric wire 1400.
  • the heat pump 1406 warms the water in the hot water storage tank 1408 by circulation of the heat medium, and the hot water storage tank 1408 sends the warmed water to the panel heater 1410. Water in the water storage tank 1408 is supplied from a water pipe 1412.
  • FIG. 15 is a flowchart showing the processing of the sales plan formulation unit 104C.
  • the sales plan formulation unit 104C acquires all bid information from the bid information DB 102B (S1500).
  • the sales plan formulation unit 104C acquires all the DR scenarios from the scenario DB 102C, and selects a DR scenario with a predetermined standard (for example, a unit price of the payment amount to the consumer having the smallest restraint unit price). (Select)), one DR scenario is selected (S1502).
  • the control unit price is obtained from the customer DB 102D for the corresponding consumer and electrical equipment.
  • the sales plan formulation unit 104C provisionally determines one sales pattern from the DR scenario (S1504).
  • the buying / selling pattern is a combination of a selling bid frame, a selling bid amount, a buying bid frame, and a buying bid amount.
  • the selling bid frame is a frame in the time period from “suppression start time” to “suppression start time + suppression duration”.
  • the frames of the buying bid are frames from the “calling start time” to “calling start time + calling duration”.
  • the awakening start time is any time between the earliest awakening start time and the latest awakening start time.
  • the amount of bids sold is the same as the amount of restraint.
  • the amount of bids bought is the same as the amount of arousal.
  • the sell bid frame and the buy bid frame do not include frames of the same time.
  • the sales plan formulation unit 104C estimates a sale contract amount, a sell price, a buy contract amount, and a buy contract price from the sales pattern and bid information for each frame (S1506).
  • Approximate sales amount is the smaller of the amount of selling bids in the buying and selling pattern and the amount of buying bids in the bid information (the total amount when there are multiple buying bids in the same frame).
  • the buy purchase fixed quantity is the smaller of the buy bid amount of the buying and selling pattern and the sell bid amount of the bid information (the total amount when there are a plurality of sell bids in the same frame).
  • the sale contract price is the highest price among the bid prices of the bid information. However, when contracting with a plurality of buy bids in the bid information, it is a weighted average of contract quantitative values for each price of the bid bid to be executed.
  • the purchase contract price is the lowest price among selling bid prices in the bid information. However, when contracting with a plurality of selling bids in the bid information, it is a weighted average of contracted amounts for each selling bid price to be contracted. It is assumed that selling bids for bid information are preferentially executed in descending order of price, and buying bids for bid information are preferentially executed in order of high price.
  • the sales plan formulating unit 104C subtracts the payment amount obtained by multiplying the purchase contract amount by the purchase contract price from the receipt amount obtained by multiplying the sell contract amount by the sale contract price, and the payment amount to the consumer is obtained. Then, the balance of each frame is calculated, and when the balance of all the frames is calculated, the balance of all the frames is summed (S1508). The amount paid to the consumer of each frame is calculated by multiplying the selling amount by the unit price of the restraint for each consumer / electric equipment.
  • the buying and selling plan formulation unit 104C checks whether or not the balance has been calculated for all possible buying and selling patterns (actually the calling start time) (S1510). If all the trading patterns have been calculated, the process proceeds to the next step (S1512), and if there is any trading pattern remaining, the process returns to the provisional determination of the trading pattern (S1504).
  • the trading plan formulation unit 104C detects a trading pattern having the maximum balance among the calculated trading pattern balances (S1512).
  • the sales plan formulating unit 104C updates the bid information by subtracting the sold bid and the bid to be bid from the bid information for each frame regarding the trading pattern with the maximum balance (S1514).
  • the sales plan formulation unit 104C checks whether all the DR scenarios have been calculated (S1516). If all the DR scenarios have been calculated, the process proceeds to the next step (S1518). If any DR scenario remains, the process returns to DR scenario selection (S1502), and one DR scenario is selected from the DR scenarios that have not been calculated yet. select.
  • the trading plan formulation unit 104C passes the trading pattern having the maximum balance among all the DR scenarios calculated above to the trading plan output unit 104B and outputs it to the screen (S1518).
  • the processing is not limited to the description of the above flowchart, and it is changed within the scope of the purpose for the purpose of speeding up and sophisticating the processing. May be.
  • the amount of buying bid, selling bid, and selling bid may be used as parameters.
  • the bid bid amount that is, the arousal amount
  • the sell bid amount that is, the suppression amount
  • a trading pattern may be selected in consideration of balance distribution calculated by the risk evaluation unit 104F.
  • the buying / selling pattern is a combination of the selling bid frame and the selling bid amount, and does not include the buying bid frame and the buying bid amount.
  • the balance of each frame is calculated by subtracting the payment to the customer from the received money obtained by multiplying the sale contract amount by the selling contract price.
  • Other processing is the same as in the case of “demand shift”.
  • FIG. 16 is an example of a screen output by the sales plan output unit 104B.
  • the sales plan area 1600 shows a sales pattern with the largest balance.
  • the balance area 1602 is a graph showing the probability distribution of the balance, and the calculation method is described in the description section of the risk evaluation unit 104F.
  • FIG. 17 is a flowchart showing the processing of the scenario creation unit 104D.
  • the scenario creation unit 104D acquires all customer information from the customer DB 102D, and then acquires the demand prediction of the corresponding customer and electrical equipment from the demand prediction DB 102F (S1700).
  • the scenario creation unit 104D repeats the process for each customer and device from step S1702 to step S1710.
  • the scenario creating unit 104D first determines whether the DR type of the customer information is a demand shift or a demand suppression (S1704). If the DR type is a demand shift, a process for creating a DR scenario for demand shift is performed (S1708). If the DR type is a demand suppression, a process for creating a DR scenario for demand suppression is performed (S1706). The process for creating the demand shift DR scenario and the process for creating the demand suppression DR scenario will be described with reference to different flowcharts.
  • the scenario creation unit 104D returns to the processing of the next consumer and equipment (S1704) when the consumer and the electrical equipment that have not been processed remain, and the processing of all the consumers and electrical equipment is completed. If so, the process ends (S1710).
  • a DR scenario is created for each consumer and electrical device, but one DR scenario may be created for a plurality of customers or electrical devices.
  • the consumer does not always perform demand suppression according to the instructions of the aggregator, and therefore, the amount of suppression is likely to fluctuate.
  • the amount of suppression is likely to fluctuate.
  • FIG. 18 is a flowchart showing details of the process (S1708 in FIG. 17) of creating a DR scenario for demand shift by the scenario creating unit 104D.
  • the process will be described first in the case where the DR type of the customer information is “demand shift”.
  • the suppression time zone, the arousal time zone, the reduced heat amount, and the arousal generated heat amount represent variables that store values used in the processing.
  • the scenario creation unit 104D acquires the corresponding customer and device heat storage plans from the heat storage plan DB 102G, and acquires the device characteristics of the corresponding electrical device from the device characteristics DB 102E (S1800).
  • the scenario creation unit 104D sets a time zone from the plan start time to the plan end time of the heat storage plan as a suppression time zone (S1802).
  • the scenario creation unit 104D sets the reduced heat amount to the same value as the planned generated heat amount of the heat storage plan (S1804).
  • the scenario creation unit 104D sets the time zone from the plan start time to the plan end time of the heat storage plan as the suppression time zone, and sets the planned heat generation amount of the heat storage plan to the reduced heat amount.
  • the scenario creation unit 104D sets a calling pattern (S1806).
  • the arousal pattern is the arousal time zone and the amount of heat generated.
  • the awakening time zone does not overlap with the suppression time zone, and is set in the range from 0:00 to 24:00 with the same length as the suppression time zone.
  • the amount of generated heat is set to the same value as the reduced amount of heat.
  • the scenario creation unit 104D calculates a heat storage amount by the following formula (S1808).
  • t is a time from 0:00 to 24:00.
  • Heat storage amount at 0:00 is equal to the planned heat storage amount at 0:00.
  • Heat storage amount at time (t) Heat storage amount at time (t-1)-Predicted heat consumption at time (t) + Planned heat generation at time (t)-Reduction heat amount (however, it is zero except for the suppression time zone) + Arousal generation heat amount (However, arousal time zone Other than zero)
  • the scenario creation unit 104D checks whether all possible arousing patterns have been calculated (S1810). If the calculation has been completed for all the awakening patterns, the process proceeds to the next step (S1812). Otherwise, the process returns to the setting of the awakening pattern (S1806).
  • the scenario creation unit 104D checks whether or not the time series of the heat storage amount is within the range of the lower limit heat storage amount and the upper limit heat storage amount of the device characteristics at all times for each awakening pattern ( S1812).
  • the arousal pattern in which the heat storage amount is within the range of the lower limit heat storage amount and the upper limit heat storage amount is referred to as an appropriate arousal pattern.
  • the scenario creation unit 104D checks whether there is one or more appropriate calling patterns (S1814). If there is 1 or more, the process proceeds to the next step (S1816). If it is 0, the process returns to the setting of reduced heat quantity (S1804), the reduced heat quantity is set to a smaller value, and the process is repeated.
  • the scenario creation unit 104D calculates the suppression amount and the arousal amount according to the following formula from the device characteristics (relationship between the generated heat amount and the power consumption) for the appropriate arousal pattern (S1816).
  • P in the following equation is a function for obtaining power consumption necessary for generating heat.
  • Suppression amount P (predicted heat generation amount at time t) ⁇ P (predicted heat generation amount at time t ⁇ reduction heat amount)
  • Arousal amount P (arousal generation heat quantity at time t)
  • the scenario creation unit 104D determines the suppression amount and the arousal amount calculated in the previous step, the first time of the suppression time zone (suppression start time), the length of the suppression time zone (suppression duration), and the appropriate arousal pattern.
  • the first time of the earliest arousal time zone (earliest awakening start time), the first time of the latest arousal time zone (latest arousal start time) of the appropriate arousal patterns, the length of the arousal time zone of the appropriate arousal pattern Is stored in the scenario DB 102C (S1818).
  • the suppression time zone is set to be the same as the time zone from the plan start time to the plan end time, but may be a partial time zone.
  • the amount of generated heat is set to the same value as the reduced amount of heat, but it may be set freely within the range allowed by the specifications of the electrical equipment. Although it was set to the same length as the length of the suppression time zone, it may be set to a different length.
  • the reduced heat amount and the arousal generated heat amount are implicitly assumed to be constant over time, but may be values that change with time.
  • the relationship between the generated heat amount and power consumption of the device characteristic is stored in the device characteristic DB 102E.
  • this device characteristic changes depending on the temperature, the temperature of water entering the hot water storage tank, etc.
  • Data such as air temperature and incoming water temperature may be acquired from the management system 200 or the like, and the power consumption may be calculated using more accurate device characteristics.
  • FIG. 19 is a flowchart showing details of the process (S1706 in FIG. 17) of creating a DR scenario for demand suppression by the scenario creation unit 104D.
  • the scenario creation unit 104D calculates a common time zone between the time zone from the forecast start time of the demand forecast to the forecast end time and the time zone in which the customer information can be suppressed, and sets this as the time zone that can be suppressed. (S1900).
  • the scenario creation unit 104D calculates the suppression amount by multiplying the predicted power consumption of the demand prediction by the suppression coefficient of the customer information (S1902).
  • the scenario creation unit 104D stores the first time of the suppression possible time zone (suppression start time), the length of the suppression possible time zone (suppression duration), and the suppression amount in the scenario DB 102C.
  • the suppression time zone is not a common time zone between the forecast start time of the demand forecast and the prediction end time and the suppression time zone of the customer information, but as a part of the time zone Also good.
  • FIG. 20 is a flowchart showing the processing of the bid prediction unit 104A.
  • the bid prediction unit 104A checks whether bid information can be acquired (S2000). For example, bid information cannot be obtained at a stage where the market of the target piece is not open. In addition, the tender status may not be disclosed by the boarding method. If so, the process ends. If not, the process proceeds to the next step (S2002).
  • the bid prediction unit 104A acquires execution result data from the execution result DB 102A (S2002).
  • the bid prediction unit 104A predicts the bid price and bid amount of the selling bid in the market and the bid price and bid amount of the purchase bid (S2004). For example, it is assumed that the bid price and the bid amount of a certain frame on a certain day of a certain year are equal to the contract price and contract amount of the same frame on the same day of the previous year.
  • the bid price and the bid amount may be predicted by a method such as regression analysis in consideration of the past fuel prices such as oil and gas and the operating status of the power plant.
  • Such electric power price prediction logic is abundant in conventional techniques such as Patent Document 1, and therefore further description is omitted.
  • the bid prediction unit 104A stores the predicted bid information in the bid information DB 102B (S2006).
  • FIG. 21 is a flowchart showing processing of the demand prediction unit 104E.
  • the demand prediction unit 104E repeats the processing from step S2100 to step S2114 for each customer and electrical device.
  • the demand prediction unit 104E acquires operation result data from the energy management system 200 of the customer (S2102).
  • the demand prediction unit 104E predicts the demand (prediction start time, prediction end time, predicted heat consumption, predicted power consumption) of the consumer's electrical equipment (S2104). For example, it is assumed that the predicted heat consumption and predicted power consumption at a certain time on a certain day have the same values as the predicted heat consumption and predicted power consumption at the same time on the same day of the week one week ago. Alternatively, the predicted heat consumption and the predicted power consumption may be predicted by a method such as regression analysis in consideration of weather conditions such as temperature and weather. Such demand prediction logic is abundant in conventional techniques such as Patent Document 1, and therefore, further description is omitted.
  • the demand prediction unit 104E stores the demand prediction in the demand prediction DB 102F (S2106).
  • the demand prediction unit 104E checks whether the device type is an HP water heater (S2108). If the device type is an HP water heater, the process proceeds to the next step (S2110), and if not, the process proceeds to the next consumer and device (S2114).
  • the demand prediction unit 104E creates a heat storage plan (plan start time, plan end time, plan generation heat amount, plan heat storage amount) from the predicted heat consumption (S2110).
  • the heat storage amount is planned so that the heat storage amount of the hot water storage tank is minimized within the restriction range of the specifications of the electrical equipment.
  • the logic for creating such a heat storage plan is abundant in conventional techniques such as Patent Document 3, and therefore further description is omitted.
  • the demand prediction unit 104E stores the created heat storage plan in the heat storage plan DB 102G (S2112).
  • the demand prediction unit 104E moves to processing of the next consumer and device (S2100). When the process is performed for all customers and devices, the process ends.
  • FIG. 22 is a flowchart showing the overall processing of the negawatt trading support system 100. These processes are performed as a whole by the cooperation of the processing blocks. The processing from step S2200 to step S2212 is repeated at regular intervals.
  • step 2202 to step 2204 and the process of step 2206 are executed in parallel by branching into two processes.
  • the demand prediction unit 104E predicts the demand of the consumer (S2202).
  • the scenario creation unit 104D creates a DR scenario (S2204).
  • the bid prediction unit 104A performs bid prediction (S2206). This is the branching process.
  • the sales plan formulation unit 104C formulates a sales plan based on the DR scenario and the bid prediction (S2208).
  • the sales plan output unit 104B outputs the formulated sales plan (S2210). After a certain time, the process is repeated from steps S2202 and S2206 (S2212).
  • FIG. 23 is a flowchart showing processing of the risk evaluation unit 104F. However, the processes of the broken line portion 230 and the broken line portion 232 are performed in cooperation with other processing blocks.
  • the risk evaluation unit 104F repeats the processing from step 2302 to step 2310 a predetermined number of times (for example, 100 times) (S2300). In the iterative process, first, the risk evaluation unit 104F generates a random number and passes the random number to the demand prediction unit 104E and the bid prediction unit 104A (S2302).
  • the bid prediction unit 104A predicts a bid using the random number passed from the risk evaluation unit 104F (S2308). For example, a random number is added to the bid price or the bid amount.
  • the demand prediction unit 104E predicts demand using the random number passed from the risk evaluation unit 104F (S2304). For example, a random number is added to the predicted heat consumption or the predicted start time.
  • the scenario creation unit 104D creates a DR scenario based on the demand predicted by the demand prediction unit 104E (S2306). Note that steps S2304 and S2306, and step S2308 are two parallel processes.
  • the sales plan formulation unit 104C formulates a sales plan based on the bid prediction and the DR scenario, and passes it to the risk evaluation unit 104F (S2310).
  • step 2312 the process returns to step 2302 and the process is repeated (S2312).
  • the risk evaluation unit 104F passes the established sales plan for the predetermined number of times to the sales plan output unit 104B, and proceeds to the next step (S2314).
  • the sales plan output unit 104B creates a probability distribution of the sales plan balance for the predetermined number of sales plans, and outputs a graph to the screen (S2314).
  • the above is the description of the first embodiment of the present invention.
  • FIG. 24 is a configuration example of consumer electric equipment and gas equipment according to the second embodiment of the present invention.
  • the heat pump 1406 may be operated not only by the electricity supplied from the electric wire 1400 via the power receiving facility 1402 but also by the power of the gas engine 2402 that drives the gas supplied from the gas pipe 2400 as fuel.
  • the fan heater 2404 is operated by the gas supplied from the gas pipe 2400.
  • Other electrical devices have the same configuration as that of FIG.
  • the third embodiment of the present invention relates to the virtual market system 2500 of FIG.
  • the virtual market system 2500 is used as a means for creating contract information or bid information that is an input of the negawatt trading support system 100 of the present invention, or as a means for executing a trading plan that is the output of the negawatt trading support system 100 of the present invention. .
  • One of the purposes of the virtual market system 2500 is to estimate a power trading market under a predetermined condition and to make a profit forecast of negawatt buying and selling.
  • the predetermined condition is, for example, a case where the ratio of wind power generation is increased.
  • Another purpose of the virtual market system 2500 is for the training of traders who place orders for negawatt buying and selling on the market.
  • FIG. 25 is a block diagram showing the configuration of the virtual market system 2500.
  • the storage unit 2504 includes a bid performance DB 2504A, a bid estimation DB 2504B, and an environment information DB 2504C.
  • the processing unit 2502 includes a bid estimation unit 2502A, a bid input unit 2502B, an approximate quantitative calculation (estimation) unit 2502C, and an approximate quantitative output unit 2502D.
  • the bid input unit 2502B executes a process of inputting a bid for negawatt buying and selling.
  • the bid input unit 2502B can acquire negawatt trading information from the negawatt trading support system 100. Also, the bid input unit 2502B allows a trader to input negawatt buying and selling.
  • the bid estimation unit 2502A performs a process of estimating a virtual market bid.
  • the bid estimation unit 2502A can output the estimated bid to the negawatt trading support system 100.
  • the negawatt trading support system can formulate a trading plan.
  • the approximate quantitative calculation unit 2502C performs a process of calculating an approximate quantitative value between the bid for negawatt buying and selling and the actual market bid or the virtual market bid.
  • the approximate quantitative output unit 2502D is a process for outputting the approximate quantitative value calculated by the approximate quantitative calculation unit 2502C.
  • the hardware configuration of the virtual market system 2500 is the same as the hardware configuration of the negawatt trading support system 100.
  • data can be transmitted to and received from the negawatt trading support system 100 via a communication line 1310 such as the Internet.
  • FIG. 26 is an example of a configuration table of the bid performance DB 2504A, in which the delivery date, delivery frame, bid type, bid price, and bid amount are recorded for each bid date and bid time.
  • FIG. 27 is an example of a configuration table of the bid estimation DB 2504B, in which delivery date, delivery frame, bid type, bid price, and bid amount are recorded for each bid date and bid time.
  • FIG. 28 is a flowchart showing the processing of the approximately quantitative calculation unit 2502C.
  • the approximately quantitative calculation unit 2502C repeatedly performs the processing from step S2800 to step S2812 at regular intervals.
  • the uncommitted bid (bidding time, delivery time, price, quantity) is initialized to zero.
  • the approximately quantitative calculation unit 2502C branches the process of step S2802 and the process of step S2804 in parallel.
  • the approximately quantitative calculation unit 2502C obtains the input bid information (bid time, delivery time, price, amount) input from the negawatt trading support system 100 or the trader from the bid input unit 2502B.
  • step S2804 the approximate quantitative calculation unit 2502C acquires market bid information (bid time, delivery time, price, amount) from the bid performance DB 2504A or the bid estimation DB 2504B.
  • the approximately quantitative calculation unit 2502C repeats the process of step S2808 for each bid of each input bid information and market bid information.
  • the contracted amount calculation unit 2502C calculates the contracted amount and the contract price 2502C from the uncommitted bid and the input bid information or the market bid information, subtracts the contracted bid from the uncommitted bid, The bid is updated (S2808). These calculations are the same as the normal Zaraba method.
  • the fixed amount and the contract price are passed to the fixed amount output unit 2502D.
  • the approximately quantitative calculation unit 2502C proceeds to the next step (SS2810) when all the bid processing is completed, and returns to another bid processing (S2806) if not yet completed (S2810).
  • the approximately quantitative calculation unit 2502C repeatedly performs processing from the initial processing (S2800) after a predetermined time (S2812).
  • FIG. 29 is a flowchart showing the processing of the bid amount estimation unit 2502A.
  • the bid amount estimation unit 2502A acquires environmental information (past weather conditions, power plant operation results, energy price, exchange price, etc.) from the environmental information DB 2504C (S2900).
  • the bid amount estimation unit 2502A acquires a bid result (bid time, delivery time, price, amount) from the bid result DB 2504A (S2902).
  • the bid amount estimation unit 2502A performs clustering (classification by class) on the acquired bid results based on the correlation between the environmental information and the bid results (S2904). This is a process of estimating which bid is made by which power generation entity. Since there are various conventional techniques for the clustering method itself, further description is omitted.
  • the bid amount estimation unit 2502A adjusts bids based on the clustered result (S2906). For example, the number of bids of a class considered to be wind power generation among the clustered bid performance classes is increased.
  • the bid amount estimation unit 2502A stores the adjusted bid in the bid estimation DB 2502A (S2908).
  • the above is the description of the third embodiment of the present invention.
  • the negawatt buying and selling support system can predict profits and evaluate risks when buying and selling negawatts, formulate an optimum negawatt buying and selling plan, and support negawatt buying and selling. can do.
  • 100 Negawatt trading support system
  • 102 Storage unit
  • 102A Contract performance DB
  • 102C Scenario DB
  • 102D Customer DB
  • 102E Equipment characteristic DB
  • 102E Demand characteristic DB
  • 102F Demand prediction DB
  • 102G Heat storage Plan DB
  • 104 processing unit
  • 104A bid prediction unit
  • 104B sales plan output unit
  • 104D scenario creation unit
  • 104E demand prediction unit
  • 104F risk evaluation unit

Landscapes

  • Business, Economics & Management (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Economics (AREA)
  • Public Health (AREA)
  • Water Supply & Treatment (AREA)
  • General Health & Medical Sciences (AREA)
  • Human Resources & Organizations (AREA)
  • Marketing (AREA)
  • Primary Health Care (AREA)
  • Strategic Management (AREA)
  • Tourism & Hospitality (AREA)
  • Physics & Mathematics (AREA)
  • General Business, Economics & Management (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Abstract

[Problem] To provide a system whereby it is possible to assist with negawatt transactions. [Solution] The present invention is a negawatt transaction assistance system, comprising a control device and a storage device. The storage device further comprises a demand forecasting information storage region which stores energy demand forecasting information, and a bidding information storage region which stores bidding forecasting information with respect to a negawatt transaction of the energy. The control device creates a demand response scenario with respect to the energy on the basis of the demand forecasting information, formulates a transaction plan of the negawatt on the basis of the created scenario and the bidding forecasting information, and outputs the formulated transaction plan.

Description

ネガワット売買支援システムNegawatt trading support system
 本発明は、需要家が電力の使用を抑制することで創出されるネガワットの売買を支援するシステムに関する。 The present invention relates to a system that supports the buying and selling of negawatts that are created by a consumer suppressing the use of electric power.
 デマンドレスポンス(以下、DR、という。)は、卸市場価格の高騰時または系統信頼性の低下時において、電気料金の変更または報酬の支払いにより、需要家が電力の使用を一時的に抑制するよう電力消費パターンを変化させることである。米国などの電力取引市場では、発電所で発電された電力と同等に、DRによって創出されるネガワットが取引されている。 Demand response (hereinafter referred to as “DR”) is designed to allow consumers to temporarily suppress the use of electricity by changing electricity charges or paying compensation when the wholesale market price rises or the system reliability decreases. It is to change the power consumption pattern. In the power trading market such as the United States, negawatts created by DR are traded in the same way as the power generated at power plants.
 また、小規模の需要家のネガワットをまとめ、電力会社や系統運用機関と取引するアグリゲータが登場してきている。今後、再生エネルギーによる発電力の拡大により、電力需給バランスの不安定化や電力価格のボラティリティの拡大が懸念されており、その意味でもアグリゲータがまとめるネガワットの有効活用が期待されている。 In addition, aggregators that gather negawatts of small-scale customers and trade with electric power companies and grid operators have appeared. In the future, due to the expansion of power generation by renewable energy, there are concerns about unstable power supply and demand balance and increase in electricity price volatility. In that sense, the effective use of negawatts compiled by an aggregator is expected.
 特許文献1は、電力取引におけるリスク管理を可能にするという課題に対して、燃料価格、電力需要、電力価格などのリスク要因を予測するモデルを使ったシミュレーションにより電力取引収支を予測し、所定の回数の当該シミュレーションにより予測した電力取引収支とその発生確率の分布からリスク指標を計算する装置を開示している。 Patent Document 1 predicts a power transaction balance by a simulation using a model that predicts risk factors such as fuel price, power demand, and power price in response to the problem of enabling risk management in power trading. An apparatus for calculating a risk index from the distribution of power transaction balance and occurrence probability predicted by the simulation of the number of times is disclosed.
 特許文献2は、風力発電では出力が風まかせで不安定であり、時間帯毎の計画的な発電出力を得られず、電力取引所で風力発電による電力を取引することができないという課題に対して、過去の発電実績などから供給可能な電力を予測する手段と、供給量予測値に基づき電力取引所に入札し、約定電力量を取得する手段と、複数の風力発電装置の発電量を取得して総計し、余剰又は不足分を充放電制御により蓄電池に充放電させる風力発電統括手段と、を備えるシステムを開示している。 According to Patent Document 2, the output of wind power generation is unstable due to wind, and it is not possible to obtain planned power generation output for each time zone, and the power exchange cannot deal with the power generated by wind power generation. The means to predict the power that can be supplied from past power generation results, the means to bid on the power exchange based on the predicted supply amount and obtain the contracted power amount, and the power generation amount of multiple wind power generators And a wind power generation management unit that charges and discharges a surplus or deficiency to a storage battery by charge / discharge control.
 特許文献3は、HP(ヒートポンプ)式給湯機の経済的な運転を実現するという課題に対して、過去の給湯需要の実績データに基づいて給湯需要の予測累積量を算出し、過去の電力需要の実績データに基づいて電力需要の予測累積量を算出し、過去の発電出力の実績データおよび天候データに基づいて発電出力の予測値を算出し、給湯需要の予測累積量、電力需要の予測累積量、および発電出力の予測値に基づいて、維持すべき給湯機の蓄熱量を算出し、算出した蓄熱量が維持されるように給湯機の運転を制御する装置を開示している。 Patent document 3 calculates the predicted cumulative amount of hot water supply demand based on the past actual data of hot water supply demand in response to the problem of realizing economical operation of an HP (heat pump) type water heater, Calculates the predicted cumulative amount of power demand based on the actual data of the power generation, calculates the predicted value of power generation output based on the past actual power output data and the weather data, the predicted cumulative amount of hot water supply demand, the predicted cumulative power demand An apparatus is disclosed that calculates a heat storage amount of a water heater to be maintained based on the amount and a predicted value of the power generation output, and controls the operation of the water heater so that the calculated heat storage amount is maintained.
特開2008-84095号公報JP 2008-84095 A 特開2006-280020号公報JP 2006-280020 A 特開2013-2794号公報JP 2013-2794 A
 しかしながら、特許文献1は、通常の発電による電力の売買の収支とリスクを管理するシステムに係るため、発電の収支およびリスクを左右する要因と、ネガワットの収支およびリスクを左右する要因は大きく異なり、特許文献1をネガワットの売買には適用できない。 However, since Patent Document 1 relates to a system for managing the balance of electric power sales and risks and the risk of power generation by ordinary power generation, the factors that influence the balance and risk of power generation are significantly different from the factors that affect the balance and risk of negative wattage, Patent Document 1 cannot be applied to negawatt trading.
 また、特許文献2は、風力発電の出力予測に基づき入札した約定結果と出力実績とのインバランスを蓄電池の充放電により調整するものであり、風力発電を持つ主体と蓄電池を持つ主体が同一であることを前提としているため、ネガワットの売買に適用できるものではない。 Patent Document 2 adjusts the imbalance between the contracted result and the output result based on the output prediction of wind power generation by charging and discharging the storage battery, and the main body having the wind power generation and the main body having the storage battery are the same. Because it is assumed that there is, it is not applicable to the trading of negawatts.
 特許文献3は、太陽光発電による出力予測に合わせてヒートポンプ式給湯器の運転を行うものであり、特許文献2と同様、太陽光発電を持つ主体とヒートポンプ式給湯器を持つ主体が同一であることを前提としているため、ネガワットの売買に適用できるものではない。 Patent Document 3 operates a heat pump type hot water heater in accordance with output prediction by solar power generation. Like Patent Document 2, a main body having solar power generation and a main body having a heat pump water heater are the same. Therefore, it is not applicable to buying and selling negawatts.
 既述の技術文献に記載された技術は、ネガワットの収支およびリスクを評価するために必要な個々の要素技術の一つにはなり得るが、既述の複数の先行技術を合わせてもネガワットの売買に適用できない。 The technology described in the above-mentioned technical literature can be one of the individual elemental technologies required to evaluate Negawatt's balance and risk. Not applicable to trading.
 このように、ネガワットの有効活用が期待されているものの、従来のシステムはネガワットの売買に必要なツールを十分に整備したレベルには到達していないのが実状である。 As described above, although the effective use of negawatts is expected, the conventional system does not reach the level where the tools necessary for buying and selling negawatts are sufficiently prepared.
 本発明は、既述の課題を解決するために、ネガワットの売買を支援可能なシステム及びネガワットと売買支援方法を提供することを目的とするものである。 The present invention aims to provide a system capable of supporting the trading of negawatts and a negawatt and a trading support method in order to solve the above-described problems.
 前記目的を達成するために、本発明は、制御装置と記憶装置とを備え、前記記憶装置は、エネルギーの需要予測情報を記憶する需要予測情報記憶領域と、前記エネルギーのネガワットの売買に対する入札予測情報を記憶する入札情報記憶領域と、を備え、前記制御装置は、前記需要予測情報に基づいて前記エネルギーに対するデマンドレスポンスのシナリオを作成し、前記作成したシナリオと前記入札予測情報とに基づいて前記ネガワットの売買計画を策定し、当該策定した売買計画を出力させるようにした、ネガワット売買支援システムであることを特徴とする。 In order to achieve the object, the present invention includes a control device and a storage device, and the storage device stores a demand prediction information storage area for storing energy demand prediction information, and bid prediction for buying and selling of the energy negative watts. A bid information storage area for storing information, the control device creates a demand response scenario for the energy based on the demand prediction information, and based on the created scenario and the bid prediction information It is a negawatt trading support system that formulates a negawatt trading plan and outputs the developed trading plan.
 本発明によれば、ネガワットの売買計画を最適な形態で策定することができるために、ネガワットの有効活用を促進することができるネガワット売買支援システム及びネガワット売買支援方法を提供することができる。 According to the present invention, since a negawatt trading plan can be formulated in an optimal form, it is possible to provide a negative wattage trading support system and a negawatt trading support method that can promote effective use of negawatts.
ネガワット売買支援システムの構成を示す図である。It is a figure which shows the structure of a negawatt trading support system. ネガワット売買支援システム及び各需要家のエネルギー管理システムのネットワークの構成を示すブロック図である。It is a block diagram which shows the structure of a network of a negative wattage buying and selling support system and an energy management system of each consumer. 約定実績DBの構成を示す図である。It is a figure which shows the structure of contract performance DB. 入札情報DBの構成を示す図である。It is a figure which shows the structure of bid information DB. シナリオDBの構成を示す図である。It is a figure which shows the structure of scenario DB. 需要家DBの構成を示す図である。It is a figure which shows the structure of customer DB. 需要予測DBの構成を示す図である。It is a figure which shows the structure of demand forecast DB. 蓄熱計画DBの構成を示す図である。It is a figure which shows the structure of heat storage plan DB. 機器特性DBの構成を示す図である。It is a figure which shows the structure of apparatus characteristic DB. 機器特性(消費電力と生成熱量の関係)を示すグラフの一例である。It is an example of the graph which shows an apparatus characteristic (relationship between power consumption and generated heat amount). 稼働実績DBの構成を示す図である。It is a figure which shows the structure of operation performance DB. ネガワット売買支援システムのハードウェアの構成を示す図である。It is a figure which shows the structure of the hardware of a negawatt trading support system. 市場運営者の端末、小売事業者の端末、アグリゲータの端末、需要家の端末、のネットワークの構成を示す図である。It is a figure which shows the network structure of a market operator's terminal, a retailer's terminal, an aggregator's terminal, and a consumer's terminal. 本発明の第一の実施例の需要家の電気機器の構成を示す図である。It is a figure which shows the structure of the electric equipment of the consumer of the 1st Example of this invention. 売買計画策定部の処理を示すフローチャートである。It is a flowchart which shows the process of a sales plan formulation part. 売買計画出力部から出力される画面の一例である。It is an example of the screen output from a sales plan output part. シナリオ作成部の処理を示すフローチャートである。It is a flowchart which shows the process of a scenario preparation part. シナリオ作成部の需要シフトのDRシナリオ作成の処理を示すフローチャートである。It is a flowchart which shows the process of DR scenario preparation of the demand shift of a scenario preparation part. シナリオ作成部の需要抑制のDRシナリオ作成の処理を示すフローチャートである。It is a flowchart which shows the DR scenario creation process of the demand suppression of a scenario creation part. 入札予測部の処理を示すフローチャートである。It is a flowchart which shows the process of a bid estimation part. 蓄熱計画部の処理を示すフローチャートである。It is a flowchart which shows the process of a thermal storage plan part. ネガワット売買支援システムの全体の処理を示すフローチャートである。It is a flowchart which shows the whole process of a negawatt trading support system. リスク評価部の処理を示すフローチャートである。It is a flowchart which shows the process of a risk evaluation part. 本発明の第二の実施例の需要家の電気機器の構成を示す図である。It is a figure which shows the structure of the electric equipment of the consumer of the 2nd Example of this invention. 本発明の第三の実施例の仮想市場システムの構成を示すブロック図である。It is a block diagram which shows the structure of the virtual market system of the 3rd Example of this invention. 本発明の第三の実施例の入札実績DBの構成を示す図である。It is a figure which shows the structure of bid performance DB of the 3rd Example of this invention. 本発明の第三の実施例の入札推定DBの構成を示す図である。It is a figure which shows the structure of bid estimation DB of the 3rd Example of this invention. 本発明の第三の実施例の約定量計算部の処理を示すフローチャートである。It is a flowchart which shows the process of the about quantitative calculation part of the 3rd Example of this invention. 本発明の第三の実施例の入札推定部の処理を示すフローチャートである。It is a flowchart which shows the process of the bid estimation part of the 3rd Example of this invention. 需要家のエネルギー管理システムが表示する画面の一例である。It is an example of the screen which a consumer's energy management system displays.
 以下、図面を参照しながら、本発明を実施するための形態を説明する。まず、電力取引市場とネガワット売買について説明する。電力取引市場(以下、市場、という。)は、電力の需要と供給を突き合せて受け渡し価格や量を約定する場である。翌日受け渡す電気を取引するスポット市場、翌日より後に受け渡す電気を取引する先物市場や先渡し市場、当日受け渡す電気を取引するインバランス市場などがある。 Hereinafter, embodiments for carrying out the present invention will be described with reference to the drawings. First, the electricity trading market and negawatt trading will be explained. The power trading market (hereinafter referred to as the market) is a place where the delivery price and quantity are contracted by matching the demand and supply of power. There are spot markets for trading electricity delivered the next day, futures and forward markets for trading electricity delivered the next day, and an imbalanced market for trading electricity delivered on the day.
 市場においては、1日に受け渡される電気を、例えば、30分毎などの時間(以下、コマという)に区分して、48コマのそれぞれについて取引を行う。市場参加者は、1つまたは複数のコマに対して、価格と量を指定し、電力の買いまたは売りの入札を行う。買いと売りの入札は、ザラバ方式や板寄せ方式により約定する。約定することにより、反対売買が行われない限り、電力の売り手は受け渡し期間中に約定した量の電気を供給し、電力の買い手は約定した量に約定した価格をかけた代金を売り手に支払う義務が生じる。 In the market, electricity delivered in one day is divided into times such as every 30 minutes (hereinafter referred to as “frames”), and transactions are made for each of 48 frames. A market participant designates a price and quantity for one or more pieces, and bids to buy or sell electricity. Bids for buying and selling are executed using the Zaraba method or the boarding method. By executing the contract, unless the counter-trading is done, the power seller will supply the contracted amount of electricity during the delivery period, and the power buyer will be obliged to pay the seller the price of the contracted amount multiplied by the contracted price. Occurs.
 市場で約定する価格(以下、電力価格、という。)は、電力の需要と供給の状況により時々刻々と変動する。通常は、平日昼間の時間帯が高く、休日や夜間は安い。また、冷房や暖房の需要の大きな真夏や真冬は高くなる。発電に必要な石油や石炭や天然ガスの値段が高騰した場合も電力価格は高くなる。発電所の急なメンテナンスや事故などの場合も電力価格は高くなる。また、風力発電や太陽光発電の割合が大きい場合、風の強さや天候の予測に対して電力価格が変動する。 The price contracted in the market (hereinafter referred to as “electricity price”) fluctuates from moment to moment depending on the supply and demand situation of electricity. Usually, the daytime is high on weekdays and cheap on holidays and nights. Moreover, the midsummer and the midwinter, when demand for cooling and heating is large, are high. Electricity prices also rise when the prices of oil, coal and natural gas required for power generation rise. In the case of sudden maintenance or accidents at the power plant, the power price will be high. Moreover, when the ratio of wind power generation or solar power generation is large, the power price fluctuates with respect to wind strength and weather prediction.
 このような電力価格の変動に対処するために、DRにより創出されるネガワットが注目されている。一例として、ある需要家が長期契約で電力を購入しているとし、ある日、強烈な寒波により(翌日の需要急増が予想されて)翌日受け渡しの電力価格が暴騰したとする。このとき長期契約をしている需要家は契約価格で電力を購入できるが、例えばエアコンの代わりに石油ストーブを使う等により、契約している量よりも電力消費を抑制することもできる。この抑制分の量の電力は市場に高値で売却することができ、大きな利益を得ることができる。 In order to cope with such fluctuations in power prices, negative watts created by DR are attracting attention. As an example, assume that a certain customer purchases power through a long-term contract, and that one day, due to a strong cold wave (the next day's demand surge is expected), the price of next-day delivery will soar. At this time, a consumer who has a long-term contract can purchase power at a contract price. However, for example, by using an oil stove instead of an air conditioner, the power consumption can be suppressed more than the contracted amount. This reduced amount of power can be sold to the market at a high price, and a large profit can be obtained.
 また別のDRの例として、貯湯タンク付きヒートポンプ温水器(以下、HP給湯器、という。)を持つ需要家がいるとする。HP給湯器は蓄熱機能を持つため、利便性を損なうことなく、ある程度の稼働時間の調整が可能である。通常は、電力価格の安い夜間にHP給湯器を稼働し、昼間の給湯の需要に備えている。例えばある日、翌日の昼間の強風が予想され、(供給力の急増により)翌日の昼間に受け渡す電力価格が暴落したとする。 As another DR example, it is assumed that there is a customer having a heat pump water heater with a hot water storage tank (hereinafter referred to as an HP water heater). Since the HP water heater has a heat storage function, it is possible to adjust the operating time to some extent without impairing convenience. In general, the HP water heater is operated at night when the power price is low, to prepare for the demand for hot water during the daytime. For example, one day, a strong wind is expected in the daytime of the next day, and the price of power delivered in the daytime of the next day (due to a sudden increase in supply capacity) falls drastically.
 このとき需要家は、その日の夜間のHP給湯器の稼働を抑制し、抑制する分の電力を売却し、そのかわりに電力価格が暴落している翌日の昼間の時間帯にHP給湯器を稼働させ、稼働させる分の電力を購入することで、より安く電力を調達することができる。また、翌日の夜間の稼働分の電力を、翌日の昼間に調達することも可能である。つまり、抑制の時間帯と稼働の時間帯はどちらが先であってもよい。逆に、発電所の急なメンテナンスなどにより、その日の夜間の電力価格が暴騰した場合も、稼働時間を翌日にシフトすることにより、高い電力で調達することを避けることができる。まとめると、元々HP給湯器を稼働させるはずであった時間帯の電力価格が他の時間帯の電力価格よりも高い場合、元々の稼働させるはずだった時間帯のHP給湯器の稼働を抑制し(電力を売却し)、電力価格が安い時間帯にシフトして稼働させる(電力を購入する)ことで、電力の調達価格を有利にすることができる。 At this time, the consumer suppresses the operation of the HP water heater at night of the day, sells the amount of power to be suppressed, and operates the HP water heater in the daytime day of the next day when the power price has dropped drastically instead. Power can be procured at a lower cost by purchasing power for operation. It is also possible to procure the power for the night operation on the next day during the day. In other words, either the suppression time zone or the operation time zone may be first. On the other hand, even if the power price of the night rises due to sudden maintenance of the power plant, it is possible to avoid procurement with high power by shifting the operation time to the next day. In summary, if the electricity price in the time zone where the HP water heater was originally to be operated is higher than the electricity price in other time zones, the operation of the HP water heater during the time zone that was originally supposed to be operated is suppressed. (Selling power) and shifting to a time zone where the power price is cheap to operate (purchase power) can make the power procurement price advantageous.
 上記の一つ目の例は単純な需要抑制のDRの例であり、二つ目の例は需要シフトのDRの例である。上記のような、需要抑制または需要シフトのDRによるネガワット売買が増えることで、結果的に需給バランスが改善され、電力価格の過剰な変動を抑制し、ひいては電力系統の信頼性向上に貢献できると考えられている。 The first example above is a simple demand-suppressed DR example, and the second example is a demand-shifted DR example. The increase in negative wattage trading due to demand restraint or demand shift DR as described above will eventually improve the supply-demand balance, suppress excessive fluctuations in power prices, and thus contribute to improving the reliability of the power system. It is considered.
 一般的には、需要家が直接市場とやり取りするのではなく、需要家をまとめるアグリゲータが、日々の電力価格に応じて上記のような売買を行い、需要家の電気機器を直接的、または(需要家に電話等で連絡することにより)間接的に制御することが多い。アグリゲータは自ら利益を得ると共に、需要家には報酬を支払う。 In general, the consumer does not directly interact with the market, but the aggregator that collects the consumers performs the above-mentioned buying and selling according to the daily power price, and the consumer's electrical equipment is directly or ( It is often controlled indirectly (by contacting the customer by telephone, etc.). The aggregator makes profits and pays consumers.
 また、アグリゲータの役割は、小売事業者の業務のアウトソーシングの位置づけでもある。小売事業者は、需要家と契約して電力を販売している。小売事業者は自身がDRを主導することも可能であるが、市場においてネガワットを売買するためにはある程度のまとまった数の需要家(まとまった量のネガワット)を確保することが必要であることが多く、また多数の需要家の電気機器の適切な制御や市場での適切な取引を行うことは必ずしも容易なことではないので、アグリゲータに委託することが多いと考えられる。アグリゲータは、小売事業者と必要な情報をやり取りしながらDRを主導する。 Also, the role of the aggregator is to position the outsourcing of the business of retailers. Retailers sell electricity by contracting with consumers. Retailers can lead the DR themselves, but in order to buy and sell negawatts in the market, it is necessary to secure a certain number of consumers (collective amount of negawatts). In addition, since it is not always easy to appropriately control electric appliances of a large number of customers and to carry out appropriate transactions in the market, it is often considered to be entrusted to an aggregator. The aggregator leads DR while exchanging necessary information with the retailer.
 アグリゲータが、ネガワット売買を適切に実現するためには、時々刻々と変化する電力価格に応じた収益機会を捉える必要があり、また一方で、需要家の利便性等を考慮してネガワットを創出することも重要である。例えば、HP給湯器による需要シフトの場合、需要シフトできる量的なポテンシャルと時間的な自由度を定量的に把握し、時々刻々と変化する電力価格等に応じて、最適な売買計画を策定するネガワット売買システムのための技術が求められる。 In order for an aggregator to properly buy and sell negawatts, it is necessary to capture revenue opportunities according to the ever-changing electricity prices, while creating negawatts taking into account the convenience of consumers, etc. It is also important. For example, in the case of a demand shift by an HP water heater, quantitatively grasp the quantitative potential and temporal flexibility that can shift the demand, and formulate an optimal trading plan according to the power price that changes from moment to moment The technology for the negawatt trading system is required.
 以下、個々の図面を参照しながら、本発明の技術の詳細を説明する。図1は、本発明に係るネガワット売買支援システム100のブロック構成図である。ネガワット売買支援システム100は、記憶部102と処理部104とを有する。 Hereinafter, the details of the technique of the present invention will be described with reference to individual drawings. FIG. 1 is a block diagram of a negawatt trading support system 100 according to the present invention. The negawatt trading support system 100 includes a storage unit 102 and a processing unit 104.
 記憶部102は、複数のデータベース(DB)を備える。データベースは、約定実績DB102A、入札情報DB102B、シナリオDB102C、需要家DB102D、機器特性DB102E、需要予測DB102F、蓄熱計画DB102Gと、を備えている。記憶部102と処理部104はコンピュータのハードウェア資源とソフトウェア資源の組み合せから実現される。 The storage unit 102 includes a plurality of databases (DB). The database includes a contract performance DB 102A, a bid information DB 102B, a scenario DB 102C, a customer DB 102D, a device characteristic DB 102E, a demand prediction DB 102F, and a heat storage plan DB 102G. The storage unit 102 and the processing unit 104 are realized by a combination of computer hardware resources and software resources.
 約定実績DB102Aは、過去に市場で約定した価格および量の情報を記憶するDBであり、日付、コマ、約定価格、約定量を備えて構成されている。データは市場運営者の端末から取得される。 The execution result DB 102A is a DB that stores information on prices and quantities executed in the past in the market, and includes a date, a frame, an execution price, and an execution amount. Data is obtained from the market operator's terminal.
 入札情報DB102Bは、市場で入札される買いまたは売りの情報を示すDBであり、コマ、入札種類、入札価格、入札量を備えて構成されている。データは市場運営者の端末から取得されるか、または入札予測部104Aで作成される。 The bid information DB 102B is a DB indicating information on buying or selling that is bid in the market, and is configured to include a top, a bid type, a bid price, and a bid amount. The data is acquired from the market operator's terminal or created by the bid prediction unit 104A.
 シナリオDB102Cは、売買するネガワットの情報を示すDBであり、需要家ID、機器ID、DR種類、抑制開始時刻、抑制継続時刻、抑制量、最早喚起開始時刻、最遅喚起開始時刻、喚起継続時間、喚起量を備えて構成される。データは、シナリオ作成部104Dにより作成されるか、または需要家のエネルギー管理システム200から取得される。 Scenario DB102C is DB which shows the information of negawatt to buy and sell, customer ID, equipment ID, DR type, suppression start time, suppression continuation time, suppression amount, earliest wake-up start time, latest wake-up start time, wake-up duration , Configured with an arousal amount. The data is created by the scenario creation unit 104D or acquired from the energy management system 200 of the customer.
 需要家DB102Dは、需要家に属する情報を示すDBであり、需要家ID、機器ID、機器タイプ、抑制量単価、DR種類、抑制可能時間帯、抑制係数を備えて構成される。データは、需要家のエネルギー管理システム200または小売事業者の端末から取得される。 The customer DB 102D is a DB indicating information belonging to the customer, and is configured to include a customer ID, a device ID, a device type, a unit price of suppression amount, a DR type, a suppression time zone, and a suppression coefficient. The data is acquired from the consumer's energy management system 200 or the retailer's terminal.
 需要予測DB102Fは、需要家の消費電力等の予測を示すDBであり、需要家ID、機器ID、予測開始時刻、予測終了時刻、予測消費熱量、予測消費電力を備えて構成されている。データは、需要予測部104Eにより作成される。 The demand prediction DB 102F is a DB that indicates a prediction of consumer power consumption and the like, and includes a consumer ID, a device ID, a prediction start time, a prediction end time, a predicted heat consumption, and a predicted power consumption. Data is created by the demand prediction unit 104E.
 蓄熱計画DB102Gは、HP給湯器の貯湯タンクの蓄熱計画を示すDBであり、需要家ID、機器ID、計画開始時刻、計画終了時刻、計画生成熱量、計画蓄熱量を備えて構成されている。データは、需要予測部104Eにより作成される。 The heat storage plan DB 102G is a DB that indicates a heat storage plan of the hot water storage tank of the HP water heater, and is configured to include a customer ID, a device ID, a plan start time, a plan end time, a plan generated heat amount, and a plan heat storage amount. Data is created by the demand prediction unit 104E.
 機器特性DB102Eは、電気機器の機器特性を示すDBであり、機器ID、生成熱量、消費電力、下限蓄熱量、上限蓄熱量を備えて構成されている。データは、需要家のエネルギー管理システムまたは小売事業者の端末から取得される。 The device characteristic DB 102E is a DB indicating the device characteristics of an electric device, and is configured to include a device ID, a generated heat amount, power consumption, a lower limit heat storage amount, and an upper limit heat storage amount. The data is obtained from a consumer energy management system or a retailer terminal.
 処理部104は、入札予測部104A、売買計出力部104B、売買計画策定部104C、シナリオ作成部104D、需要予測部104E、リスク評価部104Fを備えて構成されている。 The processing unit 104 includes a bid prediction unit 104A, a sales meter output unit 104B, a sales plan formulation unit 104C, a scenario creation unit 104D, a demand prediction unit 104E, and a risk evaluation unit 104F.
 入札予測部104Aは、市場に入札される売りまたは買いの価格と量を予測する。売買計画策定部104Cは、売買計画を策定し、売買計画出力部104Bに売買計画を渡す。売買計画出力部104Bは、売買計画策定部104Cで策定された売買計画を画面等に表示する。 The bid prediction unit 104A predicts the price and quantity of sell or buy that will be bid on the market. The sales plan formulation unit 104C formulates a sales plan and passes the sales plan to the sales plan output unit 104B. The sales plan output unit 104B displays the sales plan formulated by the sales plan formulation unit 104C on a screen or the like.
 シナリオ作成部104Dは、DRシナリオを作成し、シナリオDB102Cに記録する。需要予測部104Eは、需要予測を作成して需要予測DB102Fに記録する。また、蓄熱計画を作成して蓄熱計画DB102Gに記録する。リスク評価部104Fは、複数の需要予測や入札予測について処理を繰り返して収支を計算し、ネガワット売買のリスクを評価する。処理部104の各処理ブロックと記憶部102の各DBの詳細を後述する。 The scenario creation unit 104D creates a DR scenario and records it in the scenario DB 102C. The demand prediction unit 104E creates a demand prediction and records it in the demand prediction DB 102F. Moreover, a heat storage plan is created and recorded in the heat storage plan DB 102G. The risk evaluation unit 104F repeatedly processes the plurality of demand predictions and bid predictions to calculate the balance, and evaluates the risk of negawatt trading. Details of each processing block of the processing unit 104 and each DB of the storage unit 102 will be described later.
 図2は、ネガワット売買支援システム100と、需要家のエネルギー管理システム200Aとエネルギー管理システム200Bとの関係を示すブロック図である。 FIG. 2 is a block diagram showing the relationship between the negawatt trading support system 100, the consumer energy management system 200A, and the energy management system 200B.
 稼働実績DB204Aは、需要家の電気機器の稼働状況の実績を示すDBであり、需要家ID、機器ID、日付、時刻、気温、実績消費熱量、実績消費電力を含んで構成される。 The operation result DB 204A is a DB that shows the result of the operation status of the electrical equipment of the customer, and includes the customer ID, device ID, date, time, temperature, actual heat consumption, and actual power consumption.
 エネルギー管理部202Aは、需要家の電気機器の稼働状況を稼働実績DB204Aに記憶する。また、エネルギー管理部202Aは、稼働実績DB204Aに記憶された稼働状況の実績データや、需要家が画面等で入力したデータを、ネガワット売買支援システム100に送信することができる。 The energy management unit 202A stores the operating status of the consumer's electrical equipment in the operating performance DB 204A. In addition, the energy management unit 202A can transmit the operation status record data stored in the operation record DB 204A and data input by the customer on the screen or the like to the negawatt trading support system 100.
 図30は、エネルギー管理システム200Aが表示する画面の一例である。需要家は、DRシナリオの構成情報である、DRの対象とする電気機器や実施条件やDR種類などを入力する。対象機器エリア3000は、需要家の電気機器の情報を入力するエリアである。実施条件エリア3002は、需要家がDRを実施する条件(曜日、報酬単価)を入力するエリアである。デマンドレスポンス種類エリア3004は、実施するDR種類などを入力するエリアである。 FIG. 30 is an example of a screen displayed by the energy management system 200A. The consumer inputs the configuration information of the DR scenario, such as the electrical device, the implementation condition, and the DR type that are the target of the DR. The target equipment area 3000 is an area for inputting information on the electrical equipment of the customer. The execution condition area 3002 is an area for inputting conditions (day of the week, reward unit price) for the customer to perform DR. The demand response type area 3004 is an area for inputting a DR type to be executed.
 エネルギー管理システム200Aの構成・機能は、別の需要家のエネルギー管理システム202Bについても同様である。以下、説明を簡単にするため、エネルギー管理システム202Aに関する説明は、エネルギー管理システム200Bにも当てはまるものとし、エネルギー管理システム200Bに関する説明を省略する。 The configuration / function of the energy management system 200A is the same as the energy management system 202B of another customer. Hereinafter, in order to simplify the description, the description regarding the energy management system 202A also applies to the energy management system 200B, and the description regarding the energy management system 200B is omitted.
 また、図2では、2つのエネルギー管理システムに関する構成を示したが、1つであってもよいし、3つ以上であってもよい。また、ネガワット売買支援システム100及びエネルギー管理システム200の処理ブロック及びDBの構成は既述のものに限定されない。例えば、需要予測部104Eや需要予測DB102Fが、ネガワット売買支援システム100の構成要素ではなく、需要家のエネルギー管理システム200の構成要素であってもよい。 Moreover, although the structure regarding two energy management systems was shown in FIG. 2, one may be sufficient and three or more may be sufficient. Further, the processing blocks and DB configurations of the negative wattage trading support system 100 and the energy management system 200 are not limited to those described above. For example, the demand prediction unit 104E and the demand prediction DB 102F may be constituent elements of the consumer energy management system 200 instead of the constituent elements of the negative power trading support system 100.
 図3は、約定実績DB102の構成テーブルの一例である。日付、コマ毎に約定価格、約定量が記録されている。 FIG. 3 is an example of a configuration table of the contract performance DB 102. The contract price and contract quantity are recorded for each date and frame.
 図4は、入札情報DB102Bの構成テーブルの一例である。日付、コマ毎に入札種類(買い、売り)、入札価格、入札量が記録されている。 FIG. 4 is an example of a configuration table of the bid information DB 102B. Bid type (buy, sell), bid price, and bid amount are recorded for each date and frame.
 図5は、シナリオDB102Cの構成テーブルの一例である。需要家ID、機器ID毎にDR種類、抑制開始時刻、抑制継続時間、抑制量、最早喚起開始時刻、最遅喚起開始時刻喚起継続時間、喚起継続時間、喚起量が記録されている。 FIG. 5 is an example of a configuration table of the scenario DB 102C. For each customer ID and device ID, the DR type, suppression start time, suppression duration, suppression amount, earliest arousal start time, latest awakening start time arousal duration, arousal duration, and arousal amount are recorded.
 図6は、需要家DB102Dの構成テーブルの一例である。需要家ID、機器ID毎に機器タイプ、抑制量単価、DR種類、抑制可能時間帯、抑制係数が記録されている。 FIG. 6 is an example of a configuration table of the customer DB 102D. Device type, suppression unit price, DR type, suppression time zone, and suppression coefficient are recorded for each customer ID and device ID.
 図7は、需要予測DB102Fの構成テーブルの一例である。需要家ID、機器ID毎に予測開始時刻、予測消費熱量、予測消費電力が記録されている。 FIG. 7 is an example of a configuration table of the demand forecast DB 102F. The prediction start time, the predicted heat consumption, and the predicted power consumption are recorded for each customer ID and device ID.
 図8は、蓄熱計画DB102Gの構成テーブルの一例である。需要家ID、機器ID毎に計画開始時刻、計画終了時刻、計画生成熱量、計画蓄熱量が記録されている。 FIG. 8 is an example of a configuration table of the heat storage plan DB 102G. The planned start time, planned end time, planned generated heat amount, and planned heat storage amount are recorded for each customer ID and device ID.
 図9は、機器特性DB102Eの構成を示す図である。機器ID毎に生成熱量、消費電力、下限蓄熱量、上限蓄熱量が記録されている。機器特性は、図10に示すように、機器の消費電力と生成熱量の関係から決められる。 FIG. 9 is a diagram showing a configuration of the device characteristic DB 102E. The amount of generated heat, power consumption, the lower limit heat storage amount, and the upper limit heat storage amount are recorded for each device ID. The device characteristics are determined from the relationship between the power consumption of the device and the amount of generated heat, as shown in FIG.
 図11は、稼働実績DB204の構成テーブルの一例である。需要家ID、機器ID毎に、時刻、気温、実績消費熱量、実績消費電力が記録されている。 FIG. 11 is an example of a configuration table of the operation result DB 204. The time, temperature, actual heat consumption, and actual power consumption are recorded for each customer ID and device ID.
 図12は、ネガワット売買支援システム100を実現するためのアグリゲータの端末1200のハードウェア構成図で、CPU1202、入力装置1204、出力装置1206、通信装置1208、記憶装置1210など、情報処理装置としての基本構成を備える。処理部104の各処理ブロックは、プログラムとして記憶装置1210に格納され、CPU1202でプログラムを実行することによって実現される。 FIG. 12 is a hardware configuration diagram of an aggregator terminal 1200 for realizing the negawatt trading support system 100. The basic configuration as an information processing device such as a CPU 1202, an input device 1204, an output device 1206, a communication device 1208, and a storage device 1210 is shown. It has a configuration. Each processing block of the processing unit 104 is stored in the storage device 1210 as a program, and is realized by the CPU 1202 executing the program.
 記憶部102の各DBのデータは、リレーショナルデータベースのテーブルなどの形式で記憶装置1210に格納され、CPU1202で実行されるプログラムの処理に用いられ、処理結果のデータが記憶装置1210に格納される。各処理ブロック及びDBは、集積回路化などしてハードウェアで実現する事もできる。各処理ブロック及びDBは、あらかじめ計算機内の記憶装置に格納されていてもよいが、着脱可能な記憶媒体や通信媒体(有線、無線、光などのネットワーク、又はそのネットワーク上の搬送波やデジタル信号)を介して、必要なときに外部記憶装置に導入されてもよい。また、需要家のエネルギー管理システムのハードウェア構成についても同様である。 The data of each DB in the storage unit 102 is stored in the storage device 1210 in the form of a relational database table or the like, used for processing of a program executed by the CPU 1202, and the processing result data is stored in the storage device 1210. Each processing block and DB can also be realized by hardware such as an integrated circuit. Each processing block and DB may be stored in advance in a storage device in the computer, but a removable storage medium or communication medium (wired, wireless, optical network, or carrier wave or digital signal on the network) It may be introduced to the external storage device when necessary. The same applies to the hardware configuration of the consumer energy management system.
 ネガワット売買の実行システムは、図13に示すように、アグリゲータのネガワット売買支援システムが搭載されている端末1304、需要家のエネルギー管理システムが搭載されている端末1306、需要家の電気機器1308、市場運営者の端末1300、小売事業者の端末1302と、これら端末を互いに接続するインターネット等のネットワーク1310とを備えて構成されている。これらの端末は互いに、ネットワーク1310を介して、データを送受信できる構成になっている。需要家の端末1306と電気機器1308とは、無線または有線の通信線を介して、データを送受信する。 As shown in FIG. 13, the execution system for negawatt trading includes a terminal 1304 equipped with an aggregator negawatt trading support system, a terminal 1306 equipped with a consumer energy management system, a consumer electric device 1308, a market An operator terminal 1300, a retailer terminal 1302, and a network 1310 such as the Internet that connects these terminals to each other are configured. These terminals can transmit and receive data to and from each other via the network 1310. The customer terminal 1306 and the electric device 1308 transmit and receive data via a wireless or wired communication line.
 図14は、需要家の電気機器の構成の一例である。ヒートポンプ1406やエアコン1404には、電線1400に接続される受電設備1402を介して電気が供給される。ヒートポンプ1406は、熱媒体の循環によって貯湯タンク1408の水を温め、貯湯タンク1408はパネルヒーター1410に温めた水を送る。貯水タンク1408の水は水道管1412から供給される。 FIG. 14 shows an example of the configuration of a consumer's electrical equipment. Electricity is supplied to the heat pump 1406 and the air conditioner 1404 through a power receiving facility 1402 connected to the electric wire 1400. The heat pump 1406 warms the water in the hot water storage tank 1408 by circulation of the heat medium, and the hot water storage tank 1408 sends the warmed water to the panel heater 1410. Water in the water storage tank 1408 is supplied from a water pipe 1412.
 図15は、売買計画策定部104Cの処理を示すフローチャートである。まず、売買計画策定部104Cは、入札情報DB102Bから、すべての入札情報を取得する(S1500)。 FIG. 15 is a flowchart showing the processing of the sales plan formulation unit 104C. First, the sales plan formulation unit 104C acquires all bid information from the bid information DB 102B (S1500).
 次に、売買計画策定部104Cは、シナリオDB102Cから、すべてのDRシナリオを取得し、その中から所定の基準(例えば、需要家への支払い金の単価である抑制量単価が最も小さなDRシナリオを選択)により、1つのDRシナリオを選択する(S1502)。抑制量単価は、需要家DB102Dから、対応する需要家及び電気機器のものを取得する。以下、説明を簡単にするために、まず、選択したDRシナリオのDR種類が「需要シフト」の場合について処理を説明することとし、DR種類が「需要抑制」の場合との違いについては、まとめて後述する。 Next, the sales plan formulation unit 104C acquires all the DR scenarios from the scenario DB 102C, and selects a DR scenario with a predetermined standard (for example, a unit price of the payment amount to the consumer having the smallest restraint unit price). (Select)), one DR scenario is selected (S1502). The control unit price is obtained from the customer DB 102D for the corresponding consumer and electrical equipment. Hereinafter, in order to simplify the description, first, the process will be described when the DR type of the selected DR scenario is “demand shift”, and the difference from the case where the DR type is “demand suppression” is summarized. Will be described later.
 次に、売買計画策定部104Cは、DRシナリオから、売買パターンを1つ仮決めする(S1504)。売買パターンとは、売り入札のコマと、売り入札の量と、買い入札のコマと、買い入札の量の組合せである。 Next, the sales plan formulation unit 104C provisionally determines one sales pattern from the DR scenario (S1504). The buying / selling pattern is a combination of a selling bid frame, a selling bid amount, a buying bid frame, and a buying bid amount.
 売り入札のコマは、「抑制開始時刻」から「抑制開始時刻+抑制継続時間」の時間帯のコマである。買い入札のコマは、「喚起開始時刻」から「喚起開始時刻+喚起継続時間」の時間帯のコマである。喚起開始時刻は、最早喚起開始時刻から最遅喚起開始時刻の間のいずれかの時刻である。売り入札の量は抑制量と同じ値である。買い入札の量は喚起量と同じ値である。売り入札のコマと買い入札のコマは、同じ時間のコマを含まないようにする。 The selling bid frame is a frame in the time period from “suppression start time” to “suppression start time + suppression duration”. The frames of the buying bid are frames from the “calling start time” to “calling start time + calling duration”. The awakening start time is any time between the earliest awakening start time and the latest awakening start time. The amount of bids sold is the same as the amount of restraint. The amount of bids bought is the same as the amount of arousal. The sell bid frame and the buy bid frame do not include frames of the same time.
 次に、売買計画策定部104Cは、コマごとに、売買パターンと入札情報から、売り約定量と売り価格と買い約定量と買い約定価格を推定する(S1506)。 Next, the sales plan formulation unit 104C estimates a sale contract amount, a sell price, a buy contract amount, and a buy contract price from the sales pattern and bid information for each frame (S1506).
 売り約定量は、売買パターンの売り入札の量と、入札情報の買い入札の量(同じコマに複数の買い入札がある場合はその合計量)の少ない方である。買い約定量は、売買パターンの買い入札の量と、入札情報の売り入札の量(同じコマに複数の売り入札がある場合はその合計量)の少ない方である。 Approximate sales amount is the smaller of the amount of selling bids in the buying and selling pattern and the amount of buying bids in the bid information (the total amount when there are multiple buying bids in the same frame). The buy purchase fixed quantity is the smaller of the buy bid amount of the buying and selling pattern and the sell bid amount of the bid information (the total amount when there are a plurality of sell bids in the same frame).
 売り約定価格は、入札情報の買い入札の価格のうち、最も高い価格である。ただし、入札情報の複数の買い入札と約定する場合は、約定する買い入札の価格ごとの約定量の加重平均である。 The sale contract price is the highest price among the bid prices of the bid information. However, when contracting with a plurality of buy bids in the bid information, it is a weighted average of contract quantitative values for each price of the bid bid to be executed.
 買い約定価格は、入札情報の売り入札の価格のうち、最も低い価格である。ただし、入札情報の複数の売り入札と約定する場合は、約定する売り入札の価格ごとの約定量の加重平均である。入札情報の売り入札は価格の低いものから優先して順に約定し、入札情報の買い入札は価格の高いものから優先して順に約定するものとする。 The purchase contract price is the lowest price among selling bid prices in the bid information. However, when contracting with a plurality of selling bids in the bid information, it is a weighted average of contracted amounts for each selling bid price to be contracted. It is assumed that selling bids for bid information are preferentially executed in descending order of price, and buying bids for bid information are preferentially executed in order of high price.
 次に、売買計画策定部104Cは、コマごとに、売り約定量に売り約定価格をかけた受け取り金から、買い約定量に買い約定価格をかけた支払い金を引き、需要家への支払い金を引いて、コマごとの収支を計算し、すべてのコマの収支を計算したら、すべてのコマの収支を合計する(S1508)。それぞれのコマの需要家への支払い金は、売り約定量に、需要家・電気機器ごとの抑制量単価をかけて計算する。 Next, for each frame, the sales plan formulating unit 104C subtracts the payment amount obtained by multiplying the purchase contract amount by the purchase contract price from the receipt amount obtained by multiplying the sell contract amount by the sale contract price, and the payment amount to the consumer is obtained. Then, the balance of each frame is calculated, and when the balance of all the frames is calculated, the balance of all the frames is summed (S1508). The amount paid to the consumer of each frame is calculated by multiplying the selling amount by the unit price of the restraint for each consumer / electric equipment.
 次に、売買計画策定部104Cは、可能性のある売買パターン(実際には、喚起開始時刻)についてすべて収支が計算済であるかどうかをチェックする(S1510)。売買パターンがすべて計算済である場合は次のステップ(S1512)に進み、売買パターンが残っている場合は売買パターンの仮決め(S1504)に戻る。 Next, the buying and selling plan formulation unit 104C checks whether or not the balance has been calculated for all possible buying and selling patterns (actually the calling start time) (S1510). If all the trading patterns have been calculated, the process proceeds to the next step (S1512), and if there is any trading pattern remaining, the process returns to the provisional determination of the trading pattern (S1504).
 次に、売買計画策定部104Cは、計算した売買パターンの収支のうち、収支が最大となる売買パターンを検出する(S1512)。 Next, the trading plan formulation unit 104C detects a trading pattern having the maximum balance among the calculated trading pattern balances (S1512).
 次に、売買計画策定部104Cは、収支が最大である売買パターンに関して、コマごとに、約定した売り入札と買い入札を入札情報から差し引いて、入札情報を更新する(S1514)。 Next, the sales plan formulating unit 104C updates the bid information by subtracting the sold bid and the bid to be bid from the bid information for each frame regarding the trading pattern with the maximum balance (S1514).
 次に、売買計画策定部104Cは、すべてのDRシナリオについて計算済であるかどうかをチェックする(S1516)。DRシナリオがすべて計算済であれば次のステップ(S1518)に進み、DRシナリオが残っている場合はDRシナリオ選択(S1502)に戻り、まだ計算済でないDRシナリオの中から、DRシナリオを1つ選択する。 Next, the sales plan formulation unit 104C checks whether all the DR scenarios have been calculated (S1516). If all the DR scenarios have been calculated, the process proceeds to the next step (S1518). If any DR scenario remains, the process returns to DR scenario selection (S1502), and one DR scenario is selected from the DR scenarios that have not been calculated yet. select.
 次に、売買計画策定部104Cは、上記で計算したすべてのDRシナリオの中で収支が最大である売買パターンを売買計画出力部104Bに渡して画面に出力する(S1518)。 Next, the trading plan formulation unit 104C passes the trading pattern having the maximum balance among all the DR scenarios calculated above to the trading plan output unit 104B and outputs it to the screen (S1518).
 以上が、売買計画策定部104Cの処理の説明であるが、処理は上記のフローチャートの記述に限定されるものではなく、処理の高速化や高度化などの目的で、趣旨を逸脱しない範囲で変更してもよい。例えば、上記においては、売買パターンにおいて、買い入札のコマの時刻(つまり、喚起開始時刻)のみをパラメータとしたが、買い入札の量や売り入札のコマや売り入札の量もパラメータとしてもよい。つまり、売り入札のコマの時刻(つまり、抑制開始時刻)を固定値とするのではなく幅を持たせる、買い入札の量(つまり、喚起量)や売り入札の量(つまり、抑制量)を固定値とするのではなく幅を持たせる、などである。また例えば、収支が最大の売買パターンを選択するのではなく、リスク評価部104Fによって計算される収支の分散を考慮して、売買パターンを選択してもよい。 The above is the description of the processing of the sales plan formulation unit 104C. However, the processing is not limited to the description of the above flowchart, and it is changed within the scope of the purpose for the purpose of speeding up and sophisticating the processing. May be. For example, in the above, in the buying and selling pattern, only the time of the buying bid (that is, the awakening start time) is used as a parameter, but the amount of buying bid, selling bid, and selling bid may be used as parameters. In other words, the bid bid amount (that is, the arousal amount) and the sell bid amount (that is, the suppression amount) that gives a range rather than a fixed value for the time of the sell bid frame (that is, the suppression start time). Instead of a fixed value, give it a width. Further, for example, instead of selecting a trading pattern with the largest balance, a trading pattern may be selected in consideration of balance distribution calculated by the risk evaluation unit 104F.
 次に、DRシナリオのDR種類が「需要抑制」の場合の処理について説明する。DRシナリオのDR種類が「需要抑制」の場合、売買パターンは、売り入札のコマと、売り入札の量の組合せであり、買い入札のコマと、買い入札の量は含まれない。また、買い約定量と買い約定価格は推定する必要がない。また、コマごとの収支は、売り約定量に売り約定価格をかけた受け取り金から、需要家への支払い金を引いて、コマごとの収支を計算する。また、入札情報の更新の際に買い入札は差し引く必要がない。その他の処理については「需要シフト」の場合と同様である。 Next, processing when the DR type of the DR scenario is “demand suppression” will be described. When the DR type of the DR scenario is “demand restraint”, the buying / selling pattern is a combination of the selling bid frame and the selling bid amount, and does not include the buying bid frame and the buying bid amount. In addition, it is not necessary to estimate the purchase contract quantity and the purchase contract price. Further, the balance of each frame is calculated by subtracting the payment to the customer from the received money obtained by multiplying the sale contract amount by the selling contract price. In addition, it is not necessary to deduct the buying bid when updating the bid information. Other processing is the same as in the case of “demand shift”.
 図16は、売買計画出力部104Bで出力する画面の一例である。売買計画エリア1600は、収支が最大である売買パターンを示す。収支エリア1602は、収支の確率分布を示すグラフであり、計算方法は、リスク評価部104Fの説明の箇所で記述されている。 FIG. 16 is an example of a screen output by the sales plan output unit 104B. The sales plan area 1600 shows a sales pattern with the largest balance. The balance area 1602 is a graph showing the probability distribution of the balance, and the calculation method is described in the description section of the risk evaluation unit 104F.
 図17は、シナリオ作成部104Dの処理を示すフローチャートである。まず、シナリオ作成部104Dは、需要家DB102Dから、すべての需要家情報を取得し、次に、需要予測DB102Fから、対応する需要家及び電気機器の需要予測を取得する(S1700)。 FIG. 17 is a flowchart showing the processing of the scenario creation unit 104D. First, the scenario creation unit 104D acquires all customer information from the customer DB 102D, and then acquires the demand prediction of the corresponding customer and electrical equipment from the demand prediction DB 102F (S1700).
 次に、シナリオ作成部104Dは、ステップS1702からステップS1710まで、需要家及び機器ごとに処理を繰り返す。繰り返し処理において、まず、シナリオ作成部104Dは、需要家情報のDR種類が、需要シフトなのか、需要抑制なのかを判断する(S1704)。DR種類が需要シフトの場合は、需要シフトのDRシナリオを作成する処理(S1708)を行い、DR種類が需要抑制の場合は、需要抑制のDRシナリオを作成する処理(S1706)を行う。需要シフトのDRシナリオを作成する処理と需要抑制のDRシナリオを作成する処理については、別のフローチャートを用いて説明する。 Next, the scenario creation unit 104D repeats the process for each customer and device from step S1702 to step S1710. In the iterative process, the scenario creating unit 104D first determines whether the DR type of the customer information is a demand shift or a demand suppression (S1704). If the DR type is a demand shift, a process for creating a DR scenario for demand shift is performed (S1708). If the DR type is a demand suppression, a process for creating a DR scenario for demand suppression is performed (S1706). The process for creating the demand shift DR scenario and the process for creating the demand suppression DR scenario will be described with reference to different flowcharts.
 次に、シナリオ作成部104Dは、処理を行っていない需要家及び電気機器が残っている場合は次の需要家及び機器の処理(S1704)に戻り、すべての需要家及び電気機器の処理が終わっていれば処理を終了する(S1710)。 Next, the scenario creation unit 104D returns to the processing of the next consumer and equipment (S1704) when the consumer and the electrical equipment that have not been processed remain, and the processing of all the consumers and electrical equipment is completed. If so, the process ends (S1710).
 以上が、シナリオ作成部104Dの処理の説明であるが、処理は上記のフローチャートに限定されるものではなく、処理の高速化や高度化などの目的で、趣旨を逸脱しない範囲で変更してもよい。例えば、上記において、需要家及び電気機器ごとにDRシナリオを作成したが、複数の需要家または電気機器について、まとめて1つのDRシナリオを作成してもよい。 The above is the description of the process of the scenario creation unit 104D. However, the process is not limited to the above-described flowchart, and can be changed within a range that does not depart from the gist for the purpose of speeding up and sophisticating the process. Good. For example, in the above, a DR scenario is created for each consumer and electrical device, but one DR scenario may be created for a plurality of customers or electrical devices.
 例えば、実際に電気機器を直接的または間接的に制御するフェーズにおいて、アグリゲータから指示を出した後すぐに電気機器の抑制を開始する需要家と、少し程度時間が経ってから抑制を開始する需要家がある場合、それらの需要家を適切に組み合せることによって、全体としての需要抑制の応答性を安定させる等が考えられる。 For example, in a phase where the electrical equipment is actually controlled directly or indirectly, a consumer who starts controlling the electrical equipment immediately after issuing an instruction from the aggregator, and a demand for starting the restraint after some time has passed. When there is a house, it is conceivable to stabilize the responsiveness of demand control as a whole by appropriately combining these consumers.
 また、特に需要家の電気機器を間接的に制御する場合などは、必ずしも需要家がアグリゲータの指示に従って需要抑制を行うとは限らないため、抑制量の予測がぶれやすい。そこで、複数の需要家または機器をまとめて1つのDRシナリオを作成することで、DRシナリオの抑制量のぶれ(抑制量に対する相対的なバラつき)を少なくすることができる。 In addition, especially when the consumer's electrical equipment is indirectly controlled, the consumer does not always perform demand suppression according to the instructions of the aggregator, and therefore, the amount of suppression is likely to fluctuate. Thus, by creating a single DR scenario by gathering a plurality of consumers or devices, it is possible to reduce fluctuation in the amount of suppression of the DR scenario (relative variation with respect to the amount of suppression).
 図18は、シナリオ作成部104Dの、需要シフトのDRシナリオを作成する処理(図17のS1708)の詳細を示すフローチャートである。以下、説明を簡単にするために、まず、需要家情報のDR種類が「需要シフト」の場合について処理を説明する。また、0時に24時間分のDRシナリオを作成すると仮定し、「時刻」は1日をコマに分割した1コマ分を意味するものとし、1コマ=1時間する。また、抑制時間帯、喚起時間帯、削減熱量、喚起生成熱量は処理で用いられる値を記憶する変数を表すものとする。 FIG. 18 is a flowchart showing details of the process (S1708 in FIG. 17) of creating a DR scenario for demand shift by the scenario creating unit 104D. Hereinafter, in order to simplify the description, the process will be described first in the case where the DR type of the customer information is “demand shift”. Further, assuming that a DR scenario for 24 hours is created at 0:00, “time” means one frame obtained by dividing one day into frames, and one frame = 1 hour. In addition, the suppression time zone, the arousal time zone, the reduced heat amount, and the arousal generated heat amount represent variables that store values used in the processing.
 まず、シナリオ作成部104Dは、蓄熱計画DB102Gから、対応する需要家及び機器の蓄熱計画を取得し、機器特性DB102Eから、対応する電気機器の機器特性を取得する(S1800)。 First, the scenario creation unit 104D acquires the corresponding customer and device heat storage plans from the heat storage plan DB 102G, and acquires the device characteristics of the corresponding electrical device from the device characteristics DB 102E (S1800).
 次に、シナリオ作成部104Dは、蓄熱計画の計画開始時刻から計画終了時刻までの時間帯を、抑制時間帯として設定する(S1802)。 Next, the scenario creation unit 104D sets a time zone from the plan start time to the plan end time of the heat storage plan as a suppression time zone (S1802).
 次に、シナリオ作成部104Dは、削減熱量を、蓄熱計画の計画生成熱量と同じ値に設定する(S1804)。蓄熱計画の需要をシフトさせるために、シナリオ作成部104Dは蓄熱計画の計画開始時刻から計画終了時刻までの時間帯を抑制時間帯として設定し、蓄熱計画の計画生成熱量を削減熱量に設定する。 Next, the scenario creation unit 104D sets the reduced heat amount to the same value as the planned generated heat amount of the heat storage plan (S1804). In order to shift the demand of the heat storage plan, the scenario creation unit 104D sets the time zone from the plan start time to the plan end time of the heat storage plan as the suppression time zone, and sets the planned heat generation amount of the heat storage plan to the reduced heat amount.
 次に、シナリオ作成部104Dは、喚起パターンを設定する(S1806)。喚起パターンとは喚起時間帯と喚起生成熱量である。喚起時間帯は、抑制時間帯と重ならず、0時から24時の範囲で、抑制時間帯と同じ長さで設定する。喚起生成熱量は、削減熱量と同じ値に設定する。 Next, the scenario creation unit 104D sets a calling pattern (S1806). The arousal pattern is the arousal time zone and the amount of heat generated. The awakening time zone does not overlap with the suppression time zone, and is set in the range from 0:00 to 24:00 with the same length as the suppression time zone. The amount of generated heat is set to the same value as the reduced amount of heat.
 次に、シナリオ作成部104Dは、下記の式により、蓄熱量を計算する(S1808)。下記の式において、tは0時から24時までの時刻であるとする。ただし、0時の蓄熱量は、0時の計画蓄熱量に等しいとする。
 時刻(t)の蓄熱量=
時刻(t-1)の蓄熱量-時刻(t)の予測消費熱量+時刻(t)の計画生成熱量-削減熱量(ただし、抑制時間帯以外はゼロ)+喚起生成熱量(ただし、喚起時間帯以外はゼロ)
Next, the scenario creation unit 104D calculates a heat storage amount by the following formula (S1808). In the following equation, t is a time from 0:00 to 24:00. However, it is assumed that the heat storage amount at 0:00 is equal to the planned heat storage amount at 0:00.
Heat storage amount at time (t) =
Heat storage amount at time (t-1)-Predicted heat consumption at time (t) + Planned heat generation at time (t)-Reduction heat amount (however, it is zero except for the suppression time zone) + Arousal generation heat amount (However, arousal time zone Other than zero)
 次に、シナリオ作成部104Dは、可能性のあるすべての喚起パターンについて計算済かどうかをチェックする(S1810)。すべての喚起パターンにおいて計算済である場合は次のステップ(S1812)に進み、そうでない場合は喚起パターンの設定(S1806)に戻る。 Next, the scenario creation unit 104D checks whether all possible arousing patterns have been calculated (S1810). If the calculation has been completed for all the awakening patterns, the process proceeds to the next step (S1812). Otherwise, the process returns to the setting of the awakening pattern (S1806).
 次に、シナリオ作成部104Dは、それぞれの喚起パターンについて、蓄熱量の時系列が、すべての時刻において、機器特性の下限蓄熱量以上かつ上限蓄熱量以下の範囲内であるかどうかをチェックする(S1812)。以下、すべての時刻において、蓄熱量が下限蓄熱量以上かつ上限蓄熱量以下の範囲内である喚起パターンを、適正喚起パターンと呼ぶ。 Next, the scenario creation unit 104D checks whether or not the time series of the heat storage amount is within the range of the lower limit heat storage amount and the upper limit heat storage amount of the device characteristics at all times for each awakening pattern ( S1812). Hereinafter, at all times, the arousal pattern in which the heat storage amount is within the range of the lower limit heat storage amount and the upper limit heat storage amount is referred to as an appropriate arousal pattern.
 次に、シナリオ作成部104Dは、適正喚起パターンが1以上あるかどうかをチェックする(S1814)。1以上ある場合は次のステップ(S1816)に進み、0である場合は削減熱量の設定(S1804)に戻り、削減熱量を、より小さな値に設定して、処理を繰り返す。 Next, the scenario creation unit 104D checks whether there is one or more appropriate calling patterns (S1814). If there is 1 or more, the process proceeds to the next step (S1816). If it is 0, the process returns to the setting of reduced heat quantity (S1804), the reduced heat quantity is set to a smaller value, and the process is repeated.
 次に、シナリオ作成部104Dは、適正喚起パターンについて、機器特性(生成熱量と消費電力の関係)から、下記の式により、抑制量と喚起量を計算する(S1816)。下記の式のPは、熱量の生成に必要な消費電力を求める関数である。
 抑制量=P(時刻tの予測生成熱量)-P(時刻tの予測生成熱量-削減熱量)
 喚起量=P(時刻tの喚起生成熱量)
Next, the scenario creation unit 104D calculates the suppression amount and the arousal amount according to the following formula from the device characteristics (relationship between the generated heat amount and the power consumption) for the appropriate arousal pattern (S1816). P in the following equation is a function for obtaining power consumption necessary for generating heat.
Suppression amount = P (predicted heat generation amount at time t) −P (predicted heat generation amount at time t−reduction heat amount)
Arousal amount = P (arousal generation heat quantity at time t)
 次に、シナリオ作成部104Dは、前のステップで計算した抑制量と喚起量、および抑制時間帯の最初の時刻(抑制開始時刻)、抑制時間帯の長さ(抑制継続時間)、適正喚起パターンのうち最早の喚起時間帯の最初の時刻(最早喚起開始時刻)、適正喚起パターンのうち最遅の喚起時間帯の最初の時刻(最遅喚起開始時刻)、適正喚起パターンの喚起時間帯の長さ(喚起継続時間)をシナリオDB102Cに記憶する(S1818)。 Next, the scenario creation unit 104D determines the suppression amount and the arousal amount calculated in the previous step, the first time of the suppression time zone (suppression start time), the length of the suppression time zone (suppression duration), and the appropriate arousal pattern. The first time of the earliest arousal time zone (earliest awakening start time), the first time of the latest arousal time zone (latest arousal start time) of the appropriate arousal patterns, the length of the arousal time zone of the appropriate arousal pattern Is stored in the scenario DB 102C (S1818).
 以上が、シナリオ作成部104Dの、需要シフトのDRシナリオを作成する処理の説明であるが、処理は上記のフローチャートの記述に限定されるものではなく、処理の高速化や高度化などの目的で、趣旨を逸脱しない範囲で変更してもよい。例えば、上記においては、抑制時間帯を、計画開始時刻から計画終了時刻までの時間帯と同じに設定したが、その一部の時間帯としてもよい。 The above is the description of the process of creating the demand shift DR scenario by the scenario creation unit 104D. However, the process is not limited to the description of the above flowchart, but for the purpose of speeding up and sophisticating the process. It may be changed without departing from the spirit of the invention. For example, in the above, the suppression time zone is set to be the same as the time zone from the plan start time to the plan end time, but may be a partial time zone.
 また上記のおいては、喚起生成熱量を削減熱量と同じ値にセットしたが、電気機器の仕様が許す範囲で自由に設定してもよいし、また上記においては、喚起時間帯の長さを抑制時間帯の長さと同じ長さに設定したが、別の長さに設定してもよい。また上記においては、削減熱量と喚起生成熱量は、時間的に一定であると暗黙に仮定して説明したが、時間ごとに変化する値であってもよい。 In the above, the amount of generated heat is set to the same value as the reduced amount of heat, but it may be set freely within the range allowed by the specifications of the electrical equipment. Although it was set to the same length as the length of the suppression time zone, it may be set to a different length. In the above description, the reduced heat amount and the arousal generated heat amount are implicitly assumed to be constant over time, but may be values that change with time.
 また、上記において、機器特性の生成熱量と消費電力の関係は機器特性DB102Eに記憶されているとしたが、この機器特性は気温や貯湯タンクへの入水温度などによって変化するため、需要家のエネルギー管理システム200等から気温や入水温度などのデータを取得し、より正確な機器特性を用いて消費電力を計算してもよい。 In addition, in the above description, the relationship between the generated heat amount and power consumption of the device characteristic is stored in the device characteristic DB 102E. However, since this device characteristic changes depending on the temperature, the temperature of water entering the hot water storage tank, etc. Data such as air temperature and incoming water temperature may be acquired from the management system 200 or the like, and the power consumption may be calculated using more accurate device characteristics.
 図19は、シナリオ作成部104Dの、需要抑制のDRシナリオを作成する処理(図17のS1706)の詳細を示すフローチャートである。まず、シナリオ作成部104Dは、需要予測の予測開始時刻から予測終了時刻までの時間帯と、需要家情報の抑制可能時間帯との共通の時間帯を計算し、これを抑制可能時間帯とする(S1900)。 FIG. 19 is a flowchart showing details of the process (S1706 in FIG. 17) of creating a DR scenario for demand suppression by the scenario creation unit 104D. First, the scenario creation unit 104D calculates a common time zone between the time zone from the forecast start time of the demand forecast to the forecast end time and the time zone in which the customer information can be suppressed, and sets this as the time zone that can be suppressed. (S1900).
 次に、シナリオ作成部104Dは、需要予測の予測消費電力に、需要家情報の抑制係数をかけて、抑制量を計算する(S1902)。 Next, the scenario creation unit 104D calculates the suppression amount by multiplying the predicted power consumption of the demand prediction by the suppression coefficient of the customer information (S1902).
 次に、シナリオ作成部104Dは、抑制可能時間帯の最初の時刻(抑制開始時刻)、抑制可能時間帯の時間の長さ(抑制継続時間)、抑制量をシナリオDB102Cに記憶する。 Next, the scenario creation unit 104D stores the first time of the suppression possible time zone (suppression start time), the length of the suppression possible time zone (suppression duration), and the suppression amount in the scenario DB 102C.
 以上が、シナリオ作成部104Dの、需要抑制のDRシナリオを作成する処理の説明であるが、処理は上記のフローチャートに限定されるものではなく、処理の高速化や高度化などの目的で、趣旨を逸脱しない範囲で変更してもよい。 The above is the description of the process of creating the demand-suppressing DR scenario by the scenario creation unit 104D. However, the process is not limited to the above flowchart, and the purpose is to increase the speed and sophistication of the process. You may change in the range which does not deviate from.
 例えば、抑制可能時間帯は、需要予測の予測開始時刻から予測終了時刻までの時間帯と需要家情報の抑制可能時間帯との共通の時間帯とするのではなく、その一部の時間帯としてもよい。 For example, the suppression time zone is not a common time zone between the forecast start time of the demand forecast and the prediction end time and the suppression time zone of the customer information, but as a part of the time zone Also good.
 図20は、入札予測部104Aの処理を示すフローチャートである。まず、入札予測部104Aは、入札情報が取得可能かどうかをチェックする(S2000)。例えば、対象のコマの市場が開いていない段階では、入札情報は得られない。また、板寄せ方式で、入札状況が開示されない場合もある。そうである場合は、処理を終了し、そうでない場合は次のステップ(S2002)へ進む。 FIG. 20 is a flowchart showing the processing of the bid prediction unit 104A. First, the bid prediction unit 104A checks whether bid information can be acquired (S2000). For example, bid information cannot be obtained at a stage where the market of the target piece is not open. In addition, the tender status may not be disclosed by the boarding method. If so, the process ends. If not, the process proceeds to the next step (S2002).
 次に、入札予測部104Aは、約定実績DB102Aから約定実績データを取得する(S2002)。次に、入札予測部104Aは、市場の売り入札の入札価格と入札量、及び買い入札の入札価格と入札量を予測する(S2004)。例えば、ある年のある日のあるコマの売り入札及び買い入札の入札価格と入札量は、前の年の同じ日の同じコマの約定価格と約定量と等しいとする。あるいは、過去の石油やガスなどの燃料価格や発電所の稼働状況などを考慮した回帰分析などの手法により、入札価格と入札量を予測してもよい。こうした電力価格予測のロジックは、特許文献1など従来技術が豊富にあるので、これ以上の記述を省略する。 Next, the bid prediction unit 104A acquires execution result data from the execution result DB 102A (S2002). Next, the bid prediction unit 104A predicts the bid price and bid amount of the selling bid in the market and the bid price and bid amount of the purchase bid (S2004). For example, it is assumed that the bid price and the bid amount of a certain frame on a certain day of a certain year are equal to the contract price and contract amount of the same frame on the same day of the previous year. Alternatively, the bid price and the bid amount may be predicted by a method such as regression analysis in consideration of the past fuel prices such as oil and gas and the operating status of the power plant. Such electric power price prediction logic is abundant in conventional techniques such as Patent Document 1, and therefore further description is omitted.
 次に、入札予測部104Aは、予測した入札情報を、入札情報DB102Bに記憶する(S2006)。 Next, the bid prediction unit 104A stores the predicted bid information in the bid information DB 102B (S2006).
 図21は、需要予測部104Eの処理を示すフローチャートである。需要予測部104Eは、需要家及び電気機器ごとにステップS2100からステップS2114の処理を繰り返す。 FIG. 21 is a flowchart showing processing of the demand prediction unit 104E. The demand prediction unit 104E repeats the processing from step S2100 to step S2114 for each customer and electrical device.
 まず、需要予測部104Eは、需要家のエネルギー管理システム200から、稼働実績データを取得する(S2102)。 First, the demand prediction unit 104E acquires operation result data from the energy management system 200 of the customer (S2102).
 次に、需要予測部104Eは、需要家の電気機器の需要(予測開始時刻、予測終了時刻、予測消費熱量、予測消費電力)を予測する(S2104)。例えば、ある日のある時刻の、予測消費熱量及び予測消費電力は、1週間前の同じ曜日の日の同じ時刻の、予測消費熱量及び予測消費電力と同じ値であるとする。あるいは、気温や天候などの気象条件などを考慮した回帰分析などの手法により、予測消費熱量及び予測消費電力を予測してもよい。こうした需要予測のロジックは、特許文献1など従来技術が豊富にあるので、これ以上の記述を省略する。 Next, the demand prediction unit 104E predicts the demand (prediction start time, prediction end time, predicted heat consumption, predicted power consumption) of the consumer's electrical equipment (S2104). For example, it is assumed that the predicted heat consumption and predicted power consumption at a certain time on a certain day have the same values as the predicted heat consumption and predicted power consumption at the same time on the same day of the week one week ago. Alternatively, the predicted heat consumption and the predicted power consumption may be predicted by a method such as regression analysis in consideration of weather conditions such as temperature and weather. Such demand prediction logic is abundant in conventional techniques such as Patent Document 1, and therefore, further description is omitted.
 次に、需要予測部104Eは、需要予測を需要予測DB102Fに記憶する(S2106)。 Next, the demand prediction unit 104E stores the demand prediction in the demand prediction DB 102F (S2106).
 次に、需要予測部104Eは、機器タイプがHP給湯器であるかどうかをチェックする(S2108)。機器タイプがHP給湯器である場合、次のステップ(S2110)に進み、そうでない場合は、次の需要家及び機器の処理に移る(S2114)。 Next, the demand prediction unit 104E checks whether the device type is an HP water heater (S2108). If the device type is an HP water heater, the process proceeds to the next step (S2110), and if not, the process proceeds to the next consumer and device (S2114).
 次に、需要予測部104Eは、予測消費熱量から、蓄熱計画(計画開始時刻、計画終了時刻、計画生成熱量、計画蓄熱量)を作成する(S2110)。例えば、貯湯タンクの蓄熱量が電気機器の仕様の制約範囲内で最小になるような、蓄熱量を計画する。こうした蓄熱計画を作成するロジックは、特許文献3など従来技術が豊富にあるので、これ以上の記述を省略する。 Next, the demand prediction unit 104E creates a heat storage plan (plan start time, plan end time, plan generation heat amount, plan heat storage amount) from the predicted heat consumption (S2110). For example, the heat storage amount is planned so that the heat storage amount of the hot water storage tank is minimized within the restriction range of the specifications of the electrical equipment. The logic for creating such a heat storage plan is abundant in conventional techniques such as Patent Document 3, and therefore further description is omitted.
 次に、需要予測部104Eは、作成した蓄熱計画を、蓄熱計画DB102Gに記憶する(S2112)。次に、需要予測部104Eは、次の需要家及び機器の処理に移る(S2100)。すべての需要家及び機器について処理を行った場合は処理を終了する。 Next, the demand prediction unit 104E stores the created heat storage plan in the heat storage plan DB 102G (S2112). Next, the demand prediction unit 104E moves to processing of the next consumer and device (S2100). When the process is performed for all customers and devices, the process ends.
 図22は、ネガワット売買支援システム100の全体の処理を示すフローチャートである。これらの処理は、各処理ブロックが連携することで、全体処理が行われる。ステップS2200からステップS2212の処理は、一定時間ごとに繰り返し行われる。 FIG. 22 is a flowchart showing the overall processing of the negawatt trading support system 100. These processes are performed as a whole by the cooperation of the processing blocks. The processing from step S2200 to step S2212 is repeated at regular intervals.
 繰り返し処理の中で、ステップ2202からステップ2204の処理と、ステップ2206の処理は、二本の処理に分岐させて並行して実行される。一本目の分岐処理において、需要予測部104Eは、需要家の需要を予測する(S2202)。次に、シナリオ作成部104Dは、DRシナリオを作成する(S2204)。 In the repeated process, the process from step 2202 to step 2204 and the process of step 2206 are executed in parallel by branching into two processes. In the first branch process, the demand prediction unit 104E predicts the demand of the consumer (S2202). Next, the scenario creation unit 104D creates a DR scenario (S2204).
 二本目の分岐処理において、入札予測部104Aは、入札予測を行う(S2206)。ここまでが、分岐処理である。 In the second branching process, the bid prediction unit 104A performs bid prediction (S2206). This is the branching process.
 次に、売買計画策定部104Cは、DRシナリオと入札予測に基づき売買計画を策定する(S2208)。次に、売買計画出力部104Bは、策定された売買計画を出力する(S2210)。一定時刻後、またステップS2202、S2206から、処理が繰り返される(S2212)。 Next, the sales plan formulation unit 104C formulates a sales plan based on the DR scenario and the bid prediction (S2208). Next, the sales plan output unit 104B outputs the formulated sales plan (S2210). After a certain time, the process is repeated from steps S2202 and S2206 (S2212).
 図23は、リスク評価部104Fの処理を示すフローチャートである。ただし、破線部230と破線部232の処理は、他の処理ブロックと連携することで、処理が行われる。 FIG. 23 is a flowchart showing processing of the risk evaluation unit 104F. However, the processes of the broken line portion 230 and the broken line portion 232 are performed in cooperation with other processing blocks.
 リスク評価部104Fは、ステップ2302からステップ2310の処理を所定回数(例えば100回)繰り返す(S2300)。繰り返し処理の中で、まず、リスク評価部104Fは、乱数を生成し、需要予測部104Eと入札予測部104Aに乱数を渡す(S2302)。 The risk evaluation unit 104F repeats the processing from step 2302 to step 2310 a predetermined number of times (for example, 100 times) (S2300). In the iterative process, first, the risk evaluation unit 104F generates a random number and passes the random number to the demand prediction unit 104E and the bid prediction unit 104A (S2302).
 次に、入札予測部104Aは、リスク評価部104Fから渡された乱数を用いて、入札を予測する(S2308)。例えば、入札価格や入札量に乱数を加える等である。 Next, the bid prediction unit 104A predicts a bid using the random number passed from the risk evaluation unit 104F (S2308). For example, a random number is added to the bid price or the bid amount.
 需要予測部104Eは、リスク評価部104Fから渡された乱数を用いて、需要を予測する(S2304)。例えば、予測消費熱量や予測開始時間に乱数を加える等である。 The demand prediction unit 104E predicts demand using the random number passed from the risk evaluation unit 104F (S2304). For example, a random number is added to the predicted heat consumption or the predicted start time.
 次に、シナリオ作成部104Dは、需要予測部104Eが予測した需要に基づき、DRシナリオを作成する(S2306)。なお、ステップS2304及びステップS2306と、ステップS2308は、二本の並列処理である。 Next, the scenario creation unit 104D creates a DR scenario based on the demand predicted by the demand prediction unit 104E (S2306). Note that steps S2304 and S2306, and step S2308 are two parallel processes.
 次に、売買計画策定部104Cは、入札予測とDRシナリオに基づき、売買計画を策定し、リスク評価部104Fに渡す(S2310)。 Next, the sales plan formulation unit 104C formulates a sales plan based on the bid prediction and the DR scenario, and passes it to the risk evaluation unit 104F (S2310).
 次に、ステップ2302に戻り、処理が繰り返される(S2312)。なお、処理が所定回数に達した場合は、リスク評価部104Fは、策定された所定回数分の売買計画を売買計画出力部104Bに渡し、次のステップ(S2314)へ移る。 Next, the process returns to step 2302 and the process is repeated (S2312). When the process reaches the predetermined number of times, the risk evaluation unit 104F passes the established sales plan for the predetermined number of times to the sales plan output unit 104B, and proceeds to the next step (S2314).
 次に、売買計画出力部104Bは、策定された所定回数分の売買計画について、売買計画の収支の確率分布を作成し、グラフを画面に出力する(S2314)。以上が、本発明の第一の実施例の説明である。 Next, the sales plan output unit 104B creates a probability distribution of the sales plan balance for the predetermined number of sales plans, and outputs a graph to the screen (S2314). The above is the description of the first embodiment of the present invention.
 本発明の第二の実施例は、ガス機器を併用したネガワット売買に関する。図24は、本発明の第二の実施例に関する、需要家の電気機器及びガス機器の構成例である。ヒートポンプ1406は、電線1400から受電設備1402を介して供給される電気によって稼働するだけでなく、ガス管2400から供給されるガスを燃料として駆動するガスエンジン2402の動力によっても稼働してよい。また、ファンヒーター2404は、ガス管2400から供給されるガスにより稼働する。その他の電気機器は、図14の構成と同様である。 The second embodiment of the present invention relates to negawatt buying and selling combined with gas equipment. FIG. 24 is a configuration example of consumer electric equipment and gas equipment according to the second embodiment of the present invention. The heat pump 1406 may be operated not only by the electricity supplied from the electric wire 1400 via the power receiving facility 1402 but also by the power of the gas engine 2402 that drives the gas supplied from the gas pipe 2400 as fuel. The fan heater 2404 is operated by the gas supplied from the gas pipe 2400. Other electrical devices have the same configuration as that of FIG.
 電気機器とガス機器を併用するネガワット売買の場合、ガス市場に対して売買を行うための計画を策定する必要がある。しかしながら、システム構成等は、基本的には電力の場合とまったく同じであるので、詳細な記述を省略する。また、電力の市場とガスの市場の価格差を利用した裁定取引も可能であり、両者の売買計画を組み合わせて最適な売買計画を選択すればよい。異なるエネルギーの市場間取引の部分は既に公知であり、本発明のシステムと単に組み合わせれば実現可能であるので、詳細な記述を省略する。 In the case of negawatt buying and selling that uses both electric equipment and gas equipment, it is necessary to formulate a plan for trading in the gas market. However, since the system configuration and the like are basically the same as in the case of power, detailed description is omitted. Arbitrage transactions using the price difference between the electric power market and the gas market are also possible, and an optimal trading plan may be selected by combining both trading plans. The part of the inter-market transaction of different energy is already known and can be realized simply by combining with the system of the present invention, so detailed description will be omitted.
 また、その他のエネルギー(例えば、石炭)の売買を組み合わせることも可能であるが、繰り返しになるので、詳細な記述を省略する。以上が、本発明の第二の実施例の説明である。 Also, it is possible to combine trading of other energy (for example, coal), but since it is repeated, detailed description is omitted. The above is the description of the second embodiment of the present invention.
 本発明の第三の実施例は、図25の仮想市場システム2500に関する。仮想市場システム2500は、本発明のネガワット売買支援システム100の入力である約定情報または入札情報を作成する手段として、あるいは本発明のネガワット売買支援システム100の出力である売買計画を執行する手段として用いる。 The third embodiment of the present invention relates to the virtual market system 2500 of FIG. The virtual market system 2500 is used as a means for creating contract information or bid information that is an input of the negawatt trading support system 100 of the present invention, or as a means for executing a trading plan that is the output of the negawatt trading support system 100 of the present invention. .
 仮想市場システム2500の目的の一つは、所定の条件下での電力取引市場を推定して、ネガワット売買の収益予想などを行うことである。所定の条件とは、例えば風力発電の比率が上昇した場合などである。仮想市場システム2500の別の目的の一つは、ネガワット売買の注文を市場に発注するトレーダーのトレーニングの用途である。 One of the purposes of the virtual market system 2500 is to estimate a power trading market under a predetermined condition and to make a profit forecast of negawatt buying and selling. The predetermined condition is, for example, a case where the ratio of wind power generation is increased. Another purpose of the virtual market system 2500 is for the training of traders who place orders for negawatt buying and selling on the market.
 図25は、仮想市場システム2500の構成を示すブロック図である。記憶部2504は、入札実績DB2504A、入札推定DB2504B、環境情報DB2504Cを備えて構成される。処理部2502は、入札推定部2502A、入札入力部2502B、約定量計算(推定)部2502C、約定量出力部2502Dを備える。 FIG. 25 is a block diagram showing the configuration of the virtual market system 2500. The storage unit 2504 includes a bid performance DB 2504A, a bid estimation DB 2504B, and an environment information DB 2504C. The processing unit 2502 includes a bid estimation unit 2502A, a bid input unit 2502B, an approximate quantitative calculation (estimation) unit 2502C, and an approximate quantitative output unit 2502D.
 入札入力部2502Bは、ネガワット売買の入札を入力する処理を実行する。入札入力部2502Bは、ネガワット売買支援システム100から、ネガワット売買情報を取得できる。また、入札入力部2502Bは、トレーダーがネガワット売買を入力できる。 The bid input unit 2502B executes a process of inputting a bid for negawatt buying and selling. The bid input unit 2502B can acquire negawatt trading information from the negawatt trading support system 100. Also, the bid input unit 2502B allows a trader to input negawatt buying and selling.
 入札推定部2502Aは、仮想的な市場の入札を推定する処理を行う。入札推定部2502Aは、推定した入札を、ネガワット売買支援システム100に出力できる。仮想市場システムで推定した仮想的な入札情報を入力として、ネガワット売買支援システムは売買計画を策定することができる。 The bid estimation unit 2502A performs a process of estimating a virtual market bid. The bid estimation unit 2502A can output the estimated bid to the negawatt trading support system 100. Using the virtual bid information estimated by the virtual market system as an input, the negawatt trading support system can formulate a trading plan.
 約定量計算部2502Cは、ネガワット売買の入札と、実績の市場の入札または仮想的な市場の入札との約定量を計算する処理を行う。 The approximate quantitative calculation unit 2502C performs a process of calculating an approximate quantitative value between the bid for negawatt buying and selling and the actual market bid or the virtual market bid.
 約定量出力部2502Dは、約定量計算部2502Cで計算した約定量を出力する処理である。 The approximate quantitative output unit 2502D is a process for outputting the approximate quantitative value calculated by the approximate quantitative calculation unit 2502C.
 仮想市場システム2500のハードウェア構成は、ネガワット売買支援システム100のハードウェア構成と同様である。また、インターネットなどの通信線1310を介して、ネガワット売買支援システム100と、データを送受信できる構成になっている。 The hardware configuration of the virtual market system 2500 is the same as the hardware configuration of the negawatt trading support system 100. In addition, data can be transmitted to and received from the negawatt trading support system 100 via a communication line 1310 such as the Internet.
 図26は、入札実績DB2504Aの構成テーブルの一例であり、入札日、入札時刻毎に受渡日、受渡コマ、入札種類、入札価格、入札量が記録されている。 FIG. 26 is an example of a configuration table of the bid performance DB 2504A, in which the delivery date, delivery frame, bid type, bid price, and bid amount are recorded for each bid date and bid time.
 図27は、入札推定DB2504Bの構成テーブルの一例であり、入札日、入札時刻毎に受渡日、受渡コマ、入札種類、入札価格、入札量が記録されている。 FIG. 27 is an example of a configuration table of the bid estimation DB 2504B, in which delivery date, delivery frame, bid type, bid price, and bid amount are recorded for each bid date and bid time.
 図28は、約定量計算部2502C処理を示すフローチャートである。約定量計算部2502Cは、ステップS2800からステップS2812までの処理を、一定時間ごとに繰り返し行う。なお、繰り返し処理の初回は、未約定入札(入札時刻、受渡時刻、価格、量)をゼロに初期化する。 FIG. 28 is a flowchart showing the processing of the approximately quantitative calculation unit 2502C. The approximately quantitative calculation unit 2502C repeatedly performs the processing from step S2800 to step S2812 at regular intervals. In the first iteration, the uncommitted bid (bidding time, delivery time, price, quantity) is initialized to zero.
 繰り返し処理の中で、まず、約定量計算部2502Cは、ステップS2802の処理とステップS2804の処理を、分岐して並列に処理する。 In the iterative process, first, the approximately quantitative calculation unit 2502C branches the process of step S2802 and the process of step S2804 in parallel.
 ステップ2802において、約定量計算部2502Cは、ネガワット売買支援システム100またはトレーダーから入力された入力入札情報(入札時刻、受渡時刻、価格、量)を、入札入力部2502Bから取得する。 In Step 2802, the approximately quantitative calculation unit 2502C obtains the input bid information (bid time, delivery time, price, amount) input from the negawatt trading support system 100 or the trader from the bid input unit 2502B.
 ステップS2804において、約定量計算部2502Cは、市場入札情報(入札時刻、受渡時刻、価格、量)を、入札実績DB2504Aまたは入札推定DB2504Bから取得する。 In step S2804, the approximate quantitative calculation unit 2502C acquires market bid information (bid time, delivery time, price, amount) from the bid performance DB 2504A or the bid estimation DB 2504B.
 次に、約定量計算部2502Cは、ステップS2808の処理を、それぞれの入力入札情報および市場入札情報の入札ごとに繰り返し処理を行う。繰り返し処理の中で、約定量計算部2502Cは、未約定入札と、入力入札情報または市場入札情報から、約定量と約定価格2502Cを計算し、未約定入札から約定した入札分を差し引き、未約定入札を更新する(S2808)。これらの計算は、通常のザラバ方式の計算と同様である。約定量と約定価格は、約定量出力部2502Dに渡す。 Next, the approximately quantitative calculation unit 2502C repeats the process of step S2808 for each bid of each input bid information and market bid information. In the iterative process, the contracted amount calculation unit 2502C calculates the contracted amount and the contract price 2502C from the uncommitted bid and the input bid information or the market bid information, subtracts the contracted bid from the uncommitted bid, The bid is updated (S2808). These calculations are the same as the normal Zaraba method. The fixed amount and the contract price are passed to the fixed amount output unit 2502D.
 次に、約定量計算部2502Cは、すべての入札の処理が終われば次のステップ(SS2810)へ進み、まだであれば別の入札の処理(S2806)に戻る(S2810)。 Next, the approximately quantitative calculation unit 2502C proceeds to the next step (SS2810) when all the bid processing is completed, and returns to another bid processing (S2806) if not yet completed (S2810).
 次に、約定量計算部2502Cは、一定時間後に、初めの処理(S2800)から繰り返し処理を行う(S2812)。 Next, the approximately quantitative calculation unit 2502C repeatedly performs processing from the initial processing (S2800) after a predetermined time (S2812).
 図29は、入札量推定部2502Aの処理を示すフローチャートである。まず、入札量推定部2502Aは、環境情報DB2504Cから、環境情報(過去の気象条件、発電所稼働実績、エネルギー価格、為替価格、等)を取得する(S2900)。 FIG. 29 is a flowchart showing the processing of the bid amount estimation unit 2502A. First, the bid amount estimation unit 2502A acquires environmental information (past weather conditions, power plant operation results, energy price, exchange price, etc.) from the environmental information DB 2504C (S2900).
 次に、入札量推定部2502Aは、入札実績DB2504Aから、入札実績(入札時刻、受渡時刻、価格、量)を取得する(S2902)。 Next, the bid amount estimation unit 2502A acquires a bid result (bid time, delivery time, price, amount) from the bid result DB 2504A (S2902).
 次に、入札量推定部2502Aは、環境情報と入札実績の相関関係に基づき、取得した入札実績をクラスタリング(クラス単位に分類)する(S2904)。これは、どの入札がどの発電の主体によって行われたか、を推定する処理である。クラスタリングの手法自体は、様々な従来技術があるので、これ以上の記述を省略する。 Next, the bid amount estimation unit 2502A performs clustering (classification by class) on the acquired bid results based on the correlation between the environmental information and the bid results (S2904). This is a process of estimating which bid is made by which power generation entity. Since there are various conventional techniques for the clustering method itself, further description is omitted.
 次に、入札量推定部2502Aは、クラスタリングした結果に基づき、入札の調整を行う(S2906)。例えば、クラスタリングした入札実績のクラスのうち、風力発電と考えられるクラスの入札の数を増加させる。 Next, the bid amount estimation unit 2502A adjusts bids based on the clustered result (S2906). For example, the number of bids of a class considered to be wind power generation among the clustered bid performance classes is increased.
 次に、入札量推定部2502Aは、調整した入札を、入札推定DB2502Aに記憶する(S2908)。以上が、本発明の第三の実施例の説明である。 Next, the bid amount estimation unit 2502A stores the adjusted bid in the bid estimation DB 2502A (S2908). The above is the description of the third embodiment of the present invention.
 以上、述べたように、本発明に係るネガワット売買支援システムは、ネガワットを売買する際の収益の予測とリスクの評価をすることができ、最適なネガワットの売買計画を策定し、ネガワット売買を支援することができる。また、ガス等の複数のエネルギーを含めたネガワット売買を支援することができる。また、風力発電の比率が上昇した場合などの条件下での電力取引市場を推定してネガワット売買の収益予想等を行うことができ、さらに、ネガワット売買の注文を市場に発注するトレーダーのトレーニングの用途でも活用できる等ネガワット売買を更に支援することができる。 As described above, the negawatt buying and selling support system according to the present invention can predict profits and evaluate risks when buying and selling negawatts, formulate an optimum negawatt buying and selling plan, and support negawatt buying and selling. can do. In addition, it is possible to support negawatt trading including multiple energy sources such as gas. In addition, it is possible to estimate the power trading market under conditions such as when the ratio of wind power generation rises and make a profit forecast of negawatt buying and selling, as well as training of traders who place orders for negawatt buying and selling on the market It is possible to further support negawatt buying and selling such that it can be used for various purposes.
 100:ネガワット売買支援システム、102:記憶部、102A:約定実績DB、102C:シナリオDB、102D:需要家DB、102E:機器特性DB、102E:需要特性DB、102F:需要予測DB、102G:蓄熱計画DB、104:処理部、104A:入札予測部、104B:売買計画出力部、104D:シナリオ作成部、104E:需要予測部、104F:リスク評価部
 
 
100: Negawatt trading support system, 102: Storage unit, 102A: Contract performance DB, 102C: Scenario DB, 102D: Customer DB, 102E: Equipment characteristic DB, 102E: Demand characteristic DB, 102F: Demand prediction DB, 102G: Heat storage Plan DB, 104: processing unit, 104A: bid prediction unit, 104B: sales plan output unit, 104D: scenario creation unit, 104E: demand prediction unit, 104F: risk evaluation unit

Claims (13)

  1.  制御装置と、
     記憶装置と、を備え、
     前記記憶装置は、
     エネルギーの需要予測情報を記憶する需要予測情報記憶領域と、
     前記エネルギーのネガワットの売買に対する入札予測情報を記憶する入札情報記憶領域と、
     を備え、
     前記制御装置は、
     前記需要予測情報に基づいて前記エネルギーに対するデマンドレスポンスのシナリオを作成し、
     前記作成したシナリオと前記入札予測情報とに基づいて前記ネガワットの売買計画を策定し、
     当該策定した売買計画を出力させる 、
     ネガワット売買支援システム。
    A control device;
    A storage device,
    The storage device
    A demand forecast information storage area for storing energy demand forecast information;
    A bid information storage area for storing bid prediction information for the trading of negawatts of the energy;
    With
    The controller is
    Create a demand response scenario for the energy based on the demand forecast information,
    Formulate the negawatt trading plan based on the created scenario and the bid prediction information,
    Output the developed sales plan,
    Negawatt trading support system.
  2.  前記制御装置は、
     エネルギー使用機器を有するエネルギー管理システムから、当該機器の稼働実績を取得し、当該稼働実績から前記エネルギーの需要予測を行い、当該需要予測された情報を前記需要予測情報記憶領域に記録し、
     前記ネガワット売買の約定の実績データに基づいて、当該ネガワット売買の入札情報の予測を行い、予測された入札情報を前記入札情報記憶手段に記録する、
     請求項1記載のネガワット売買支援システム。
    The controller is
    From the energy management system having the energy use device, obtain the operation result of the device, perform the energy demand prediction from the operation result, record the demand predicted information in the demand prediction information storage area,
    Based on the actual performance data of the negawatt trading, the bid information of the negawatt trading is predicted, and the predicted bid information is recorded in the bid information storage means.
    The negawatt trading support system according to claim 1.
  3.  前記デマンドレスポンスのシナリオには、エネルギー需要を抑制させるタイプとエネルギー需要をシフトさせるタイプとがあり、
     当該エネルギー需要をシフトさせるタイプのために、前記制御装置は、
     前記エネルギー管理システムのエネルギー利用計画に基づいて、当該エネルギー管理システムのエネルギー抑制パターンを設定し、
     前記エネルギー管理システムのエネルギー喚起パターンを設定し、
     前記エネルギー抑制パターンと前記エネルギー喚起パターンとに基づいて、前記エネルギー管理システムの現状のエネルギー蓄積状態が目的の範囲内にあるか否かを判定し、
     当該判定が肯定された、前記エネルギー抑制パターンと前記エネルギー喚起パターンに基づいて、前記デマンドレスポンスのシナリオを作成する請求項2記載のネガワット売買支援システム。
    The demand response scenario includes a type that suppresses energy demand and a type that shifts energy demand.
    For the type that shifts the energy demand, the control device
    Based on the energy use plan of the energy management system, set the energy suppression pattern of the energy management system,
    Set the energy awakening pattern of the energy management system,
    Based on the energy suppression pattern and the energy stimulation pattern, determine whether the current energy storage state of the energy management system is within a target range,
    The negawatt buying and selling support system according to claim 2, wherein the demand response scenario is created based on the energy suppression pattern and the energy arousing pattern for which the determination is affirmed.
  4.  前記制御装置は、
     前記抑制パターンをエネルギーの抑制量とエネルギーの利用を抑制する抑制時間帯とを含むように設定し、
     前記喚起パターンをエネルギーの利用を喚起する喚起時間帯とエネルギーの喚起量とを含むように設定し、
     前記喚起する時間帯を前記抑制する時間帯と重ならないように、かつ、前記抑制する時間帯と同じ長さで設定し、
     前記喚起量を前記抑制量と同じ値に設定する請求項3記載のネガワット売買支援システム。
    The controller is
    The suppression pattern is set to include a suppression amount of energy and a suppression time period for suppressing the use of energy,
    The arousal pattern is set to include an arousal time zone that arouses the use of energy and an energy arousal amount,
    Set the time zone to be evoked so as not to overlap the time zone to be suppressed and the same length as the time zone to be suppressed,
    The negawatt buying and selling support system according to claim 3, wherein the arousal amount is set to the same value as the suppression amount.
  5.  前記制御装置は、前記喚起パターンを複数設定し、前記エネルギー管理システムの現状のエネルギー蓄積状態が目的の範囲内にある喚起パターンを選択し、当該喚起パターンに基づいて、前記デマンドレスポンスのシナリオを作成する請求項3又は4記載のネガワット売買支援システム。 The control device sets a plurality of the arousal patterns, selects an arousal pattern whose current energy storage state of the energy management system is within a target range, and creates a demand response scenario based on the arousal pattern The negawatt buying and selling support system according to claim 3 or 4.
  6.  前記制御装置は、
     前記デマンドレスポンスのシナリオと前記入札予測情報とに基づいてネガワットの複数の売買パターンを決定し、
     各売買パターンについて、ネガワット売買の約定形態を推定して、当該約定形態の収支を計算し、
     前記複数の売買パターンのうち収益が最も高い最高益売買パターンを決定し、
     当該最高益売買パターンの約定形態に基づいて前記入札予測情報を更新し、
     前記デマンドレスポンスのシナリオが複数ある場合には、前記更新された入札予測情報に基づいて前記最高益売買パターンの決定と前記入札予測情報の更新を前記複数のデマンドレスポンスのシナリオに対して順番に繰り返し、
     前記複数のデマンドレスポンスのシナリオについて特定の売買パターンを選択し、当該売買パターンを売買計画として作成し、当該売買計画を出力させる、請求項1記載のネガワット売買支援システム。
    The controller is
    Based on the demand response scenario and the bid prediction information, determine a plurality of negawatt trading patterns,
    For each trading pattern, estimate the contractual form of negawatt trading and calculate the balance of the contractual form,
    Determining the highest profit trading pattern having the highest profit among the plurality of trading patterns;
    Update the bid forecast information based on the contract form of the highest profit trading pattern,
    When there are a plurality of demand response scenarios, the determination of the highest profit trading pattern and the updating of the bid prediction information are sequentially repeated for the plurality of demand response scenarios based on the updated bid prediction information. ,
    2. The negawatt trading support system according to claim 1, wherein a specific trading pattern is selected for the plurality of demand response scenarios, the trading pattern is created as a trading plan, and the trading plan is output.
  7.  前記制御装置は、前記特定の売買パターンとして収支が最大の売買パターンを設定する請求項6記載のネガワット売買支援システム。 The negawatt buying and selling support system according to claim 6, wherein the control device sets a buying and selling pattern having a maximum balance as the specific buying and selling pattern.
  8.  前記制御装置は、
     前記需要予測と前記入札情報の予測とを複数回繰り返し、
     複数回の需要予測の夫々に基づいてデマンドレスポンスシナリオを作成し、夫々のデマンドレスポンスシナリオと夫々の入札予測情報とに基づいて売買計画を作成し、
     当該複数作成された売買計画について収支の分布を作成して売買計画のリスクを評価する請求項2記載のネガワット売買支援システム。
    The controller is
    Repeat the demand forecast and the bid information forecast multiple times,
    Create a demand response scenario based on each of multiple demand forecasts, create a sales plan based on each demand response scenario and each bid forecast information,
    The negawatt trading support system according to claim 2, wherein a balance distribution is created for the plurality of trading plans created to evaluate the risk of the trading plan.
  9.  前記複数回の需要予測の生成と入札予測の生成の夫々を発生乱数に基づいて行う請求項8記載のネガワット売買支援システム。 The negative wattage buying and selling support system according to claim 8, wherein each of the generation of the demand forecast and the bid forecast is generated based on a generated random number.
  10.  仮想条件下でのネガワット売買のための仮想市場システムと接続され、
     前記制御装置は、当該仮想市場システムで推定される入札予測情報を受領し、当該受領した入札予測情報に基づいて前記売買計画を策定する請求項1記載のネガワット売買支援システム。
    Connected with a virtual market system for negawatt buying and selling under virtual conditions,
    2. The negawatt trading support system according to claim 1, wherein the control device receives bid prediction information estimated by the virtual market system and formulates the trading plan based on the received bid prediction information.
  11.  前記記憶装置の前記入札予測情報が前記仮想市場システムに入力され、当該仮想市場システムは当該入力された入札予測情報に基づいて当該仮想市場システムにおけるネガワットと売買の約定量を推定する請求項10記載のネガワット売買支援システム。 11. The bid prediction information of the storage device is input to the virtual market system, and the virtual market system estimates a negotiated amount of negawatts and sales in the virtual market system based on the input bid prediction information. Negawatt trading support system.
  12.  前記エネルギーに対するデマンドレスポンスのシナリオを構成する情報が前記エネルギー管理システムに入力され、
     前記制御装置は前記エネルギー管理システムから前記入力されたシナリオを構成する情報を取得し、
     前記取得したシナリオを構成する情報と前記入札予測情報とに基づいて前記ネガワットの売買計画を策定し、
     当該策定した売買計画を出力させる、
     請求項2記載のネガワット売買支援システム。
    Information constituting a demand response scenario for the energy is input to the energy management system,
    The control device acquires information constituting the inputted scenario from the energy management system,
    Formulate the negawatt trading plan based on the information constituting the acquired scenario and the bid prediction information,
    Output the developed sales plan,
    The negawatt buying and selling support system according to claim 2.
  13.  制御装置と、記憶装置と、を備え、前記記憶装置は、エネルギーの需要予測情報を記憶する需要予測情報記憶領域と、前記エネルギーのネガワットの売買に対する入札予測情報を記憶する入札情報記憶領域と、を有する計算機を利用して、複数の需要家のネガワットを纏めてネガワット売買市場で売買させる際の取引の支援のための方法であって、
     前記制御装置は、前記需要予測情報に基づいて前記エネルギーに対するデマンドレスポンスのシナリオを作成するステップと、前記作成したシナリオと前記入札予測情報とに基づいて前記ネガワットの売買計画を策定するステップと、当該策定した売買計画を出力させるためのステップと、を実行するネガワット売買支援方法。
     
    A control device, and a storage device, wherein the storage device stores a demand prediction information storage region for storing energy demand prediction information, and a bid information storage region for storing bid prediction information for the negawatt trading of the energy, A method for supporting transactions when a plurality of consumers' negawatts are collected and sold in the negawatt buying and selling market using a computer having
    The control device creates a demand response scenario for the energy based on the demand forecast information, formulates the negawatt trading plan based on the created scenario and the bid forecast information, And a step for outputting the developed sales plan, and a negative wattage sales support method.
PCT/JP2013/055259 2013-02-27 2013-02-27 Negawatt transaction assistance system WO2014132370A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/055259 WO2014132370A1 (en) 2013-02-27 2013-02-27 Negawatt transaction assistance system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/055259 WO2014132370A1 (en) 2013-02-27 2013-02-27 Negawatt transaction assistance system

Publications (1)

Publication Number Publication Date
WO2014132370A1 true WO2014132370A1 (en) 2014-09-04

Family

ID=51427672

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/055259 WO2014132370A1 (en) 2013-02-27 2013-02-27 Negawatt transaction assistance system

Country Status (1)

Country Link
WO (1) WO2014132370A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016038993A1 (en) * 2014-09-11 2016-03-17 株式会社東芝 Device operation setting value determination apparatus, device operation setting value determination method, and device operation setting value determination program
JP2016081452A (en) * 2014-10-22 2016-05-16 株式会社日立製作所 Wholesale power price prediction system and wholesale power price prediction method
JP2016103082A (en) * 2014-11-27 2016-06-02 住友電気工業株式会社 Power management device, power system, consumer device, power management method and power management program
WO2016113723A1 (en) * 2015-01-15 2016-07-21 株式会社日立製作所 Power transaction management system and power transaction management method
JP2016143412A (en) * 2015-01-30 2016-08-08 富士通株式会社 Method for matching coupon to user, method for bidding for resource, and non-transitory computer-readable medium
JP2017211947A (en) * 2016-05-27 2017-11-30 住友電気工業株式会社 Power management device, power system, user device, power management method, and power management program

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06313605A (en) * 1993-04-28 1994-11-08 Hitachi Ltd Method and apparatus for controlling operation of heat source unit
JP2007004646A (en) * 2005-06-27 2007-01-11 Hitachi Ltd Power transaction support system and power transaction support program
JP2007159239A (en) * 2005-12-02 2007-06-21 Chubu Electric Power Co Inc Power transaction evaluation support system, method, and program
JP2009245044A (en) * 2008-03-31 2009-10-22 Hitachi Ltd Power price predicting device and power price predicting method
JP2012147546A (en) * 2011-01-11 2012-08-02 Toshiba Corp Electric power demand-supply adjusting reservation capacity trading system and electric power demand-supply adjusting reservation capacity trading method
JP2012165513A (en) * 2011-02-04 2012-08-30 Toshiba Corp Energy management system and energy management method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06313605A (en) * 1993-04-28 1994-11-08 Hitachi Ltd Method and apparatus for controlling operation of heat source unit
JP2007004646A (en) * 2005-06-27 2007-01-11 Hitachi Ltd Power transaction support system and power transaction support program
JP2007159239A (en) * 2005-12-02 2007-06-21 Chubu Electric Power Co Inc Power transaction evaluation support system, method, and program
JP2009245044A (en) * 2008-03-31 2009-10-22 Hitachi Ltd Power price predicting device and power price predicting method
JP2012147546A (en) * 2011-01-11 2012-08-02 Toshiba Corp Electric power demand-supply adjusting reservation capacity trading system and electric power demand-supply adjusting reservation capacity trading method
JP2012165513A (en) * 2011-02-04 2012-08-30 Toshiba Corp Energy management system and energy management method

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016038993A1 (en) * 2014-09-11 2016-03-17 株式会社東芝 Device operation setting value determination apparatus, device operation setting value determination method, and device operation setting value determination program
JP2016057972A (en) * 2014-09-11 2016-04-21 株式会社東芝 Apparatus operation set value determination device, apparatus operation set value determination method, and apparatus operation set value determination program
CN106575421A (en) * 2014-09-11 2017-04-19 株式会社东芝 Device operation setting value determination apparatus, device operation setting value determination method, and device operation setting value determination program
JP2016081452A (en) * 2014-10-22 2016-05-16 株式会社日立製作所 Wholesale power price prediction system and wholesale power price prediction method
JP2016103082A (en) * 2014-11-27 2016-06-02 住友電気工業株式会社 Power management device, power system, consumer device, power management method and power management program
WO2016113723A1 (en) * 2015-01-15 2016-07-21 株式会社日立製作所 Power transaction management system and power transaction management method
GB2549426A (en) * 2015-01-15 2017-10-18 Hitachi Ltd Power transaction management system and power transaction management method
JP2018064454A (en) * 2015-01-15 2018-04-19 株式会社日立製作所 Electric power transaction management system and electric power transaction management method
GB2549426B (en) * 2015-01-15 2021-09-29 Hitachi Ltd Power transaction management system and power transaction management method
JP2016143412A (en) * 2015-01-30 2016-08-08 富士通株式会社 Method for matching coupon to user, method for bidding for resource, and non-transitory computer-readable medium
JP2017211947A (en) * 2016-05-27 2017-11-30 住友電気工業株式会社 Power management device, power system, user device, power management method, and power management program
JP2021106027A (en) * 2016-05-27 2021-07-26 住友電気工業株式会社 Power management device, power system, user device, power management method, and power management program

Similar Documents

Publication Publication Date Title
Ghazvini et al. Demand response implementation in smart households
Zhou et al. Peer-to-peer energy sharing and trading of renewable energy in smart communities─ trading pricing models, decision-making and agent-based collaboration
Shafie-khah et al. A stochastic multi-layer agent-based model to study electricity market participants behavior
CA2749373C (en) Nested, hierarchical resource allocation schema for management and control of an electric power grid
WO2014132370A1 (en) Negawatt transaction assistance system
WO2018174030A1 (en) Transaction planning device and transaction planning method
US11663541B2 (en) Building energy system with load-following-block resource allocation
Miller Beyond 100% renewable: Policy and practical pathways to 24/7 renewable energy procurement
JP5695848B2 (en) Simultaneous equal amount apparatus, control method thereof and program thereof
Hosseinnia et al. Optimal eco-emission scheduling of distribution network operator and distributed generator owner under employing demand response program
US20200193532A1 (en) Cost optimization of a central energy facility with block-and-index rate structure
JP2006158189A (en) Cost minimization power control system using combination of electric power transaction and distributed power supply
JP2007004646A (en) Power transaction support system and power transaction support program
Zhang et al. Low-carbon optimal operation of distributed energy systems in the context of electricity supply restriction and carbon tax policy: A fully decentralized energy dispatch strategy
Iria et al. An energy-as-a-service business model for aggregators of prosumers
JP2021149282A (en) Electric power trading assistance device, electric power trading assistance method and program
Dewangan et al. Peak-to-average ratio incentive scheme to tackle the peak-rebound challenge in TOU pricing
JP2018085850A (en) Computation of business model in which enterprise having solar power generation facility installs facility in site of consumer to systematically coordinate
JP6581036B2 (en) Power management apparatus and power management method
JP7470833B2 (en) Demand adjustment system, demand adjustment method and program
Clastres et al. Provision of demand response by French prosumers with photovoltaic-battery systems in multiple markets
Li et al. Risk-constrained generation asset arbitrage in power systems
Badri et al. A short‐term optimal decision making framework of an electricity retailer considering optimized EVs charging model
Oprea et al. A signaling game-optimization algorithm for residential energy communities implemented at the edge-computing side
Tsyruk et al. On the possibilities of using demand-side management approach for the power market control in Russian Federation

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13876190

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13876190

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP