JP2007003766A - Optical film, manufacturing method of optical film, polarizing plate and display device - Google Patents

Optical film, manufacturing method of optical film, polarizing plate and display device Download PDF

Info

Publication number
JP2007003766A
JP2007003766A JP2005183081A JP2005183081A JP2007003766A JP 2007003766 A JP2007003766 A JP 2007003766A JP 2005183081 A JP2005183081 A JP 2005183081A JP 2005183081 A JP2005183081 A JP 2005183081A JP 2007003766 A JP2007003766 A JP 2007003766A
Authority
JP
Japan
Prior art keywords
film
optical film
coating
acid
refractive index
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005183081A
Other languages
Japanese (ja)
Inventor
Takashi Murakami
隆 村上
Takeshi Tanaka
武志 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Opto Inc
Original Assignee
Konica Minolta Opto Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Opto Inc filed Critical Konica Minolta Opto Inc
Priority to JP2005183081A priority Critical patent/JP2007003766A/en
Publication of JP2007003766A publication Critical patent/JP2007003766A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Polarising Elements (AREA)
  • Surface Treatment Of Optical Elements (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Laminated Bodies (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an optical film which is manufactured by providing a functional thin film on a long film and which is of high uniformity having no occurrence of color irregularity and having no periodic unevenness of the color irregularities, no difference between a center and an edge part in an application width direction, no difference between the outside and the inside of a wound roll and no difference between lots, to provide a manufacturing method of the optical film and further to provide a polarizing plate and a liquid crystal display apparatus which use the optical film and are excellent in visibility. <P>SOLUTION: The manufacturing method of the optical film with the functional thin film provided on the long film, has a process of coating the long film with the functional thin film while the long film is continuously conveyed, and after coating, the optical film is wound up in a roll shape at ≥50°C and heating treatment is successively carried out at ≥50°C for one day or more. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、光学フィルム、光学フィルムの製造方法、偏光板及び表示装置に関し、特にロール状に巻き取られた長尺フィルムの表面に機能性薄膜を有する光学フィルム及びその製造方法に関する。更には、該光学フィルムを用いた偏光板及び表示装置に関する。   The present invention relates to an optical film, a method for producing an optical film, a polarizing plate, and a display device, and more particularly to an optical film having a functional thin film on the surface of a long film wound in a roll shape and a method for producing the same. Furthermore, the present invention relates to a polarizing plate and a display device using the optical film.

CRTの他、液晶テレビやプラズマディスプレイ(PDP)、有機ELディスプレイ等種々の表示装置が開発されてきており、それらの画面サイズが大型化してきている。大画面化及び高画質化に伴って、視認性を改善するため反射防止層等が形成された光学フィルムを表示装置前面に張り付けることが行われている。また、このような大画面の表示装置では、直接、手が触れたり、物が接触したりすることがあり傷を付けやすい。そこで、通常は傷つき防止のためにハードコート層を支持体上に形成し、その上に反射防止層等が形成されたハードコート層付き反射防止フィルムが用いられてきている。   In addition to the CRT, various display devices such as a liquid crystal television, a plasma display (PDP), and an organic EL display have been developed, and their screen sizes are increasing. With an increase in screen size and image quality, an optical film on which an antireflection layer or the like is formed is attached to the front surface of a display device in order to improve visibility. In addition, such a large-screen display device is easily scratched because it may be directly touched by hands or touched by objects. Therefore, an antireflection film with a hard coat layer in which a hard coat layer is usually formed on a support for preventing scratches and an antireflection layer or the like is formed thereon has been used.

反射防止フィルムとしては、特に、大画面化により1m以上、更には1.4m以上といった幅広フィルムが必要となってきている。しかし、上記のように大サイズ化のため幅広となった場合、反射率、反射光の色味が部分的にむらとなったり、周期的なむらが発生することが多く、光学フィルム巻き取り時の巻外と巻内との差、幅手方向での中心と端部との差、ロット間の差などのない、より高い均一性の高い光学フィルムが求められている。   As the antireflection film, a wide film having a size of 1 m or more, and further 1.4 m or more is particularly required due to an increase in screen size. However, when the width is increased due to the increase in size as described above, the reflectance and the color of the reflected light are often uneven, and periodic unevenness often occurs. There is a need for a highly uniform optical film that does not have a difference between the outside and inside of the winding, the difference between the center and the end in the width direction, and the difference between lots.

従来より、長巻のプラスチックフィルムを取り扱う場合、フィルムの両側部にナーリング或いはエンボッシングと呼ばれるフィルム面よりも嵩高くした部分を設けることにより、コアに巻き取られたロールの巻締まりや、保存時の折れ込み等が発生しないようにする方法が知られている(例えば、特許文献1、2参照)。   Conventionally, when handling long rolls of plastic film, it is possible to tighten the roll wound around the core or to store it at the time of storage by providing portions that are bulkier than the film surface called knurling or embossing on both sides of the film. A method for preventing folding or the like from occurring is known (see, for example, Patent Documents 1 and 2).

一方、種々の機能性薄膜を長巻のプラスチックフィルムに有する光学フィルムが種々知られており、該基材上に機能性薄膜を形成した後、該薄膜の強度を向上するため或いは短時間で一定の強度を得るために、キュアリングやエージングと言われる熱処理を行うことが知られており(例えば、特許文献3、4参照)、これら開示された方法の中には塗布、乾燥後ロール状に巻き取られた状態で40〜150℃で30分以上数週間の熱処理することにより、表面硬度の高い光学フィルムが得られることが記載されている。   On the other hand, various optical films having various functional thin films on long-rolled plastic films are known. After forming a functional thin film on the base material, the film is constant for improving the strength of the thin film or in a short time. It is known to perform a heat treatment called curing or aging in order to obtain a high strength (see, for example, Patent Documents 3 and 4). It is described that an optical film having a high surface hardness can be obtained by heat treatment at 40 to 150 ° C. for 30 minutes to several weeks in a wound state.

しかしながら、これら従来の技術の中には、特に幅広の光学フィルムの製造にこれらの技術を適用することにより、色むらの発生のない、均一性の高い光学フィルムが得られることの記載はなく、そしてロット間差やロールの巻外と巻中との差が小さく、均一性の高い光学フィルムの製造方法の提供が強く望まれていた。特に光学フィルムの薄膜化に伴って巻きの内と外の差が大きくなることが判明した。
特開2002−211803号公報 特許第3226190号公報 特開2001−91705号公報 特開2002−6104号公報
However, in these conventional techniques, there is no description that an optical film with high uniformity without color unevenness can be obtained by applying these techniques to the production of a wide optical film, There has been a strong desire to provide a method for producing an optical film with high uniformity because the difference between lots and the difference between roll unwinding and winding are small. In particular, it has been found that the difference between the inside and the outside of the winding increases as the optical film becomes thinner.
Japanese Patent Laid-Open No. 2002- 211803 Japanese Patent No. 3226190 JP 2001-91705 A JP 2002-6104 A

本発明の目的は、長尺フィルム上に機能性薄膜を設ける光学フィルムの製造方法において、色むらの発生や該色むらの周期状のむら、塗布幅手方向での中心と端部との差、ロールの巻外と巻中との差、ロット間の差などのない、均一性の高い光学フィルム及びその製造方法を提供することにある。更に、該光学フィルムを用いた視認性に優れた偏光板及び表示装置を提供することにある。   The purpose of the present invention is to produce an optical film in which a functional thin film is provided on a long film, the occurrence of color unevenness and periodic unevenness of the color unevenness, the difference between the center and the end in the width direction of application, An object of the present invention is to provide a highly uniform optical film and a method for producing the same without causing a difference between unwinding and winding of a roll and a difference between lots. Furthermore, it is providing the polarizing plate and display apparatus which were excellent in the visibility using this optical film.

本発明の上記課題は以下の構成により達成される。   The above object of the present invention is achieved by the following configurations.

(請求項1)
長尺フィルム上に機能性薄膜を設ける光学フィルムの製造方法において、長尺フィルムを連続的に搬送して機能性薄膜をコーティングする工程を有し、コーティング後、該光学フィルムを温度50℃以上でロール状に巻き取り、引き続き50℃以上で1日間以上の加熱処理を行うことを特徴とする光学フィルムの製造方法。
(Claim 1)
In the manufacturing method of the optical film which provides a functional thin film on a long film, it has the process of conveying a long film continuously and coating a functional thin film, and after coating, this optical film is temperature 50 degreeC or more. A method for producing an optical film, which is wound up in a roll and subsequently subjected to heat treatment at 50 ° C. or more for 1 day or more.

(請求項2)
前記機能性薄膜が反射防止層であることを特徴とする請求項1に記載の光学フィルムの製造方法。
(Claim 2)
The method for producing an optical film according to claim 1, wherein the functional thin film is an antireflection layer.

(請求項3)
前記光学フィルムをロール状に巻き取る際に、巻き取り室の雰囲気温度が50〜150℃であるか、または巻き取りロールに50℃以上の温風を当てながら巻き取ることを特徴とする請求項1または2に記載の光学フィルムの製造方法。
(Claim 3)
When winding up the optical film in a roll shape, the atmospheric temperature of the winding chamber is 50 to 150 ° C, or winding is performed while applying hot air of 50 ° C or higher to the winding roll. The manufacturing method of the optical film of 1 or 2.

(請求項4)
長尺フィルムを連続的に搬送して機能性薄膜をコーティングする工程を有し、コーティング後、光学フィルムをロール状に巻き取った状態で50℃以上で1日間以上の加熱処理を行い、該加熱処理終了後巻き返しを行いながら冷却することを特徴とする光学フィルムの製造方法。
(Claim 4)
It has a step of coating a functional thin film by continuously transporting a long film. After coating, the optical film is wound up in a roll and subjected to heat treatment at 50 ° C. or more for 1 day or more. A method for producing an optical film, wherein the film is cooled while rewinding after completion of the treatment.

(請求項5)
前記加熱処理終了後の光学フィルムを巻き返しながら相対湿度10〜70%RHの雰囲気を通過させるか、または該雰囲気で巻き取ることを特徴とする請求項4に記載の光学フィルムの製造方法。
(Claim 5)
5. The method for producing an optical film according to claim 4, wherein the optical film after completion of the heat treatment is passed through an atmosphere having a relative humidity of 10 to 70% RH while being wound, or is wound up in the atmosphere.

(請求項6)
請求項1〜5のいずれか1項に記載の光学フィルムの製造方法により製造されたことを特徴とする光学フィルム。
(Claim 6)
An optical film manufactured by the method for manufacturing an optical film according to claim 1.

(請求項7)
前記光学フィルムが中空微粒子を含有する低屈折率層を有することを特徴とする請求項6に記載の光学フィルム。
(Claim 7)
The optical film according to claim 6, wherein the optical film has a low refractive index layer containing hollow fine particles.

(請求項8)
請求項6または請求項7に記載の光学フィルムを少なくとも一方の面に用いたことを特徴とする偏光板。
(Claim 8)
A polarizing plate using the optical film according to claim 6 or 7 on at least one surface.

(請求項9)
請求項8に記載の偏光板を用いたことを特徴とする表示装置。
(Claim 9)
A display device comprising the polarizing plate according to claim 8.

本発明により、長尺フィルム上に機能性薄膜を設ける光学フィルムの製造方法において、色むらの発生や該色むらの周期状のむら、塗布幅手方向での中心と端部との差、ロールの巻外と巻中との差、ロット間の差などのない、均一性の高い光学フィルム及びその製造方法を提供することが出来る。更に、該光学フィルムを用いた視認性に優れた偏光板及び表示装置を提供することが出来る。   According to the present invention, in an optical film manufacturing method in which a functional thin film is provided on a long film, the occurrence of color unevenness, the periodic unevenness of the color unevenness, the difference between the center and the end in the width direction of the coating, It is possible to provide a highly uniform optical film and a method for producing the same without causing a difference between unwinding and winding and a difference between lots. Furthermore, a polarizing plate and a display device having excellent visibility using the optical film can be provided.

以下本発明を実施するための最良の形態について詳細に説明するが、本発明はこれらに限定されるものではない。   The best mode for carrying out the present invention will be described in detail below, but the present invention is not limited thereto.

本発明に係る光学フィルムは、長尺フィルム上に機能性薄膜を有するものであり、機能性薄膜としては、反射防止や、防眩、赤外線吸収、紫外線吸収、帯電防止、電磁波遮断、耐擦過性向上、防汚性向上、光学補償のための位相差性、視野拡大性等の機能を有する薄膜である。特に本発明に係る光学フィルムは大型ディスプレイ装置の表面に貼り付けて用いるもので、好ましくは耐擦過性向上、反射防止を主目的とした機能性薄膜である。   The optical film according to the present invention has a functional thin film on a long film. As the functional thin film, antireflection, antiglare, infrared absorption, ultraviolet absorption, antistatic, electromagnetic wave shielding, scratch resistance, etc. It is a thin film having functions such as improvement, antifouling property improvement, retardation for optical compensation, and visual field enlargement. In particular, the optical film according to the present invention is used by being affixed to the surface of a large display device, and is preferably a functional thin film mainly intended for improving scratch resistance and preventing reflection.

本発明者らは、前記長尺フィルム上に機能性薄膜を設ける光学フィルムの製造方法において、長尺フィルムを連続的に搬送して機能性薄膜をコーティングする工程を有し、コーティング後、該光学フィルムを温度50℃以上でロール状に巻き取り、引き続き50℃以上で1日間以上の加熱処理(本発明ではエージングまたはエージング処理とも言う)を行うことで、色むらの発生や該色むらの周期状のむら、塗布幅手方向での中心と端部との差、ロールの巻外と巻中との差、ロット間の差などのない、均一性の高い光学フィルムを製造出来ることを見出し本発明を成すに至った次第である。   In the method for producing an optical film in which a functional thin film is provided on the long film, the inventors have a step of continuously conveying the long film to coat the functional thin film, and after coating, the optical film The film is wound into a roll at a temperature of 50 ° C. or higher, and subsequently subjected to a heat treatment at 50 ° C. or higher for 1 day or longer (also referred to as aging or aging treatment in the present invention), thereby generating color unevenness and the period of the color unevenness. It has been found that a highly uniform optical film can be produced without unevenness of shape, difference between center and end in the width direction of coating, difference between roll unwinding and winding, difference between lots, etc. It is up to that.

更に、前記光学フィルムをロール状に巻き取る際に、巻き取り室の雰囲気温度が50〜150℃であるか、または巻き取りロールに50℃以上の温風を当てながら巻き取ることが好ましく、更に、光学フィルムをロール状に巻き取った状態で、50℃以上で1日間以上の加熱処理を行なうものである。また、該加熱処理終了後巻き返しを行いながら冷却すること、その際に該加熱処理後の光学フィルムを巻き返しながら、相対湿度10〜70%RHの雰囲気を通過させるか、または該雰囲気で巻き取ることが好ましいことを併せて見出したものである。   Furthermore, when winding the optical film in a roll shape, it is preferable that the winding chamber has an atmospheric temperature of 50 to 150 ° C. or is wound while applying hot air of 50 ° C. or more to the winding roll. In the state where the optical film is wound up in a roll shape, the heat treatment is performed at 50 ° C. or more for 1 day or more. Further, cooling is performed while rewinding after completion of the heat treatment, and at that time, the optical film after the heat treatment is rewinded and passed through an atmosphere having a relative humidity of 10 to 70% RH or wound in the atmosphere. Are also found to be preferable.

以下、本発明を各要素毎に詳細に説明する。   Hereinafter, the present invention will be described in detail for each element.

(コーティング、加熱処理及び巻き返し)
本発明の機能性薄膜のコーティング、乾燥、それに続く加熱処理及び巻き返しの工程を図をもって説明する。図は本発明の好ましい例を示すものであり、これに限定されるものではない。
(Coating, heat treatment and rewinding)
The functional thin film coating, drying, subsequent heat treatment and rewinding steps of the present invention will be described with reference to the drawings. The figure shows a preferred example of the present invention and is not limited to this.

図1は、本発明に係るコーティング、乾燥工程とそれに続く加熱処理及び巻き返しの工程を示した概略図である。   FIG. 1 is a schematic view showing a coating and drying process according to the present invention followed by a heating process and a rewinding process.

長尺フィルムYは繰り出しロール1より繰り出され、搬送ローラー2により搬送され、押出しコータ3により機能性薄膜がコーティングされる。この時機能性薄膜は単層構成でも、複数から構成されている層でもよい。機能性薄膜がコーティングされた長尺フィルムYは、次いで第1乾燥ゾーン5により乾燥される。乾燥は長尺フィルムYの表面もしくは裏面或いは両面より、温湿度が制御された温風を吹き付けることにより施される。乾燥後、必要であれば活性光線照射ユニット6内の活性光線ランプ6aにより活性光線、例えば紫外線などを照射することにより薄膜を硬化する。或いは照射量や照射条件を制御してハーフキュア状態とすることも出来る。活性光線照射は、予め20〜120℃に温度制御された対向ロール4に長尺フィルムYを巻いた状態で行うことも出来る。活性光線を照射した後、更に必要であれば第2乾燥ゾーンで更に熱処理を行うことも出来る。搬送ローラー2を複数設置した第2乾燥ゾーン7により機能性薄膜を更に硬化させることも出来る。均一な機能性薄膜表面の硬化の為に、乾燥温度は第1、第2乾燥ゾーンとも50〜150℃の範囲で行うことが好ましい。   The long film Y is unwound from the unwinding roll 1, is transported by the transport roller 2, and is coated with a functional thin film by the extrusion coater 3. At this time, the functional thin film may have a single layer structure or a plurality of layers. The long film Y coated with the functional thin film is then dried by the first drying zone 5. Drying is performed by blowing warm air whose temperature and humidity are controlled from the front surface, back surface, or both surfaces of the long film Y. After drying, if necessary, the actinic ray lamp 6a in the actinic ray irradiation unit 6 is irradiated with actinic rays such as ultraviolet rays to cure the thin film. Alternatively, the half-cure state can be achieved by controlling the irradiation amount and irradiation conditions. Actinic ray irradiation can also be performed in a state where the long film Y is wound around the opposing roll 4 whose temperature is controlled to 20 to 120 ° C. in advance. After irradiation with actinic rays, if necessary, further heat treatment can be performed in the second drying zone. The functional thin film can be further cured by the second drying zone 7 in which a plurality of transport rollers 2 are installed. In order to cure the surface of the uniform functional thin film, the drying temperature is preferably in the range of 50 to 150 ° C. in both the first and second drying zones.

本発明は、機能性薄膜がコーティングされた光学フィルムを温度50℃以上でロール状に巻き取り、引き続き50℃以上で1日間以上の加熱処理を行うことが特徴である。   The present invention is characterized in that an optical film coated with a functional thin film is wound up in a roll shape at a temperature of 50 ° C. or higher, and subsequently heat-treated at 50 ° C. or higher for one day or longer.

本発明者らは、巻き取りの際の皺、ツレの発生の解析を行った中で、フィルム巻き取り時の温度を比較的高温で行い、引き続き加熱処理することにより巻き取ったロールの皺、ツレの発生を抑制出来るばかりでなく、機能性薄膜の色むら、周期ムラ、塗布幅手方向での中心と端部との差、ロールの巻外と巻中との差、ロット間の差などがない均一性の高い光学フィルムが得られることを見出し、本発明を成すに至った次第である。   The present inventors analyzed the occurrence of wrinkles and slippage at the time of winding, performing the temperature at the time of film winding at a relatively high temperature, and the wrinkles of the roll wound by subsequent heat treatment, Not only can the occurrence of slippage be suppressed, but also color unevenness of the functional thin film, periodic unevenness, difference between the center and end in the width direction, difference between roll unwinding and winding, difference between lots, etc. As a result, the present inventors have found that an optical film with high uniformity without any problem can be obtained, and have achieved the present invention.

本発明では、巻き取り室の雰囲気温度を50〜150℃の範囲に設定するか、または巻き取りロールに50℃以上の温風を当てながら巻き取ることが好ましい。   In this invention, it is preferable to wind up, setting the atmospheric temperature of a winding chamber to the range of 50-150 degreeC, or applying 50 degreeC or more warm air to a winding roll.

巻き取り室の雰囲気温度を50〜150℃するには、適当な熱源により巻き取り室に温風を導入し部屋全体を温度調整すればよい。或いは巻き取り部周辺をその温度にすることが出来る。或いは巻き取り工程の前に加熱工程を設け、フィルム温度が50℃未満に冷却される前に巻き取ることも好ましい。帯電防止、ゴミ付着防止対策として、温風は相対湿度10〜70%RHの範囲、好ましくは20〜70%RH、特に40〜60%RHに調整することが好ましい。また、温風がイオン風であることが好ましく、巻き取り部近傍に除電装置やエアークリーナーを設置することが好ましい。   In order to adjust the atmospheric temperature of the winding chamber to 50 to 150 ° C., warm air may be introduced into the winding chamber with an appropriate heat source to adjust the temperature of the entire room. Alternatively, the temperature around the winding portion can be set to that temperature. Or it is also preferable to provide a heating process before a winding process, and to wind up before a film temperature is cooled to less than 50 degreeC. As a measure for preventing electrification and dust adhesion, it is preferable to adjust the warm air to a relative humidity in the range of 10 to 70% RH, preferably 20 to 70% RH, particularly 40 to 60% RH. Moreover, it is preferable that warm air is an ion wind, and it is preferable to install a static elimination apparatus and an air cleaner in the vicinity of the winding part.

また、巻き取りロールに50℃以上の温風を当てながら巻き取る方法は、フィルム自体と巻き取りコアの温度を容易に合わせることが出来る為好ましい。巻き取りコアとフィルムの温度が異なると、コア上で皺が発生し良好な巻き形状のフィルムが得られないことが多かったが、この方法により改善することが可能である。また、巻き取り室全体を温度調整する方法に比較してコスト的に有利である。   Further, a method of winding while applying hot air of 50 ° C. or higher to the winding roll is preferable because the temperature of the film itself and the winding core can be easily matched. When the temperature of the winding core and the film are different, wrinkles are generated on the core and a film with a good winding shape is often not obtained. However, this method can be improved. Moreover, it is advantageous in terms of cost compared with a method of adjusting the temperature of the entire winding chamber.

巻き取りの速度は10〜80m/分が好ましい。   The winding speed is preferably 10 to 80 m / min.

図1では、温風吹き出し口10より巻き取りロール9に温風を吹き付けている例を示しているが、温風吹き出し口10は一つでも良いが、複数設けることによりフィルム及び巻き取りコアへの温度調整を短時間に精度よく出来る為好ましい。また、加熱されるゾーンを限定できる点でも好ましい方法である。   Although FIG. 1 shows an example in which warm air is blown from the hot air blowing port 10 to the take-up roll 9, one hot air blowing port 10 may be provided, but by providing a plurality of hot air blowing ports 10 to the film and the winding core. This is preferable because the temperature can be adjusted accurately in a short time. Moreover, it is a preferable method also at the point which can limit the zone heated.

巻き取りコアはどのような材質のものであってもよいが、好ましくは中空プラスチックコアであり、プラスチック材料としては加熱処理温度に耐える耐熱性プラスチックであればどのようなものであっても良く、例えばフェノール樹脂、キシレン樹脂、メラミン樹脂、ポリエステル樹脂、エポキシ樹脂などの樹脂が挙げられる。またガラス繊維などの充填材により強化した熱硬化性樹脂が好ましい。   The winding core may be of any material, but is preferably a hollow plastic core, and the plastic material may be any heat-resistant plastic that can withstand the heat treatment temperature, For example, resins such as a phenol resin, a xylene resin, a melamine resin, a polyester resin, and an epoxy resin can be given. A thermosetting resin reinforced with a filler such as glass fiber is preferable.

これらの巻き取りコアへの巻き数は、100巻き以上であることが好ましく、500巻き以上であることが更に好ましく、巻き厚は5〜200cmであることが好ましく、フィルムの幅は1〜4mであることが好ましく、1.4〜2mであることが特に好ましい。   The winding number of these winding cores is preferably 100 turns or more, more preferably 500 turns or more, the winding thickness is preferably 5 to 200 cm, and the film width is 1 to 4 m. It is preferable that it is 1.4 to 2 m.

温風を巻き取りコア及びその周辺部に直接吹き付ける方法の場合、複雑な構造を有するコアチャック部に熱膨張による歪みが発生しないように、コアチャック部への伝熱を防止することが好ましい。   In the case of a method in which hot air is directly blown onto the winding core and its peripheral portion, it is preferable to prevent heat transfer to the core chuck portion so that distortion due to thermal expansion does not occur in the core chuck portion having a complicated structure.

図2は本発明に好ましい巻き取りコア部の模式図である。   FIG. 2 is a schematic view of a winding core portion preferable for the present invention.

巻き取りコア15はコア支え軸16とコアチャック17により担持されている。コアチャック部への伝熱防止手段としては、コアチャックの材質をセラミックとしたり、コアチャック構造を先端部をセラミック、支持側に保温水(冷却水)を流したりして伝熱を防止する方法をとることが好ましい。加熱ゾーン19は、温風吹き出し口10の角度、取り付け位置、取り付け数を調整することにより、出来るだけ巻き取りコア15周辺に限定されることが好ましい。   The take-up core 15 is supported by a core support shaft 16 and a core chuck 17. As a means for preventing heat transfer to the core chuck, the core chuck is made of ceramic, the core chuck structure is made of ceramic at the tip, and heat retaining water (cooling water) is flowed to the support side to prevent heat transfer. It is preferable to take The heating zone 19 is preferably limited to the periphery of the take-up core 15 as much as possible by adjusting the angle, attachment position, and number of attachments of the hot air outlet 10.

また、コアをコアチャックにセットする前に予熱し、所望の温度にした後、巻き取り軸にセットする方法は温風吹き付けの負荷を減らす点から好ましい。   Also, a method of preheating the core before setting it on the core chuck, setting it to a desired temperature, and then setting it on the take-up shaft is preferable in terms of reducing the hot air blowing load.

温風の温度は50℃以上であることが好ましいが、光学フィルムのTg以下であることが好ましい。Tg以上で巻き取る場合は、一定の平面性を保つ為に光学フィルムが伸びない張力で巻き取る必要があり、前記加熱ゾーン前の速度と巻き取り周速が同一となるよう、巻き取り軸を調整することや、巻き取っているフィルム表面にロールを押しつけ巻き取ることが必要になる。そのような観点から温風の温度は、50〜150℃であることが好ましい。   The temperature of the hot air is preferably 50 ° C. or higher, but is preferably Tg or lower of the optical film. When winding at Tg or higher, the optical film needs to be wound at a tension that does not stretch in order to maintain a certain flatness, and the winding shaft is set so that the speed before the heating zone and the winding peripheral speed are the same. It is necessary to make adjustments and press the roll against the surface of the film being wound. From such a viewpoint, the temperature of the warm air is preferably 50 to 150 ° C.

上記巻き取られた光学フィルムロールは、引き続き50℃以上で1日間以上の加熱処理を行うことで、色むらの発生や該色むらの周期状のむら、塗布幅手方向での中心と端部との差、ロールの巻外と巻中との差、ロット間の差などのない、均一性の高い光学フィルムを得ることが出来る。   The wound optical film roll is then subjected to heat treatment at 50 ° C. or higher for 1 day or longer, thereby generating color unevenness, periodic unevenness of the color unevenness, center and end portions in the width direction of application. It is possible to obtain an optical film with high uniformity without any difference in roll, difference between roll unwinding and winding, and difference between lots.

本発明に係る加熱処理は、移動可能な台車12に巻き取られた光学フィルムロールを移動させ、図1のA〜Fで示される加熱ゾーンにて、必要な温度、必要な日数で加熱処理される。各加熱ゾーンは塵のないクリーンルームであることが好ましい。本発明では50℃以上で1日間以上加熱処理されることが必要であり、好ましい温度は50〜150℃、更に好ましくは60℃〜120℃、特に好ましくは70℃〜110℃である。保持する温度は設定温度の±5℃の範囲とすることが好ましい。A〜Fで示される加熱ゾーンは各々温度を変えることが出来るように設計されていることが好ましく、急激な温度上昇は光学フィルムロールの巻き内外の温度差を大きくする為、徐徐に温度を上昇させるようにすることが好ましく、例えば加熱ゾーンA〜Cで20℃〜30℃程度の温度差を付けて上昇させることが好ましい。また、加熱ゾーンの後半部D〜Fでは逆に徐々に温度を低下させることが好ましい。   In the heat treatment according to the present invention, the optical film roll wound around the movable carriage 12 is moved, and the heat treatment is performed at the required temperature and the required number of days in the heating zones indicated by A to F in FIG. The Each heating zone is preferably a clean room free of dust. In this invention, it is necessary to heat-process at 50 degreeC or more for 1 day or more, and preferable temperature is 50-150 degreeC, More preferably, it is 60 degreeC-120 degreeC, Most preferably, it is 70 degreeC-110 degreeC. The temperature to be held is preferably in the range of ± 5 ° C. of the set temperature. Each of the heating zones indicated by A to F is preferably designed so that the temperature can be changed. A sudden temperature rise increases the temperature difference between the inside and outside of the optical film roll. For example, it is preferable to increase the temperature in the heating zones A to C with a temperature difference of about 20 ° C. to 30 ° C. On the contrary, it is preferable to gradually lower the temperature in the second half portions D to F of the heating zone.

加熱処理の日数は3日間以上が好ましく、更に3〜30日間程度が、生産性及びコストの点から好ましい。特に所定の温度(温度一定の部分)が3日以上であることが好ましい。   The number of days for the heat treatment is preferably 3 days or more, and more preferably about 3 to 30 days from the viewpoint of productivity and cost. In particular, the predetermined temperature (temperature constant portion) is preferably 3 days or more.

加熱処理された光学フィルムは、冷却され次工程に送られる。   The heat-treated optical film is cooled and sent to the next step.

加熱処理が終了した光学フィルムロールは巻き返し工程13のゾーンGに設置され、光学フィルムの巻き返しを行いながら室温まで冷却し、巻き返しロール14を得ることが好ましい。更に、本発明では光学フィルムを巻き返しながら巻き返し工程のゾーンH〜J間で、相対湿度10〜70%RHの雰囲気を通過させるか、該雰囲気で巻き取ることが好ましい。相対湿度は、好ましくは20〜70%RH、特に40〜60%RHであると、静電気故障や巻き姿の崩れはなく良好な光学フィルムロールを得ることが出来る。   The optical film roll after the heat treatment is installed in the zone G of the rewinding step 13 and is preferably cooled to room temperature while rewinding the optical film to obtain the rewind roll 14. Further, in the present invention, it is preferable to pass an atmosphere having a relative humidity of 10 to 70% RH between the zones H to J of the rewinding process while winding the optical film, or to wind in the atmosphere. When the relative humidity is preferably 20 to 70% RH, particularly 40 to 60% RH, a good optical film roll can be obtained without static electricity failure or collapse of the winding shape.

フィルム巻き替えの速度は、1〜200m/分、好ましくは10〜100m/分の範囲が好ましい。巻き替え時には、フィルムを引き出した状態で少なくとも1本以上のローラーと接触させて巻き取ることが、フィルム温度を低下させるためにも好ましい。   The film rewinding speed is 1 to 200 m / min, preferably 10 to 100 m / min. At the time of rewinding, it is preferable that the film is drawn out and brought into contact with at least one roller in order to lower the film temperature.

これらのロールの回転や巻き替えを行う際は、フィルムに静電気故障や傷が発生する可能性があり、除電装置の設置やクリーンルームでの実施が好ましく、又巻き替え時の接触ローラ表面は平滑性の高いものを用いることが好ましい。   When rotating or rewinding these rolls, there is a possibility that static electricity failure or scratches may occur on the film. It is preferable to install a static eliminator or in a clean room. The surface of the contact roller during rewinding is smooth. It is preferable to use one having a high value.

(長尺フィルム)
次に、本発明で用いることの出来る長尺フィルムについて説明する。
(Long film)
Next, the long film that can be used in the present invention will be described.

本発明に係る長尺フィルムとしては、製造が容易であること、機能性薄膜との接着性がよいこと、光学的に等方性である、光学的に透明であること等が好ましい要件として挙げられる。   As a long film according to the present invention, it is preferable that it is easy to manufacture, has good adhesion with a functional thin film, is optically isotropic, and is optically transparent. It is done.

本発明でいう透明とは、可視光の透過率60%以上であることを指し、好ましくは80%以上であり、特に好ましくは90%以上である。   The term “transparent” as used in the present invention means that the visible light transmittance is 60% or more, preferably 80% or more, and particularly preferably 90% or more.

上記の性質を有していれば特に限定はないが、例えば、ポリエステル系フィルム、ポリカーボネート系フィルム、ポリアリレート系フィルム、ポリスルホン(ポリエーテルスルホンも含む)系フィルム、ポリエチレンテレフタレート、ポリエチレンナフタレート等のポリエステルフィルム、ポリエチレンフィルム、ポリプロピレンフィルム、セロファン、セルロースジアセテートフィルム、セルローストリアセテートフィルム、セルロースアセテートブチレートフィルム、セルロースアセテートプロピオネートフィルム等のセルロースエステル系フィルム、ポリ塩化ビニリデンフィルム、ポリビニルアルコールフィルム、エチレンビニルアルコールフィルム、シンジオタクティックポリスチレン系フィルム、ポリカーボネートフィルム、シクロオレフィンポリマーフィルム(アートン(JSR社製)、ゼオネックス、ゼオノア(以上、日本ゼオン社製))、ポリメチルペンテンフィルム、ポリエーテルケトンフィルム、ポリエーテルケトンイミドフィルム、ポリアミドフィルム、フッ素樹脂フィルム、ナイロンフィルム、ポリメチルメタクリレートフィルム、アクリルフィルムまたはガラス板等を挙げることが出来る。中でも、セルロースエステル系フィルム、ポリカーボネート系フィルム、ポリスルホン(ポリエーテルスルホンを含む)が好ましく、本発明においては、特にセルロースエステル系フィルム(例えば、コニカミノルタタック 製品名KC8UX2MW、KC4UX2MW、KC8UY、KC4UY、KC5UN、KC12UR、KC8UCR3、KC8UCR4、KC8UCR5、KC8UX−H(コニカミノルタ(株)製))が、製造上、コスト面、透明性、等方性、接着性等の観点から好ましく用いられる。これらのフィルムは、溶融流延製膜で製造されたフィルムであっても、溶液流延製膜で製造されたフィルムであってもよい。   Although it will not specifically limit if it has said property, For example, polyester films, such as polyester film, polycarbonate film, polyarylate film, polysulfone (including polyethersulfone) film, polyethylene terephthalate, polyethylene naphthalate Film, polyethylene film, polypropylene film, cellophane, cellulose diacetate film, cellulose triacetate film, cellulose acetate butyrate film, cellulose acetate film such as cellulose acetate propionate film, polyvinylidene chloride film, polyvinyl alcohol film, ethylene vinyl alcohol Film, syndiotactic polystyrene film, polycarbonate film, shiku Olefin polymer film (Arton (manufactured by JSR), ZEONEX, ZEONOR (manufactured by ZEON CORPORATION)), polymethylpentene film, polyetherketone film, polyetherketoneimide film, polyamide film, fluororesin film, nylon film, A polymethyl methacrylate film, an acrylic film, a glass plate, etc. can be mentioned. Among them, a cellulose ester film, a polycarbonate film, and a polysulfone (including polyether sulfone) are preferable, and in the present invention, a cellulose ester film (for example, Konica Minoltack product names KC8UX2MW, KC4UX2MW, KC8UY, KC4UY, KC5UN, KC12UR, KC8UCR3, KC8UCR4, KC8UCR5, KC8UX-H (manufactured by Konica Minolta Co., Ltd.) are preferably used from the viewpoints of production, cost, transparency, isotropic properties, adhesiveness, and the like. These films may be films produced by melt casting film formation or films produced by solution casting film formation.

長尺フィルムの光学特性としては膜厚方向のリターデーションRtが−300nm〜300nm、面内方向のリターデーションR0が0nm〜1000nmのものが好ましく用いられる。 Retardation R t in the thickness direction as the optical properties of the long film is -300Nm~300nm, retardation R 0 in the plane direction those 0nm~1000nm is preferably used.

本発明においては、長尺フィルムとしてはセルロースエステルフィルムを用いることが好ましい。セルロースエステルとしては、セルロースアセテート、セルロースアセテートブチレート、セルロースアセテートプロピオネートが好ましく、中でもセルロースアセテートブチレート、セルロースアセテートフタレート、セルロースアセテートプロピオネートが好ましく用いられる。   In the present invention, it is preferable to use a cellulose ester film as the long film. As the cellulose ester, cellulose acetate, cellulose acetate butyrate, and cellulose acetate propionate are preferable. Among them, cellulose acetate butyrate, cellulose acetate phthalate, and cellulose acetate propionate are preferably used.

特にアセチル基の置換度をX、プロピオニル基またはブチリル基の置換度をYとした時、XとYが下記の範囲にあるセルロースの混合脂肪酸エステルを有するフィルムが好ましく用いられる。   In particular, a film having a mixed fatty acid ester of cellulose in which X and Y are in the following ranges when the substitution degree of the acetyl group is X and the substitution degree of the propionyl group or butyryl group is Y is preferably used.

2.3≦X+Y≦3.0
0.1≦Y≦1.2
特に、2.5≦X+Y≦2.85
0.3≦Y≦1.2であることが好ましい。
2.3 ≦ X + Y ≦ 3.0
0.1 ≦ Y ≦ 1.2
In particular, 2.5 ≦ X + Y ≦ 2.85
It is preferable that 0.3 ≦ Y ≦ 1.2.

本発明に係る長尺フィルムとして、セルロースエステルを用いる場合、セルロースエステルの原料のセルロースとしては、特に限定はないが、綿花リンター、木材パルプ(針葉樹由来、広葉樹由来)、ケナフ等を挙げることが出来る。またそれらから得られたセルロースエステルはそれぞれ任意の割合で混合使用することが出来る。これらのセルロースエステルは、アシル化剤が酸無水物(無水酢酸、無水プロピオン酸、無水酪酸)である場合には、酢酸のような有機酸やメチレンクロライド等の有機溶媒を用い、硫酸のようなプロトン性触媒を用いてセルロース原料と反応させて得ることが出来る。   When cellulose ester is used as the long film according to the present invention, cellulose as a raw material for cellulose ester is not particularly limited, and examples thereof include cotton linter, wood pulp (derived from coniferous tree, derived from broadleaf tree), kenaf and the like. . Moreover, the cellulose ester obtained from them can be mixed and used in arbitrary ratios, respectively. When the acylating agent is an acid anhydride (acetic anhydride, propionic anhydride, butyric anhydride), these cellulose esters use an organic solvent such as acetic acid or an organic solvent such as methylene chloride, and It can be obtained by reacting with a cellulose raw material using a protic catalyst.

アシル化剤が酸クロライド(CH3COCl、C25COCl、C37COCl)の場合には、触媒としてアミンのような塩基性化合物を用いて反応が行われる。具体的には、特開平10−45804号に記載の方法等を参考にして合成することが出来る。また、本発明に用いられるセルロースエステルは各置換度に合わせて上記アシル化剤量を混合して反応させたものであり、セルロースエステルはこれらアシル化剤がセルロース分子の水酸基に反応する。セルロース分子はグルコースユニットが多数連結したものからなっており、グルコースユニットに3個の水酸基がある。この3個の水酸基にアシル基が誘導された数を置換度という。例えば、セルローストリアセテートはグルコースユニットの3個の水酸基全てにアセチル基が結合している(実際には2.6〜3.0)。 When the acylating agent is acid chloride (CH 3 COCl, C 2 H 5 COCl, C 3 H 7 COCl), the reaction is carried out using a basic compound such as an amine as a catalyst. Specifically, it can be synthesized with reference to the method described in JP-A-10-45804. In addition, the cellulose ester used in the present invention is obtained by mixing and reacting the amount of the acylating agent in accordance with the degree of substitution. In the cellulose ester, these acylating agents react with hydroxyl groups of cellulose molecules. Cellulose molecules are composed of many glucose units linked together, and the glucose unit has three hydroxyl groups. The number of acyl groups derived from these three hydroxyl groups is called the degree of substitution. For example, cellulose triacetate has acetyl groups bonded to all three hydroxyl groups of the glucose unit (actually 2.6 to 3.0).

本発明に用いられるセルロースエステルとしては、セルロースアセテートプロピオネート、セルロースアセテートブチレート、またはセルロースアセテートプロピオネートブチレートのようなアセチル基の他にプロピオネート基またはブチレート基が結合したセルロースの混合脂肪酸エステルが特に好ましく用いられる。尚、ブチレートを形成するブチリル基としては、直鎖状でも分岐していてもよい。また、炭素数が4以上のアシル基或いはカルバモイル基を有するセルロースエステルフィルムであってもよい。   The cellulose ester used in the present invention is a mixed fatty acid ester of cellulose in which a propionate group or a butyrate group is bonded in addition to an acetyl group such as cellulose acetate propionate, cellulose acetate butyrate, or cellulose acetate propionate butyrate. Is particularly preferably used. The butyryl group forming butyrate may be linear or branched. Moreover, the cellulose ester film which has a C4 or more acyl group or carbamoyl group may be sufficient.

プロピオネート基を置換基として含むセルロースアセテートプロピオネートは耐水性に優れ、液晶画像表示装置用のフィルムとして有用である。   Cellulose acetate propionate containing a propionate group as a substituent has excellent water resistance and is useful as a film for liquid crystal image display devices.

アシル基の置換度の測定方法はASTM−D817−96の規定に準じて測定することが出来る。   The measuring method of the substitution degree of an acyl group can be measured according to the provisions of ASTM-D817-96.

セルロースエステルの数平均分子量は、70000〜250000が、成型した場合の機械的強度が強く、かつ、適度なドープ粘度となり好ましく、更に好ましくは、80000〜150000である。   The number average molecular weight of the cellulose ester is preferably 70000 to 250,000, since it has a high mechanical strength when molded and an appropriate dope viscosity, and more preferably 80000 to 150,000.

これらセルロースエステルは、一般的に溶液流延製膜法と呼ばれるセルロースエステル溶解液(ドープ)を、例えば、無限に移送する無端の金属ベルトまたは回転する金属ドラムの流延用支持体上に加圧ダイからドープを流延(キャスティング)し製膜する方法で製造されることが好ましい。   These cellulose esters are pressurized by applying a cellulose ester solution (dope) generally called a solution casting film forming method onto, for example, an endless metal belt for infinite transport or a support for casting of a rotating metal drum. It is preferable to manufacture the dope from a die by casting (casting).

これらドープの調製に用いられる有機溶媒としては、セルロースエステルを溶解出来、かつ、適度な沸点であることが好ましく、例えば、メチレンクロライド、酢酸メチル、酢酸エチル、酢酸アミル、アセト酢酸メチル、アセトン、テトラヒドロフラン、1,3−ジオキソラン、1,4−ジオキサン、シクロヘキサノン、蟻酸エチル、2,2,2−トリフルオロエタノール、2,2,3,3−テトラフルオロ−1−プロパノール、1,3−ジフルオロ−2−プロパノール、1,1,1,3,3,3−ヘキサフルオロ−2−メチル−2−プロパノール、1,1,1,3,3,3−ヘキサフルオロ−2−プロパノール、2,2,3,3,3−ペンタフルオロ−1−プロパノール、ニトロエタン、1,3−ジメチル−2−イミダゾリジノン等を挙げることが出来るが、メチレンクロライド等の有機ハロゲン化合物、ジオキソラン誘導体、酢酸メチル、酢酸エチル、アセトン、アセト酢酸メチル等が好ましい有機溶媒(即ち、良溶媒)として挙げられる。   The organic solvent used for the preparation of these dopes is preferably capable of dissolving the cellulose ester and having an appropriate boiling point, for example, methylene chloride, methyl acetate, ethyl acetate, amyl acetate, methyl acetoacetate, acetone, tetrahydrofuran 1,3-dioxolane, 1,4-dioxane, cyclohexanone, ethyl formate, 2,2,2-trifluoroethanol, 2,2,3,3-tetrafluoro-1-propanol, 1,3-difluoro-2 -Propanol, 1,1,1,3,3,3-hexafluoro-2-methyl-2-propanol, 1,1,1,3,3,3-hexafluoro-2-propanol, 2,2,3 , 3,3-pentafluoro-1-propanol, nitroethane, 1,3-dimethyl-2-imidazolidinone, etc. It is possible, organic halogen compounds such as methylene chloride, dioxolane derivatives, methyl acetate, ethyl acetate, acetone, methyl acetoacetate, and the like are preferable organic solvents (i.e., good solvent), and as.

また、下記の製膜工程に示すように、溶媒蒸発工程において流延用支持体上に形成されたウェブ(ドープ膜)から溶媒を乾燥させる時に、ウェブ中の発泡を防止する観点から、用いられる有機溶媒の沸点としては、30〜80℃が好ましく、例えば、上記記載の良溶媒の沸点は、メチレンクロライド(沸点40.4℃)、酢酸メチル(沸点56.32℃)、アセトン(沸点56.3℃)、酢酸エチル(沸点76.82℃)等である。   Moreover, as shown in the following film forming process, it is used from the viewpoint of preventing foaming in the web when the solvent is dried from the web (dope film) formed on the casting support in the solvent evaporation process. The boiling point of the organic solvent is preferably 30 to 80 ° C. For example, the good solvent described above has a boiling point of methylene chloride (boiling point 40.4 ° C), methyl acetate (boiling point 56.32 ° C), acetone (boiling point 56.56 ° C). 3 ° C.), ethyl acetate (boiling point 76.82 ° C.) and the like.

上記記載の良溶媒の中でも溶解性に優れるメチレンクロライド或いは酢酸メチルが好ましく用いられる。   Among the good solvents described above, methylene chloride or methyl acetate, which is excellent in solubility, is preferably used.

上記有機溶媒の他に、0.1質量%〜40質量%の炭素原子数1〜4のアルコールを含有させることが好ましい。特に好ましくは5〜30質量%で前記アルコールが含まれることが好ましい。これらは上記記載のドープを流延用支持体に流延後、溶媒が蒸発を始めアルコールの比率が多くなるとウェブ(ドープ膜)がゲル化し、ウェブを丈夫にし流延用支持体から剥離することを容易にするゲル化溶媒として用いられたり、これらの割合が少ない時は非塩素系有機溶媒のセルロースエステルの溶解を促進する役割もある。   It is preferable to contain 0.1 mass%-40 mass% of C1-C4 alcohol other than the said organic solvent. It is particularly preferable that the alcohol is contained at 5 to 30% by mass. After casting the dope described above onto a casting support, the solvent starts to evaporate and the alcohol ratio increases and the web (dope film) gels, making the web strong and peeling from the casting support. It is also used as a gelling solvent for facilitating the dissolution, and when these ratios are small, it also has a role of promoting dissolution of the cellulose ester of the non-chlorine organic solvent.

炭素原子数1〜4のアルコールとしては、メタノール、エタノール、n−プロパノール、iso−プロパノール、n−ブタノール、sec−ブタノール、tert−ブタノール等を挙げることが出来る。   Examples of the alcohol having 1 to 4 carbon atoms include methanol, ethanol, n-propanol, iso-propanol, n-butanol, sec-butanol, tert-butanol and the like.

これらの溶媒のうち、ドープの安定性がよく、沸点も比較的低く、乾燥性もよく、かつ毒性がないこと等からエタノールが好ましい。好ましくは、メチレンクロライド70質量%〜95質量%に対してエタノール5質量%〜30質量%を含む溶媒を用いることが好ましい。メチレンクロライドの代わりに酢酸メチルを用いることも出来る。このとき、冷却溶解法によりドープを調製してもよい。   Of these solvents, ethanol is preferred because it has good dope stability, relatively low boiling point, good drying properties, and no toxicity. It is preferable to use a solvent containing 5% by mass to 30% by mass of ethanol with respect to 70% by mass to 95% by mass of methylene chloride. Methyl acetate can be used in place of methylene chloride. At this time, the dope may be prepared by a cooling dissolution method.

本発明で用いられるセルロースエステルフィルムは少なくとも幅手方向に延伸されたものが好ましく、特に溶液流延工程で残留溶媒量が3質量%〜40質量%である時に幅手方向に1.01倍〜1.5倍に延伸されたものであることが好ましい。より好ましくは幅手方向と長手方向に2軸延伸することであり、残留溶媒料が3質量%〜40質量%である時に幅手方向及び長手方向に、各々1.01倍〜1.5倍に延伸されることが望ましい。この様にすることにより、平面性及び寸法安定性に優れたフィルムを得ることが出来る。   The cellulose ester film used in the present invention is preferably at least stretched in the width direction, and is 1.01 times to the width direction when the residual solvent amount is 3% by mass to 40% by mass in the solution casting process. The film is preferably stretched 1.5 times. More preferably, biaxial stretching is performed in the width direction and the longitudinal direction, and when the residual solvent is 3% by mass to 40% by mass, the width direction and the longitudinal direction are 1.01 times to 1.5 times, respectively. It is desirable to be stretched. By doing in this way, the film excellent in planarity and dimensional stability can be obtained.

尚、残留溶媒量は下記の式により表される。   The residual solvent amount is represented by the following formula.

残留溶媒量(質量%)={(M−N)/N}×100
ここで、Mはウェブ(溶媒を含有したセルロースエステルフィルム)の任意時点における質量、NはMのウェブを110℃で3時間乾燥させた時の質量である。
Residual solvent amount (% by mass) = {(MN) / N} × 100
Here, M is the mass of the web (cellulose ester film containing the solvent) at an arbitrary point in time, and N is the mass when the web of M is dried at 110 ° C. for 3 hours.

本発明においては、上記2軸延伸されたセルロースエステルフィルムは、光透過率が90%以上、より好ましくは93%以上の透明支持体であることが好ましい。   In the present invention, the biaxially stretched cellulose ester film is preferably a transparent support having a light transmittance of 90% or more, more preferably 93% or more.

本発明に係るセルロースエステルフィルム支持体は、その厚さが10μm〜100μmのものが好ましく、更に好ましくは40μm〜80μmであり、透湿性は、JIS Z 0208(25℃、90%RH)に準じて測定した値として、200g/m2・24時間以下であることが好ましく、更に好ましくは、10〜180g/m2・24時間以下であり、特に好ましくは、10〜160g/m2・24時間以下である。特には、膜厚10μm〜80μmで透湿性が上記範囲内であることが好ましい。 The cellulose ester film support according to the present invention preferably has a thickness of 10 μm to 100 μm, more preferably 40 μm to 80 μm, and moisture permeability conforms to JIS Z 0208 (25 ° C., 90% RH). The measured value is preferably 200 g / m 2 · 24 hours or less, more preferably 10 to 180 g / m 2 · 24 hours or less, and particularly preferably 10 to 160 g / m 2 · 24 hours or less. It is. In particular, it is preferable that the film thickness is 10 μm to 80 μm and the moisture permeability is within the above range.

本発明の長尺フィルムは、具体的には、100m〜5000m程度の長さのものを示し、通常、ロール状で提供される形態のものである。また、本発明の光学フィルムに用いられる長尺フィルムの幅は1m以上であることが好ましく、更に好ましくは1.4m以上であり、特に1.4〜4mであることが好ましい。   The long film of the present invention specifically has a length of about 100 m to 5000 m, and is usually in the form of a roll. The width of the long film used for the optical film of the present invention is preferably 1 m or more, more preferably 1.4 m or more, and particularly preferably 1.4 to 4 m.

本発明の長尺フィルムにセルロースエステルフィルムを用いる場合、柔軟性、透湿性、寸法安定性の観点から、下記のような可塑剤を含有するのが好ましい。可塑剤としては、例えば、リン酸エステル系可塑剤、フタル酸エステル系可塑剤、トリメリット酸エステル系可塑剤、ピロメリット酸系可塑剤、グリコレート系可塑剤、クエン酸エステル系可塑剤多価アルコールエステル系可塑剤、ポリエステル系可塑剤等を好ましく用いることが出来る。   When a cellulose ester film is used for the long film of the present invention, it is preferable to contain the following plasticizer from the viewpoints of flexibility, moisture permeability, and dimensional stability. Examples of plasticizers include phosphate ester plasticizers, phthalate ester plasticizers, trimellitic acid ester plasticizers, pyromellitic acid plasticizers, glycolate plasticizers, and citrate ester plasticizers. Alcohol ester plasticizers, polyester plasticizers, and the like can be preferably used.

リン酸エステル系可塑剤では、トリフェニルホスフェート、トリクレジルホスフェート、クレジルジフェニルホスフェート、オクチルジフェニルホスフェート、ジフェニルビフェニルホスフェート、トリオクチルホスフェート、トリブチルホスフェート等、フタル酸エステル系可塑剤では、ジエチルフタレート、ジメトキシエチルフタレート、ジメチルフタレート、ジオクチルフタレート、ジブチルフタレート、ジ−2−エチルヘキシルフタレート、ブチルベンジルフタレート、ジフェニルフタレート、ジシクロヘキシルフタレート等、トリメリット酸系可塑剤では、トリブチルトリメリテート、トリフェニルトリメリテート、トリエチルトリメリテート等、ピロメリット酸エステル系可塑剤では、テトラブチルピロメリテート、テトラフェニルピロメリテート、テトラエチルピロメリテート等、グリコレート系可塑剤では、トリアセチン、トリブチリン、エチルフタリルエチルグリコレート、メチルフタリルエチルグリコレート、ブチルフタリルブチルグリコレート等、クエン酸エステル系可塑剤では、トリエチルシトレート、トリ−n−ブチルシトレート、アセチルトリエチルシトレート、アセチルトリ−n−ブチルシトレート、アセチルトリ−n−(2−エチルヘキシル)シトレート等を好ましく用いることが出来る。その他のカルボン酸エステルの例には、トリメチロールプロパントリベンゾエート、オレイン酸ブチル、リシノール酸メチルアセチル、セバシン酸ジブチル、種々のトリメリット酸エステルが含まれる。   For phosphate plasticizers, triphenyl phosphate, tricresyl phosphate, cresyl diphenyl phosphate, octyl diphenyl phosphate, diphenylbiphenyl phosphate, trioctyl phosphate, tributyl phosphate, etc. For phthalate ester plasticizers, diethyl phthalate, dimethoxy Ethyl phthalate, dimethyl phthalate, dioctyl phthalate, dibutyl phthalate, di-2-ethylhexyl phthalate, butyl benzyl phthalate, diphenyl phthalate, dicyclohexyl phthalate, and other trimellitic acid plasticizers include tributyl trimellitate, triphenyl trimellitate, triethyl For pyromellitic acid ester plasticizers such as trimellitate, tetrabutylpyromellitate, In the case of glycolate plasticizers such as lupyromelitate and tetraethylpyromellitate, triacetin, tributyrin, ethylphthalylethyl glycolate, methylphthalylethylglycolate, butylphthalylbutylglycolate, etc. Citrate, tri-n-butyl citrate, acetyl triethyl citrate, acetyl tri-n-butyl citrate, acetyl tri-n- (2-ethylhexyl) citrate and the like can be preferably used. Examples of other carboxylic acid esters include trimethylolpropane tribenzoate, butyl oleate, methylacetyl ricinoleate, dibutyl sebacate, and various trimellitic acid esters.

ポリエステル系可塑剤として脂肪族二塩基酸、脂環式二塩基酸、芳香族二塩基酸等の二塩基酸とグリコールの共重合ポリマーを用いることが出来る。脂肪族二塩基酸としては特に限定されないが、アジピン酸、セバシン酸、フタル酸、テレフタル酸、1,4−シクロヘキシルジカルボン酸等を用いることが出来る。グリコールとしては、エチレングリコール、ジエチレングリコール、1,3−プロピレングリコール、1,2−プロピレングリコール、1,4−ブチレングリコール、1,3−ブチレングリコール、1,2−ブチレングリコール等を用いることが出来る。これらの二塩基酸及びグリコールはそれぞれ単独で用いてもよいし、二種以上混合して用いてもよい。   As the polyester plasticizer, a copolymer of a dibasic acid such as an aliphatic dibasic acid, an alicyclic dibasic acid, or an aromatic dibasic acid and a glycol can be used. The aliphatic dibasic acid is not particularly limited, and adipic acid, sebacic acid, phthalic acid, terephthalic acid, 1,4-cyclohexyl dicarboxylic acid and the like can be used. As the glycol, ethylene glycol, diethylene glycol, 1,3-propylene glycol, 1,2-propylene glycol, 1,4-butylene glycol, 1,3-butylene glycol, 1,2-butylene glycol and the like can be used. These dibasic acids and glycols may be used alone or in combination of two or more.

多価アルコールエステル系の可塑剤は、本発明においては、一分子中に複数の水酸基を有する化合物と、複数の1価の有機酸とが縮合した化合物を、多価アルコールエステル系可塑剤と称する。   In the present invention, the polyhydric alcohol ester plasticizer refers to a compound obtained by condensing a compound having a plurality of hydroxyl groups in one molecule and a plurality of monovalent organic acids as a polyhydric alcohol ester plasticizer. .

好ましい多価アルコールの例としては、例えば以下のようなものを挙げることが出来るが、本発明はこれらに限定されるものではない。アドニトール、アラビトール、エチレングリコール、ジエチレングリコール、トリエチレングリコール、テトラエチレングリコール、1,2−プロパンジオール、1,3−プロパンジオール、ジプロピレングリコール、トリプロピレングリコール、1,2−ブタンジオール、1,3−ブタンジオール、1,4−ブタンジオール、ジブチレングリコール、1,2,4−ブタントリオール、1,5−ペンタンジオール、2−メチル−2,4−ペンタンジオール、2,2,4−トリメチルペンタン−1,3−ジオール、1,6−ヘキサンジオール、1,2,3−ヘキサントリオール、1,2,6−ヘキサントリオール、グリセリン、ジグリセリン、エリスリトール、ペンタエリスリトール、ジペンタエリスリトール、トリペンタエリスリトール、ガラクチトール、グルコース、セロビオース、イノシトール、マンニトール、3−メチルペンタン−1,3,5−トリオール、ピナコール、ソルビトール、トリメチロールプロパン、トリメチロールエタン、キシリトール等を挙げることが出来る。特に、ジエチレングリコール、トリエチレングリコール、グリセリン、トリメチロールエタン、トリメチロールプロパン、ペンタエリスリトールが好ましい。   Examples of preferred polyhydric alcohols include the following, but the present invention is not limited to these. Adonitol, arabitol, ethylene glycol, diethylene glycol, triethylene glycol, tetraethylene glycol, 1,2-propanediol, 1,3-propanediol, dipropylene glycol, tripropylene glycol, 1,2-butanediol, 1,3- Butanediol, 1,4-butanediol, dibutylene glycol, 1,2,4-butanetriol, 1,5-pentanediol, 2-methyl-2,4-pentanediol, 2,2,4-trimethylpentane- 1,3-diol, 1,6-hexanediol, 1,2,3-hexanetriol, 1,2,6-hexanetriol, glycerin, diglycerin, erythritol, pentaerythritol, dipentaerythritol, tripentaerythritol, gas Kuchitoru, glucose, cellobiose, inositol, mannitol, 3-methylpentane-1,3,5-triol, pinacol, sorbitol, trimethylolpropane, trimethylolethane, and xylitol. In particular, diethylene glycol, triethylene glycol, glycerin, trimethylolethane, trimethylolpropane, and pentaerythritol are preferable.

また、好ましい有機酸の例としては、酢酸、プロピオン酸、酪酸、イソ酪酸、ピバリン酸、アクリル酸、メタクリル酸、シクロヘキサンカルボン酸、安息香酸、ナフトエ酸等が挙げられるが、セルロースエステルの透湿度を低減する効果が高い不飽和カルボン酸によって多価アルコールエステルを形成していることが好ましい。   Examples of preferable organic acids include acetic acid, propionic acid, butyric acid, isobutyric acid, pivalic acid, acrylic acid, methacrylic acid, cyclohexanecarboxylic acid, benzoic acid, naphthoic acid, and the like. It is preferable that the polyhydric alcohol ester is formed of an unsaturated carboxylic acid having a high effect of reducing.

多価アルコールエステルに用いられる不飽和カルボン酸は1種類でもよいし、2種以上の混合であってもよい。また、多価アルコール中のOH基は、全てエステル化してもよいし、一部をOH基のままで残してもよい。   The unsaturated carboxylic acid used in the polyhydric alcohol ester may be one type or a mixture of two or more types. Moreover, all the OH groups in the polyhydric alcohol may be esterified, or a part of the OH groups may be left as they are.

このような多価アルコールエステル系可塑剤の具体例の内、例えば、エチレングリコール系の可塑剤としては、エチレングリコールジアセテート、エチレングリコールジブチレート等のエチレングリコールアルキルエステル系の可塑剤、エチレングリコールジシクロプロピルカルボキシレート、エチレングリコールジシクロヘキルカルボキシレート等のエチレングリコールシクロアルキルエステル系の可塑剤、エチレングリコールジベンゾエート、エチレングリコールジ4−メチルベンゾエート等が挙げられる。   Among specific examples of such polyhydric alcohol ester plasticizers, for example, ethylene glycol plasticizers include ethylene glycol alkyl ester plasticizers such as ethylene glycol diacetate and ethylene glycol dibutyrate, and ethylene glycol dibutylate. Examples thereof include ethylene glycol cycloalkyl ester plasticizers such as cyclopropylcarboxylate and ethylene glycol dicyclohexylcarboxylate, ethylene glycol dibenzoate, and ethylene glycol di4-methylbenzoate.

またグリセリンエステル系の可塑剤の具体例としては、トリアセチン、トリブチリン、グリセリンジアセテートカプリレート、グリセリンオレートプロピオネート等のグリセリンアルキルエステル、グリセリントリシクロプロピルカルボキシレート、グリセリントリシクロヘキシルカルボキシレート等のグリセリンシクロアルキルエステル、グリセリントリベンゾエート、グリセリン4−メチルベンゾエート等のグリセリンアリールエステル、ジグリセリンテトラアセチレート、ジグリセリンテトラプロピオネート、ジグリセリンアセテートトリカプリレート、ジグリセリンテトララウレート、等のジグリセリンアルキルエステル、ジグリセリンテトラシクロブチルカルボキシレート、ジグリセリンテトラシクロペンチルカルボキシレート等のジグリセリンシクロアルキルエステル、ジグリセリンテトラベンゾエート、ジグリセリン3−メチルベンゾエート等が挙げられる。   Specific examples of glycerin ester plasticizers include glycerin alkyl esters such as triacetin, tributyrin, glycerin diacetate caprylate, glycerin oleate propionate, and glycerin cycloesters such as glycerin tricyclopropyl carboxylate and glycerin tricyclohexyl carboxylate. Diglycerol alkyl esters such as alkyl esters, glycerol aryl esters such as glycerol tribenzoate, glycerol 4-methylbenzoate, diglycerol tetraacetylate, diglycerol tetrapropionate, diglycerol acetate tricaprylate, diglycerol tetralaurate , Diglycerin tetracyclobutylcarboxylate, diglycerin tetracyclopentylcarboxylate, etc. Diglycerol cycloalkyl esters, diglycerin tetrabenzoate, diglycerin 3-methylbenzoate or the like.

上記以外の多価アルコールエステル系可塑剤の具体例としては、特開2003−12823公報の段落番号〔30〜33〕記載の化合物、または特願2004−356546公報の化2〜化12に記載の化合物が挙げられる。   Specific examples of polyhydric alcohol ester plasticizers other than those described above include the compounds described in paragraph Nos. [30 to 33] of JP-A No. 2003-12823, or the chemical formulas 2 to 12 of Japanese Patent Application No. 2004-356546. Compounds.

なお上記に挙げた可塑剤は、多価アルコール部または有機酸部ともに、更にアルキル基、アルコキシ基、アシル基、オキシカルボニル基、カルボニルオキシ基等によって更に置換されていても良く、またこれら置換基同士が共有結合で結合していても良い。或いはこれらの構造がポリマーの一部であったり、或いは規則的にペンダントされていても良く、また酸化防止剤、酸捕捉剤、紫外線吸収剤等の添加剤の分子構造の一部に導入されていても良い。   The plasticizer listed above may be further substituted with an alkyl group, an alkoxy group, an acyl group, an oxycarbonyl group, a carbonyloxy group or the like in both the polyhydric alcohol part or the organic acid part. They may be bonded by a covalent bond. Alternatively, these structures may be part of the polymer, or may be regularly pendant, and are introduced into part of the molecular structure of additives such as antioxidants, acid scavengers, and UV absorbers. May be.

これらの可塑剤の使用量は、フィルム性能、加工性等の点で、セルロースエステルに対して1質量%〜20質量%が好ましく、特に好ましくは、3質量%〜13質量%である。   The amount of these plasticizers used is preferably 1% by mass to 20% by mass and particularly preferably 3% by mass to 13% by mass with respect to the cellulose ester in terms of film performance, processability and the like.

本発明の長尺フィルムには、紫外線吸収剤が好ましく用いられる。   An ultraviolet absorber is preferably used for the long film of the present invention.

紫外線吸収剤としては、波長370nm以下の紫外線の吸収能に優れ、かつ良好な液晶表示性の観点から、波長400nm以上の可視光の吸収が少ないものが好ましく用いられる。   As the ultraviolet absorber, those excellent in the ability to absorb ultraviolet rays having a wavelength of 370 nm or less and having little absorption of visible light having a wavelength of 400 nm or more are preferably used from the viewpoint of good liquid crystal display properties.

本発明に好ましく用いられる紫外線吸収剤の具体例としては、例えば、オキシベンゾフェノン系化合物、ベンゾトリアゾール系化合物、サリチル酸エステル系化合物、ベンゾフェノン系化合物、シアノアクリレート系化合物、トリアジン系化合物、ニッケル錯塩系化合物等が挙げられるが、これらに限定されない。   Specific examples of ultraviolet absorbers preferably used in the present invention include, for example, oxybenzophenone compounds, benzotriazole compounds, salicylic acid ester compounds, benzophenone compounds, cyanoacrylate compounds, triazine compounds, nickel complex compounds, and the like. However, it is not limited to these.

ベンゾトリアゾール系紫外線吸収剤としては、例えば下記の紫外線吸収剤を具体例として挙げるが、本発明はこれらに限定されない。   Specific examples of the benzotriazole-based ultraviolet absorbers include the following ultraviolet absorbers, but the present invention is not limited thereto.

UV−1:2−(2′−ヒドロキシ−5′−メチルフェニル)ベンゾトリアゾール
UV−2:2−(2′−ヒドロキシ−3′,5′−ジ−tert−ブチルフェニル)ベンゾトリアゾール
UV−3:2−(2′−ヒドロキシ−3′−tert−ブチル−5′−メチルフェニル)ベンゾトリアゾール
UV−4:2−(2′−ヒドロキシ−3′,5′−ジ−tert−ブチルフェニル)−5−クロロベンゾトリアゾール
UV−5:2−(2′−ヒドロキシ−3′−(3″,4″,5″,6″−テトラヒドロフタルイミドメチル)−5′−メチルフェニル)ベンゾトリアゾール
UV−6:2,2−メチレンビス(4−(1,1,3,3−テトラメチルブチル)−6−(2H−ベンゾトリアゾール−2−イル)フェノール)
UV−7:2−(2′−ヒドロキシ−3′−tert−ブチル−5′−メチルフェニル)−5−クロロベンゾトリアゾール
UV−8:2−(2H−ベンゾトリアゾール−2−イル)−6−(直鎖及び側鎖ドデシル)−4−メチルフェノール(TINUVIN171、Ciba製)
UV−9:オクチル−3−〔3−tert−ブチル−4−ヒドロキシ−5−(クロロ−2H−ベンゾトリアゾール−2−イル)フェニル〕プロピオネートと2−エチルヘキシル−3−〔3−tert−ブチル−4−ヒドロキシ−5−(5−クロロ−2H−ベンゾトリアゾール−2−イル)フェニル〕プロピオネートの混合物(TINUVIN109、Ciba製)
また、ベンゾフェノン系紫外線吸収剤としては下記の具体例を示すが、本発明はこれらに限定されない。
UV-1: 2- (2'-hydroxy-5'-methylphenyl) benzotriazole UV-2: 2- (2'-hydroxy-3 ', 5'-di-tert-butylphenyl) benzotriazole UV-3 : 2- (2'-hydroxy-3'-tert-butyl-5'-methylphenyl) benzotriazole UV-4: 2- (2'-hydroxy-3 ', 5'-di-tert-butylphenyl)- 5-Chlorobenzotriazole UV-5: 2- (2'-hydroxy-3 '-(3 ", 4", 5 ", 6" -tetrahydrophthalimidomethyl) -5'-methylphenyl) benzotriazole UV-6: 2,2-methylenebis (4- (1,1,3,3-tetramethylbutyl) -6- (2H-benzotriazol-2-yl) phenol)
UV-7: 2- (2'-hydroxy-3'-tert-butyl-5'-methylphenyl) -5-chlorobenzotriazole UV-8: 2- (2H-benzotriazol-2-yl) -6 (Linear and side chain dodecyl) -4-methylphenol (TINUVIN171, manufactured by Ciba)
UV-9: Octyl-3- [3-tert-butyl-4-hydroxy-5- (chloro-2H-benzotriazol-2-yl) phenyl] propionate and 2-ethylhexyl-3- [3-tert-butyl- 4-Hydroxy-5- (5-chloro-2H-benzotriazol-2-yl) phenyl] propionate (TINUVIN109, manufactured by Ciba)
Moreover, although the following specific example is shown as a benzophenone series ultraviolet absorber, this invention is not limited to these.

UV−10:2,4−ジヒドロキシベンゾフェノン
UV−11:2,2′−ジヒドロキシ−4−メトキシベンゾフェノン
UV−12:2−ヒドロキシ−4−メトキシ−5−スルホベンゾフェノン
UV−13:ビス(2−メトキシ−4−ヒドロキシ−5−ベンゾイルフェニルメタン)
本発明で好ましく用いられる紫外線吸収剤としては、透明性が高く、偏光板や液晶の劣化を防ぐ効果に優れたベンゾトリアゾール系紫外線吸収剤やベンゾフェノン系紫外線吸収剤が好ましく、不要な着色がより少ないベンゾトリアゾール系紫外線吸収剤が特に好ましく用いられる。
UV-10: 2,4-dihydroxybenzophenone UV-11: 2,2'-dihydroxy-4-methoxybenzophenone UV-12: 2-hydroxy-4-methoxy-5-sulfobenzophenone UV-13: Bis (2-methoxy -4-hydroxy-5-benzoylphenylmethane)
As the ultraviolet absorber preferably used in the present invention, a benzotriazole-based ultraviolet absorber and a benzophenone-based ultraviolet absorber that are highly transparent and excellent in preventing the deterioration of the polarizing plate and the liquid crystal are preferable, and unnecessary coloring is less. A benzotriazole-based ultraviolet absorber is particularly preferably used.

また、特開2001−187825に記載されている分配係数が9.2以上の紫外線吸収剤は、長尺フィルムの面品質を向上させ、塗布性にも優れている。特に分配係数が10.1以上の紫外線吸収剤を用いることが好ましい。   Moreover, the ultraviolet absorber whose distribution coefficient described in Unexamined-Japanese-Patent No. 2001-187825 is 9.2 or more improves the surface quality of a long film, and is excellent also in applicability | paintability. In particular, it is preferable to use an ultraviolet absorber having a distribution coefficient of 10.1 or more.

また、特開平6−148430号に記載の一般式(1)または一般式(2)、特願2000−156039の一般式(3)、(6)、(7)記載の高分子紫外線吸収剤(または紫外線吸収性ポリマー)も好ましく用いられる。市販の高分子紫外線吸収剤としては、PUVA−30M(大塚化学(株)製)等も好ましく用いることが出来る。   Further, the polymer ultraviolet absorbers described in the general formula (1) or general formula (2) described in JP-A-6-148430 and the general formulas (3), (6), and (7) of Japanese Patent Application No. 2000-156039 ( Alternatively, an ultraviolet absorbing polymer) is also preferably used. As a commercially available polymer ultraviolet absorber, PUVA-30M (manufactured by Otsuka Chemical Co., Ltd.) can be preferably used.

また本発明において、長尺のセルロースエステルフィルム中に滑り性を付与するため、微粒子のマット剤を含有するのが好ましく、微粒子のマット剤としては、例えば二酸化ケイ素、二酸化チタン、酸化アルミニウム、酸化ジルコニウム、炭酸カルシウム、カオリン、タルク、焼成ケイ酸カルシウム、水和ケイ酸カルシウム、ケイ酸アルミニウム、ケイ酸マグネシウム、リン酸カルシウム等の無機微粒子や架橋高分子微粒子を含有させることが好ましい。中でも二酸化ケイ素がフィルムのヘイズを小さく出来るので好ましい。   In the present invention, it is preferable to contain a fine matting agent in order to impart slipperiness to the long cellulose ester film. Examples of the fine matting agent include silicon dioxide, titanium dioxide, aluminum oxide, and zirconium oxide. It is preferable to contain inorganic fine particles such as calcium carbonate, kaolin, talc, calcined calcium silicate, hydrated calcium silicate, aluminum silicate, magnesium silicate, calcium phosphate, and crosslinked polymer fine particles. Of these, silicon dioxide is preferable because it can reduce the haze of the film.

本発明に用いられる長尺フィルムに添加される微粒子の1次平均粒子径としては、20nm以下が好ましく、更に好ましくは、5〜16nmであり、特に好ましくは、5〜12nmである。これらの微粒子は0.1〜5μmの粒径の2次粒子を形成して長尺フィルムに含まれることが好ましく、好ましい平均粒径は0.1〜2μmであり、更に好ましくは0.2〜0.6μmである。これにより、フィルム表面に高さ0.1〜1.0μm程度の凹凸を形成し、これによってフィルム表面に適切な滑り性を与えることが出来る。   The primary average particle diameter of the fine particles added to the long film used in the present invention is preferably 20 nm or less, more preferably 5 to 16 nm, and particularly preferably 5 to 12 nm. These fine particles preferably form secondary particles having a particle diameter of 0.1 to 5 μm and are contained in the long film, and the preferable average particle diameter is 0.1 to 2 μm, more preferably 0.2 to 0.6 μm. Thereby, the unevenness | corrugation about 0.1-1.0 micrometer high can be formed in the film surface, and, thereby, appropriate slipperiness can be given to the film surface.

本発明に用いられる微粒子の1次平均粒子径の測定は、透過型電子顕微鏡(倍率50万〜200万倍)で粒子の観察を行い、粒子100個を観察し、粒子径を測定しその平均値をもって、1次平均粒子径とした。   The primary average particle diameter of the fine particles used in the present invention is measured by observing the particles with a transmission electron microscope (magnification 500,000 to 2,000,000 times), observing 100 particles, measuring the particle diameter, and measuring the average. The value was taken as the primary average particle size.

微粒子の見掛比重としては、70g/リットル以上が好ましく、更に好ましくは、90〜200g/リットルであり、特に好ましくは、100〜200g/リットルである。見掛比重が大きい程、高濃度の分散液を作ることが可能になり、ヘイズ、凝集物が良化するため好ましく、また、本発明のように固形分濃度の高いドープを調製する際には、特に好ましく用いられる。   The apparent specific gravity of the fine particles is preferably 70 g / liter or more, more preferably 90 to 200 g / liter, and particularly preferably 100 to 200 g / liter. A larger apparent specific gravity makes it possible to make a high-concentration dispersion, which improves haze and agglomerates, and is preferable when preparing a dope having a high solid content concentration as in the present invention. Are particularly preferably used.

1次粒子の平均径が20nm以下、見掛比重が70g/リットル以上の二酸化珪素微粒子は、例えば、気化させた四塩化珪素と水素を混合させたものを1000〜1200℃にて空気中で燃焼させることで得ることが出来る。また例えばアエロジル200V、アエロジルR972V(以上、日本アエロジル(株)製)の商品名で市販されており、それらを使用することが出来る。   Silicon dioxide fine particles having an average primary particle diameter of 20 nm or less and an apparent specific gravity of 70 g / liter or more are, for example, a mixture of vaporized silicon tetrachloride and hydrogen burned in air at 1000 to 1200 ° C. Can be obtained. For example, it is marketed by the brand name of Aerosil 200V and Aerosil R972V (above, Nippon Aerosil Co., Ltd. product), and can use them.

上記記載の見掛比重は二酸化珪素微粒子を一定量メスシリンダーに採り、この時の重さを測定し、下記式で算出したものである。   The apparent specific gravity described above is calculated by the following equation by taking a certain amount of silicon dioxide fine particles in a graduated cylinder, measuring the weight at this time.

見掛比重(g/リットル)=二酸化珪素質量(g)/二酸化珪素の容積(リットル)
本発明に用いられる微粒子の分散液を調製する方法としては、例えば以下に示すような3種類が挙げられる。
Apparent specific gravity (g / liter) = silicon dioxide mass (g) / volume of silicon dioxide (liter)
Examples of the method for preparing the fine particle dispersion used in the present invention include the following three types.

《調製方法A》
溶剤と微粒子を攪拌混合した後、分散機で分散を行う。これを微粒子分散液とする。微粒子分散液をドープ液に加えて攪拌する。
<< Preparation Method A >>
After stirring and mixing the solvent and fine particles, dispersion is performed with a disperser. This is a fine particle dispersion. The fine particle dispersion is added to the dope solution and stirred.

《調製方法B》
溶剤と微粒子を攪拌混合した後、分散機で分散を行う。これを微粒子分散液とする。別に溶剤に少量のセルローストリアセテートを加え、攪拌溶解する。これに前記微粒子分散液を加えて攪拌する。これを微粒子添加液とする。微粒子添加液をインラインミキサーでドープ液と十分混合する。
<< Preparation Method B >>
After stirring and mixing the solvent and fine particles, dispersion is performed with a disperser. This is a fine particle dispersion. Separately, a small amount of cellulose triacetate is added to the solvent and dissolved by stirring. The fine particle dispersion is added to this and stirred. This is a fine particle addition solution. The fine particle additive solution is sufficiently mixed with the dope solution using an in-line mixer.

《調製方法C》
溶剤に少量のセルローストリアセテートを加え、攪拌溶解する。これに微粒子を加えて分散機で分散を行う。これを微粒子添加液とする。微粒子添加液をインラインミキサーでドープ液と十分混合する。
<< Preparation Method C >>
Add a small amount of cellulose triacetate to the solvent and dissolve with stirring. Fine particles are added to this and dispersed by a disperser. This is a fine particle addition solution. The fine particle additive solution is sufficiently mixed with the dope solution using an in-line mixer.

調製方法Aは微粒子の分散性に優れ、調製方法Cは微粒子が再凝集しにくい点で優れている。中でも、上記記載の調製方法Bは微粒子の分散性と、微粒子が再凝集しにくい等、両方に優れている好ましい調製方法である。   Preparation method A is excellent in fine particle dispersibility, and preparation method C is excellent in that the fine particles are difficult to reaggregate. Among them, the preparation method B described above is a preferable preparation method that is excellent in both dispersibility of the fine particles and difficulty in reaggregating the fine particles.

《分散方法》
微粒子を溶剤などと混合して分散する時の微粒子の濃度は5質量%〜30質量%が好ましく、10質量%〜25質量%が更に好ましく、15〜20質量%が最も好ましい。分散濃度は高い方が、添加量に対する液濁度は低くなる傾向があり、ヘイズ、凝集物が良化するため好ましい。
《Distribution method》
The concentration of the fine particles when the fine particles are mixed with a solvent and dispersed is preferably 5% by mass to 30% by mass, more preferably 10% by mass to 25% by mass, and most preferably 15% by mass to 20% by mass. A higher dispersion concentration is preferable because liquid turbidity with respect to the added amount tends to be low, and haze and aggregates are improved.

使用される溶剤は低級アルコール類としては、好ましくはメチルアルコール、エチルアルコール、プロピルアルコール、イソプロピルアルコール、ブチルアルコール等が挙げられる。低級アルコール以外の溶媒としては特に限定されないが、セルロースエステルの製膜時に用いられる溶剤を用いることが好ましい。   The solvent used is preferably lower alcohols such as methyl alcohol, ethyl alcohol, propyl alcohol, isopropyl alcohol, butyl alcohol and the like. Although it does not specifically limit as solvents other than a lower alcohol, It is preferable to use the solvent used at the time of film forming of a cellulose ester.

セルロースエステルに対する微粒子の添加量はセルロースエステル100質量部に対して、微粒子は0.01質量部〜5.0質量部が好ましく、0.05質量部〜1.0質量部が更に好ましく、0.1質量部〜0.5質量部が最も好ましい。添加量は多い方が、動摩擦係数に優れ、添加量が少ない方が、凝集物が少なくなる。   The amount of the fine particles added to the cellulose ester is preferably 0.01 parts by mass to 5.0 parts by mass, more preferably 0.05 parts by mass to 1.0 part by mass with respect to 100 parts by mass of the cellulose ester. 1 part by mass to 0.5 part by mass is most preferable. The larger the added amount, the better the dynamic friction coefficient, and the smaller the added amount, the less aggregates.

分散機は通常の分散機が使用出来る。分散機は大きく分けてメディア分散機とメディアレス分散機に分けられる。微粒子の分散にはメディアレス分散機がヘイズが低く好ましい。メディア分散機としてはボールミル、サンドミル、ダイノミルなどが挙げられる。メディアレス分散機としては超音波型、遠心型、高圧型などがあるが、本発明においては高圧分散装置が好ましい。高圧分散装置は、微粒子と溶媒を混合した組成物を、細管中に高速通過させることで、高剪断や高圧状態など特殊な条件を作りだす装置である。高圧分散装置で処理する場合、例えば、管径1〜2000μmの細管中で装置内部の最大圧力条件が9.807MPa以上であることが好ましい。更に好ましくは19.613MPa以上である。またその際、最高到達速度が100m/秒以上に達するもの、伝熱速度が420kJ/時間以上に達するものが好ましい。   As the disperser, a normal disperser can be used. Dispersers can be broadly divided into media dispersers and medialess dispersers. For dispersion of fine particles, a medialess disperser is preferred because of low haze. Examples of the media disperser include a ball mill, a sand mill, and a dyno mill. Examples of the medialess disperser include an ultrasonic type, a centrifugal type, and a high pressure type. In the present invention, a high pressure disperser is preferable. The high pressure dispersion device is a device that creates special conditions such as high shear and high pressure by passing a composition in which fine particles and a solvent are mixed at high speed through a narrow tube. When processing with a high-pressure dispersion apparatus, for example, the maximum pressure condition inside the apparatus is preferably 9.807 MPa or more in a thin tube having a tube diameter of 1 to 2000 μm. More preferably, it is 19.613 MPa or more. Further, at that time, those having a maximum reaching speed of 100 m / second or more and those having a heat transfer speed of 420 kJ / hour or more are preferable.

上記のような高圧分散装置には、Microfluidics Corporation社製超高圧ホモジナイザ(商品名マイクロフルイダイザ)或いはナノマイザ社製ナノマイザがあり、他にもマントンゴーリン型高圧分散装置、例えば、イズミフードマシナリ製ホモジナイザ、三和機械(株)社製UHN−01等が挙げられる。   Examples of the high-pressure dispersion apparatus include an ultra-high pressure homogenizer (trade name: Microfluidizer) manufactured by Microfluidics Corporation or a nanomizer manufactured by Nanomizer, and a Manton Gorin type high-pressure dispersion apparatus such as a homogenizer manufactured by Izumi Food Machinery. And UHN-01 manufactured by Sanwa Machinery Co., Ltd.

また、微粒子を含むドープを流延支持体に直接接するように流延することが、滑り性が高く、ヘイズが低いフィルムが得られるので好ましい。   In addition, casting a dope containing fine particles so as to be in direct contact with the casting support is preferable because a film having high slip properties and low haze can be obtained.

このようにして得られた長尺フィルムを用いて、本発明に係る機能性薄膜が設けられる。加工若しくは出荷されるまでの間、汚れや静電気によるゴミ付着等から製品を保護するために通常、包装加工がなされる。この包装材料については、上記目的が果たせれば特に限定されない。具体的には、ポリエチレン、ポリエステル、ポリプロピレン、ナイロン、ポリスチレン、紙、各種不織布等が挙げられる。繊維がメッシュクロス状になったものは、より好ましく用いられる。   The functional thin film which concerns on this invention is provided using the elongate film obtained in this way. Until processing or shipment, packaging is usually performed in order to protect the product from dirt, static electricity, and the like. The packaging material is not particularly limited as long as the above purpose can be achieved. Specific examples include polyethylene, polyester, polypropylene, nylon, polystyrene, paper, various non-woven fabrics, and the like. Those in which the fibers are mesh cloth are more preferably used.

本発明に用いられる長尺フィルムは、複数のドープを用いた共流延法等による多層構成を有するものであってもよい。   The long film used in the present invention may have a multilayer structure by a co-casting method using a plurality of dopes.

例えば、異なったダイを通じて2層または3層構成にする逐次多層流延方法、2つまたは3つのスリットを有するダイ内で合流させ2層または3層構成にする同時多層流延方法、逐次多層流延と同時多層流延を組み合わせた多層流延方法のいずれであっても良い。   For example, a sequential multilayer casting method in which two or three layers are configured through different dies, a simultaneous multilayer casting method in which two or three slits are merged in a die having two or three slits, and a sequential multilayer casting Any of the multi-layer casting methods combining the simultaneous multi-layer casting with the rolling may be used.

また、本発明で用いられるセルロースエステルは、フィルムにした時の輝点異物が少ないものが、支持体として好ましく用いられる。本発明において、輝点異物とは、2枚の偏光板を直交に配置し(クロスニコル)、この間にセルロースエステルフィルムを配置して、一方の面から光源の光を当てて、もう一方の面からセルロースエステルフィルムを観察した時に、光源の光がもれて見える点のことである。   In addition, the cellulose ester used in the present invention is preferably used as a support having a small amount of bright spot foreign matter when formed into a film. In the present invention, the bright spot foreign material is a structure in which two polarizing plates are arranged orthogonally (crossed Nicols), a cellulose ester film is arranged between them, and light from a light source is applied from one side to the other side. When the cellulose ester film is observed, the light from the light source appears to leak.

このとき評価に用いる偏光板は輝点異物がない保護フィルムで構成されたものであることが望ましく、偏光子の保護にガラス板を使用したものが好ましく用いられる。輝点異物の発生は、セルロースエステルに含まれる未酢化若しくは低酢化度のセルロースがその原因の1つと考えられ、対策としては、未酢化のセルロース量の少ないセルロースエステルを用いることや、また、セルロースエステルを溶解したドープ液の濾過等により、除去、低減が可能である。また、フィルム膜厚が薄くなるほど単位面積当たりの輝点異物数は少なくなり、フィルムに含まれるセルロースエステルの含有量が少なくなるほど輝点異物は少なくなる傾向がある。   At this time, the polarizing plate used for the evaluation is desirably composed of a protective film having no bright spot foreign matter, and a polarizing plate using a glass plate for protecting the polarizer is preferably used. The occurrence of bright spot foreign matter is considered to be one of the causes of unacetylated or low acetylated cellulose contained in the cellulose ester, as a countermeasure, using a cellulose ester with a small amount of unacetylated cellulose, Further, it can be removed and reduced by filtering the dope solution in which the cellulose ester is dissolved. Further, the thinner the film thickness, the smaller the number of bright spot foreign matter per unit area, and the lower the content of cellulose ester contained in the film, the fewer bright spot foreign matter.

輝点異物は、輝点の直径0.01mm以上のものが200個/cm2以下であることが好ましく、更に好ましくは、100個/cm2以下、50個/cm2以下、30個/cm2以下、10個/cm2以下であることが好ましいが、特に好ましくは、0であることである。 The bright spot foreign matter having a bright spot diameter of 0.01 mm or more is preferably 200 pieces / cm 2 or less, more preferably 100 pieces / cm 2 or less, 50 pieces / cm 2 or less, 30 pieces / cm. 2 or less, preferably 10 pieces / cm 2 or less, but it is particularly preferred that a 0.

また、0.005mm〜0.01mmの輝点についても200個/cm2以下であることが好ましく、更に好ましくは、100個/cm2以下、50個/cm2以下、30個/cm2以下、10個/cm2以下であることが好ましいが、特に好ましいのは、輝点が0の場合である。0.005mm以下の輝点についても少ないものが好ましい。 The number of bright spots of 0.005 mm to 0.01 mm is preferably 200 / cm 2 or less, more preferably 100 / cm 2 or less, 50 / cm 2 or less, 30 / cm 2 or less. The number is preferably 10 / cm 2 or less, but particularly preferred is the case where the bright spot is zero. A thing with few also about a bright spot of 0.005 mm or less is preferable.

輝点異物を濾過によって除去する場合、セルロースエステルを単独で溶解させたものを濾過するよりも可塑剤を添加混合した組成物を濾過することが輝点異物の除去効率が高く好ましい。濾材としては、ガラス繊維、セルロース繊維、濾紙、四フッ化エチレン樹脂などのフッ素樹脂等の従来公知のものが好ましく用いられるが、セラミックス、金属等も好ましく用いられる。絶対濾過精度としては50μm以下のものが好ましく、更に好ましくは、30μm以下、10μm以下であるが、特に好ましくは、5μm以下のものである。   When removing bright spot foreign matter by filtration, it is preferable to filter the composition in which a plasticizer is added and mixed, rather than filtering a cellulose ester dissolved alone, because the bright spot foreign matter removal efficiency is high. As the filter medium, conventionally known materials such as glass fibers, cellulose fibers, filter paper, and fluororesins such as tetrafluoroethylene resin are preferably used, but ceramics, metals and the like are also preferably used. The absolute filtration accuracy is preferably 50 μm or less, more preferably 30 μm or less, and 10 μm or less, and particularly preferably 5 μm or less.

これらは、適宜組み合わせて使用することも出来る。濾材はサーフェースタイプでもデプスタイプでも用いることが出来るが、デプスタイプの方が比較的目詰まりしにくく好ましく用いられる。   These can also be used in combination as appropriate. The filter medium can be either a surface type or a depth type, but the depth type is preferably used because it is relatively less clogged.

《ハードコート層》
本発明は長尺フィルム上に機能性薄膜としてハードコート層が設けられていることが好ましい。
《Hard coat layer》
In the present invention, it is preferable that a hard coat layer is provided as a functional thin film on a long film.

本発明に用いられるハードコート層は、少なくとも長尺フィルムの一方の面に設けられる。本発明の光学フィルムは、該ハードコート層上に、反射防止層(高屈折率層、低屈折率層等)が設けられ反射防止フィルムを構成することが好ましい。   The hard coat layer used in the present invention is provided on at least one surface of the long film. The optical film of the present invention preferably comprises an antireflection film in which an antireflection layer (high refractive index layer, low refractive index layer, etc.) is provided on the hard coat layer.

ハードコート層としては、活性線硬化樹脂層が好ましく用いられる。   As the hard coat layer, an actinic radiation curable resin layer is preferably used.

活性線硬化樹脂層とは紫外線や電子線のような活性線照射により架橋反応等を経て硬化する樹脂を主たる成分とする層をいう。活性線硬化樹脂としては、エチレン性不飽和二重結合を有するモノマーを含む成分が好ましく用いられ、紫外線や電子線のような活性線を照射することによって硬化させてハードコート層が形成される。活性線硬化樹脂としては紫外線硬化性樹脂や電子線硬化性樹脂等が代表的なものとして挙げられるが、紫外線照射によって硬化する樹脂が好ましい。   The actinic radiation curable resin layer refers to a layer mainly composed of a resin that cures through a crosslinking reaction or the like by irradiation with actinic rays such as ultraviolet rays or electron beams. As the actinic radiation curable resin, a component containing a monomer having an ethylenically unsaturated double bond is preferably used, and a hard coat layer is formed by curing by irradiation with actinic radiation such as ultraviolet rays or electron beams. Typical examples of the actinic radiation curable resin include an ultraviolet curable resin and an electron beam curable resin, and a resin curable by ultraviolet irradiation is preferable.

紫外線硬化性樹脂としては、例えば、紫外線硬化型ウレタンアクリレート系樹脂、紫外線硬化型ポリエステルアクリレート系樹脂、紫外線硬化型エポキシアクリレート系樹脂、紫外線硬化型ポリオールアクリレート系樹脂、または紫外線硬化型エポキシ樹脂等が好ましく用いられる。   As the ultraviolet curable resin, for example, an ultraviolet curable urethane acrylate resin, an ultraviolet curable polyester acrylate resin, an ultraviolet curable epoxy acrylate resin, an ultraviolet curable polyol acrylate resin, or an ultraviolet curable epoxy resin is preferable. Used.

紫外線硬化型アクリルウレタン系樹脂は、一般にポリエステルポリオールにイソシアネートモノマー、またはプレポリマーを反応させて得られた生成物に更に2−ヒドロキシエチルアクリレート、2−ヒドロキシエチルメタクリレート(以下アクリレートにはメタクリレートを包含するものとしてアクリレートのみを表示する)、2−ヒドロキシプロピルアクリレート等の水酸基を有するアクリレート系のモノマーを反応させることによって容易に得ることが出来る。例えば、特開昭59−151110号に記載のものを用いることが出来る。   UV curable acrylic urethane resins generally include 2-hydroxyethyl acrylate and 2-hydroxyethyl methacrylate (hereinafter referred to as acrylates) in products obtained by reacting polyester polyols with isocyanate monomers or prepolymers. It can be easily obtained by reacting an acrylate monomer having a hydroxyl group such as 2-hydroxypropyl acrylate. For example, those described in JP-A-59-151110 can be used.

例えば、ユニディック17−806(大日本インキ(株)製)100部とコロネートL(日本ポリウレタン(株)製)1部との混合物等が好ましく用いられる。   For example, a mixture of 100 parts Unidic 17-806 (Dainippon Ink Co., Ltd.) and 1 part Coronate L (Nihon Polyurethane Co., Ltd.) is preferably used.

紫外線硬化型ポリエステルアクリレート系樹脂としては、一般にポリエステルポリオールに2−ヒドロキシエチルアクリレート、2−ヒドロキシアクリレート系のモノマーを反応させると容易に形成されるものを挙げることが出来、特開昭59−151112号に記載のものを用いることが出来る。   Examples of UV curable polyester acrylate resins include those that are easily formed when 2-hydroxyethyl acrylate and 2-hydroxy acrylate monomers are generally reacted with polyester polyols. JP-A-59-151112 Can be used.

紫外線硬化型エポキシアクリレート系樹脂の具体例としては、エポキシアクリレートをオリゴマーとし、これに反応性希釈剤、光反応開始剤を添加し、反応させて生成するものを挙げることが出来、特開平1−105738号に記載のものを用いることが出来る。   Specific examples of the ultraviolet curable epoxy acrylate resin include an epoxy acrylate as an oligomer, a reactive diluent and a photoreaction initiator added thereto, and reacted to form an oligomer. The thing as described in 105738 can be used.

紫外線硬化型ポリオールアクリレート系樹脂の具体例としては、トリメチロールプロパントリアクリレート、ジトリメチロールプロパンテトラアクリレート、ペンタエリスリトールトリアクリレート、ペンタエリスリトールテトラアクリレート、ジペンタエリスリトールヘキサアクリレート、アルキル変性ジペンタエリスリトールペンタアクリレート等を挙げることが出来る。   Specific examples of UV curable polyol acrylate resins include trimethylolpropane triacrylate, ditrimethylolpropane tetraacrylate, pentaerythritol triacrylate, pentaerythritol tetraacrylate, dipentaerythritol hexaacrylate, alkyl-modified dipentaerythritol pentaacrylate, etc. I can list them.

これら紫外線硬化性樹脂の光反応開始剤としては、具体的には、ベンゾイン及びその誘導体、アセトフェノン、ベンゾフェノン、ヒドロキシベンゾフェノン、ミヒラーズケトン、α−アミロキシムエステル、チオキサントン等及びこれらの誘導体を挙げることが出来る。光増感剤と共に使用してもよい。上記光反応開始剤も光増感剤として使用出来る。また、エポキシアクリレート系の光反応開始剤の使用の際、n−ブチルアミン、トリエチルアミン、トリ−n−ブチルホスフィン等の増感剤を用いることが出来る。紫外線硬化樹脂組成物に用いられる光反応開始剤また光増感剤は該組成物100質量部に対して0.1〜15質量部であり、好ましくは1〜10質量部である。   Specific examples of the photoreaction initiator of these ultraviolet curable resins include benzoin and derivatives thereof, acetophenone, benzophenone, hydroxybenzophenone, Michler's ketone, α-amyloxime ester, thioxanthone, and the like. You may use with a photosensitizer. The photoinitiator can also be used as a photosensitizer. In addition, when using an epoxy acrylate photoinitiator, a sensitizer such as n-butylamine, triethylamine, or tri-n-butylphosphine can be used. The photoreaction initiator or photosensitizer used in the ultraviolet curable resin composition is 0.1 to 15 parts by weight, preferably 1 to 10 parts by weight, based on 100 parts by weight of the composition.

樹脂モノマーとしては、例えば、不飽和二重結合が一つのモノマーとして、メチルアクリレート、エチルアクリレート、ブチルアクリレート、ベンジルアクリレート、シクロヘキシルアクリレート、酢酸ビニル、スチレン等の一般的なモノマーを挙げることが出来る。また不飽和二重結合を二つ以上持つモノマーとして、エチレングリコールジアクリレート、プロピレングリコールジアクリレート、ジビニルベンゼン、1,4−シクロヘキサンジアクリレート、1,4−シクロヘキシルジメチルアジアクリレート、前出のトリメチロールプロパントリアクリレート、ペンタエリスリトールテトラアクリルエステル等を挙げることが出来る。   Examples of the resin monomer include general monomers such as methyl acrylate, ethyl acrylate, butyl acrylate, benzyl acrylate, cyclohexyl acrylate, vinyl acetate, and styrene as monomers having one unsaturated double bond. In addition, monomers having two or more unsaturated double bonds include ethylene glycol diacrylate, propylene glycol diacrylate, divinylbenzene, 1,4-cyclohexane diacrylate, 1,4-cyclohexyldimethyl adiacrylate, and the above trimethylolpropane. Examples thereof include triacrylate and pentaerythritol tetraacryl ester.

本発明において使用し得る紫外線硬化樹脂の市販品としては、アデカオプトマーKR・BYシリーズ:KR−400、KR−410、KR−550、KR−566、KR−567、BY−320B(旭電化(株)製);コーエイハードA−101−KK、A−101−WS、C−302、C−401−N、C−501、M−101、M−102、T−102、D−102、NS−101、FT−102Q8、MAG−1−P20、AG−106、M−101−C(広栄化学(株)製);セイカビームPHC2210(S)、PHC X−9(K−3)、PHC2213、DP−10、DP−20、DP−30、P1000、P1100、P1200、P1300、P1400、P1500、P1600、SCR900(大日精化工業(株)製);KRM7033、KRM7039、KRM7130、KRM7131、UVECRYL29201、UVECRYL29202(ダイセル・ユーシービー(株)製);RC−5015、RC−5016、RC−5020、RC−5031、RC−5100、RC−5102、RC−5120、RC−5122、RC−5152、RC−5171、RC−5180、RC−5181(大日本インキ化学工業(株)製);オーレックスNo.340クリヤ(中国塗料(株)製);サンラッドH−601、RC−750、RC−700、RC−600、RC−500、RC−611、RC−612(三洋化成工業(株)製);SP−1509、SP−1507(昭和高分子(株)製);RCC−15C(グレース・ジャパン(株)製)、アロニックスM−6100、M−8030、M−8060(東亞合成(株)製)等を適宜選択して利用出来る。   Commercially available UV curable resins that can be used in the present invention include ADEKA OPTMER KR / BY series: KR-400, KR-410, KR-550, KR-566, KR-567, BY-320B (Asahi Denka ( Co., Ltd.); Koeihard A-101-KK, A-101-WS, C-302, C-401-N, C-501, M-101, M-102, T-102, D-102, NS -101, FT-102Q8, MAG-1-P20, AG-106, M-101-C (manufactured by Guangei Chemical Co., Ltd.); Seica Beam PHC2210 (S), PHC X-9 (K-3), PHC2213, DP -10, DP-20, DP-30, P1000, P1100, P1200, P1300, P1400, P1500, P1600, SCR900 (manufactured by Dainichi Seika Kogyo Co., Ltd.) KRM7033, KRM7039, KRM7130, KRM7131, UVECRYL29201, UVECRYL29202 (manufactured by Daicel UCB); RC-5015, RC-5016, RC-5020, RC-5031, RC-5100, RC-5102, RC-5120 RC-5122, RC-5152, RC-5171, RC-5180, RC-5181 (manufactured by Dainippon Ink & Chemicals, Inc.); 340 clear (manufactured by China Paint Co., Ltd.); Sunrad H-601, RC-750, RC-700, RC-600, RC-500, RC-611, RC-612 (Sanyo Chemical Industries, Ltd.); SP -1509, SP-1507 (manufactured by Showa Polymer Co., Ltd.); RCC-15C (manufactured by Grace Japan Co., Ltd.), Aronix M-6100, M-8030, M-8060 (manufactured by Toagosei Co., Ltd.), etc. Can be selected as appropriate.

また、具体的化合物例としては、トリメチロールプロパントリアクリレート、ジトリメチロールプロパンテトラアクリレート、ペンタエリスリトールトリアクリレート、ペンタエリスリトールテトラアクリレート、ジペンタエリスリトールヘキサアクリレート、アルキル変性ジペンタエリスリトールペンタアクリレート等を挙げることが出来る。   Specific examples of compounds include trimethylolpropane triacrylate, ditrimethylolpropane tetraacrylate, pentaerythritol triacrylate, pentaerythritol tetraacrylate, dipentaerythritol hexaacrylate, alkyl-modified dipentaerythritol pentaacrylate, and the like. .

これらの活性線硬化樹脂層はグラビアコーター、ディップコーター、リバースコーター、ワイヤーバーコーター、ダイコーター、インクジェット法等公知の方法で塗設することが出来る。   These actinic ray curable resin layers can be coated by a known method such as a gravure coater, a dip coater, a reverse coater, a wire bar coater, a die coater, or an ink jet method.

紫外線硬化性樹脂を光硬化反応により硬化させ、硬化皮膜層を形成する為の光源としては、紫外線を発生する光源であれば制限なく使用出来る。例えば、低圧水銀灯、中圧水銀灯、高圧水銀灯、超高圧水銀灯、カーボンアーク灯、メタルハライドランプ、キセノンランプ等を用いることが出来る。これらの光源は空冷若しくは水冷方式のものが好ましく用いられる。照射条件はそれぞれのランプによって異なるが、活性線の照射量は好ましくは、5〜150mJ/cm2であり、特に好ましくは20〜100mJ/cm2である。 As a light source for curing an ultraviolet curable resin by a photocuring reaction to form a cured coating layer, any light source that generates ultraviolet rays can be used without any limitation. For example, a low pressure mercury lamp, a medium pressure mercury lamp, a high pressure mercury lamp, an ultrahigh pressure mercury lamp, a carbon arc lamp, a metal halide lamp, a xenon lamp, or the like can be used. These light sources are preferably air-cooled or water-cooled. Irradiation conditions vary depending on each lamp, but the irradiation amount of active rays is preferably 5 to 150 mJ / cm 2 , particularly preferably 20 to 100 mJ / cm 2 .

また照射部には窒素パージにより酸素濃度を0.01%〜2%に低減することが好ましい。   Further, it is preferable to reduce the oxygen concentration to 0.01% to 2% by nitrogen purge in the irradiated portion.

また、活性線を照射する際には、フィルムの搬送方向に張力を付与しながら行うことが好ましく、更に好ましくは幅方向にも張力を付与しながら行うことである。付与する張力は30〜300N/mが好ましい。張力を付与する方法は特に限定されず、バックロール上で搬送方向に張力を付与してもよく、テンターにて幅方向、若しくは2軸方向に張力を付与してもよい。これによって更に平面性が優れたフィルムを得ることが出来る。   Moreover, when irradiating actinic radiation, it is preferable to carry out while applying tension | tensile_strength in the conveyance direction of a film, More preferably, it is performing applying tension | tensile_strength also in the width direction. The tension to be applied is preferably 30 to 300 N / m. The method for applying the tension is not particularly limited, and the tension may be applied in the conveying direction on the back roll, or the tension may be applied in the width direction or the biaxial direction by a tenter. This makes it possible to obtain a film having further excellent flatness.

紫外線硬化樹脂層組成物塗布液の有機溶媒としては、例えば、炭化水素類(トルエン、キシレン、)、アルコール類(メタノール、エタノール、イソプロパノール、ブタノール、シクロヘキサノール)、ケトン類(アセトン、メチルエチルケトン、メチルイソブチルケトン)、エステル類(酢酸メチル、酢酸エチル、乳酸メチル)、グリコールエーテル類、その他の有機溶媒の中から適宜選択し、或いはこれらを混合し利用出来る。プロピレングリコールモノアルキルエーテル(アルキル基の炭素原子数として1〜4)またはプロピレングリコールモノアルキルエーテル酢酸エステル(アルキル基の炭素原子数として1〜4)等を5質量%以上、より好ましくは5〜80質量%以上含有する上記有機溶媒を用いるのが好ましい。   Examples of the organic solvent for the UV curable resin layer composition coating solution include hydrocarbons (toluene, xylene), alcohols (methanol, ethanol, isopropanol, butanol, cyclohexanol), ketones (acetone, methyl ethyl ketone, methyl isobutyl). Ketone), esters (methyl acetate, ethyl acetate, methyl lactate), glycol ethers, other organic solvents, or a mixture thereof. Propylene glycol monoalkyl ether (1 to 4 carbon atoms of the alkyl group) or propylene glycol monoalkyl ether acetate ester (1 to 4 carbon atoms of the alkyl group) is 5% by mass or more, more preferably 5 to 80%. It is preferable to use the organic solvent containing at least mass%.

また、紫外線硬化樹脂層組成物塗布液には、特にシリコン化合物を添加することが好ましい。例えば、ポリエーテル変性シリコーンオイルなどが好ましく添加される。ポリエーテル変性シリコーンオイルの数平均分子量は、例えば、1000〜100000、好ましくは、2000〜50000が適当であり、数平均分子量が1000未満では、塗膜の乾燥性が低下し、逆に、数平均分子量が100000を越えると、塗膜表面にブリードアウトしにくくなる傾向にある。   In addition, it is particularly preferable to add a silicon compound to the ultraviolet curable resin layer composition coating solution. For example, polyether-modified silicone oil is preferably added. The number average molecular weight of the polyether-modified silicone oil is, for example, 1000 to 100000, preferably 2000 to 50000. If the number average molecular weight is less than 1000, the drying property of the coating film decreases, and conversely, the number average When the molecular weight exceeds 100,000, it tends to be difficult to bleed out to the coating surface.

シリコン化合物の市販品としては、DKQ8−779(ダウコーニング社製商品名)、SF3771、SF8410、SF8411、SF8419、SF8421、SF8428、SH200、SH510、SH1107、SH3749、SH3771、BX16−034、SH3746、SH3749、SH8400、SH3771M、SH3772M、SH3773M、SH3775M、BY−16−837、BY−16−839、BY−16−869、BY−16−870、BY−16−004、BY−16−891、BY−16−872、BY−16−874、BY22−008M、BY22−012M、FS−1265(以上、東レ・ダウコーニングシリコーン社製商品名)、KF−101、KF−100T、KF351、KF352、KF353、KF354、KF355、KF615、KF618、KF945、KF6004、シリコーンX−22−945、X22−160AS(以上、信越化学工業社製商品名)、XF3940、XF3949(以上、東芝シリコーン社製商品名)、ディスパロンLS−009(楠本化成社製)、グラノール410(共栄社油脂化学工業(株)製)、TSF4440、TSF4441、TSF4445、TSF4446、TSF4452、TSF4460(GE東芝シリコーン製)、BYK−306、BYK−330、BYK−307、BYK−341、BYK−344、BYK−361(ビックケミ−ジャパン社製)日本ユニカー(株)製のLシリーズ(例えばL7001、L−7006、L−7604、L−9000)、Yシリーズ、FZシリーズ(FZ−2203、FZ−2206、FZ−2207)等が挙げられ、好ましく用いられる。   Commercially available silicon compounds include DKQ8-779 (trade name, manufactured by Dow Corning), SF3771, SF8410, SF8411, SF8419, SF8421, SF8428, SH200, SH510, SH1107, SH3749, SH3771, BX16-034, SH3746, SH3749, SH8400, SH3771M, SH3772M, SH3773M, SH3775M, BY-16-837, BY-16-839, BY-16-869, BY-16-870, BY-16-004, BY-16-891, BY-16 872, BY-16-874, BY22-008M, BY22-012M, FS-1265 (above, product names manufactured by Toray Dow Corning Silicone), KF-101, KF-100T, KF351, KF3 2, KF353, KF354, KF355, KF615, KF618, KF945, KF6004, Silicone X-22-945, X22-160AS (trade name, manufactured by Shin-Etsu Chemical Co., Ltd.), XF3940, XF3949 (trade name, manufactured by Toshiba Silicone Co., Ltd.) ), Disparon LS-009 (manufactured by Enomoto Kasei Co., Ltd.), Granol 410 (manufactured by Kyoeisha Yushi Chemical Co., Ltd.), TSF4440, TSF4441, TSF4445, TSF4446, TSF4452, TSF4460 (manufactured by GE Toshiba Silicone), BYK-306, BYK- 330, BYK-307, BYK-341, BYK-344, BYK-361 (manufactured by BYK-Japan) L series (for example, L7001, L-7006, L-7604, L-9000) manufactured by Nippon Unicar Co., Ltd. Y Over's, FZ series (FZ-2203, FZ-2206, FZ-2207) and the like, it is preferably used.

これらの成分は基材や下層への塗布性を高める。積層体最表面層に添加した場合には、塗膜の撥水、撥油性、防汚性を高めるばかりでなく、表面の耐擦り傷性にも効果を発揮する。これらの成分は、塗布液中の固形分成分に対し、0.01〜3質量%の範囲で添加することが好ましい。   These components enhance the applicability to the substrate and the lower layer. When added to the outermost surface layer of the laminate, it not only improves the water repellency, oil repellency and antifouling properties of the coating film, but also exhibits an effect on the scratch resistance of the surface. These components are preferably added in a range of 0.01 to 3% by mass with respect to the solid component in the coating solution.

紫外線硬化性樹脂組成物塗布液の塗布方法としては、前述のものを用いることが出来る。塗布量はウェット膜厚として0.1〜30μmが適当で、好ましくは、0.5〜15μmである。また、ドライ膜厚としては0.1〜20μm、好ましくは1〜10μmである。   As a coating method of the ultraviolet curable resin composition coating solution, the above-described methods can be used. The coating amount is suitably 0.1 to 30 μm, preferably 0.5 to 15 μm, as the wet film thickness. The dry film thickness is 0.1 to 20 μm, preferably 1 to 10 μm.

より好ましくは、長尺フィルムの膜厚が10〜80μmであり、層の膜厚(H)と長尺フィルムの膜厚(d)の比率(d/H)が4〜10である時、平面性と同時に硬度、耐傷性にも優れる。これは長尺フィルムの膜厚に比べハードコート層が薄い場合、硬度、耐傷性に劣り、長尺フィルムの膜厚に比べ、ハードコート層が厚い場合、平面性が劣化することによる。   More preferably, when the film thickness of the long film is 10 to 80 μm and the ratio (d / H) of the film thickness (H) of the layer to the film thickness (d) of the long film is 4 to 10, It has excellent hardness and scratch resistance. This is because the hardness and scratch resistance are inferior when the hard coat layer is thinner than the film thickness of the long film, and the flatness is deteriorated when the hard coat layer is thicker than the film thickness of the long film.

紫外線硬化性樹脂組成物は塗布乾燥中または後に、紫外線を照射するのがよく、前記の5〜150mJ/cm2という活性線の照射量を得る為の照射時間としては、0.1秒〜5分程度がよく、紫外線硬化性樹脂の硬化効率または作業効率の観点から0.1〜10秒がより好ましい。 The ultraviolet curable resin composition is preferably irradiated with ultraviolet rays during or after coating and drying, and the irradiation time for obtaining the active ray irradiation amount of 5 to 150 mJ / cm 2 is from 0.1 seconds to 5 seconds. Minutes are good, and 0.1 to 10 seconds is more preferable from the viewpoint of curing efficiency or work efficiency of the ultraviolet curable resin.

また、これら活性線照射部の照度は50〜150mW/cm2であることが好ましい。 Moreover, it is preferable that the illuminance of these active ray irradiation parts is 50-150 mW / cm < 2 >.

こうして得た硬化樹脂層に、ブロッキングを防止する為、また対擦り傷性等を高める為、或いは防眩性や光拡散性を持たせる為また屈折率を調整する為に無機化合物或いは有機化合物の微粒子を加えることも出来る。   In order to prevent blocking, to improve scratch resistance, to give antiglare property or light diffusibility, and to adjust the refractive index in the cured resin layer thus obtained, fine particles of an inorganic compound or an organic compound Can also be added.

本発明に用いられるハードコート層に微粒子を添加することは好ましく、使用される無機微粒子としては、酸化ケイ素、酸化チタン、酸化アルミニウム、酸化ジルコニウム、酸化マグネシウム、炭酸カルシウム、炭酸カルシウム、タルク、クレイ、焼成カオリン、焼成ケイ酸カルシウム、水和ケイ酸カルシウム、ケイ酸アルミニウム、ケイ酸マグネシウム及びリン酸カルシウムを挙げることが出来る。特に、酸化ケイ素、酸化チタン、酸化アルミニウム、酸化ジルコニウム、酸化マグネシウムなどが好ましく用いられる。   It is preferable to add fine particles to the hard coat layer used in the present invention, and as the inorganic fine particles used, silicon oxide, titanium oxide, aluminum oxide, zirconium oxide, magnesium oxide, calcium carbonate, calcium carbonate, talc, clay, Examples include calcined kaolin, calcined calcium silicate, hydrated calcium silicate, aluminum silicate, magnesium silicate and calcium phosphate. In particular, silicon oxide, titanium oxide, aluminum oxide, zirconium oxide, magnesium oxide and the like are preferably used.

また有機微粒子としては、ポリメタアクリル酸メチルアクリレート樹脂粉末、アクリルスチレン系樹脂粉末、ポリメチルメタクリレート樹脂粉末、シリコン系樹脂粉末、ポリスチレン系樹脂粉末、ポリカーボネート樹脂粉末、ベンゾグアナミン系樹脂粉末、メラミン系樹脂粉末、ポリオレフィン系樹脂粉末、ポリエステル系樹脂粉末、ポリアミド系樹脂粉末、ポリイミド系樹脂粉末、或いはポリ弗化エチレン系樹脂粉末等紫外線硬化性樹脂組成物に加えることが出来る。特に好ましくは、架橋ポリスチレン粒子(例えば、綜研化学製SX−130H、SX−200H、SX−350H)、ポリメチルメタクリレート系粒子(例えば、綜研化学製MX150、MX300)が挙げられる。   The organic fine particles include polymethacrylic acid methyl acrylate resin powder, acrylic styrene resin powder, polymethyl methacrylate resin powder, silicon resin powder, polystyrene resin powder, polycarbonate resin powder, benzoguanamine resin powder, melamine resin powder. Polyolefin resin powder, polyester resin powder, polyamide resin powder, polyimide resin powder, or polyfluoroethylene resin powder can be added to the ultraviolet curable resin composition. Particularly preferred are cross-linked polystyrene particles (for example, SX-130H, SX-200H, SX-350H, manufactured by Soken Chemical) and polymethyl methacrylate-based particles (for example, MX150, MX300, manufactured by Soken Chemical).

これらの微粒子粉末の平均粒径としては、0.005〜5μmが好ましく0.01〜1μmであることが特に好ましい。紫外線硬化樹脂組成物と微粒子粉末との割合は、樹脂組成物100質量部に対して、0.1〜30質量部となるように配合することが望ましい。   The average particle diameter of these fine particle powders is preferably 0.005 to 5 μm, and particularly preferably 0.01 to 1 μm. As for the ratio of a ultraviolet curable resin composition and fine particle powder, it is desirable to mix | blend so that it may be 0.1-30 mass parts with respect to 100 mass parts of resin compositions.

紫外線硬化樹脂層は、JIS B 0601で規定される中心線平均粗さ(Ra)が1〜50nmのクリアハードコート層であるか、若しくはRaが0.1〜1μm程度の防眩層であることが好ましい。中心線平均粗さ(Ra)は光干渉式の表面粗さ測定器で測定することが好ましく、例えばWYKO社製RST/PLUSを用いて測定することが出来る。   The ultraviolet curable resin layer is a clear hard coat layer having a center line average roughness (Ra) defined by JIS B 0601 of 1 to 50 nm or an antiglare layer having an Ra of about 0.1 to 1 μm. Is preferred. The center line average roughness (Ra) is preferably measured with an optical interference type surface roughness measuring instrument, and can be measured using, for example, RST / PLUS manufactured by WYKO.

また、本発明に用いられるハードコート層には帯電防止剤を含有させることも好ましく、帯電防止剤としては、例えば、Sn、Ti、In、Al、Zn、Si、Mg、Ba、Mo、W及びVからなる群から選択される少なくとも一つの元素を主成分として含有し、かつ、体積抵抗率が107Ω・cm以下であるような導電性材料が好ましい。 The hard coat layer used in the present invention preferably contains an antistatic agent. Examples of the antistatic agent include Sn, Ti, In, Al, Zn, Si, Mg, Ba, Mo, W and A conductive material containing at least one element selected from the group consisting of V as a main component and having a volume resistivity of 10 7 Ω · cm or less is preferable.

前記帯電防止剤としては、上記の元素を有する金属酸化物、複合酸化物等が挙げられる。   Examples of the antistatic agent include metal oxides and composite oxides having the above elements.

金属酸化物の例としては、例えば、ZnO、TiO2、SnO2、Al23、In23、SiO2、MgO、BaO、MoO2、V25等、或いはこれらの複合酸化物が好ましく、特にZnO、In23、TiO2及びSnO2が好ましい。異種原子を含む例としては、例えばZnOに対してはAl、In等の添加、TiO2に対してはNb、Ta等の添加、またSnO2に対しては、Sb、Nb、ハロゲン元素等の添加が効果的である。これら異種原子の添加量は0.01〜25mol%の範囲が好ましいが、0.1〜15mol%の範囲が特に好ましい。また、これらの導電性を有するこれら金属酸化物粉体の体積抵抗率は107Ω・cm以下、特に105Ω・cm以下である。 Examples of metal oxides include, for example, ZnO, TiO 2 , SnO 2 , Al 2 O 3 , In 2 O 3 , SiO 2 , MgO, BaO, MoO 2 , V 2 O 5 , or complex oxides thereof. ZnO, In 2 O 3 , TiO 2 and SnO 2 are particularly preferable. Examples of containing different atoms include, for example, addition of Al and In to ZnO, addition of Nb and Ta to TiO 2 , and addition of Sb, Nb and halogen elements to SnO 2 . Addition is effective. The amount of these different atoms added is preferably in the range of 0.01 to 25 mol%, particularly preferably in the range of 0.1 to 15 mol%. In addition, the volume resistivity of these metal oxide powders having conductivity is 10 7 Ω · cm or less, particularly 10 5 Ω · cm or less.

《反射防止層》
本発明の光学フィルムは、上記ハードコート層上に、機能性薄膜として更に反射防止層を設けることが好ましい。特に中空微粒子を含有する低屈折率層であることが好ましい。
<Antireflection layer>
In the optical film of the present invention, it is preferable to further provide an antireflection layer as a functional thin film on the hard coat layer. In particular, a low refractive index layer containing hollow fine particles is preferable.

(低屈折率層)
本発明に用いられる低屈折率層は、中空微粒子を含有することが好ましく、その他に珪素アルコキシド、シランカップリング剤、硬化剤等を含有することが更に好ましい。
(Low refractive index layer)
The low refractive index layer used in the present invention preferably contains hollow fine particles, and more preferably contains a silicon alkoxide, a silane coupling agent, a curing agent and the like.

〈中空微粒子〉
低屈折率層には下記の中空微粒子が含有されることが好ましい。
<Hollow particles>
The low refractive index layer preferably contains the following hollow fine particles.

ここでいう中空微粒子は、(1)多孔質粒子と該多孔質粒子表面に設けられた被覆層とからなる複合粒子、又は(2)内部に空洞を有し、かつ内容物が溶媒、気体又は多孔質物質で充填された空洞粒子である。尚、低屈折率層用塗布液には(1)複合粒子又は(2)空洞粒子のいずれかが含まれていればよく、また双方が含まれていてもよい。   The hollow fine particles referred to here are (1) composite particles composed of porous particles and a coating layer provided on the surface of the porous particles, or (2) hollow inside, and the content is a solvent, gas or Cavity particles filled with a porous material. In addition, the coating liquid for low refractive index layers should just contain either (1) composite particle | grains or (2) cavity particle | grains, and may contain both.

尚、空洞粒子は、内部に空洞を有する粒子であり、空洞は粒子壁で囲まれている。空洞内には、調製時に使用した溶媒、気体又は多孔質物質等の内容物で充填されている。このような無機微粒子の平均粒子径が5〜300nm、好ましくは10〜200nmの範囲にあることが望ましい。使用される無機微粒子は、形成される透明被膜の厚さに応じて適宜選択され、形成される低屈折率層等の透明被膜の膜厚の2/3〜1/10の範囲にあることが望ましい。これらの無機微粒子は、低屈折率層の形成のため、適当な媒体に分散した状態で使用することが好ましい。分散媒としては、水、アルコール(例えば、メタノール、エタノール、イソプロピルアルコール)及びケトン(例えば、メチルエチルケトン、メチルイソブチルケトン)、ケトンアルコール(例えばジアセトンアルコール)が好ましい。   The hollow particles are particles having cavities inside, and the cavities are surrounded by particle walls. The cavity is filled with contents such as a solvent, a gas, or a porous material used at the time of preparation. It is desirable that the average particle size of such inorganic fine particles is in the range of 5 to 300 nm, preferably 10 to 200 nm. The inorganic fine particles used are appropriately selected according to the thickness of the transparent film to be formed, and may be in the range of 2/3 to 1/10 of the film thickness of the formed transparent film such as a low refractive index layer. desirable. These inorganic fine particles are preferably used in a state of being dispersed in an appropriate medium in order to form a low refractive index layer. As the dispersion medium, water, alcohol (for example, methanol, ethanol, isopropyl alcohol), ketone (for example, methyl ethyl ketone, methyl isobutyl ketone), and ketone alcohol (for example, diacetone alcohol) are preferable.

複合粒子の被覆層の厚さ又は空洞粒子の粒子壁の厚さは、1〜20nm、好ましくは2〜15nmの範囲にあることが望ましい。複合粒子の場合、被覆層の厚さが1nm未満の場合は、粒子を完全に被覆することが出来ないことがあり、低屈折率の効果が十分得られないことがある。また、被覆層の厚さが20nmを越えると、複合粒子の多孔性(細孔容積)が低下し低屈折率の効果が十分得られなくなることがある。また空洞粒子の場合、粒子壁の厚さが1nm未満の場合は、粒子形状を維持出来ないことがあり、また厚さが20nmを越えても、低屈折率の効果が十分に現れないことがある。   The thickness of the coating layer of the composite particles or the thickness of the particle walls of the hollow particles is desirably in the range of 1 to 20 nm, preferably 2 to 15 nm. In the case of composite particles, when the thickness of the coating layer is less than 1 nm, the particles may not be completely covered, and the low refractive index effect may not be sufficiently obtained. On the other hand, when the thickness of the coating layer exceeds 20 nm, the porosity (pore volume) of the composite particles may be lowered, and the low refractive index effect may not be sufficiently obtained. In the case of hollow particles, when the particle wall thickness is less than 1 nm, the particle shape may not be maintained, and even if the thickness exceeds 20 nm, the effect of low refractive index may not be sufficiently exhibited. is there.

前記複合粒子の被覆層又は空洞粒子の粒子壁は、シリカを主成分とすることが好ましい。また複合粒子の被覆層又は空洞粒子の粒子壁には、シリカ以外の成分が含まれていてもよく、具体的には、Al23、B23、TiO2、ZrO2、SnO2、CeO2、P23、Sb23、MoO3、ZnO2、WO3などが挙げられる。複合粒子を構成する多孔質粒子としては、シリカからなるもの、シリカとシリカ以外の無機化合物とからなるもの、CaF2、NaF、NaAlF6、MgFなどからなるものが挙げられる。このうち特にシリカとシリカ以外の無機化合物との複合酸化物からなる多孔質粒子が好適である。シリカ以外の無機化合物としては、Al23、B23、TiO2、ZrO2、SnO2、CeO2、P23、Sb23、MoO3、ZnO2、WO3等との1種又は2種以上を挙げることが出来る。このような多孔質粒子では、シリカをSiO2で表し、シリカ以外の無機化合物を酸化物換算(MOX)で表した時のモル比MOX/SiO2が、0.0001〜1.0、好ましくは0.001〜0.3の範囲にあることが望ましい。多孔質粒子のモル比MOX/SiO2が0.0001未満のものは得ることが困難であり、得られたとしても導電性を発現しない。また、多孔質粒子のモル比MOX/SiO2が、1.0を越えると、シリカの比率が少なくなるので、細孔容積が小さく、かつ屈折率の低い粒子を得られないことがある。 The coating layer of the composite particles or the particle wall of the hollow particles preferably contains silica as a main component. The coating layer of the composite particle or the particle wall of the hollow particle may contain a component other than silica, specifically, Al 2 O 3 , B 2 O 3 , TiO 2 , ZrO 2 , SnO 2. and CeO 2, P 2 O 3, Sb 2 O 3, MoO 3, ZnO 2, WO 3 and the like. Examples of the porous particles constituting the composite particles include those made of silica, those made of silica and an inorganic compound other than silica, and those made of CaF 2 , NaF, NaAlF 6 , MgF, and the like. Among these, porous particles made of a composite oxide of silica and an inorganic compound other than silica are particularly preferable. Examples of inorganic compounds other than silica include Al 2 O 3 , B 2 O 3 , TiO 2 , ZrO 2 , SnO 2 , CeO 2 , P 2 O 3 , Sb 2 O 3 , MoO 3 , ZnO 2 , WO 3 and the like. 1 type or 2 types or more can be mentioned. In such porous particles, the molar ratio MOX / SiO 2 when the silica is represented by SiO 2 and the inorganic compound other than silica is represented by oxide (MOX) is 0.0001 to 1.0, preferably It is desirable to be in the range of 0.001 to 0.3. It is difficult to obtain a porous particle having a molar ratio MOX / SiO 2 of less than 0.0001, and even if it is obtained, conductivity is not exhibited. On the other hand, if the molar ratio MOX / SiO 2 of the porous particles exceeds 1.0, the ratio of silica decreases, so that particles having a small pore volume and a low refractive index may not be obtained.

このような多孔質粒子の細孔容積は、0.1〜1.5ml/g、好ましくは0.2〜1.5ml/gの範囲であることが望ましい。細孔容積が0.1ml/g未満では、十分に屈折率の低下した粒子が得られず、1.5ml/gを越えると微粒子の強度が低下し、得られる被膜の強度が低下することがある。   The pore volume of such porous particles is desirably in the range of 0.1 to 1.5 ml / g, preferably 0.2 to 1.5 ml / g. If the pore volume is less than 0.1 ml / g, particles having a sufficiently reduced refractive index cannot be obtained. If the pore volume exceeds 1.5 ml / g, the strength of the fine particles is lowered, and the strength of the resulting coating may be lowered. is there.

尚、このような多孔質粒子の細孔容積は水銀圧入法によって求めることが出来る。また、空洞粒子の内容物としては、粒子調製時に使用した溶媒、気体、多孔質物質等が挙げられる。溶媒中には空洞粒子調製する際に使用される粒子前駆体の未反応物、使用した触媒等が含まれていてもよい。また多孔質物質としては、前記多孔質粒子で例示した化合物からなるものが挙げられる。これらの内容物は、単一の成分からなるものであってもよいが、複数成分の混合物であってもよい。   Incidentally, the pore volume of such porous particles can be determined by a mercury intrusion method. Examples of the contents of the hollow particles include a solvent, a gas, and a porous substance used at the time of preparing the particles. The solvent may contain an unreacted particle precursor used when preparing the hollow particles, the catalyst used, and the like. Moreover, what consists of the compound illustrated by the said porous particle as a porous substance is mentioned. These contents may be composed of a single component or may be a mixture of a plurality of components.

このような無機微粒子の製造方法としては、例えば特開平7−133105号公報の段落番号[0010]〜[0033]に開示された複合酸化物コロイド粒子の調製方法が好適に採用される。具体的に、複合粒子が、シリカ、シリカ以外の無機化合物とからなる場合、以下の第1〜第3工程から無機化合物粒子は製造される。   As a method for producing such inorganic fine particles, for example, the method for preparing composite oxide colloidal particles disclosed in paragraphs [0010] to [0033] of JP-A-7-133105 is suitably employed. Specifically, when the composite particles are composed of silica and an inorganic compound other than silica, the inorganic compound particles are produced from the following first to third steps.

第1工程:多孔質粒子前駆体の調製
第1工程では、予め、シリカ原料とシリカ以外の無機化合物原料のアルカリ水溶液を個別に調製するか、又は、シリカ原料とシリカ以外の無機化合物原料との混合水溶液を調製しておき、この水溶液を目的とする複合酸化物の複合割合に応じて、pH10以上のアルカリ水溶液中に攪拌しながら徐々に添加して多孔質粒子前駆体を調製する。
First Step: Preparation of Porous Particle Precursor In the first step, an alkali aqueous solution of a silica raw material and an inorganic compound raw material other than silica is separately prepared in advance, or a silica raw material and an inorganic compound raw material other than silica are prepared in advance. A mixed aqueous solution is prepared, and this aqueous solution is gradually added to an aqueous alkaline solution having a pH of 10 or more while stirring according to the composite ratio of the target composite oxide to prepare a porous particle precursor.

シリカ原料としては、アルカリ金属、アンモニウム又は有機塩基のケイ酸塩を用いる。アルカリ金属のケイ酸塩としては、ケイ酸ナトリウム(水ガラス)やケイ酸カリウムが用いられる。有機塩基としては、テトラエチルアンモニウム塩等の第4級アンモニウム塩、モノエタノールアミン、ジエタノールアミン、トリエタノールアミン等のアミン類を挙げることが出来る。尚、アンモニウムのケイ酸塩又は有機塩基のケイ酸塩には、ケイ酸液にアンモニア、第4級アンモニウム水酸化物、アミン化合物等を添加したアルカリ性溶液も含まれる。   As the silica raw material, alkali metal, ammonium or organic base silicate is used. Sodium silicate (water glass) or potassium silicate is used as the alkali metal silicate. Examples of the organic base include quaternary ammonium salts such as tetraethylammonium salt, and amines such as monoethanolamine, diethanolamine, and triethanolamine. The ammonium silicate or the organic base silicate includes an alkaline solution obtained by adding ammonia, a quaternary ammonium hydroxide, an amine compound or the like to a silicic acid solution.

また、シリカ以外の無機化合物の原料は、アルカリ可溶の前記導電性化合物が用いられる。   Moreover, the alkali-soluble conductive compound is used as a raw material for inorganic compounds other than silica.

これらの水溶液の添加と同時に混合水溶液のpH値は変化するが、このpH値を所定の範囲に制御するような操作は特に必要ない。水溶液は、最終的に、無機酸化物の種類及びその混合割合によって定まるpH値となる。このときの水溶液の添加速度にはとくに制限はない。また、複合酸化物粒子の製造に際して、シード粒子の分散液を出発原料と使用することも可能である。当該シード粒子としては、特に制限はないが、SiO2、Al23、TiO2又はZrO2等の無機酸化物又はこれらの複合酸化物の微粒子が用いられ、通常、これらのゾルを用いることが出来る。更に前記の製造方法によって得られた多孔質粒子前駆体分散液をシード粒子分散液としてもよい。シード粒子分散液を使用する場合、シード粒子分散液のpHを10以上に調整したのち、該シード粒子分散液中に前記化合物の水溶液を、上記したアルカリ水溶液中に攪拌しながら添加する。この場合も、必ずしも分散液のpH制御を行う必要はない。このようにして、シード粒子を用いると、調製する多孔質粒子の粒径コントロールが容易であり、粒度の揃ったものを得ることが出来る。 Although the pH value of the mixed aqueous solution changes simultaneously with the addition of these aqueous solutions, an operation for controlling the pH value within a predetermined range is not particularly required. The aqueous solution finally has a pH value determined by the type of inorganic oxide and the mixing ratio thereof. There is no restriction | limiting in particular in the addition rate of the aqueous solution at this time. Further, in the production of composite oxide particles, a dispersion of seed particles can be used as a starting material. The seed particles are not particularly limited, but inorganic oxides such as SiO 2 , Al 2 O 3 , TiO 2 or ZrO 2 or fine particles of these composite oxides are used. Usually, these sols are used. I can do it. Furthermore, the porous particle precursor dispersion obtained by the above production method may be used as a seed particle dispersion. When the seed particle dispersion is used, the pH of the seed particle dispersion is adjusted to 10 or more, and then the aqueous solution of the compound is added to the above-described alkaline aqueous solution while stirring. Also in this case, it is not always necessary to control the pH of the dispersion. In this way, when seed particles are used, it is easy to control the particle size of the porous particles to be prepared, and particles with uniform particle sizes can be obtained.

上記したシリカ原料及び無機化合物原料はアルカリ側で高い溶解度を有する。しかしながら、この溶解度の大きいpH領域で両者を混合すると、ケイ酸イオン及びアルミン酸イオン等のオキソ酸イオンの溶解度が低下し、これらの複合物が析出して微粒子に成長したり、或いは、シード粒子上に析出して粒子成長が起こる。従って、微粒子の析出、成長に際して、従来法のようなpH制御は必ずしも行う必要がない。   The silica raw material and the inorganic compound raw material described above have high solubility on the alkali side. However, when both are mixed in this highly soluble pH region, the solubility of oxo acid ions such as silicate ions and aluminate ions decreases, and these composites precipitate and grow into fine particles, or seed particles. Particle deposition occurs on the top. Therefore, it is not always necessary to perform pH control as in the conventional method for precipitation and growth of fine particles.

第1工程におけるシリカとシリカ以外の無機化合物との複合割合は、シリカに対する無機化合物を酸化物(MOx)に換算し、MOx/SiO2のモル比が、0.05〜2.0、好ましくは0.2〜2.0の範囲内にあることが望ましい。この範囲内において、シリカの割合が少なくなる程、多孔質粒子の細孔容積が増大する。しかしながら、モル比が2.0を越えても、多孔質粒子の細孔の容積は殆ど増加しない。他方、モル比が0.05未満の場合は、細孔容積が小さくなる。空洞粒子を調製する場合、MOx/SiO2のモル比は、0.25〜2.0の範囲内にあることが望ましい。 The composite ratio of silica and inorganic compound other than silica in the first step is that the inorganic compound relative to silica is converted to oxide (MOx), and the molar ratio of MOx / SiO 2 is 0.05 to 2.0, preferably It is desirable to be within the range of 0.2 to 2.0. Within this range, the pore volume of the porous particles increases as the proportion of silica decreases. However, even when the molar ratio exceeds 2.0, the pore volume of the porous particles hardly increases. On the other hand, when the molar ratio is less than 0.05, the pore volume becomes small. When preparing hollow particles, the molar ratio of MOx / SiO 2 is preferably in the range of 0.25 to 2.0.

第2工程:多孔質粒子からのシリカ以外の無機化合物の除去
第2工程では、前記第1工程で得られた多孔質粒子前駆体から、シリカ以外の無機化合物(珪素と酸素以外の元素)の少なくとも一部を選択的に除去する。具体的な除去方法としては、多孔質粒子前駆体中の無機化合物を鉱酸や有機酸を用いて溶解除去したり、或いは、陽イオン交換樹脂と接触させてイオン交換除去する。
Second step: Removal of inorganic compound other than silica from porous particles In the second step, inorganic compounds other than silica (elements other than silicon and oxygen) are obtained from the porous particle precursor obtained in the first step. At least a portion is selectively removed. As a specific removal method, the inorganic compound in the porous particle precursor is dissolved and removed using a mineral acid or an organic acid, or is contacted with a cation exchange resin for ion exchange removal.

尚、第1工程で得られる多孔質粒子前駆体は、珪素と無機化合物構成元素が酸素を介して結合した網目構造の粒子である。このように多孔質粒子前駆体から無機化合物(珪素と酸素以外の元素)を除去することにより、一層多孔質で細孔容積の大きい多孔質粒子が得られる。また、多孔質粒子前駆体から無機酸化物(珪素と酸素以外の元素)を除去する量を多くすれば、空洞粒子を調製することが出来る。   The porous particle precursor obtained in the first step is a particle having a network structure in which silicon and an inorganic compound constituent element are bonded via oxygen. By removing the inorganic compound (elements other than silicon and oxygen) from the porous particle precursor in this way, porous particles having a larger porosity and a larger pore volume can be obtained. Further, if the amount of removing the inorganic oxide (elements other than silicon and oxygen) from the porous particle precursor is increased, the hollow particles can be prepared.

また、多孔質粒子前駆体からシリカ以外の無機化合物を除去するに先立って、第1工程で得られる多孔質粒子前駆体分散液に、シリカのアルカリ金属塩を脱アルカリして得られるケイ酸液或いは加水分解性の有機珪素化合物を添加してシリカ保護膜を形成することが好ましい。シリカ保護膜の厚さは0.5〜15nmの厚さであればよい。尚シリカ保護膜を形成しても、この工程での保護膜は多孔質であり厚さが薄いので、前記したシリカ以外の無機化合物を、多孔質粒子前駆体から除去することは可能である。   In addition, prior to removing inorganic compounds other than silica from the porous particle precursor, a silicic acid solution obtained by removing the alkali metal salt of silica from the porous particle precursor dispersion obtained in the first step. Alternatively, it is preferable to form a silica protective film by adding a hydrolyzable organosilicon compound. The thickness of the silica protective film may be 0.5 to 15 nm. Even if the silica protective film is formed, the protective film in this step is porous and thin, so that it is possible to remove inorganic compounds other than silica described above from the porous particle precursor.

このようなシリカ保護膜を形成することによって、粒子形状を保持したまま、前記したシリカ以外の無機化合物を、多孔質粒子前駆体から除去することが出来る。また、後述するシリカ被覆層を形成する際に、多孔質粒子の細孔が被覆層によって閉塞されてしまうことがなく、このため細孔容積を低下させることなく後述するシリカ被覆層を形成することが出来る。尚、除去する無機化合物の量が少ない場合は粒子が壊れることがないので必ずしも保護膜を形成する必要はない。   By forming such a silica protective film, inorganic compounds other than silica described above can be removed from the porous particle precursor while maintaining the particle shape. Further, when forming the silica coating layer described later, the pores of the porous particles are not blocked by the coating layer, and therefore the silica coating layer described later is formed without reducing the pore volume. I can do it. Note that when the amount of the inorganic compound to be removed is small, the particles are not broken, and thus it is not always necessary to form a protective film.

また空洞粒子を調製する場合は、このシリカ保護膜を形成しておくことが望ましい。空洞粒子を調製する際には、無機化合物を除去すると、シリカ保護膜と、該シリカ保護膜内の溶媒、未溶解の多孔質固形分とからなる空洞粒子の前駆体が得られ、該空洞粒子の前駆体に後述の被覆層を形成すると、形成された被覆層が、粒子壁となり空洞粒子が形成される。   When preparing hollow particles, it is desirable to form this silica protective film. When preparing the hollow particles, the inorganic compound is removed to obtain a hollow particle precursor composed of a silica protective film, a solvent in the silica protective film, and an undissolved porous solid content. When a coating layer to be described later is formed on the precursor, the formed coating layer becomes a particle wall to form hollow particles.

上記シリカ保護膜形成のために添加するシリカ源の量は、粒子形状を保持出来る範囲で少ないことが好ましい。シリカ源の量が多過ぎると、シリカ保護膜が厚くなり過ぎるので、多孔質粒子前駆体からシリカ以外の無機化合物を除去することが困難となることがある。シリカ保護膜形成用に使用される加水分解性の有機珪素化合物としては、一般式RnSi(OR′)4-n〔R、R′:アルキル基、アリール基、ビニル基、アクリル基等の炭化水素基、n=0、1、2又は3〕で表されるアルコキシシランを用いることが出来る。特に、テトラメトキシシラン、テトラエトキシシラン、テトライソプロポキシシラン等のテトラアルコキシシランが好ましく用いられる。 The amount of the silica source added for forming the silica protective film is preferably small as long as the particle shape can be maintained. If the amount of the silica source is too large, the silica protective film becomes too thick, and it may be difficult to remove inorganic compounds other than silica from the porous particle precursor. The hydrolyzable organic silicon compound used for the silica protective film formed of the general formula R n Si (OR ') 4 -n [R, R': an alkyl group, an aryl group, a vinyl group, such as acrylic group An alkoxysilane represented by a hydrocarbon group, n = 0, 1, 2, or 3] can be used. In particular, tetraalkoxysilanes such as tetramethoxysilane, tetraethoxysilane, and tetraisopropoxysilane are preferably used.

添加方法としては、これらのアルコキシシラン、純水、及びアルコールの混合溶液に触媒としての少量のアルカリ又は酸を添加した溶液を、前記多孔質粒子の分散液に加え、アルコキシシランを加水分解して生成したケイ酸重合物を無機酸化物粒子の表面に沈着させる。このとき、アルコキシシラン、アルコール、触媒を同時に分散液中に添加してもよい。アルカリ触媒としては、アンモニア、アルカリ金属の水酸化物、アミン類を用いることが出来る。また、酸触媒としては、各種の無機酸と有機酸を用いることが出来る。   As an addition method, a solution obtained by adding a small amount of alkali or acid as a catalyst to a mixed solution of these alkoxysilane, pure water, and alcohol is added to the dispersion of the porous particles, and the alkoxysilane is hydrolyzed. The produced silicic acid polymer is deposited on the surface of the inorganic oxide particles. At this time, alkoxysilane, alcohol, and catalyst may be simultaneously added to the dispersion. As the alkali catalyst, ammonia, an alkali metal hydroxide, or an amine can be used. As the acid catalyst, various inorganic acids and organic acids can be used.

多孔質粒子前駆体の分散媒が、水単独、又は有機溶媒に対する水の比率が高い場合には、ケイ酸液を用いてシリカ保護膜を形成することも可能である。ケイ酸液を用いる場合には、分散液中にケイ酸液を所定量添加し、同時にアルカリを加えてケイ酸液を多孔質粒子表面に沈着させる。尚、ケイ酸液と上記アルコキシシランを併用してシリカ保護膜を作製してもよい。   When the dispersion medium of the porous particle precursor is water alone or the ratio of water to the organic solvent is high, it is possible to form a silica protective film using a silicic acid solution. When a silicic acid solution is used, a predetermined amount of the silicic acid solution is added to the dispersion, and at the same time an alkali is added to deposit the silicic acid solution on the surface of the porous particles. In addition, you may produce a silica protective film together using a silicic acid liquid and the said alkoxysilane.

第3工程:シリカ被覆層の形成
第3工程では、第2工程で調製した多孔質粒子分散液(空洞粒子の場合は空洞粒子前駆体分散液)に加水分解性の有機珪素化合物又はケイ酸液等を加えることにより、粒子の表面を加水分解性有機珪素化合物又はケイ酸液等の重合物で被覆してシリカ被覆層を形成する。
Third step: Formation of silica coating layer In the third step, a hydrolyzable organosilicon compound or silicic acid solution is added to the porous particle dispersion prepared in the second step (in the case of hollow particles, a hollow particle precursor dispersion). Is added to coat the surface of the particles with a polymer such as a hydrolyzable organosilicon compound or a silicic acid solution to form a silica coating layer.

シリカ被覆層形成用に使用される加水分解性の有機珪素化合物としては、前記したような一般式RnSi(OR′)4-n〔R、R′:アルキル基、アリール基、ビニル基、アクリル基等の炭化水素基、n=0、1、2又は3〕で表されるアルコキシシランを用いることが出来る。特に、テトラメトキシシラン、テトラエトキシシラン、テトライソプロポキシシラン等のテトラアルコキシシランが好ましく用いられる。 The hydrolyzable organic silicon compound used for the silica coating layer formed, the above-mentioned such general formula R n Si (OR ') 4 -n [R, R': an alkyl group, an aryl group, a vinyl group, An alkoxysilane represented by a hydrocarbon group such as an acryl group, n = 0, 1, 2, or 3] can be used. In particular, tetraalkoxysilanes such as tetramethoxysilane, tetraethoxysilane, and tetraisopropoxysilane are preferably used.

添加方法としては、これらのアルコキシシラン、純水、及びアルコールの混合溶液に触媒としての少量のアルカリ又は酸を添加した溶液を、前記多孔質粒子(空洞粒子の場合は空洞粒子前駆体)分散液に加え、アルコキシシランを加水分解して生成したケイ酸重合物を多孔質粒子(空洞粒子の場合は空洞粒子前駆体)の表面に沈着させる。このとき、アルコキシシラン、アルコール、触媒を同時に分散液中に添加してもよい。アルカリ触媒としては、アンモニア、アルカリ金属の水酸化物、アミン類を用いることが出来る。また、酸触媒としては、各種の無機酸と有機酸を用いることが出来る。   As an addition method, a solution obtained by adding a small amount of alkali or acid as a catalyst to a mixed solution of these alkoxysilanes, pure water, and alcohol is used as a dispersion of the porous particles (in the case of hollow particles, hollow particle precursor). In addition, the silicic acid polymer produced by hydrolyzing alkoxysilane is deposited on the surface of the porous particles (in the case of hollow particles, hollow particle precursors). At this time, alkoxysilane, alcohol, and catalyst may be simultaneously added to the dispersion. As the alkali catalyst, ammonia, an alkali metal hydroxide, or an amine can be used. As the acid catalyst, various inorganic acids and organic acids can be used.

多孔質粒子(空洞粒子の場合は空洞粒子前駆体)の分散媒が水単独、又は有機溶媒との混合溶媒であって、有機溶媒に対する水の比率が高い混合溶媒の場合には、ケイ酸液を用いて被覆層を形成してもよい。ケイ酸液とは、水ガラス等のアルカリ金属ケイ酸塩の水溶液をイオン交換処理して脱アルカリしたケイ酸の低重合物の水溶液である。   When the dispersion medium of the porous particles (cavity particle precursor in the case of hollow particles) is water alone or a mixed solvent with an organic solvent and the mixed solvent has a high ratio of water to the organic solvent, a silicate solution You may form a coating layer using. The silicic acid solution is an aqueous solution of a low silicic acid polymer obtained by dealkalizing an aqueous solution of an alkali metal silicate such as water glass by ion exchange treatment.

ケイ酸液は、多孔質粒子(空洞粒子の場合は空洞粒子前駆体)分散液中に添加され、同時にアルカリを加えてケイ酸低重合物を多孔質粒子(空洞粒子の場合は空洞粒子前駆体)表面に沈着させる。尚、ケイ酸液を上記アルコキシシランと併用して被覆層形成用に使用してもよい。被覆層形成用に使用される有機珪素化合物又はケイ酸液の添加量は、コロイド粒子の表面を十分被覆出来る程度であればよく、最終的に得られるシリカ被覆層の厚さが1〜20nmとなるように量で、多孔質粒子(空洞粒子の場合は空洞粒子前駆体)分散液中で添加される。また前記シリカ保護膜を形成した場合はシリカ保護膜とシリカ被覆層の合計の厚さが1〜20nmの範囲となるような量で、有機珪素化合物又はケイ酸液は添加される。   The silicic acid solution is added to the dispersion of porous particles (in the case of hollow particles, hollow particle precursors), and at the same time, alkali is added to make the low-silicic acid polymer into porous particles (in the case of hollow particles, hollow particle precursors). ) Deposit on the surface. A silicic acid solution may be used in combination with the alkoxysilane for forming a coating layer. The addition amount of the organosilicon compound or silicic acid solution used for forming the coating layer only needs to be sufficient to cover the surface of the colloidal particles, and the finally obtained silica coating layer has a thickness of 1 to 20 nm. In such an amount, it is added in a dispersion of porous particles (in the case of hollow particles, hollow particle precursor) in a dispersion. When the silica protective film is formed, the organosilicon compound or the silicate solution is added in such an amount that the total thickness of the silica protective film and the silica coating layer is in the range of 1 to 20 nm.

次いで、被覆層が形成された粒子の分散液を加熱処理する。加熱処理によって、多孔質粒子の場合は、多孔質粒子表面を被覆したシリカ被覆層が緻密化し、多孔質粒子がシリカ被覆層によって被覆された複合粒子の分散液が得られる。また空洞粒子前駆体の場合、形成された被覆層が緻密化して空洞粒子壁となり、内部が溶媒、気体又は多孔質固形分で充填された空洞を有する空洞粒子の分散液が得られる。   Next, the dispersion liquid of the particles on which the coating layer is formed is heat-treated. By the heat treatment, in the case of porous particles, the silica coating layer covering the surface of the porous particles is densified, and a dispersion of composite particles in which the porous particles are coated with the silica coating layer is obtained. In the case of the hollow particle precursor, the formed coating layer is densified to form hollow particle walls, and a dispersion of hollow particles having cavities filled with a solvent, gas, or porous solid content is obtained.

このときの加熱処理温度は、シリカ被覆層の微細孔を閉塞出来る程度であれば特に制限はなく、80〜300℃の範囲が好ましい。加熱処理温度が80℃未満ではシリカ被覆層の微細孔を完全に閉塞して緻密化出来ないことがあり、また処理時間に長時間を要してしまうことがある。また加熱処理温度が300℃を越えて長時間処理すると緻密な粒子となることがあり、低屈折率の効果が得られないことがある。   The heat treatment temperature at this time is not particularly limited as long as it can close the fine pores of the silica coating layer, and is preferably in the range of 80 to 300 ° C. When the heat treatment temperature is less than 80 ° C., the fine pores of the silica coating layer may not be completely closed and densified, and the treatment time may take a long time. Further, when the heat treatment temperature exceeds 300 ° C. for a long time, fine particles may be formed, and the effect of low refractive index may not be obtained.

このようにして得られた無機微粒子の屈折率は、1.44未満と低い。このような無機微粒子は、多孔質粒子内部の多孔性が保持されているか、内部が空洞であるので、屈折率が低くなるものと推察される。   The refractive index of the inorganic fine particles thus obtained is as low as less than 1.44. Such inorganic fine particles are presumed to have a low refractive index because the porosity inside the porous particles is maintained or the inside is hollow.

本発明に用いられる低屈折率層には中空微粒子の他に、アルコキシ珪素化合物の加水分解物及びそれに続く縮合反応により形成される縮合物を含むことが好ましい。特に、下記一般式(1)及び/又は(2)で表されるアルコキシ珪素化合物又はその加水分解物を調整したSiO2ゾルを含有することが好ましい。 The low refractive index layer used in the present invention preferably contains a hydrolyzate of an alkoxysilicon compound and a condensate formed by a subsequent condensation reaction in addition to the hollow fine particles. In particular, it is preferable to contain a SiO 2 sol prepared by adjusting an alkoxysilicon compound represented by the following general formula (1) and / or (2) or a hydrolyzate thereof.

一般式(1) R1−Si(OR2)3
一般式(2) Si(OR2)4
(式中、R1はメチル基、エチル基、ビニル基、又はアクリロイル基、メタクリロイル基、アミノ基若しくはエポキシ基を含む有機基を、R2はメチル基又はエチル基を示す)
珪素アルコキシド、シランカップリング剤の加水分解は、珪素アルコキシド、シランカップリング剤を適当な溶媒中に溶解して行う。使用する溶媒としては、例えば、メチルエチルケトンなどのケトン類、メタノール、エタノール、イソプロピルアルコールブタノールなどのアルコール類、酢酸エチルなどのエステル類、或いはこれらの混合物が挙げられる。
General formula (1) R1-Si (OR2) 3
General formula (2) Si (OR2) 4
(In the formula, R1 represents a methyl group, an ethyl group, a vinyl group, or an organic group containing an acryloyl group, a methacryloyl group, an amino group or an epoxy group, and R2 represents a methyl group or an ethyl group)
Hydrolysis of the silicon alkoxide and silane coupling agent is performed by dissolving the silicon alkoxide and silane coupling agent in a suitable solvent. Examples of the solvent to be used include ketones such as methyl ethyl ketone, alcohols such as methanol, ethanol and isopropyl alcohol butanol, esters such as ethyl acetate, and mixtures thereof.

上記珪素アルコキシド又はシランカップリング剤を溶媒に溶解した溶液に、加水分解に必要な量より若干多い量の水を加え、15〜35℃、好ましくは20℃〜30℃の温度で1〜48時間、好ましくは3〜36時間攪拌を行う。   To the solution obtained by dissolving the silicon alkoxide or the silane coupling agent in a solvent, an amount of water slightly larger than that required for hydrolysis is added, and the temperature is 15 to 35 ° C., preferably 20 to 30 ° C. for 1 to 48 hours. The stirring is preferably performed for 3 to 36 hours.

上記加水分解においては、触媒を用いることが好ましく、このような触媒としては塩酸、硝酸、硫酸又は酢酸などの酸が好ましく用いられる。これらの酸は0.001N〜20.0N、好ましくは0.005〜5.0N程度の水溶液にして用いる。該触媒水溶液中の水分は加水分解用の水分とすることが出来る。   In the hydrolysis, a catalyst is preferably used. As such a catalyst, an acid such as hydrochloric acid, nitric acid, sulfuric acid or acetic acid is preferably used. These acids are used in an aqueous solution of about 0.001N to 20.0N, preferably about 0.005 to 5.0N. The water in the catalyst aqueous solution can be water for hydrolysis.

アルコキシ珪素化合物を所定の時間加水分解反応させ、調製されたアルコキシ珪素加水分解液を溶剤で希釈し、必要な他の添加剤等を混合して、低屈折率層用塗布液を調製し、これを基材例えばフィルム上に塗布、乾燥することで低屈折率層を基材上に形成することが出来る。   The alkoxy silicon compound is hydrolyzed for a predetermined time, the prepared alkoxy silicon hydrolyzed solution is diluted with a solvent, and other necessary additives are mixed to prepare a coating solution for a low refractive index layer. The low refractive index layer can be formed on the base material by applying and drying on a base material such as a film.

〈アルコキシ珪素化合物〉
本発明において低屈折率層塗布液の調製に用いられるアルコキシ珪素化合物(以後アルコキシシランともいう)としては、下記一般式(3)で表されるものが好ましい。
<Alkoxy silicon compound>
In the present invention, the alkoxysilicon compound (hereinafter also referred to as alkoxysilane) used for the preparation of the low refractive index layer coating solution is preferably represented by the following general formula (3).

一般式(3) R4−nSi(OR′)n
前記一般式中、R′はアルキル基であり、Rは水素原子又は1価の置換基を表し、nは3又は4を表す。
General formula (3) R4-nSi (OR ') n
In the general formula, R ′ represents an alkyl group, R represents a hydrogen atom or a monovalent substituent, and n represents 3 or 4.

R′で表されるアルキル基としてはメチル基、エチル基、プロピル基、ブチル基等の基が挙げられ、置換基を有していてもよく、置換基としてはアルコキシシランとしての性質を示すものであれば特に制限はなく、例えば、フッ素などのハロゲン原子、アルコキシ基等により置換されていてもよいが、より好ましくは非置換のアルキル基であり、特にメチル基、エチル基が好ましい。   Examples of the alkyl group represented by R ′ include groups such as a methyl group, an ethyl group, a propyl group, and a butyl group, which may have a substituent, and the substituent exhibits properties as an alkoxysilane. If it is, there is no restriction | limiting in particular, For example, although you may substitute by halogen atoms, such as a fluorine, an alkoxy group, etc., More preferably, it is an unsubstituted alkyl group, and especially a methyl group and an ethyl group are preferable.

Rで表される1価の置換基としては特に制限されないが、例えば、アルキル基、シクロアルキル基、アルケニル基、アリール基、芳香族複素環基、シリル基等が挙げられる。中でも好ましいのは、アルキル基、シクロアルキル基、アルケニル基である。また、これらは更に置換されていてもよい。Rの置換基としては、フッ素原子、塩素原子等のハロゲン原子、アミノ基、エポキシ基、メルカプト基、ヒドロキシル基、アセトキシ基等が挙げられる。   The monovalent substituent represented by R is not particularly limited, and examples thereof include an alkyl group, a cycloalkyl group, an alkenyl group, an aryl group, an aromatic heterocyclic group, and a silyl group. Of these, an alkyl group, a cycloalkyl group, and an alkenyl group are preferable. These may be further substituted. Examples of the substituent for R include a halogen atom such as a fluorine atom and a chlorine atom, an amino group, an epoxy group, a mercapto group, a hydroxyl group, and an acetoxy group.

前記一般式で表されるアルコキシシランの好ましい例として、具体的には、テトラメトキシシラン、テトラエトキシシラン(TEOS)、テトラn−プロポキシシラン、テトライソプロポキシシラン、テトラn−ブトキシシラン、テトラt−ブトキシシラン、テトラキス(メトキシエトキシ)シラン、テトラキス(メトキシプロポキシ)シラン、
また、メチルトリメトキシシラン、メチルトリエトキシシラン、エチルトリメトキシシラン、エチルトリエトキシシラン、n−プロピルトリメトキシシラン、n−プロピルトリエトキシシラン、n−ブチルトリメトキシシラン、i−ブチルトリメトキシシラン、n−へキシルトリメトキシシラン、3−グリシドキシプロピルトリメトキシシラン、3−アミノプロピルトリエトキシシラン、2−(3,4−エポキシシクロヘキシル)エチルトリメトキシシラン、3−クロロプロピルトリメトキシシラン、3−メルカプトプロピルトリメトキシシラン、アセトキシトリエトキシシラン、(ヘプタデカフルオロ−1,1,2,2−テトラヒドロデシル)トリメトキシシラン、(3,3,3−トリフルオロプロピル)トリメトキシシラン、(3,3,3−トリフルオロプロピル)トリメトキシシラン、ペンタフルオロフェニルプロピルトリメトキシシラン、更に、ビニルトリメトキシシラン、ビニルトリエトキシシラン、フェニルトリメトキシシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン等が挙げられる。
Specific preferred examples of the alkoxysilane represented by the general formula include tetramethoxysilane, tetraethoxysilane (TEOS), tetra n-propoxy silane, tetraisopropoxy silane, tetra n-butoxy silane, tetra t- Butoxysilane, tetrakis (methoxyethoxy) silane, tetrakis (methoxypropoxy) silane,
Further, methyltrimethoxysilane, methyltriethoxysilane, ethyltrimethoxysilane, ethyltriethoxysilane, n-propyltrimethoxysilane, n-propyltriethoxysilane, n-butyltrimethoxysilane, i-butyltrimethoxysilane, n-hexyltrimethoxysilane, 3-glycidoxypropyltrimethoxysilane, 3-aminopropyltriethoxysilane, 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, 3-chloropropyltrimethoxysilane, 3 -Mercaptopropyltrimethoxysilane, acetoxytriethoxysilane, (heptadecafluoro-1,1,2,2-tetrahydrodecyl) trimethoxysilane, (3,3,3-trifluoropropyl) trimethoxysilane, (3, 3, - trifluoropropyl) trimethoxysilane, pentafluorophenyl phenylpropyl trimethoxysilane, further, vinyltrimethoxysilane, vinyltriethoxysilane, phenyltrimethoxysilane, vinyltrimethoxysilane, and vinyltriethoxysilane and the like.

また、これらの化合物が部分的に縮合した多摩化学製シリケート40、シリケート45、シリケート48、Mシリケート51のような数量体のケイ素化合物でもよい。   Alternatively, quantified silicon compounds such as silicate 40, silicate 45, silicate 48, and M silicate 51 manufactured by Tama Chemical, in which these compounds are partially condensed may be used.

前記アルコキシシランは、加水分解重縮合が可能な珪素アルコキシド基を有しているため、これらのアルコキシシランを加水分解、縮合によって、架橋して、高分子化合物のネットワーク構造が形成され、これを低屈折率層塗布液として用い、基材上に塗布して、乾燥させることで均一な酸化珪素を含有する層が基材上に形成される。   Since the alkoxysilane has a silicon alkoxide group that can be hydrolyzed and polycondensed, these alkoxysilanes are crosslinked by hydrolysis and condensation to form a network structure of the polymer compound. A layer containing uniform silicon oxide is formed on the base material by applying it on the base material and drying it as a refractive index layer coating solution.

加水分解反応は、公知の方法により行うことが出来、疎水的なアルコキシシランと水が混和しやすいように、所定量の水とメタノール、エタノール、アセトニトリルのような親水性の有機溶媒を共存させ溶解・混合したのち、加水分解触媒を添加して、アルコキシシランを加水分解、縮合させる。通常、10℃〜100℃で加水分解、縮合反応させることで、ヒドロキシル基を2個以上有する液状のシリケートオリゴマーが生成し加水分解液が形成される。加水分解の程度は、使用する水の量により適宜調節することが出来る。   The hydrolysis reaction can be carried out by a known method and dissolved in the presence of a predetermined amount of water and a hydrophilic organic solvent such as methanol, ethanol or acetonitrile so that the hydrophobic alkoxysilane and water can be easily mixed. -After mixing, a hydrolysis catalyst is added to hydrolyze and condense the alkoxysilane. Usually, by carrying out hydrolysis and condensation reaction at 10 ° C. to 100 ° C., a liquid silicate oligomer having two or more hydroxyl groups is generated, and a hydrolyzed solution is formed. The degree of hydrolysis can be appropriately adjusted depending on the amount of water used.

本発明においては、アルコキシシランに水と共に添加する溶媒としては、メタノール、エタノールが安価であること、得られる被膜の特性が優れ硬度が良好であることから好ましい。イソプロパノール、n−ブタノール、イソブタノール、オクタノール等も用いることが出来るが、得られた被膜の硬度が低くなる傾向にある。溶媒量は加水分解前のテトラアルコキシシラン100質量部に対して50〜400質量部、好ましくは100〜250質量部である。   In the present invention, as a solvent to be added to alkoxysilane together with water, methanol and ethanol are preferable because they are inexpensive and the properties of the resulting film are excellent and the hardness is good. Although isopropanol, n-butanol, isobutanol, octanol, and the like can be used, the hardness of the obtained film tends to be low. The amount of the solvent is 50 to 400 parts by mass, preferably 100 to 250 parts by mass with respect to 100 parts by mass of the tetraalkoxysilane before hydrolysis.

このようにして加水分解液を調製し、これを溶剤によって希釈し、必要に応じて添加剤を添加して、低屈折率層塗布液を形成するに必要な成分と混合し、低屈折率層塗布液とする。   In this way, a hydrolyzed solution is prepared, diluted with a solvent, and if necessary, an additive is added and mixed with components necessary to form a low refractive index layer coating solution. A coating solution is used.

〈加水分解触媒〉
加水分解触媒としては、酸、アルカリ、有機金属、金属アルコキシド等を挙げることが出来るが、本発明においては硫酸、塩酸、硝酸、次亜塩素酸、ホウ酸等の無機酸或いは有機酸が好ましく、特に硝酸、酢酸などのカルボン酸、ポリアクリル酸、ベンゼンスルホン酸、パラトルエンスルホン酸、メチルスルホン酸等が好ましく、これらの内特に硝酸、酢酸、クエン酸又は酒石酸等が好ましく用いられる。上記クエン酸や酒石酸の他に、レブリン酸、ギ酸、プロピオン酸、リンゴ酸、コハク酸、メチルコハク酸、フマル酸、オキサロ酢酸、ピルビン酸、2−オキソグルタル酸、グリコール酸、D−グリセリン酸、D−グルコン酸、マロン酸、マレイン酸、シュウ酸、イソクエン酸、乳酸等も好ましく用いられる。
<Hydrolysis catalyst>
Examples of the hydrolysis catalyst include acids, alkalis, organic metals, metal alkoxides, etc. In the present invention, inorganic acids or organic acids such as sulfuric acid, hydrochloric acid, nitric acid, hypochlorous acid, and boric acid are preferable. In particular, carboxylic acids such as nitric acid and acetic acid, polyacrylic acid, benzenesulfonic acid, paratoluenesulfonic acid, methylsulfonic acid and the like are preferable, and among these, nitric acid, acetic acid, citric acid, tartaric acid and the like are preferably used. In addition to the citric acid and tartaric acid, levulinic acid, formic acid, propionic acid, malic acid, succinic acid, methyl succinic acid, fumaric acid, oxaloacetic acid, pyruvic acid, 2-oxoglutaric acid, glycolic acid, D-glyceric acid, D- Gluconic acid, malonic acid, maleic acid, oxalic acid, isocitric acid, lactic acid and the like are also preferably used.

この中で、乾燥時に酸が揮発して、膜中に残らないものが好ましく、沸点が低いものがよい。従って、酢酸、硝酸が特に好ましい。   Of these, those which volatilize the acid during drying and do not remain in the film are preferred, and those having a low boiling point are preferred. Therefore, acetic acid and nitric acid are particularly preferable.

添加量は、用いるアルコキシ珪素化合物(例えばテトラアルコキシシラン)100質量部に対して0.001〜10質量部、好ましくは0.005〜5質量部がよい。また、水の添加量については部分加水分解物が理論上100%加水分解し得る量以上であればよく、100〜300%相当量、好ましくは100〜200%相当量を添加するのがよい。   The added amount is 0.001 to 10 parts by mass, preferably 0.005 to 5 parts by mass with respect to 100 parts by mass of the alkoxysilicon compound (for example, tetraalkoxysilane) to be used. In addition, the amount of water added may be equal to or greater than the amount that the partial hydrolyzate can theoretically hydrolyze to 100%, and an amount equivalent to 100 to 300%, preferably an amount equivalent to 100 to 200% is added.

上記アルコキシシランを加水分解する際には、下記無機微粒子を混合することが好ましい。   When the alkoxysilane is hydrolyzed, the following inorganic fine particles are preferably mixed.

加水分解を開始してから所定の時間加水分解液を放置して加水分解の進行が所定の程度に達した後用いる。放置する時間は、上述の加水分解そして縮合による架橋が所望の膜特性を得るのに十分な程度進行する時間である。具体的には用いる酸触媒の種類にもよるが、例えば、酢酸では室温で15時間以上、硝酸では2時間以上が好ましい。熟成温度は熟成時間に影響を与え、一般に高温では熟成が早く進むが、100℃以上に加熱するとゲル化が起こるので、20〜60℃の加熱、保温が適切である。   The hydrolysis solution is allowed to stand for a predetermined time after the start of hydrolysis, and used after the progress of hydrolysis reaches a predetermined level. The standing time is a time during which the above-described crosslinking by hydrolysis and condensation proceeds sufficiently to obtain desired film characteristics. Specifically, depending on the type of acid catalyst used, for example, acetic acid is preferably 15 hours or more at room temperature, and nitric acid is preferably 2 hours or more. The aging temperature affects the aging time. Generally, the aging proceeds quickly at high temperatures, but when heated to 100 ° C. or higher, gelation occurs, so heating at 20 to 60 ° C. and keeping the temperature are appropriate.

このようにして加水分解、縮合により形成したシリケートオリゴマー溶液に上記中空微粒子、添加剤を加え、必要な希釈を行って、低屈折率層塗布液を調製し、これを前述したフィルム上に塗布して、乾燥することで、低屈折率層として優れた酸化珪素膜を含有する層を形成することが出来る。   The above-mentioned hollow fine particles and additives are added to the silicate oligomer solution formed by hydrolysis and condensation in this way, and necessary dilution is performed to prepare a low refractive index layer coating solution, which is applied onto the above-described film. By drying, a layer containing an excellent silicon oxide film as a low refractive index layer can be formed.

また、本発明においては、上記のアルコキシシランの他に、例えばエポキシ基、アミノ基、イソシアネート基、カルボキシル基等の官能基を有するシラン化合物(モノマー、オリゴマー、ポリマー)等により変性した変性物であってもよく、単独で使用又は併用することも可能である。   In the present invention, in addition to the above alkoxysilane, for example, a modified product modified with a silane compound (monomer, oligomer, polymer) having a functional group such as an epoxy group, an amino group, an isocyanate group, or a carboxyl group. It may be used alone or in combination.

〈フッ素化合物〉
本発明に用いられる低屈折率層は中空微粒子とフッ素化合物を含有することも好ましく、バインダーマトリックスとして、熱又は電離放射線により架橋する含フッ素樹脂(以下、「架橋前の含フッ素樹脂」ともいう)を含む。該含フッ素樹脂を含むことにより良好な防汚性反射防止フィルムを提供することが出来る。
<Fluorine compound>
The low refractive index layer used in the present invention preferably contains hollow fine particles and a fluorine compound, and as a binder matrix, a fluorine-containing resin that is crosslinked by heat or ionizing radiation (hereinafter also referred to as “fluorine-containing resin before crosslinking”). including. By including the fluorine-containing resin, a good antifouling antireflection film can be provided.

架橋前の含フッ素樹脂としては、含フッ素ビニルモノマーと架橋性基付与のためのモノマーから形成される含フッ素共重合体を好ましく挙げることが出来る。上記含フッ素ビニルモノマー単位の具体例としては、例えばフルオロオレフィン類(例えば、フルオロエチレン、ビニリデンフルオライド、テトラフルオロエチレン、ヘキサフルオロエチレン、ヘキサフルオロプロピレン、パーフルオロ−2,2−ジメチル−1,3−ジオキソール等)、(メタ)アクリル酸の部分又は完全フッ素化アルキルエステル誘導体類(例えば、ビスコート6FM(大阪有機化学製)やM−2020(ダイキン製)等)、完全又は部分フッ素化ビニルエーテル類等が挙げられる。架橋性基付与のためのモノマーとしては、グリシジルメタクリレートや、ビニルトリメトキシシラン、γ−メタクリロイルオキシプロピルトリメトキシシラン、ビニルグリシジルエーテル等のように分子内に予め架橋性官能基を有するビニルモノマーの他、カルボキシル基やヒドロキシル基、アミノ基、スルホン酸基等を有するビニルモノマー(例えば、(メタ)アクリル酸、メチロール(メタ)アクリレート、ヒドロキシアルキル(メタ)アクリレート、アリルアクリレート、ヒドロキシアルキルビニルエーテル、ヒドロキシアルキルアリルエーテル等)が挙げられる。後者は共重合の後、ポリマー中の官能基と反応する基ともう1つ以上の反応性基を持つ化合物を加えることにより、架橋構造を導入出来ることが特開平10−25388号、同10−147739号に記載されている。架橋性基の例には、アクリロイル、メタクリロイル、イソシアナート、エポキシ、アジリジン、オキサゾリン、アルデヒド、カルボニル、ヒドラジン、カルボキシル、メチロール及び活性メチレン基等が挙げられる。含フッ素共重合体が、加熱により反応する架橋基、若しくは、エチレン性不飽和基と熱ラジカル発生剤若しくはエポキシ基と熱酸発生剤等の相み合わせにより、加熱により架橋する場合、熱硬化型であり、エチレン性不飽和基と光ラジカル発生剤若しくは、エポキシ基と光酸発生剤等の組み合わせにより、光(好ましくは紫外線、電子ビーム等)の照射により架橋する場合、電離放射線硬化型である。   Preferred examples of the fluorine-containing resin before crosslinking include a fluorine-containing copolymer formed from a fluorine-containing vinyl monomer and a monomer for imparting a crosslinkable group. Specific examples of the fluorine-containing vinyl monomer unit include, for example, fluoroolefins (for example, fluoroethylene, vinylidene fluoride, tetrafluoroethylene, hexafluoroethylene, hexafluoropropylene, perfluoro-2,2-dimethyl-1,3 -Dioxoles, etc.), (meth) acrylic acid partial or fully fluorinated alkyl ester derivatives (for example, Biscoat 6FM (manufactured by Osaka Organic Chemical), M-2020 (manufactured by Daikin), etc.), fully or partially fluorinated vinyl ethers, etc. Is mentioned. As monomers for imparting a crosslinkable group, glycidyl methacrylate, vinyltrimethoxysilane, γ-methacryloyloxypropyltrimethoxysilane, vinyl glycidyl ether, and other vinyl monomers having a crosslinkable functional group in advance in the molecule. , Vinyl monomers having a carboxyl group, hydroxyl group, amino group, sulfonic acid group, etc. (for example, (meth) acrylic acid, methylol (meth) acrylate, hydroxyalkyl (meth) acrylate, allyl acrylate, hydroxyalkyl vinyl ether, hydroxyalkyl allyl) Ether, etc.). The latter can introduce a crosslinked structure after copolymerization by adding a compound that reacts with a functional group in the polymer and one or more reactive groups. No. 147739. Examples of the crosslinkable group include acryloyl, methacryloyl, isocyanate, epoxy, aziridine, oxazoline, aldehyde, carbonyl, hydrazine, carboxyl, methylol, and active methylene group. When the fluorine-containing copolymer is cross-linked by heating by a cross-linking group that reacts by heating, or a combination of an ethylenically unsaturated group and a thermal radical generator or an epoxy group and a thermal acid generator, the thermosetting type In the case of crosslinking by irradiation with light (preferably ultraviolet rays, electron beams, etc.) by a combination of an ethylenically unsaturated group and a photo radical generator, or an epoxy group and a photo acid generator, etc., it is an ionizing radiation curable type. .

また上記モノマー加えて、含フッ素ビニルモノマー及び架橋性基付与のためのモノマー以外のモノマーを併用して形成された含フッ素共重合体を架橋前の含フッ素樹脂として用いてもよい。併用可能なモノマーには特に限定はなく、例えばオレフィン類(エチレン、プロピレン、イソプレン、塩化ビニル、塩化ビニリデン等)、アクリル酸エステル類(アクリル酸メチル、アクリル酸メチル、アクリル酸エチル、アクリル酸2−エチルヘキシル)、メタクリル酸エステル類(メタクリル酸メチル、メタクリル酸エチル、メタクリル酸ブチル、エチレングリコールジメタクリレート等)、スチレン誘導体(スチレン、ジビニルベンゼン、ビニルトルエン、α−メチルスチレン等)、ビニルエーテル類(メチルビニルエーテル等)、ビニルエステル類(酢酸ビニル、プロピオン酸ビニル、桂皮酸ビニル等)、アクリルアミド類(N−tertブチルアクリルアミド、N−シクロヘキシルアクリルアミド等)、メタクリルアミド類、アクリロニトリル誘導体等を挙げることが出来る。また、含フッ素共重合体中に、滑り性、防汚性付与のため、ポリオルガノシロキサン骨格や、パーフルオロポリエーテル骨格を導入することも好ましい。これは、例えば末端にアクリル基、メタクリル基、ビニルエーテル基、スチリル基等を持つポリオルガノシロキサンやパーフルオロポリエーテルと上記のモノマーとの重合、末端にラジカル発生基を持つポリオルガノシロキサンやパーフルオロポリエーテルによる上記モノマーの重合、官能基を持つポリオルガノシロキサンやパーフルオロポリエーテルと、含フッ素共重合体との反応等によって得られる。   Further, in addition to the above monomers, a fluorine-containing copolymer formed by using a monomer other than the fluorine-containing vinyl monomer and the monomer for imparting a crosslinkable group may be used as the fluorine-containing resin before crosslinking. The monomer that can be used in combination is not particularly limited. For example, olefins (ethylene, propylene, isoprene, vinyl chloride, vinylidene chloride, etc.), acrylic esters (methyl acrylate, methyl acrylate, ethyl acrylate, 2-acrylic acid 2- Ethyl hexyl), methacrylates (methyl methacrylate, ethyl methacrylate, butyl methacrylate, ethylene glycol dimethacrylate, etc.), styrene derivatives (styrene, divinylbenzene, vinyl toluene, α-methylstyrene, etc.), vinyl ethers (methyl vinyl ether) Etc.), vinyl esters (vinyl acetate, vinyl propionate, vinyl cinnamate, etc.), acrylamides (N-tertbutylacrylamide, N-cyclohexylacrylamide, etc.), methacrylamides, Ronitoriru derivatives and the like can be mentioned. In addition, it is also preferable to introduce a polyorganosiloxane skeleton or a perfluoropolyether skeleton into the fluorinated copolymer in order to impart slipperiness and antifouling properties. For example, polyorganosiloxane or perfluoropolyether having an acrylic group, methacrylic group, vinyl ether group, styryl group or the like at the terminal is polymerized with the above monomer, and polyorganosiloxane or perfluoropolyester having a radical generating group at the terminal. It can be obtained by polymerization of the above monomers with ether, reaction of a polyorganosiloxane or perfluoropolyether having a functional group with a fluorine-containing copolymer, or the like.

架橋前の含フッ素共重合体を形成するために用いられる上記各モノマーの使用割合は、含フッ素ビニルモノマーが好ましくは20〜70モル%、より好ましくは40〜70モル%、架橋性基付与のためのモノマーが好ましくは1〜20モル%、より好ましくは5〜20モル%、併用されるその他のモノマーが好ましくは10〜70モル%、より好ましくは10〜50モル%の割合である。   The proportion of each of the above monomers used to form the fluorinated copolymer before crosslinking is preferably 20 to 70 mol%, more preferably 40 to 70 mol%, more preferably 40 to 70 mol% of the fluorinated vinyl monomer. The amount of the monomer is preferably 1 to 20 mol%, more preferably 5 to 20 mol%, and the other monomer used in combination is preferably 10 to 70 mol%, more preferably 10 to 50 mol%.

含フッ素共重合体は、これらモノマーをラジカル重合開始剤の存在下で、溶液重合、塊状重合、乳化重合、懸濁重合法等の手段により重合することにより得ることが出来る。   The fluorine-containing copolymer can be obtained by polymerizing these monomers in the presence of a radical polymerization initiator by means such as solution polymerization, bulk polymerization, emulsion polymerization, suspension polymerization.

架橋前の含フッ素樹脂は、市販されており使用することが出来る。市販されている架橋前の含フッ素樹脂の例としては、サイトップ(旭硝子製)、テフロン(登録商標)AF(デュポン製)、ポリフッ化ビニリデン、ルミフロン(旭硝子製)、オプスター(JSR製)等が挙げられる。   The fluorine-containing resin before crosslinking is commercially available and can be used. Examples of commercially available fluorine-containing resins before cross-linking include Cytop (Asahi Glass), Teflon (registered trademark) AF (DuPont), polyvinylidene fluoride, Lumiflon (Asahi Glass), OPSTAR (JSR), etc. Can be mentioned.

架橋した含フッ素樹脂を構成成分とする低屈折率層は、動摩擦係数が0.03〜0.15の範囲、水に対する接触角が90〜120度の範囲にあることが好ましい。   The low refractive index layer containing a cross-linked fluororesin as a constituent component preferably has a dynamic friction coefficient in the range of 0.03 to 0.15 and a contact angle with water in the range of 90 to 120 degrees.

〈添加剤〉
低屈折率層塗布液には更に必要に応じて、シランカップリング剤、硬化剤などの添加剤を含有させても良い。シランカップリング剤は前記一般式(2)で表される化合物である。
<Additive>
If necessary, the low refractive index layer coating solution may further contain additives such as a silane coupling agent and a curing agent. The silane coupling agent is a compound represented by the general formula (2).

具体的には、ビニルトリエトキシシラン、γ−メタクリロキシプロピルトリメトキシシラン、γ−グリシドキシプロピルトリメトキシシラン、3−(2−アミノエチルアミノプロピル)トリメトキシシラン等が挙げられる。   Specific examples include vinyltriethoxysilane, γ-methacryloxypropyltrimethoxysilane, γ-glycidoxypropyltrimethoxysilane, and 3- (2-aminoethylaminopropyl) trimethoxysilane.

硬化剤としては、酢酸ナトリウム、酢酸リチウム等の有機酸金属塩が挙げられ、特に酢酸ナトリウムが好ましい。珪素アルコキシシラン加水分解溶液に対する添加量は、加水分解溶液中に存在する固形分100質量部に対して0.1〜1質量部程度の範囲が好ましい。   Examples of the curing agent include organic acid metal salts such as sodium acetate and lithium acetate, and sodium acetate is particularly preferable. The amount of addition to the silicon alkoxysilane hydrolysis solution is preferably in the range of about 0.1 to 1 part by mass with respect to 100 parts by mass of the solid content present in the hydrolysis solution.

また、本発明に用いられる低屈折率層の塗布液には各種のレベリング剤、界面活性剤、シリコーンオイル等の低表面張力物質を添加することが好ましい。   Moreover, it is preferable to add low surface tension substances such as various leveling agents, surfactants, and silicone oils to the coating solution for the low refractive index layer used in the present invention.

シリコーンオイルとしては、具体的な商品としては、日本ユニカー(株)社のL−45、L−9300、FZ−3704、FZ−3703、FZ−3720、FZ−3786、FZ−3501、FZ−3504、FZ−3508、FZ−3705、FZ−3707、FZ−3710、FZ−3750、FZ−3760、FZ−3785、FZ−3785、Y−7499、信越化学社のKF96L、KF96、KF96H、KF99、KF54、KF965、KF968、KF56、KF995、KF351、KF352、KF353、KF354、KF355、KF615、KF618、KF945、KF6004、FL100等がある。   Specific examples of the silicone oil include L-45, L-9300, FZ-3704, FZ-3703, FZ-3720, FZ-3786, FZ-3501, and FZ-3504 of Nippon Unicar Co., Ltd. , FZ-3508, FZ-3705, FZ-3707, FZ-3710, FZ-3750, FZ-3760, FZ-3785, FZ-3785, Y-7499, Shin-Etsu Chemical KF96L, KF96, KF96H, KF99, KF54 , KF965, KF968, KF56, KF995, KF351, KF352, KF353, KF354, KF355, KF615, KF618, KF945, KF6004, FL100 and the like.

これらの成分は基材や下層への塗布性を高める。積層体最表面層に添加した場合には、塗膜の撥水、撥油性、防汚性を高めるばかりでなく、表面の耐擦り傷性にも効果を発揮する。これらの成分は添加量が多過ぎると塗布時にハジキの原因となるため、塗布液中の固形分成分に対し、0.01〜3質量%の範囲で添加することが好ましい。   These components enhance the applicability to the substrate and the lower layer. When added to the outermost surface layer of the laminate, it not only improves the water repellency, oil repellency and antifouling properties of the coating film, but also exhibits an effect on the scratch resistance of the surface. When these components are added in an excessive amount, they cause repelling during coating. Therefore, it is preferable to add them in a range of 0.01 to 3% by mass with respect to the solid component in the coating solution.

〈溶媒〉
低屈折率層を塗設する際の塗布液に使用する溶媒は、メタノール、エタノール、1−プロパノール、2−プロパノール、ブタノール等のアルコール類;アセトン、メチルエチルケトン、シクロヘキサノン等のケトン類;ベンゼン、トルエン、キシレン等の芳香族炭化水素類;エチレングリコール、プロピレングリコール、ヘキシレングリコール等のグリコール類;エチルセルソルブ、ブチルセルソルブ、エチルカルビトール、ブチルカルビトール、ジエチルセルソルブ、ジエチルカルビトール、プロピレングリコールモノメチルエーテル等のグリコールエーテル類;N−メチルピロリドン、ジメチルフォルムアミド、乳酸メチル、乳酸エチル、酢酸メチル、酢酸エチル、水等が挙げられ、それらを単独又は2種以上混合して使用することが出来る。
<solvent>
Solvents used in the coating solution for coating the low refractive index layer are alcohols such as methanol, ethanol, 1-propanol, 2-propanol and butanol; ketones such as acetone, methyl ethyl ketone and cyclohexanone; benzene, toluene, Aromatic hydrocarbons such as xylene; glycols such as ethylene glycol, propylene glycol, hexylene glycol; ethyl cellosolve, butyl cellosolve, ethyl carbitol, butyl carbitol, diethyl cellosolve, diethyl carbitol, propylene glycol monomethyl Examples include glycol ethers such as ether; N-methylpyrrolidone, dimethylformamide, methyl lactate, ethyl lactate, methyl acetate, ethyl acetate, water, etc., and these may be used alone or in combination of two or more. That.

〈塗布方法〉
低屈折率層の塗布方法としては、ディッピング、スピンコート、ナイフコート、バーコート、エアードクターコート、ブレードコート、スクイズコート、リバースロールコート、グラビアロールコート、カーテンコート、スプレーコート、ダイコート等の公知の塗布方法又は公知のインクジェット法を用いることが出来、連続塗布又は薄膜塗布が可能な塗布方法が好ましく用いられる。塗布量はウェット膜厚で0.1〜30μmが適当で、好ましくは0.5〜15μmである。塗布速度は10〜80m/minが好ましい。
<Application method>
As a method of applying the low refractive index layer, known methods such as dipping, spin coating, knife coating, bar coating, air doctor coating, blade coating, squeeze coating, reverse roll coating, gravure roll coating, curtain coating, spray coating, die coating, etc. A coating method or a known inkjet method can be used, and a coating method capable of continuous coating or thin film coating is preferably used. The coating amount is suitably 0.1 to 30 μm, preferably 0.5 to 15 μm in terms of wet film thickness. The coating speed is preferably 10 to 80 m / min.

本発明の組成物を基材に塗布する際、塗布液中の固形分濃度や塗布量を調整することにより、層の膜厚及び塗布均一性等をコントロールすることが出来る。   When the composition of the present invention is applied to a substrate, the thickness of the layer, coating uniformity, and the like can be controlled by adjusting the solid content concentration and the coating amount in the coating solution.

本発明では、更に下記中屈折率層、高屈折率層を設け、複数の層を有する反射防止層を形成することも好ましい。   In the present invention, it is also preferable to further provide the following medium refractive index layer and high refractive index layer to form an antireflection layer having a plurality of layers.

本発明に用いることの出来る反射防止層の構成例を下記に示すが、これらに限定されるものではない。   Although the structural example of the antireflection layer which can be used for this invention is shown below, it is not limited to these.

長尺フィルム/ハードコート層/低屈折率層
長尺フィルム/ハードコート層/中屈折率層/低屈折率層
長尺フィルム/ハードコート層/高屈折率層/低屈折率層
長尺フィルム/ハードコート層/中屈折率層/高屈折率層/低屈折率層
長尺フィルム/帯電防止層/ハードコート層/中屈折率層/高屈折率層/低屈折率層
長尺フィルム/ハードコート層/帯電防止層/中屈折率層/高屈折率層/低屈折率層
帯電防止層/長尺フィルム/ハードコート層/中屈折率層/高屈折率層/低屈折率層
長尺フィルム/ハードコート層/高屈折率層/低屈折率層/高屈折率層/低屈折率層
(中屈折率層、高屈折率層)
中屈折率層、高屈折率層は所定の屈折率層が得られれば構成成分に特に制限はないが、下記屈折率の高い金属酸化物微粒子、バインダ等よりなることが好ましい。その他に添加剤を含有しても良い。中屈折率層の屈折率は1.55〜1.75であることが好ましく、高屈折率層の屈折率は1.75〜2.20であることが好ましい。高屈折率層及び中屈折率層の厚さは、5nm〜1μmであることが好ましく、10nm〜0.2μmであることがさらに好ましく、30nm〜0.1μmであることが最も好ましい。塗布は前記低屈折率層の塗布方法と同様にして行うことが出来る。
Long film / hard coat layer / low refractive index layer Long film / hard coat layer / medium refractive index layer / low refractive index layer Long film / hard coat layer / high refractive index layer / low refractive index layer Long film / Hard coat layer / Medium refractive index layer / High refractive index layer / Low refractive index layer Long film / Antistatic layer / Hard coat layer / Medium refractive index layer / High refractive index layer / Low refractive index layer Long film / Hard coat Layer / antistatic layer / medium refractive index layer / high refractive index layer / low refractive index layer antistatic layer / long film / hard coat layer / medium refractive index layer / high refractive index layer / low refractive index layer long film / Hard coat layer / high refractive index layer / low refractive index layer / high refractive index layer / low refractive index layer (medium refractive index layer, high refractive index layer)
The medium refractive index layer and the high refractive index layer are not particularly limited as long as a predetermined refractive index layer is obtained, but are preferably composed of metal oxide fine particles, a binder and the like having the following high refractive index. In addition, you may contain an additive. The refractive index of the middle refractive index layer is preferably 1.55 to 1.75, and the refractive index of the high refractive index layer is preferably 1.75 to 2.20. The thickness of the high refractive index layer and the medium refractive index layer is preferably 5 nm to 1 μm, more preferably 10 nm to 0.2 μm, and most preferably 30 nm to 0.1 μm. The coating can be performed in the same manner as the coating method for the low refractive index layer.

〈金属酸化物微粒子〉
金属酸化物微粒子は特に限定されないが、例えば、二酸化チタン、酸化アルミニウム(アルミナ)、酸化ジルコニウム(ジルコニア)、酸化亜鉛、アンチモンドープ酸化スズ(ATO)、五酸化アンチモン、酸化インジウム−スズ(ITO)、酸化鉄、等を主成分として用いることが出来る。また、これらの混合物でもよい。二酸化チタンを用いる場合は二酸化チタンをコアとし、シェルとしてアルミナ、シリカ、ジルコニア、ATO、ITO、五酸化アンチモン等で被覆させたコア/シェル構造を持った金属酸化物粒子を用いることが光触媒活性の抑制の点で好ましい。
<Metal oxide fine particles>
Although metal oxide fine particles are not particularly limited, for example, titanium dioxide, aluminum oxide (alumina), zirconium oxide (zirconia), zinc oxide, antimony-doped tin oxide (ATO), antimony pentoxide, indium-tin oxide (ITO), Iron oxide or the like can be used as a main component. A mixture of these may also be used. When titanium dioxide is used, photocatalytic activity can be achieved by using metal oxide particles having a core / shell structure in which titanium dioxide is the core and the shell is coated with alumina, silica, zirconia, ATO, ITO, antimony pentoxide, or the like. It is preferable in terms of suppression.

金属酸化物微粒子の屈折率は1.80〜2.60であることが好ましく、1.90〜2.50であることが更に好ましい。金属酸化物微粒子の一次粒子の平均粒径は5nm〜200nmであるが、10〜150nmであることが更に好ましい。粒径が小さ過ぎると金属酸化物微粒子が凝集しやすくなり、分散性が劣化する。粒径が大き過ぎるとヘイズが上昇し好ましくない。無機微粒子の形状は、米粒状、針状、球形状、立方体状、紡錘形状或いは不定形状であることが好ましい。   The refractive index of the metal oxide fine particles is preferably 1.80 to 2.60, more preferably 1.90 to 2.50. The average particle diameter of the primary particles of the metal oxide fine particles is 5 nm to 200 nm, more preferably 10 to 150 nm. If the particle size is too small, the metal oxide fine particles tend to aggregate and the dispersibility deteriorates. If the particle size is too large, the haze increases, which is not preferable. The shape of the inorganic fine particles is preferably a rice grain shape, a needle shape, a spherical shape, a cubic shape, a spindle shape or an indefinite shape.

金属酸化物微粒子は有機化合物により表面処理してもよい。表面処理に用いる有機化合物の例には、ポリオール、アルカノールアミン、ステアリン酸、シランカップリング剤及びチタネートカップリング剤が含まれる。この中でも後述するシランカップリング剤が最も好ましい。二種以上の表面処理を組み合わせてもよい。   The metal oxide fine particles may be surface-treated with an organic compound. Examples of the organic compound used for the surface treatment include polyols, alkanolamines, stearic acid, silane coupling agents, and titanate coupling agents. Among these, the silane coupling agent described later is most preferable. Two or more kinds of surface treatments may be combined.

金属酸化物の種類、添加比率を適切に選択することによって、所望の屈折率を有する高屈折率層、中屈折率層を得ることが出来る。   By appropriately selecting the kind and addition ratio of the metal oxide, a high refractive index layer and a medium refractive index layer having a desired refractive index can be obtained.

〈バインダ〉
バインダは塗膜の成膜性や物理特性の向上のために添加される。バインダとしては例えば、前述の電離放射線硬化型樹脂、アクリルアミド誘導体、多官能アクリレート、アクリル樹脂又はメタクリル樹脂などを用いることが出来る。
<Binder>
The binder is added to improve the film formability and physical properties of the coating film. As the binder, for example, the aforementioned ionizing radiation curable resin, acrylamide derivative, polyfunctional acrylate, acrylic resin or methacrylic resin can be used.

(金属化合物、シランカップリング剤)
その他の添加剤として金属化合物、シランカップリング剤などを添加しても良い。金属化合物、シランカップリング剤はバインダとして用いることも出来る。
(Metal compounds, silane coupling agents)
As other additives, a metal compound, a silane coupling agent, or the like may be added. Metal compounds and silane coupling agents can also be used as binders.

金属化合物としては下記一般式式(4)で表される化合物又はそのキレート化合物を用いることが出来る。   As the metal compound, a compound represented by the following general formula (4) or a chelate compound thereof can be used.

一般式(4):AnMBx−n
式中、Mは金属原子、Aは加水分解可能な官能基又は加水分解可能な官能基を有する炭化水素基、Bは金属原子Mに共有結合又はイオン結合した原子団を表す。xは金属原子Mの原子価、nは2以上でx以下の整数を表す。
General formula (4): AnMBx-n
In the formula, M represents a metal atom, A represents a hydrolyzable functional group or a hydrocarbon group having a hydrolyzable functional group, and B represents an atomic group covalently or ionically bonded to the metal atom M. x represents the valence of the metal atom M, and n represents an integer of 2 or more and x or less.

加水分解可能な官能基Aとしては、例えば、アルコキシル基、クロル原子等のハロゲン、エステル基、アミド基等が挙げられる。上記式(4)に属する金属化合物には、金属原子に直接結合したアルコキシル基を2個以上有するアルコキシド、又は、そのキレート化合物が含まれる。好ましい金属化合物としては、屈折率や塗膜強度の補強効果、取り扱い易さ、材料コスト等の観点から、チタンアルコキシド、ジルコニウムアルコキシド、ケイ素アルコキシド又はそれらのキレート化合物を挙げることが出来る。チタンアルコキシドは反応速度が速くて屈折率が高く、取り扱いも容易であるが、光触媒作用があるため大量に添加すると耐光性が劣化する。ジルコニウムアルコキシドは屈折率が高いが白濁し易いため、塗布する際の露点管理等に注意しなければならない。ケイ素アルコキシドは反応速度が遅く、屈折率も低いが、取り扱いが容易で耐光性に優れる。シランカップリング剤は無機微粒子と有機ポリマーの両方と反応することが出来るため、強靱な塗膜を作ることが出来る。また、チタンアルコキシドは紫外線硬化樹脂、金属アルコキシドの反応を促進する効果があるため、少量添加するだけでも塗膜の物理的特性を向上させることが出来る。   Examples of the hydrolyzable functional group A include halogens such as alkoxyl groups and chloro atoms, ester groups and amide groups. The metal compound belonging to the above formula (4) includes an alkoxide having two or more alkoxyl groups bonded directly to a metal atom, or a chelate compound thereof. Preferable metal compounds include titanium alkoxides, zirconium alkoxides, silicon alkoxides, and chelate compounds thereof from the viewpoints of the effect of reinforcing the refractive index and coating film strength, ease of handling, material cost, and the like. Titanium alkoxide has a high reaction rate and a high refractive index and is easy to handle. However, since it has a photocatalytic action, its light resistance deteriorates when added in a large amount. Zirconium alkoxide has a high refractive index but tends to become cloudy, so care must be taken in dew point management during coating. Silicon alkoxide has a slow reaction rate and a low refractive index, but is easy to handle and has excellent light resistance. Since the silane coupling agent can react with both the inorganic fine particles and the organic polymer, a tough coating film can be formed. Moreover, since titanium alkoxide has the effect of accelerating the reaction of the ultraviolet curable resin and metal alkoxide, the physical properties of the coating film can be improved by adding a small amount.

チタンアルコキシドとしては、例えば、テトラメトキシチタン、テトラエトキシチタン、テトラ−iso−プロポキシチタン、テトラ−n−プロポキシチタン、テトラ−n−ブトキシチタン、テトラ−sec−ブトキシチタン、テトラ−tert−ブトキシチタン等が挙げられる。   Examples of the titanium alkoxide include tetramethoxy titanium, tetraethoxy titanium, tetra-iso-propoxy titanium, tetra-n-propoxy titanium, tetra-n-butoxy titanium, tetra-sec-butoxy titanium, tetra-tert-butoxy titanium, and the like. Is mentioned.

ジルコニウムアルコキシドとしては、例えば、テトラメトキシジルコニウム、テトラエトキシジルコニウム、テトラ−iso−プロポキシジルコニウム、テトラ−n−プロポキシジルコニウム、テトラ−n−ブトキシジルコニウム、テトラ−sec−ブトキシジルコニウム、テトラ−tert−ブトキシジルコニウム等が挙げられる。   Examples of the zirconium alkoxide include tetramethoxy zirconium, tetraethoxy zirconium, tetra-iso-propoxy zirconium, tetra-n-propoxy zirconium, tetra-n-butoxy zirconium, tetra-sec-butoxy zirconium, tetra-tert-butoxy zirconium and the like. Is mentioned.

ケイ素アルコキシド及びシランカップリング剤は下記一般式(5)で表される化合物である。   The silicon alkoxide and the silane coupling agent are compounds represented by the following general formula (5).

一般式(5):RmSi(OR′)n
式中、Rはアルキル基(好ましくは炭素数1〜10のアルキル基)、又は、ビニル基、(メタ)アクリロイル基、エポキシ基、アミド基、スルホニル基、水酸基、カルボキシル基、アルコキシル基等の反応性基を表し、R′はアルキル基(好ましくは炭素数1〜10のアルキル基)を表し、m+nは4である。
Formula (5): RmSi (OR ′) n
In the formula, R is an alkyl group (preferably an alkyl group having 1 to 10 carbon atoms), or a reaction such as a vinyl group, a (meth) acryloyl group, an epoxy group, an amide group, a sulfonyl group, a hydroxyl group, a carboxyl group, or an alkoxyl group. R ′ represents an alkyl group (preferably an alkyl group having 1 to 10 carbon atoms), and m + n is 4.

具体的には、テトラメトキシシラン、テトラエトキシシラン、テトラ−iso−プロポキシシラン、テトラ−n−プロポキシシラン、テトラ−n−ブトキシシラン、テトラ−sec−ブトキシシラン、テトラ−tert−ブトキシシラン、テトラペンタエトキシシラン、メチルトリメトキシシラン、メチルトリエトキシシラン、メチルトリプロポキシシラン、メチルトリブトキシシラン、ジメチルジメトキシシラン、ジメチルジエトキシシラン、ヘキシルトリメトキシシラン、ビニルトリエトキシシラン、γ−メタクリロキシプロピルトリメトキシシラン、γ−グリシドキシプロピルトリメトキシシラン、3−(2−アミノエチルアミノプロピル)トリメトキシシラン等が挙げられる。   Specifically, tetramethoxysilane, tetraethoxysilane, tetra-iso-propoxysilane, tetra-n-propoxysilane, tetra-n-butoxysilane, tetra-sec-butoxysilane, tetra-tert-butoxysilane, tetrapenta Ethoxysilane, methyltrimethoxysilane, methyltriethoxysilane, methyltripropoxysilane, methyltributoxysilane, dimethyldimethoxysilane, dimethyldiethoxysilane, hexyltrimethoxysilane, vinyltriethoxysilane, γ-methacryloxypropyltrimethoxysilane , Γ-glycidoxypropyltrimethoxysilane, 3- (2-aminoethylaminopropyl) trimethoxysilane and the like.

遊離の金属化合物に配位させてキレート化合物を形成するのに好ましいキレート化剤としては、ジエタノールアミン、トリエタノールアミン等のアルカノールアミン類、エチレングリコール、ジエチレングリコール、プロピレングリコール等のグリコール類、アセチルアセトン、アセト酢酸エチル等であって分子量1万以下のものを挙げることが出来る。これらのキレート化剤を用いることにより、水分の混入等に対しても安定で、塗膜の補強効果にも優れるキレート化合物を形成出来る。   Preferred chelating agents for forming a chelate compound by coordination with a free metal compound include alkanolamines such as diethanolamine and triethanolamine, glycols such as ethylene glycol, diethylene glycol and propylene glycol, acetylacetone and acetoacetic acid. Examples thereof include ethyl and the like having a molecular weight of 10,000 or less. By using these chelating agents, it is possible to form a chelate compound that is stable against moisture mixing and is excellent in the effect of reinforcing the coating film.

金属化合物の添加量は、中屈折率組成物では金属酸化物に換算して5質量%未満であることが好ましく、高屈折率組成物では金属酸化物に換算して20質量%未満であることが好ましい。   The addition amount of the metal compound is preferably less than 5% by mass in terms of metal oxide in the medium refractive index composition, and less than 20% by mass in terms of metal oxide in the high refractive index composition. Is preferred.

(偏光板)
本発明に係る偏光板は一般的な方法で作製することが出来る。本発明の光学フィルムをアルカリ鹸化処理し、偏光板保護フィルムとして、沃素溶液中に浸漬延伸して作製した偏光子の両面に、完全鹸化型ポリビニルアルコール水溶液を用いて貼り合わせることが出来る。
(Polarizer)
The polarizing plate according to the present invention can be produced by a general method. The optical film of the present invention can be bonded to both sides of a polarizer produced by subjecting the optical film of the present invention to an alkali saponification treatment and immersing and stretching in an iodine solution as a polarizing plate protective film using a completely saponified polyvinyl alcohol aqueous solution.

或いは、本発明の光学フィルムを反射防止層付き偏光板保護フィルムとして偏光子の一方の面に貼合し、その反対の面に市販の偏光板保護フィルム若しくは位相差フィルムを貼合することも出来る。市販のセルロースエステルフィルムとしては、例えば、コニカミノルタタックKC8UX、KC4UX、KC5UX、KC8UCR3、KC8UCR4、KC8UCR5、KC8UY、KC4UY、KC12UR(以上コニカミノルタオプト(株)製)が好ましく用いられる。   Alternatively, the optical film of the present invention can be bonded to one surface of a polarizer as a polarizing plate protective film with an antireflection layer, and a commercially available polarizing plate protective film or retardation film can be bonded to the opposite surface. . As the commercially available cellulose ester film, for example, Konica Minoltak KC8UX, KC4UX, KC5UX, KC8UCR3, KC8UCR4, KC8UCR5, KC8UY, KC4UY, KC12UR (manufactured by Konica Minolta Opto Co., Ltd.) is preferably used.

偏光板の主たる構成要素である偏光膜とは、一定方向の偏波面の光だけを通す素子であり、現在知られている代表的な偏光膜は、ポリビニルアルコール系偏光フィルムで、これはポリビニルアルコール系フィルムにヨウ素を染色させたものと二色性染料を染色させたものがある。偏光膜は、ポリビニルアルコール水溶液を製膜し、これを一軸延伸させて染色するか、染色した後一軸延伸してから、好ましくはホウ素化合物で耐久性処理を行ったものが用いられている。また、エチレン変性ポリビニルアルコール系フィルムも偏光膜として好ましく用いられる。   The polarizing film, which is the main component of the polarizing plate, is an element that transmits only light having a polarization plane in a certain direction. A typical polarizing film known at present is a polyvinyl alcohol polarizing film, which is a polyvinyl alcohol film. There are one in which iodine is dyed on a system film and one in which dichroic dye is dyed. As the polarizing film, a polyvinyl alcohol aqueous solution is formed and dyed by uniaxially stretching or dyed, or uniaxially stretched after dyeing, and then preferably subjected to a durability treatment with a boron compound. An ethylene-modified polyvinyl alcohol film is also preferably used as the polarizing film.

(表示装置)
本発明の光学フィルム、または偏光板を用いた表示装置は耐久性に優れ、長期間にわたってコントラストの高い表示が可能である。
(Display device)
The display device using the optical film or the polarizing plate of the present invention is excellent in durability and can display with high contrast over a long period of time.

本発明の光学フィルム、または偏光板を表示装置に組み込むことによって、種々の表示装置を作製することが出来る。表示装置としては、液晶表示装置(反射型、半透過型、透過型)、有機電解発光素子、プラズマディスプレイ等がある。例えば、高温高湿条件下での強制劣化処理において、表示装置についても本発明の光学フィルム、または偏光板は、視認性に優れかつフィルム起因の問題は認められなかった。   Various display devices can be produced by incorporating the optical film or polarizing plate of the present invention into a display device. Examples of the display device include a liquid crystal display device (reflective type, transflective type, transmissive type), an organic electroluminescence element, a plasma display, and the like. For example, in the forced deterioration treatment under high temperature and high humidity conditions, the optical film or polarizing plate of the present invention was excellent in visibility and no problems caused by the film were observed in the display device.

更に、本発明の偏光板を液晶表示装置に組み込むことによって、種々の視認性に優れた液晶表示装置を作製することが出来る。本発明の偏光板は反射型、透過型、半透過型LCD或いはTN型、STN型、OCB型、HAN型、VA型(PVA型、MVA型)、IPS型等の各種駆動方式のLCDで好ましく用いられる。特に画面が30型以上の大画面の液晶表示装置では、色むらや波打ちムラが少なく、長時間の鑑賞でも目が疲れないという効果があった。   Furthermore, by incorporating the polarizing plate of the present invention into a liquid crystal display device, various liquid crystal display devices with excellent visibility can be produced. The polarizing plate of the present invention is preferably a reflective, transmissive, transflective LCD or TN, STN, OCB, HAN, VA (PVA, MVA), or IPS LCD. Used. In particular, a large-screen liquid crystal display device with a 30-inch screen or more has the effect that there is little color unevenness and wavy unevenness, and eyes are not tired even during long-time viewing.

以下に実施例を挙げて本発明を具体的に説明するが、本発明はこれらに限定されるものではない。   EXAMPLES The present invention will be specifically described below with reference to examples, but the present invention is not limited to these examples.

実施例1
〈ドープ液の調製〉
下記の材料を、順次密閉容器中に投入し、容器内温度を20℃から80℃まで昇温した後、温度を80℃に保ったままで3時間攪拌を行って、セルロースエステルを完全に溶解した。酸化ケイ素微粒子は予め添加する溶媒と少量のセルロースエステルの溶液中に分散して添加した。このドープを濾紙(安積濾紙株式会社製、安積濾紙No.244)を使用して濾過し、ドープAを得た。
Example 1
<Preparation of dope solution>
The following materials were sequentially put into a sealed container, the temperature in the container was raised from 20 ° C. to 80 ° C., and the mixture was stirred for 3 hours while maintaining the temperature at 80 ° C. to completely dissolve the cellulose ester. . The silicon oxide fine particles were added dispersed in a solution of a solvent to be added in advance and a small amount of cellulose ester. This dope was filtered using a filter paper (Azumi filter paper No. 244, manufactured by Azumi Filter Paper Co., Ltd.) to obtain a dope A.

(ドープ液Aの調製)
セルロースエステル(セルローストリアセテート;アセチル基置換度2.9)
100質量部
トリメチロールプロパントリベンゾエート 5質量部
エチルフタリルエチルグリコレート 5質量部
酸化ケイ素微粒子(アエロジルR972V(日本アエロジル株式会社製))
0.1質量部
メチレンクロライド 300質量部
エタノール 40質量部
上記調製したドープを、30℃に保温した流延ダイを通して、幅2mのステンレス鋼製エンドレスベルトよりなる30℃の支持体上に幅1.8mで流延してウェブを形成し、支持体上で乾燥させ、ウェブの残留溶媒量が80質量%になるまで支持体上で乾燥させた後、剥離ロールによりウェブを支持体から剥離した。
(Preparation of dope solution A)
Cellulose ester (cellulose triacetate; acetyl group substitution degree 2.9)
100 parts by mass Trimethylolpropane tribenzoate 5 parts by mass Ethylphthalyl ethyl glycolate 5 parts by mass Silicon oxide fine particles (Aerosil R972V (produced by Nippon Aerosil Co., Ltd.))
0.1 parts by weight Methylene chloride 300 parts by weight Ethanol 40 parts by weight A dope prepared as described above was passed through a casting die kept at 30 ° C. on a 30 ° C. support made of a stainless steel endless belt having a width of 2 m. The web was cast at 8 m to form a web, dried on the support, dried on the support until the residual solvent amount of the web reached 80% by mass, and then peeled from the support with a peeling roll.

ついで、ウェブを上下に複数配置したロールによる搬送乾燥工程で70℃の乾燥風にて乾燥させ、続いてテンターでウェブ両端部を把持した後、130℃で幅方向に延伸前の1.1倍となるように延伸した。テンターでの延伸の後、ウェブを上下に複数配置したロールによる搬送乾燥工程で135℃の乾燥風にて乾燥させ、残留溶媒量0.3質量%まで乾燥させて、室温まで冷却し端部を切除して、巻き取り幅1.5m、膜厚80μm、長さ3000m、屈折率1.49の長尺のセルロースエステルフィルムを作製した。ステンレスバンド支持体の回転速度とテンターの運転速度から算出される剥離直後のウェブ搬送方向の延伸倍率は1.1倍であった。   Next, the web is dried with a drying air at 70 ° C. in a conveying and drying process using a plurality of rolls arranged on the top and bottom, and then grips both ends of the web with a tenter, and then is stretched in the width direction at 130 ° C. 1.1 times before stretching. It extended | stretched so that it might become. After stretching with a tenter, the web is dried with a drying air of 135 ° C. in a conveying and drying process using a plurality of rolls arranged above and below, dried to a residual solvent amount of 0.3% by mass, cooled to room temperature, After cutting, a long cellulose ester film having a winding width of 1.5 m, a film thickness of 80 μm, a length of 3000 m, and a refractive index of 1.49 was produced. The draw ratio in the web conveyance direction immediately after peeling calculated from the rotational speed of the stainless steel band support and the operating speed of the tenter was 1.1 times.

(反射防止層付き光学フィルムの作製)
上記作製したセルロースエステルフィルムを用いて、下記手順により反射防止層付き光学フィルムを作製した。
(Preparation of optical film with antireflection layer)
Using the produced cellulose ester film, an optical film with an antireflection layer was produced by the following procedure.

反射防止層を構成する各層の屈折率は下記方法で測定した。   The refractive index of each layer constituting the antireflection layer was measured by the following method.

(屈折率)
各屈折率層の屈折率は、各層を単独で下記作製したハードコートフィルム上に塗設したサンプルについて、分光光度計の分光反射率の測定結果から求めた。分光光度計はU−4000型(日立製作所製)を用いて、サンプルの測定側の裏面を粗面化処理した後、黒色のスプレーで光吸収処理を行って裏面での光の反射を防止して、5度正反射の条件にて可視光領域(400nm〜700nm)の反射率の測定を行った。
(Refractive index)
The refractive index of each refractive index layer was determined from the measurement result of the spectral reflectance of a spectrophotometer for a sample in which each layer was coated on the hard coat film prepared below. The spectrophotometer uses U-4000 type (manufactured by Hitachi, Ltd.), and after roughening the back side of the measurement side of the sample, light absorption treatment is performed with black spray to prevent reflection of light on the back side. The reflectance in the visible light region (400 nm to 700 nm) was measured under the condition of regular reflection at 5 degrees.

(金属酸化物微粒子の粒径)
使用する金属酸化物微粒子の粒径は電子顕微鏡観察(SEM)にて各々100個の微粒子を観察し、各微粒子に外接する円の直径を粒子径としてその平均値を粒径とした。
(Particle size of metal oxide fine particles)
As for the particle diameter of the metal oxide fine particles used, 100 fine particles were observed with an electron microscope (SEM), the diameter of a circle circumscribing each fine particle was taken as the particle diameter, and the average value was taken as the particle diameter.

《ハードコート層の形成》
上記作製したセルロースエステルフィルム上に、下記のハードコート層用塗布液を孔径0.4μmのポリプロピレン製フィルターで濾過してハードコート層塗布液を調製し、これをマイクログラビアコーターを用いて塗布し、90℃で乾燥の後、紫外線ランプを用い照射部の照度が100mW/cm2で、照射量を0.1J/cm2として塗布層を硬化させ、ドライ膜厚7μmのハードコート層を形成しハードコートフィルムを作製した。
<< Formation of hard coat layer >>
On the produced cellulose ester film, the following hard coat layer coating solution is filtered through a polypropylene filter having a pore size of 0.4 μm to prepare a hard coat layer coating solution, which is applied using a micro gravure coater, After drying at 90 ° C., an ultraviolet lamp is used to cure the coating layer with an irradiance of 100 mW / cm 2 and an irradiation amount of 0.1 J / cm 2 to form a hard coat layer having a dry film thickness of 7 μm. A coated film was produced.

(ハードコート層塗布液)
下記材料を攪拌、混合しハードコート層塗布液とした。
(Hard coat layer coating solution)
The following materials were stirred and mixed to obtain a hard coat layer coating solution.

アクリルモノマー;KAYARAD DPHA(ジペンタエリスリトールヘキサアクリレート、日本化薬製) 220質量部
イルガキュア184(チバスペシャルティケミカルズ(株)製) 20質量部
プロピレングリコールモノメチルエーテル 110質量部
酢酸エチル 110質量部
《反射防止層付き光学フィルムの作製》
上記作製したハードコートフィルム上に、下記のように高屈折率層、次いで、低屈折率層の順に反射防止層を塗設し、反射防止層付き光学フィルムを作製した。
Acrylic monomer: KAYARAD DPHA (dipentaerythritol hexaacrylate, Nippon Kayaku) 220 parts by mass Irgacure 184 (manufactured by Ciba Specialty Chemicals) 20 parts by mass Propylene glycol monomethyl ether 110 parts by mass Ethyl acetate 110 parts by mass << Antireflection layer Fabrication of optical film with adhesive >>
On the hard coat film produced as described above, an antireflection layer was applied in the order of a high refractive index layer and then a low refractive index layer as described below to produce an optical film with an antireflection layer.

《反射防止層の形成:高屈折率層》
ハードコートフィルム上に、下記高屈折率層塗布組成物を押し出しコーターで塗布し、80℃で1分間乾燥させ、次いで紫外線を0.1J/cm2照射して硬化させ、更に100℃で1分熱硬化させ、厚さが78nmとなるように高屈折率層を設けた。
<Formation of antireflection layer: high refractive index layer>
On the hard coat film, the following high refractive index layer coating composition was applied with an extrusion coater, dried at 80 ° C. for 1 minute, then cured by irradiation with ultraviolet rays of 0.1 J / cm 2 , and further at 100 ° C. for 1 minute. A high refractive index layer was provided so as to have a thickness of 78 nm by thermosetting.

この高屈折率層の屈折率は1.62であった。   The refractive index of this high refractive index layer was 1.62.

〈高屈折率層塗布組成物〉
金属酸化物微粒子のイソプロピルアルコール溶液(固形分20%、ITO粒子、粒径5nm) 55質量部
金属化合物:Ti(OBu)4(テトラ−n−ブトキシチタン) 1.3質量部
電離放射線硬化型樹脂:ジペンタエリスリトールヘキサアクリレート 3.2質量部
光重合開始剤:イルガキュア184(チバスペシャルティケミカルズ(株)製)
0.8質量部
直鎖ジメチルシリコーン−EOブロックコポリマー(FZ−2207、日本ユニカー(株)製)の10%プロピレングリコールモノメチルエーテル液 1.5質量部
プロピレングリコールモノメチルエーテル 120質量部
イソプロピルアルコール 240質量部
メチルエチルケトン 40質量部
《反射防止層の形成:低屈折率層》
前記高屈折率層上に下記の低屈折率層塗布組成物を、図1に示す装置を用いて押出しコーター3で塗布し、100℃で第1乾燥ゾーン5で1分間乾燥させた後、活性線ランプ6aにて紫外線を0.1J/cm2照射して硬化させ、図1に示す装置により表1に記載の条件で、上記反射防止層付き光学フィルムを各々耐熱性プラスチックコアに巻き長2500mで20m/分で巻き取り、次いで加熱処理及び巻き返しを100m/分で行い反射防止層付き光学フィルム1を作製した。
<High refractive index layer coating composition>
Isopropyl alcohol solution of metal oxide fine particles (solid content 20%, ITO particles, particle size 5 nm) 55 parts by mass Metal compound: Ti (OBu) 4 (tetra-n-butoxytitanium) 1.3 parts by mass Ionizing radiation curable resin : Dipentaerythritol hexaacrylate 3.2 parts by mass Photopolymerization initiator: Irgacure 184 (manufactured by Ciba Specialty Chemicals)
0.8 parts by mass 10% propylene glycol monomethyl ether solution of linear dimethyl silicone-EO block copolymer (FZ-2207, manufactured by Nippon Unicar Co., Ltd.) 1.5 parts by mass Propylene glycol monomethyl ether 120 parts by mass Isopropyl alcohol 240 parts by mass Methyl ethyl ketone 40 parts by mass << Formation of antireflection layer: low refractive index layer >>
On the high refractive index layer, the following low refractive index layer coating composition is applied with an extrusion coater 3 using the apparatus shown in FIG. 1, dried at 100 ° C. in the first drying zone 5 for 1 minute, and then activated. The ultraviolet ray is irradiated by 0.1 J / cm 2 with a line lamp 6a and cured, and the optical film with the antireflection layer is wound around a heat-resistant plastic core with the apparatus shown in FIG. Was wound up at 20 m / min, and then heat treatment and rewinding were performed at 100 m / min to produce an optical film 1 with an antireflection layer.

なお、この低屈折率層の厚さ95nm、屈折率は1.37であった。   The low refractive index layer had a thickness of 95 nm and a refractive index of 1.37.

(低屈折率層塗布組成物の調製)
〈テトラエトキシシラン加水分解物Aの調製〉
テトラエトキシシラン289gとエタノール553gを混和し、これに0.15%酢酸水溶液157gを添加し、25℃のウォーターバス中で30時間攪拌することで加水分解物Aを調製した。
(Preparation of low refractive index layer coating composition)
<Preparation of tetraethoxysilane hydrolyzate A>
Hydrolyzate A was prepared by mixing 289 g of tetraethoxysilane and 553 g of ethanol, adding 157 g of 0.15% aqueous acetic acid solution thereto, and stirring in a water bath at 25 ° C. for 30 hours.

テトラエトキシシラン加水分解物A 110質量部
中空シリカ系微粒子(下記P−2) 30質量部
KBM503(シランカップリング剤、信越化学(株)製) 4質量部
直鎖ジメチルシリコーン−EOブロックコポリマー(FZ−2207、日本ユニカー(株)製)の10%プロピレングリコールモノメチルエーテル液 3質量部
プロピレングリコールモノメチルエーテル 400質量部
イソプロピルアルコール 400質量部
〈中空シリカ系微粒子P−2の調製〉
平均粒径5nm、SiO2濃度20質量%のシリカゾル100gと純水1900gの混合物を80℃に加温した。この反応母液のpHは10.5であり、同母液にSiO2として0.98質量%のケイ酸ナトリウム水溶液9000gとAl23として1.02質量%のアルミン酸ナトリウム水溶液9000gとを同時に添加した。その間、反応液の温度を80℃に保持した。反応液のpHは添加直後、12.5に上昇し、その後、ほとんど変化しなかった。添加終了後、反応液を室温まで冷却し、限外濾過膜で洗浄して固形分濃度20質量%のSiO2・Al23核粒子分散液を調製した。(工程(a))
この核粒子分散液500gに純水1700gを加えて98℃に加温し、この温度を保持しながら、ケイ酸ナトリウム水溶液を陽イオン交換樹脂で脱アルカリして得られたケイ酸液(SiO2濃度3.5質量%)3000gを添加して第1シリカ被覆層を形成した核粒子の分散液を得た。(工程(b))
次いで、限外濾過膜で洗浄して固形分濃度13質量%になった第1シリカ被覆層を形成した核粒子分散液500gに純水1125gを加え、さらに濃塩酸(35.5%)を滴下してpH1.0とし、脱アルミニウム処理を行った。次いで、pH3の塩酸水溶液10Lと純水5Lを加えながら限外濾過膜で溶解したアルミニウム塩を分離し、第1シリカ被覆層を形成した核粒子の構成成分の一部を除去したSiO2・Al23多孔質粒子の分散液を調製した(工程(c))。上記多孔質粒子分散液1500gと、純水500g、エタノール1,750g及び28%アンモニア水626gとの混合液を35℃に加温した後、エチルシリケート(SiO228質量%)104gを添加し、第1シリカ被覆層を形成した多孔質粒子の表面をエチルシリケートの加水分解重縮合物で被覆して第2シリカ被覆層を形成した。次いで、限外濾過膜を用いて溶媒をエタノールに置換した固形分濃度20質量%の中空シリカ系微粒子(P−2)の分散液を調製した。
Tetraethoxysilane hydrolyzate A 110 parts by mass Hollow silica-based fine particles (P-2 below) 30 parts by mass KBM503 (silane coupling agent, manufactured by Shin-Etsu Chemical Co., Ltd.) 4 parts by mass Linear dimethyl silicone-EO block copolymer (FZ) -2207, manufactured by Nihon Unicar Co., Ltd.) 10% propylene glycol monomethyl ether solution 3 parts by mass Propylene glycol monomethyl ether 400 parts by mass Isopropyl alcohol 400 parts by mass <Preparation of hollow silica-based fine particles P-2>
A mixture of 100 g of silica sol having an average particle diameter of 5 nm and a SiO 2 concentration of 20% by mass and 1900 g of pure water was heated to 80 ° C. The pH of this reaction mother liquor was 10.5, and 9000 g of 0.98 mass% sodium silicate aqueous solution as SiO 2 and 9000 g of 1.02 mass% sodium aluminate aqueous solution as Al 2 O 3 were simultaneously added to the mother liquor. did. Meanwhile, the temperature of the reaction solution was kept at 80 ° C. The pH of the reaction solution rose to 12.5 immediately after the addition and hardly changed thereafter. After completion of the addition, the reaction solution was cooled to room temperature and washed with an ultrafiltration membrane to prepare a SiO 2 .Al 2 O 3 core particle dispersion having a solid content concentration of 20% by mass. (Process (a))
1700 g of pure water is added to 500 g of this core particle dispersion and heated to 98 ° C., and while maintaining this temperature, a silicic acid solution (SiO 2) obtained by dealkalizing a sodium silicate aqueous solution with a cation exchange resin. A dispersion of core particles in which 3000 g (concentration of 3.5% by mass) was added to form a first silica coating layer was obtained. (Process (b))
Next, 1125 g of pure water is added to 500 g of the core particle dispersion liquid that has been washed with an ultrafiltration membrane to form a first silica coating layer having a solid concentration of 13% by mass, and concentrated hydrochloric acid (35.5%) is further added dropwise. The pH was adjusted to 1.0 and dealumination was performed. Next, the aluminum salt dissolved in the ultrafiltration membrane was separated while adding 10 L of hydrochloric acid aqueous solution of pH 3 and 5 L of pure water, and SiO 2 · Al from which some of the constituent components of the core particles forming the first silica coating layer were removed. A dispersion of 2 O 3 porous particles was prepared (step (c)). A mixture of 1500 g of the above porous particle dispersion, 500 g of pure water, 1,750 g of ethanol, and 626 g of 28% ammonia water is heated to 35 ° C., and then 104 g of ethyl silicate (SiO 2 28 mass%) is added. The surface of the porous particles on which the first silica coating layer was formed was coated with a hydrolyzed polycondensate of ethyl silicate to form a second silica coating layer. Subsequently, a dispersion of hollow silica-based fine particles (P-2) having a solid content concentration of 20% by mass in which the solvent was replaced with ethanol using an ultrafiltration membrane was prepared.

この中空シリカ系微粒子の第1シリカ被覆層の厚さは3nm、平均粒径は47nm、MOx/SiO2(モル比)は0.0017、屈折率は1.28であった。ここで、平均粒径は動的光散乱法により測定した。 The thickness of the first silica coating layer of the hollow silica-based fine particles was 3 nm, the average particle size was 47 nm, MOx / SiO 2 (molar ratio) was 0.0017, and the refractive index was 1.28. Here, the average particle diameter was measured by a dynamic light scattering method.

光学フィルム1と同様にして、表1に記載の条件で、巻き取り条件、加熱処理条件、冷却または巻き返しを行い、反射防止層付き光学フィルム2〜17を作製した。   In the same manner as in the optical film 1, under the conditions described in Table 1, winding-up conditions, heat treatment conditions, cooling or rewinding were performed to prepare optical films 2 to 17 with an antireflection layer.

Figure 2007003766
Figure 2007003766

得られた反射防止層付き光学フィルム1〜17について以下の評価を実施した。   The following evaluation was implemented about the obtained optical films 1-17 with an antireflection layer.

(反射色むらロット内ばらつき)
光学フィルムロールの低屈折率層塗布開始より500m、1000m、1500m、2000m、2500m長の中央部の試料を30cm×30cmの大きさで5枚採取し、目視で試料5枚の反射色むら評価した。評価基準は下記とし6段階で評価した。△レベル以上であれば実用上問題ないが、○△レベル以上であることが好ましく、◎レベルであることが最も好ましい。
(Reflective color unevenness variation within lot)
Five samples of the center part of 500 m, 1000 m, 1500 m, 2000 m, and 2500 m in length were collected from the start of application of the low refractive index layer of the optical film roll, and the reflection color unevenness of the five samples was visually evaluated. . The evaluation criteria were as follows and evaluated in 6 stages. If it is Δ level or more, there is no problem in practical use, but it is preferably not less than ○ Δ level, and most preferably ◎ level.

◎ :反射光の色調ばらつきがまったく認められない
○ :反射光の色調ばらつきがほとんど認められない
○△:部分的に反射光の色調ばらつきがわずかに認められる
△ :部分的に反射光の色調ばらつきが認められる
△×:全体的に反射光の色調ばらつきが認められる
× :全体的に反射光の大きな色調ばらつきが認められる
(反射色むらロット間ばらつき)
同一条件で反射防止層付き光学フィルム3000mを各5本(5ロット)製造し、各々の光学フィルムロールの低屈折率層塗布開始より500m、1000m、1500m、2000m、2500m長の中央部の試料を採取し、その反射率を下記方法で測定し平均反射率を求め、更に5ロット間の平均反射率のばらつきを下記基準で判定した。
◎: Color variation of reflected light is not observed at all ○: Color variation of reflected light is hardly recognized ○ △: Color variation of reflected light is slightly observed △: Color variation of reflected light is partially recognized △ ×: Reflected light color variation is recognized as a whole ×: Reflected light color tone variation is recognized as a whole (reflective color unevenness variation among lots)
Under the same conditions, five optical films with antireflection layers 3000m (5 lots) are manufactured, and 500m, 1000m, 1500m, 2000m, 2500m long central samples from the start of low refractive index layer application of each optical film roll. The sample was collected, and the reflectance was measured by the following method to determine the average reflectance. Further, the dispersion of the average reflectance among the 5 lots was determined according to the following criteria.

○ :5ロットの試料で平均反射率のばらつきは認められない
△ :5ロットの試料で平均反射率にばらつきがやや認められる
× :5ロットの試料で平均反射率のばらつきが大きい
〈反射率測定方法〉
反射防止フィルムの分光反射率は分光光度計U−4000型(日立製作所製)を用いて、5度正反射の条件にて反射率の測定を行った。測定は、観察側の裏面を粗面化処理した後、黒色のスプレーを用いて光吸収処理を行い、フィルム裏面での光の反射を防止して、反射率の測定を行って450nm〜650nmの波長の平均反射率を求めた。
○: No variation in average reflectance observed in 5 lots of samples Δ: Some variation in average reflectance observed in 5 lots of samples ×: Large variation in average reflectance between 5 lots of samples <Reflectance measurement Method>
The spectral reflectance of the antireflection film was measured using a spectrophotometer U-4000 type (manufactured by Hitachi, Ltd.) under the condition of regular reflection at 5 degrees. The measurement is performed by roughening the back surface on the observation side, and then performing light absorption treatment using a black spray, preventing reflection of light on the back surface of the film, and measuring the reflectivity to be 450 nm to 650 nm. The average reflectance of the wavelength was determined.

以上の評価結果を表2に示す。   The above evaluation results are shown in Table 2.

Figure 2007003766
Figure 2007003766

表2より、本発明の光学フィルム5〜11、14〜17は、反射色むらのロット内及び反射色むらのロット間ばらつきが比較例に対し優れていることが分かる。   From Table 2, it can be seen that in the optical films 5 to 11 and 14 to 17 of the present invention, the reflection color unevenness within the lot and the reflection color unevenness among the lots are superior to the comparative example.

特に、巻き取りの際に温風を吹き付け、次いで加熱処理し、更に湿度調整しながら巻き返しによる冷却を行った本発明の光学フィルム15、16は、上記反射色むらのばらつきが極めて良好であることが分かる。   In particular, the optical films 15 and 16 of the present invention, in which warm air is blown at the time of winding, followed by heat treatment, and further cooled by rewinding while adjusting the humidity, have extremely good variations in the reflection color unevenness. I understand.

実施例2
次いで、実施例1で作製した反射防止層付き光学フィルム1〜17を用いて下記のようにして偏光板を作製し、それらの偏光板を液晶表示パネル(画像表示装置)に組み込み、視認性を評価した。
Example 2
Next, using the optical films 1 to 17 with an antireflection layer prepared in Example 1, polarizing plates are prepared as follows, and these polarizing plates are incorporated into a liquid crystal display panel (image display device) to improve visibility. evaluated.

下記の方法に従って、上記反射防止層付き光学フィルム1〜17とセルロースエステル系光学補償フィルムであるKC8UCR−5(コニカミノルタオプト(株)製)各々1枚を偏光板保護フィルムとして用いて偏光板を作製した。   In accordance with the following method, a polarizing plate was prepared using each of the above optical films 1 to 17 with an antireflection layer and one KC8UCR-5 (manufactured by Konica Minolta Opto) as a polarizing plate protective film. Produced.

(a)偏光膜の作製
けん化度99.95モル%、重合度2400のポリビニルアルコール(以下PVAと略す)100質量部に、グリセリン10質量部および水170質量部を含浸させたものを溶融混練し、脱泡後、Tダイから金属ロール上に溶融押出し、製膜した。その後、乾燥・熱処理してPVAフィルムを得た。得られたPVAフィルムは平均厚みが40μm、水分率が4.4%、フィルム幅が3mであった。
(A) Production of polarizing film 100 parts by mass of polyvinyl alcohol (hereinafter abbreviated as PVA) having a saponification degree of 99.95 mol% and a polymerization degree of 2400 was melt-kneaded with 10 parts by mass of glycerin and 170 parts by mass of water. After defoaming, the film was melt extruded from a T die onto a metal roll to form a film. Then, it dried and heat-processed and obtained the PVA film. The obtained PVA film had an average thickness of 40 μm, a moisture content of 4.4%, and a film width of 3 m.

前記したPVAフィルムを予備膨潤、染色、湿式法による一軸延伸、固定処理、乾燥、熱処理の順番で連続的に処理して偏光フィルムを作製した。PVAフィルムを30℃の水中に30秒間浸して予備膨潤し、ヨウ素濃度0.4g/リットル、ヨウ化カリウム濃度40g/リットルの35℃の水溶液中に3分間浸した。続いて、ホウ酸濃度4%の50℃の水溶液中でフィルムにかかる張力が700N/mの条件下で6倍に一軸延伸を行い、ヨウ化カリウム濃度40g/リットル、ホウ酸濃度40g/リットル、塩化亜鉛濃度10g/リットルの30℃の水溶液中に5分間浸漬して固定処理を行った。その後、PVAフィルムを取り出し、40℃で熱風乾燥し、さらに100℃で5分間熱処理を行った。得られた偏光膜は平均厚みが13μm、偏光性能については透過率が43.0%、偏光度が99.5%、2色性比が40.1であった。   The aforementioned PVA film was processed in the order of pre-swelling, dyeing, uniaxial stretching by a wet method, fixing treatment, drying, and heat treatment to produce a polarizing film. The PVA film was pre-swelled by immersing it in water at 30 ° C. for 30 seconds and immersed in an aqueous solution at 35 ° C. having an iodine concentration of 0.4 g / liter and a potassium iodide concentration of 40 g / liter for 3 minutes. Subsequently, the film was uniaxially stretched 6 times in an aqueous solution of boric acid concentration 4% at 50 ° C. under a tension of 700 N / m. The potassium iodide concentration 40 g / liter, boric acid concentration 40 g / liter, Fixation was performed by immersing in an aqueous solution at 30 ° C. with a zinc chloride concentration of 10 g / liter for 5 minutes. Thereafter, the PVA film was taken out, dried with hot air at 40 ° C., and further subjected to heat treatment at 100 ° C. for 5 minutes. The obtained polarizing film had an average thickness of 13 μm, and the polarizing performance was a transmittance of 43.0%, a polarization degree of 99.5%, and a dichroic ratio of 40.1.

(b)偏光板の作製
次いで、下記工程1〜5に従って、偏光膜と偏光板用保護フィルムとを貼り合わせて偏光板を作製した。
(B) Production of Polarizing Plate Next, according to the following Steps 1 to 5, the polarizing film and the polarizing plate protective film were bonded together to produce a polarizing plate.

工程1:上記光学補償フィルムと反射防止層付き光学フィルム1〜17を2mol/Lの水酸化ナトリウム溶液に60℃で90秒間浸漬し、次いで水洗、乾燥させた。反射防止層付き光学フィルム1〜17の反射防止層を設けた面にはあらかじめ剥離性の保護フィルム(PET製)を張り付けて保護した。   Step 1: The optical compensation film and the optical films 1 to 17 with an antireflection layer were immersed in a 2 mol / L sodium hydroxide solution at 60 ° C. for 90 seconds, then washed with water and dried. A surface of the optical films 1 to 17 with the antireflection layer provided with the antireflection layer was previously protected by attaching a peelable protective film (made of PET).

同様に光学補償フィルムを2mol/Lの水酸化ナトリウム溶液に60℃で90秒間浸漬し、次いで水洗、乾燥させた。   Similarly, the optical compensation film was immersed in a 2 mol / L sodium hydroxide solution at 60 ° C. for 90 seconds, then washed with water and dried.

工程2:前述の偏光膜を固形分2質量%のポリビニルアルコール接着剤槽中に1〜2秒間浸漬した。   Process 2: The above-mentioned polarizing film was immersed for 1 to 2 seconds in the polyvinyl alcohol adhesive tank of 2 mass% of solid content.

工程3:工程2で偏光膜に付着した過剰の接着剤を軽く取り除き、それを工程1でアルカリ処理した光学補償フィルムと反射防止層付き光学フィルム1〜17で挟み込んで、積層配置した。   Step 3: Excess adhesive adhered to the polarizing film in Step 2 was lightly removed, and it was sandwiched between the optical compensation film subjected to alkali treatment in Step 1 and the optical films 1 to 17 with an antireflection layer, and laminated.

工程4:2つの回転するローラにて20〜30N/cm2の圧力で約2m/minの速度で張り合わせた。このとき気泡が入らないように注意して実施した。 Process 4: It bonded together at the speed | rate of about 2 m / min with the pressure of 20-30 N / cm < 2 > with the two rotating rollers. At this time, care was taken to prevent bubbles from entering.

工程5:80℃の乾燥機中にて工程4で作製した試料を2分間乾燥処理し、偏光板1〜17を作製した。   Step 5: The sample prepared in Step 4 in a dryer at 80 ° C. was dried for 2 minutes to prepare polarizing plates 1 to 17.

市販の液晶表示パネル(VA型)の最表面の偏光板を注意深く剥離し、ここに偏光方向を合わせた偏光板1〜17を張り付けた。   A polarizing plate on the outermost surface of a commercially available liquid crystal display panel (VA type) was carefully peeled off, and polarizing plates 1 to 17 having the same polarization direction were attached thereto.

上記のようにして得られた液晶表示パネル1〜17を床から80cmの高さの机上に配置し、床から3mの高さの天井部に昼色光直管蛍光灯(FLR40S・D/M−X 松下電器産業(株)製)40W×2本を1セットとして1.5m間隔で10セット配置した。このとき評価者が液晶表示パネル表示面正面にいるときに、評価者の頭上より後方に向けて天井部に前記蛍光灯がくるように配置した。液晶表示パネルは机に対する垂直方向から25°傾けて蛍光灯が写り込むようにして画面の見易さ(視認性)を下記のようにランク評価した。   The liquid crystal display panels 1 to 17 obtained as described above were placed on a desk 80 cm high from the floor, and a daylight direct fluorescent lamp (FLR40S • D / M-) was placed on the ceiling 3 m high from the floor. X: Matsushita Electric Industrial Co., Ltd.) 40W × 2 were used as one set, and 10 sets were arranged at 1.5 m intervals. At this time, when the evaluator is in front of the display surface of the liquid crystal display panel, the fluorescent lamp is arranged so that the fluorescent lamp comes to the ceiling from the evaluator's overhead to the rear. The liquid crystal display panel was tilted by 25 ° from the vertical direction with respect to the desk, and a fluorescent lamp was reflected so that the visibility of the screen (visibility) was evaluated as follows.

A:もっとも近い蛍光灯の移りこみから気にならず、フォントの大きさ8以下の文字もはっきりと読める
B:近くの蛍光灯の写りこみはやや気になるが、遠くは気にならず、フォントの大きさ8以下の文字もなんとかと読める
C:遠くの蛍光灯の写りこみも気になり、フォントの大きさ8以下の文字を読むのは困難である
D:蛍光灯の写りこみがかなり気になり、写り込みの部分はフォントの大きさ8以下の文字を読むことはできない
評価の結果、本発明の反射防止層付き光学フィルム5〜11、14〜17、本発明の偏光板5〜11、14〜17を用いた本発明の液晶表示パネル5〜11、14〜17はいずれもB以上の評価結果であり、比較試料より視認性が良好であった。
A: You don't have to worry about the movement of the nearest fluorescent light, and you can clearly read characters with a font size of 8 or less. B: The reflection of the nearby fluorescent light is a little worrisome, but you don't care about the distance. Can manage to read characters with a font size of 8 or less C: It is difficult to read characters with a font size of 8 or less. Anxious, the portion of the reflection can not read the characters of the font size of 8 or less As a result of the evaluation, the optical films 5-11, 14-17 with the antireflection layer of the present invention, the polarizing plate 5 of the present invention The liquid crystal display panels 5 to 11 and 14 to 17 of the present invention using 11 and 14 to 17 were all B or more evaluation results, and the visibility was better than the comparative sample.

実施例3
実施例1で作製したセルロースエステルフィルムの膜厚を40μmとした以外は実施例1同様にして、セルロースエステルフィルム、反射防止層付き光学フィルムを作製し、更にそれを用いて実施例2と同様にして偏光板、液晶表示パネルを作製し、実施例1、実施例2と同様の評価を行った。
Example 3
A cellulose ester film and an optical film with an antireflection layer were produced in the same manner as in Example 1 except that the film thickness of the cellulose ester film produced in Example 1 was set to 40 μm. A polarizing plate and a liquid crystal display panel were prepared, and the same evaluations as in Example 1 and Example 2 were performed.

その結果、本発明の構成の試料は、実施例1、実施例2をよく再現し、反射色むらのロット内、ロット間のばらつき及び液晶表示装置の視認性に優れていた。   As a result, the sample of the configuration of the present invention reproduced Example 1 and Example 2 well, and was excellent in reflection color unevenness within lots, lot-to-lot variations, and liquid crystal display device visibility.

本発明に係るコーテイング、乾燥工程とそれに続く加熱処理(エージング)及び巻き返しの工程を示した概略図である。It is the schematic which showed the coating of the present invention, the drying process, the subsequent heat treatment (aging), and the process of rewinding. 本発明に好ましい巻き取りコア部の模式図である。It is a schematic diagram of the winding core part preferable for this invention.

符号の説明Explanation of symbols

Y 長尺フィルム
1 繰り出しロール
2 搬送ローラー
3 押出しコータ
4 対向ローラー
5 第1乾燥ゾーン
6 活性光線照射ランプユニット
6a 空冷活性光線ランプ
6b 空冷用Air通風口
6c N2用供給チャンバー
7 第2乾燥ゾーン
8 巻き取り室
9 巻き取りロール
10 温風吹き出し口
11 エージングゾーン
12 エージング済みロール
13 巻き返しゾーン
14 巻き返しロール
15 巻き取りコア
16 コア支え軸
17 コアチャック
18 保温水
19 加熱ゾーン
Y long film 1 feeding roll 2 transport roller 3 extrusion coater 4 counter roller 5 first drying zone 6 actinic ray irradiation lamp unit 6a air cooling actinic ray lamp 6b air cooling air vent 6c N 2 supply chamber 7 second drying zone 8 Winding chamber 9 Winding roll 10 Hot air outlet 11 Aging zone 12 Aged roll 13 Rewinding zone 14 Rewinding roll 15 Winding core 16 Core support shaft 17 Core chuck 18 Heat retaining water 19 Heating zone

Claims (9)

長尺フィルム上に機能性薄膜を設ける光学フィルムの製造方法において、長尺フィルムを連続的に搬送して機能性薄膜をコーティングする工程を有し、コーティング後、該光学フィルムを温度50℃以上でロール状に巻き取り、引き続き50℃以上で1日間以上の加熱処理を行うことを特徴とする光学フィルムの製造方法。 In the manufacturing method of the optical film which provides a functional thin film on a long film, it has the process of conveying a long film continuously and coating a functional thin film, and after coating, this optical film is temperature 50 degreeC or more. A method for producing an optical film, which is wound up in a roll and subsequently subjected to heat treatment at 50 ° C. or more for 1 day or more. 前記機能性薄膜が反射防止層であることを特徴とする請求項1に記載の光学フィルムの製造方法。 The method for producing an optical film according to claim 1, wherein the functional thin film is an antireflection layer. 前記光学フィルムをロール状に巻き取る際に、巻き取り室の雰囲気温度が50〜150℃であるか、または巻き取りロールに50℃以上の温風を当てながら巻き取ることを特徴とする請求項1または2に記載の光学フィルムの製造方法。 When winding up the optical film in a roll shape, the atmospheric temperature of the winding chamber is 50 to 150 ° C, or winding is performed while applying hot air of 50 ° C or higher to the winding roll. The manufacturing method of the optical film of 1 or 2. 長尺フィルムを連続的に搬送して機能性薄膜をコーティングする工程を有し、コーティング後、光学フィルムをロール状に巻き取った状態で50℃以上で1日間以上の加熱処理を行い、該加熱処理終了後巻き返しを行いながら冷却することを特徴とする光学フィルムの製造方法。 It has a step of coating a functional thin film by continuously transporting a long film. After coating, the optical film is wound up in a roll and subjected to heat treatment at 50 ° C. or more for 1 day or more. A method for producing an optical film, wherein the film is cooled while rewinding after completion of the treatment. 前記加熱処理終了後の光学フィルムを巻き返しながら相対湿度10〜70%RHの雰囲気を通過させるか、または該雰囲気で巻き取ることを特徴とする請求項4に記載の光学フィルムの製造方法。 5. The method for producing an optical film according to claim 4, wherein the optical film after completion of the heat treatment is passed through an atmosphere having a relative humidity of 10 to 70% RH while being wound, or is wound up in the atmosphere. 請求項1〜5のいずれか1項に記載の光学フィルムの製造方法により製造されたことを特徴とする光学フィルム。 An optical film manufactured by the method for manufacturing an optical film according to claim 1. 前記光学フィルムが中空微粒子を含有する低屈折率層を有することを特徴とする請求項6に記載の光学フィルム。 The optical film according to claim 6, wherein the optical film has a low refractive index layer containing hollow fine particles. 請求項6または請求項7に記載の光学フィルムを少なくとも一方の面に用いたことを特徴とする偏光板。 A polarizing plate using the optical film according to claim 6 or 7 on at least one surface. 請求項8に記載の偏光板を用いたことを特徴とする表示装置。 A display device comprising the polarizing plate according to claim 8.
JP2005183081A 2005-06-23 2005-06-23 Optical film, manufacturing method of optical film, polarizing plate and display device Pending JP2007003766A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005183081A JP2007003766A (en) 2005-06-23 2005-06-23 Optical film, manufacturing method of optical film, polarizing plate and display device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005183081A JP2007003766A (en) 2005-06-23 2005-06-23 Optical film, manufacturing method of optical film, polarizing plate and display device

Publications (1)

Publication Number Publication Date
JP2007003766A true JP2007003766A (en) 2007-01-11

Family

ID=37689475

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005183081A Pending JP2007003766A (en) 2005-06-23 2005-06-23 Optical film, manufacturing method of optical film, polarizing plate and display device

Country Status (1)

Country Link
JP (1) JP2007003766A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009015273A (en) 2007-07-06 2009-01-22 Sanritsutsu:Kk Production of polarizing plate
JP2015094823A (en) * 2013-11-11 2015-05-18 コニカミノルタ株式会社 Polarizing plate with cellulose ester film
JP2015168158A (en) * 2014-03-07 2015-09-28 トヨタ自動車株式会社 Method of manufacturing thin film laminate

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009015273A (en) 2007-07-06 2009-01-22 Sanritsutsu:Kk Production of polarizing plate
JP2015094823A (en) * 2013-11-11 2015-05-18 コニカミノルタ株式会社 Polarizing plate with cellulose ester film
JP2015168158A (en) * 2014-03-07 2015-09-28 トヨタ自動車株式会社 Method of manufacturing thin film laminate

Similar Documents

Publication Publication Date Title
JP4962316B2 (en) Film, manufacturing method thereof, polarizing plate and liquid crystal display device using the same
JP5088137B2 (en) Optical film processing method, optical film processing apparatus, and optical film manufacturing method
JP5332607B2 (en) Antireflection film, method for producing antireflection film, hard coat film, polarizing plate and display device
JP4992122B2 (en) Antireflection film, method for producing antireflection film, polarizing plate and display device
JP5167812B2 (en) Optical film processing method, optical film processing apparatus, and optical film manufacturing method
JP2006224607A (en) Method for manufacturing roll-shape film having coating layer, roll-shape optical film, polarizing plate, and liquid crystal display
JPWO2007034715A1 (en) Antiglare antireflection film and method for producing antiglare antireflection film
JP4857801B2 (en) Antireflection film, method for producing antireflection film, polarizing plate and display device
JP2007047536A (en) Polarizing plate and liquid crystal display
JP2007017845A (en) Polarizing plate and liquid crystal display
JP2007076089A (en) Method for producing optical film having uneven surface and optical film having uneven surface
JP2005208290A (en) Soil-resistant optical thin film, stain-resistant antireflection film, polarizing plate using the same and display apparatus
JP2006293201A (en) Antireflection film, manufacturing method thereof, polarizing plate and liquid crystal display device
JP2007233129A (en) Manufacturing method of glare-proof film, glare-proof film, glare-proof antireflection film and image display device
JP2007144301A (en) Curing method of ultraviolet curing resin layer and ultraviolet ray irradiation apparatus
JP2007017946A (en) Antireflection film, method of forming antireflection film, polarizing plate and liquid crystal display device
JP2006227162A (en) Antireflection film, method of manufacturing antireflection film, polarizing plate, and display device
JP2005309120A (en) Antireflection film, polarizing plate, and image display device
JP2007025329A (en) Antireflection film, method for producing same, polarizing plate, and display device
JP2005338549A (en) Antireflection film, polarizing plate, and image display device
JP5017775B2 (en) Antiglare antireflection film, method for producing antiglare antireflection film, polarizing plate and display device using the same
JPWO2007018012A1 (en) Optical film, optical film processing method and optical film processing apparatus
JP2005266051A (en) Antireflection film, polarizing plate, and image display device
JP2007062073A (en) Anti-glaring antireflection film, its manufacturing method and image display device
JP2007003766A (en) Optical film, manufacturing method of optical film, polarizing plate and display device